/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "runtime/thread.hpp"
// Lifecycle management for TSM ParkEvents.
// ParkEvents are type-stable (TSM).
// In our particular implementation they happen to be immortal.
//
// We manage concurrency on the FreeList with a CAS-based
// detach-modify-reattach idiom that avoids the ABA problems
// that would otherwise be present in a simple CAS-based
// push-pop implementation. (push-one and pop-all)
//
// Caveat: Allocate() and Release() may be called from threads
// other than the thread associated with the Event!
// If we need to call Allocate() when running as the thread in
// question then look for the PD calls to initialize native TLS.
// Native TLS (Win32/Linux/Solaris) can only be initialized or
// accessed by the associated thread.
// See also pd_initialize().
//
// Note that we could defer associating a ParkEvent with a thread
// until the 1st time the thread calls park(). unpark() calls to
// an unprovisioned thread would be ignored. The first park() call
// for a thread would allocate and associate a ParkEvent and return
// immediately.
volatile int ParkEvent::ListLock = 0 ;
ParkEvent * volatile ParkEvent::FreeList = NULL ;
ParkEvent * ParkEvent::Allocate (Thread * t) {
// In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
ParkEvent * ev ;
// Start by trying to recycle an existing but unassociated
// ParkEvent from the global free list.
for (;;) {
ev = FreeList ;
if (ev == NULL) break ;
// 1: Detach - sequester or privatize the list
// Tantamount to ev = Swap (&FreeList, NULL)
if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
continue ;
}
// We've detached the list. The list in-hand is now
// local to this thread. This thread can operate on the
// list without risk of interference from other threads.
// 2: Extract -- pop the 1st element from the list.
ParkEvent * List = ev->FreeNext ;
if (List == NULL) break ;
for (;;) {
// 3: Try to reattach the residual list
guarantee (List != NULL, "invariant") ;
ParkEvent * Arv = (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
if (Arv == NULL) break ;
// New nodes arrived. Try to detach the recent arrivals.
if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
continue ;
}
guarantee (Arv != NULL, "invariant") ;
// 4: Merge Arv into List
ParkEvent * Tail = List ;
while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
Tail->FreeNext = Arv ;
}
break ;
}
if (ev != NULL) {
guarantee (ev->AssociatedWith == NULL, "invariant") ;
} else {
// Do this the hard way -- materialize a new ParkEvent.
// In rare cases an allocating thread might detach a long list --
// installing null into FreeList -- and then stall or be obstructed.
// A 2nd thread calling Allocate() would see FreeList == null.
// The list held privately by the 1st thread is unavailable to the 2nd thread.
// In that case the 2nd thread would have to materialize a new ParkEvent,
// even though free ParkEvents existed in the system. In this case we end up
// with more ParkEvents in circulation than we need, but the race is
// rare and the outcome is benign. Ideally, the # of extant ParkEvents
// is equal to the maximum # of threads that existed at any one time.
// Because of the race mentioned above, segments of the freelist
// can be transiently inaccessible. At worst we may end up with the
// # of ParkEvents in circulation slightly above the ideal.
// Note that if we didn't have the TSM/immortal constraint, then
// when reattaching, above, we could trim the list.
ev = new ParkEvent () ;
guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
}
ev->reset() ; // courtesy to caller
ev->AssociatedWith = t ; // Associate ev with t
ev->FreeNext = NULL ;
return ev ;
}
void ParkEvent::Release (ParkEvent * ev) {
if (ev == NULL) return ;
guarantee (ev->FreeNext == NULL , "invariant") ;
ev->AssociatedWith = NULL ;
for (;;) {
// Push ev onto FreeList
// The mechanism is "half" lock-free.
ParkEvent * List = FreeList ;
ev->FreeNext = List ;
if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
}
}
// Override operator new and delete so we can ensure that the
// least significant byte of ParkEvent addresses is 0.
// Beware that excessive address alignment is undesirable
// as it can result in D$ index usage imbalance as
// well as bank access imbalance on Niagara-like platforms,
// although Niagara's hash function should help.
void * ParkEvent::operator new (size_t sz) {
return (void *) ((intptr_t (AllocateHeap(sz + 256, mtInternal, CALLER_PC)) + 256) & -256) ;
}
void ParkEvent::operator delete (void * a) {
// ParkEvents are type-stable and immortal ...
ShouldNotReachHere();
}
// 6399321 As a temporary measure we copied & modified the ParkEvent::
// allocate() and release() code for use by Parkers. The Parker:: forms
// will eventually be removed as we consolide and shift over to ParkEvents
// for both builtin synchronization and JSR166 operations.
volatile int Parker::ListLock = 0 ;
Parker * volatile Parker::FreeList = NULL ;
Parker * Parker::Allocate (JavaThread * t) {
guarantee (t != NULL, "invariant") ;
Parker * p ;
// Start by trying to recycle an existing but unassociated
// Parker from the global free list.
for (;;) {
p = FreeList ;
if (p == NULL) break ;
// 1: Detach
// Tantamount to p = Swap (&FreeList, NULL)
if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
continue ;
}
// We've detached the list. The list in-hand is now
// local to this thread. This thread can operate on the
// list without risk of interference from other threads.
// 2: Extract -- pop the 1st element from the list.
Parker * List = p->FreeNext ;
if (List == NULL) break ;
for (;;) {
// 3: Try to reattach the residual list
guarantee (List != NULL, "invariant") ;
Parker * Arv = (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
if (Arv == NULL) break ;
// New nodes arrived. Try to detach the recent arrivals.
if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
continue ;
}
guarantee (Arv != NULL, "invariant") ;
// 4: Merge Arv into List
Parker * Tail = List ;
while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
Tail->FreeNext = Arv ;
}
break ;
}
if (p != NULL) {
guarantee (p->AssociatedWith == NULL, "invariant") ;
} else {
// Do this the hard way -- materialize a new Parker..
// In rare cases an allocating thread might detach
// a long list -- installing null into FreeList --and
// then stall. Another thread calling Allocate() would see
// FreeList == null and then invoke the ctor. In this case we
// end up with more Parkers in circulation than we need, but
// the race is rare and the outcome is benign.
// Ideally, the # of extant Parkers is equal to the
// maximum # of threads that existed at any one time.
// Because of the race mentioned above, segments of the
// freelist can be transiently inaccessible. At worst
// we may end up with the # of Parkers in circulation
// slightly above the ideal.
p = new Parker() ;
}
p->AssociatedWith = t ; // Associate p with t
p->FreeNext = NULL ;
return p ;
}
void Parker::Release (Parker * p) {
if (p == NULL) return ;
guarantee (p->AssociatedWith != NULL, "invariant") ;
guarantee (p->FreeNext == NULL , "invariant") ;
p->AssociatedWith = NULL ;
for (;;) {
// Push p onto FreeList
Parker * List = FreeList ;
p->FreeNext = List ;
if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
}
}