/*
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OOPS_CPCACHEOOP_HPP
#define SHARE_VM_OOPS_CPCACHEOOP_HPP
#include "interpreter/bytecodes.hpp"
#include "memory/allocation.hpp"
#include "oops/arrayOop.hpp"
#include "utilities/array.hpp"
// A ConstantPoolCacheEntry describes an individual entry of the constant
// pool cache. There's 2 principal kinds of entries: field entries for in-
// stance & static field access, and method entries for invokes. Some of
// the entry layout is shared and looks as follows:
//
// bit number |31 0|
// bit length |-8--|-8--|---16----|
// --------------------------------
// _indices [ b2 | b1 | index ] index = constant_pool_index (!= 0, normal entries only)
// _indices [ index | 00000 ] index = main_entry_index (secondary entries only)
// _f1 [ entry specific ] method, klass, or oop (MethodType or CallSite)
// _f2 [ entry specific ] vtable index or vfinal method
// _flags [tos|0|00|00|00|f|v|f2|unused|field_index] (for field entries)
// bit length [ 4 |1|1 |1 | 1|1|1| 1|---5--|----16-----]
// _flags [tos|M|vf|fv|ea|f|0|f2|unused|00000|psize] (for method entries)
// bit length [ 4 |1|1 |1 | 1|1|1| 1|---5--|--8--|--8--]
// --------------------------------
//
// with:
// index = original constant pool index
// b1 = bytecode 1
// b2 = bytecode 2
// psize = parameters size (method entries only)
// field_index = index into field information in holder instanceKlass
// The index max is 0xffff (max number of fields in constant pool)
// and is multiplied by (instanceKlass::next_offset) when accessing.
// t = TosState (see below)
// f = field is marked final (see below)
// f2 = virtual but final (method entries only: is_vfinal())
// v = field is volatile (see below)
// m = invokeinterface used for method in class Object (see below)
// h = RedefineClasses/Hotswap bit (see below)
//
// The flags after TosState have the following interpretation:
// bit 27: 0 for fields, 1 for methods
// f flag true if field is marked final
// v flag true if field is volatile (only for fields)
// f2 flag true if f2 contains an oop (e.g., virtual final method)
// fv flag true if invokeinterface used for method in class Object
//
// The flags 31, 30, 29, 28 together build a 4 bit number 0 to 8 with the
// following mapping to the TosState states:
//
// btos: 0
// ctos: 1
// stos: 2
// itos: 3
// ltos: 4
// ftos: 5
// dtos: 6
// atos: 7
// vtos: 8
//
// Entry specific: field entries:
// _indices = get (b1 section) and put (b2 section) bytecodes, original constant pool index
// _f1 = field holder (as a java.lang.Class, not a klassOop)
// _f2 = field offset in bytes
// _flags = field type information, original FieldInfo index in field holder
// (field_index section)
//
// Entry specific: method entries:
// _indices = invoke code for f1 (b1 section), invoke code for f2 (b2 section),
// original constant pool index
// _f1 = methodOop for non-virtual calls, unused by virtual calls.
// for interface calls, which are essentially virtual but need a klass,
// contains klassOop for the corresponding interface.
// for invokedynamic, f1 contains a site-specific CallSite object (as an appendix)
// for invokehandle, f1 contains a site-specific MethodType object (as an appendix)
// (upcoming metadata changes will move the appendix to a separate array)
// _f2 = vtable/itable index (or final methodOop) for virtual calls only,
// unused by non-virtual. The is_vfinal flag indicates this is a
// method pointer for a final method, not an index.
// _flags = method type info (t section),
// virtual final bit (vfinal),
// parameter size (psize section)
//
// Note: invokevirtual & invokespecial bytecodes can share the same constant
// pool entry and thus the same constant pool cache entry. All invoke
// bytecodes but invokevirtual use only _f1 and the corresponding b1
// bytecode, while invokevirtual uses only _f2 and the corresponding
// b2 bytecode. The value of _flags is shared for both types of entries.
//
// The fields are volatile so that they are stored in the order written in the
// source code. The _indices field with the bytecode must be written last.
class ConstantPoolCacheEntry VALUE_OBJ_CLASS_SPEC {
friend class VMStructs;
friend class constantPoolCacheKlass;
friend class constantPoolOopDesc; //resolve_constant_at_impl => set_f1
private:
volatile intx _indices; // constant pool index & rewrite bytecodes
volatile oop _f1; // entry specific oop field
volatile intx _f2; // entry specific int/oop field
volatile intx _flags; // flags
#ifdef ASSERT
bool same_methodOop(oop cur_f1, oop f1);
#endif
void set_bytecode_1(Bytecodes::Code code);
void set_bytecode_2(Bytecodes::Code code);
void set_f1(oop f1) {
oop existing_f1 = _f1; // read once
assert(existing_f1 == NULL || existing_f1 == f1, "illegal field change");
oop_store(&_f1, f1);
}
void release_set_f1(oop f1);
void set_f2(intx f2) { assert(_f2 == 0 || _f2 == f2, "illegal field change"); _f2 = f2; }
void set_f2_as_vfinal_method(methodOop f2) { assert(_f2 == 0 || _f2 == (intptr_t) f2, "illegal field change"); assert(is_vfinal(), "flags must be set"); _f2 = (intptr_t) f2; }
int make_flags(TosState state, int option_bits, int field_index_or_method_params);
void set_flags(intx flags) { _flags = flags; }
bool init_flags_atomic(intx flags);
void set_field_flags(TosState field_type, int option_bits, int field_index) {
assert((field_index & field_index_mask) == field_index, "field_index in range");
set_flags(make_flags(field_type, option_bits | (1 << is_field_entry_shift), field_index));
}
void set_method_flags(TosState return_type, int option_bits, int method_params) {
assert((method_params & parameter_size_mask) == method_params, "method_params in range");
set_flags(make_flags(return_type, option_bits, method_params));
}
bool init_method_flags_atomic(TosState return_type, int option_bits, int method_params) {
assert((method_params & parameter_size_mask) == method_params, "method_params in range");
return init_flags_atomic(make_flags(return_type, option_bits, method_params));
}
public:
// specific bit definitions for the flags field:
// (Note: the interpreter must use these definitions to access the CP cache.)
enum {
// high order bits are the TosState corresponding to field type or method return type
tos_state_bits = 4,
tos_state_mask = right_n_bits(tos_state_bits),
tos_state_shift = BitsPerInt - tos_state_bits, // see verify_tos_state_shift below
// misc. option bits; can be any bit position in [16..27]
is_vfinal_shift = 20,
is_volatile_shift = 21,
is_final_shift = 22,
has_appendix_shift = 23,
has_method_type_shift = 24,
is_forced_virtual_shift = 25,
is_field_entry_shift = 26,
// low order bits give field index (for FieldInfo) or method parameter size:
field_index_bits = 16,
field_index_mask = right_n_bits(field_index_bits),
parameter_size_bits = 8, // subset of field_index_mask, range is 0..255
parameter_size_mask = right_n_bits(parameter_size_bits),
option_bits_mask = ~(((-1) << tos_state_shift) | (field_index_mask | parameter_size_mask))
};
// specific bit definitions for the indices field:
enum {
main_cp_index_bits = 2*BitsPerByte,
main_cp_index_mask = right_n_bits(main_cp_index_bits),
bytecode_1_shift = main_cp_index_bits,
bytecode_1_mask = right_n_bits(BitsPerByte), // == (u1)0xFF
bytecode_2_shift = main_cp_index_bits + BitsPerByte,
bytecode_2_mask = right_n_bits(BitsPerByte), // == (u1)0xFF
// the secondary cp index overlaps with bytecodes 1 and 2:
secondary_cp_index_shift = bytecode_1_shift,
secondary_cp_index_bits = BitsPerInt - main_cp_index_bits
};
// Initialization
void initialize_entry(int original_index); // initialize primary entry
void initialize_secondary_entry(int main_index); // initialize secondary entry
void set_field( // sets entry to resolved field state
Bytecodes::Code get_code, // the bytecode used for reading the field
Bytecodes::Code put_code, // the bytecode used for writing the field
KlassHandle field_holder, // the object/klass holding the field
int orig_field_index, // the original field index in the field holder
int field_offset, // the field offset in words in the field holder
TosState field_type, // the (machine) field type
bool is_final, // the field is final
bool is_volatile // the field is volatile
);
void set_method( // sets entry to resolved method entry
Bytecodes::Code invoke_code, // the bytecode used for invoking the method
methodHandle method, // the method/prototype if any (NULL, otherwise)
int vtable_index // the vtable index if any, else negative
);
void set_interface_call(
methodHandle method, // Resolved method
int index // Method index into interface
);
void set_method_handle(
constantPoolHandle cpool, // holding constant pool (required for locking)
methodHandle method, // adapter for invokeExact, etc.
Handle appendix, // stored in f1; could be a java.lang.invoke.MethodType
Handle method_type // stored in f1 (of secondary entry); is a java.lang.invoke.MethodType
);
void set_dynamic_call(
constantPoolHandle cpool, // holding constant pool (required for locking)
methodHandle method, // adapter for this call site
Handle appendix, // stored in f1; could be a java.lang.invoke.CallSite
Handle method_type // stored in f1 (of secondary entry); is a java.lang.invoke.MethodType
);
// Common code for invokedynamic and MH invocations.
// The "appendix" is an optional call-site-specific parameter which is
// pushed by the JVM at the end of the argument list. This argument may
// be a MethodType for the MH.invokes and a CallSite for an invokedynamic
// instruction. However, its exact type and use depends on the Java upcall,
// which simply returns a compiled LambdaForm along with any reference
// that LambdaForm needs to complete the call. If the upcall returns a
// null appendix, the argument is not passed at all.
//
// The appendix is *not* represented in the signature of the symbolic
// reference for the call site, but (if present) it *is* represented in
// the methodOop bound to the site. This means that static and dynamic
// resolution logic needs to make slightly different assessments about the
// number and types of arguments.
void set_method_handle_common(
constantPoolHandle cpool, // holding constant pool (required for locking)
Bytecodes::Code invoke_code, // _invokehandle or _invokedynamic
methodHandle adapter, // invoker method (f2)
Handle appendix, // appendix such as CallSite, MethodType, etc. (f1)
Handle method_type // MethodType (f1 of secondary entry)
);
methodOop method_if_resolved(constantPoolHandle cpool);
oop appendix_if_resolved(constantPoolHandle cpool);
oop method_type_if_resolved(constantPoolHandle cpool);
void set_parameter_size(int value);
// Which bytecode number (1 or 2) in the index field is valid for this bytecode?
// Returns -1 if neither is valid.
static int bytecode_number(Bytecodes::Code code) {
switch (code) {
case Bytecodes::_getstatic : // fall through
case Bytecodes::_getfield : // fall through
case Bytecodes::_invokespecial : // fall through
case Bytecodes::_invokestatic : // fall through
case Bytecodes::_invokehandle : // fall through
case Bytecodes::_invokedynamic : // fall through
case Bytecodes::_invokeinterface : return 1;
case Bytecodes::_putstatic : // fall through
case Bytecodes::_putfield : // fall through
case Bytecodes::_invokevirtual : return 2;
default : break;
}
return -1;
}
// Has this bytecode been resolved? Only valid for invokes and get/put field/static.
bool is_resolved(Bytecodes::Code code) const {
switch (bytecode_number(code)) {
case 1: return (bytecode_1() == code);
case 2: return (bytecode_2() == code);
}
return false; // default: not resolved
}
// Accessors
bool is_secondary_entry() const { return (_indices & main_cp_index_mask) == 0; }
int main_entry_index() const { assert(is_secondary_entry(), "must be secondary entry");
return ((uintx)_indices >> secondary_cp_index_shift); }
int primary_entry_indices() const { assert(!is_secondary_entry(), "must be main entry");
return _indices; }
int constant_pool_index() const { return (primary_entry_indices() & main_cp_index_mask); }
Bytecodes::Code bytecode_1() const { return Bytecodes::cast((primary_entry_indices() >> bytecode_1_shift)
& bytecode_1_mask); }
Bytecodes::Code bytecode_2() const { return Bytecodes::cast((primary_entry_indices() >> bytecode_2_shift)
& bytecode_2_mask); }
methodOop f1_as_method() const { oop f1 = _f1; assert(f1 == NULL || f1->is_method(), ""); return methodOop(f1); }
klassOop f1_as_klass() const { oop f1 = _f1; assert(f1 == NULL || f1->is_klass(), ""); return klassOop(f1); }
oop f1_as_klass_mirror() const { oop f1 = f1_as_instance(); return f1; } // i.e., return a java_mirror
oop f1_as_instance() const { oop f1 = _f1; assert(f1 == NULL || f1->is_instance() || f1->is_array(), ""); return f1; }
oop f1_appendix() const { assert(has_appendix(), ""); return f1_as_instance(); }
bool is_f1_null() const { oop f1 = _f1; return f1 == NULL; } // classifies a CPC entry as unbound
int f2_as_index() const { assert(!is_vfinal(), ""); return (int) _f2; }
methodOop f2_as_vfinal_method() const { assert(is_vfinal(), ""); return methodOop(_f2); }
int field_index() const { assert(is_field_entry(), ""); return (_flags & field_index_mask); }
int parameter_size() const { assert(is_method_entry(), ""); return (_flags & parameter_size_mask); }
bool is_volatile() const { return (_flags & (1 << is_volatile_shift)) != 0; }
bool is_final() const { return (_flags & (1 << is_final_shift)) != 0; }
bool has_appendix() const { return (_flags & (1 << has_appendix_shift)) != 0; }
bool has_method_type() const { return (_flags & (1 << has_method_type_shift)) != 0; }
bool is_forced_virtual() const { return (_flags & (1 << is_forced_virtual_shift)) != 0; }
bool is_vfinal() const { return (_flags & (1 << is_vfinal_shift)) != 0; }
bool is_method_entry() const { return (_flags & (1 << is_field_entry_shift)) == 0; }
bool is_field_entry() const { return (_flags & (1 << is_field_entry_shift)) != 0; }
bool is_byte() const { return flag_state() == btos; }
bool is_char() const { return flag_state() == ctos; }
bool is_short() const { return flag_state() == stos; }
bool is_int() const { return flag_state() == itos; }
bool is_long() const { return flag_state() == ltos; }
bool is_float() const { return flag_state() == ftos; }
bool is_double() const { return flag_state() == dtos; }
bool is_object() const { return flag_state() == atos; }
TosState flag_state() const { assert((uint)number_of_states <= (uint)tos_state_mask+1, "");
return (TosState)((_flags >> tos_state_shift) & tos_state_mask); }
// Code generation support
static WordSize size() { return in_WordSize(sizeof(ConstantPoolCacheEntry) / HeapWordSize); }
static ByteSize size_in_bytes() { return in_ByteSize(sizeof(ConstantPoolCacheEntry)); }
static ByteSize indices_offset() { return byte_offset_of(ConstantPoolCacheEntry, _indices); }
static ByteSize f1_offset() { return byte_offset_of(ConstantPoolCacheEntry, _f1); }
static ByteSize f2_offset() { return byte_offset_of(ConstantPoolCacheEntry, _f2); }
static ByteSize flags_offset() { return byte_offset_of(ConstantPoolCacheEntry, _flags); }
// GC Support
void oops_do(void f(oop*));
void oop_iterate(OopClosure* blk);
void oop_iterate_m(OopClosure* blk, MemRegion mr);
void follow_contents();
void adjust_pointers();
#ifndef SERIALGC
// Parallel Old
void follow_contents(ParCompactionManager* cm);
#endif // SERIALGC
void update_pointers();
// RedefineClasses() API support:
// If this constantPoolCacheEntry refers to old_method then update it
// to refer to new_method.
// trace_name_printed is set to true if the current call has
// printed the klass name so that other routines in the adjust_*
// group don't print the klass name.
bool adjust_method_entry(methodOop old_method, methodOop new_method,
bool * trace_name_printed);
bool check_no_old_or_obsolete_entries();
bool is_interesting_method_entry(klassOop k);
// Debugging & Printing
void print (outputStream* st, int index) const;
void verify(outputStream* st) const;
static void verify_tos_state_shift() {
// When shifting flags as a 32-bit int, make sure we don't need an extra mask for tos_state:
assert((((u4)-1 >> tos_state_shift) & ~tos_state_mask) == 0, "no need for tos_state mask");
}
};
// A constant pool cache is a runtime data structure set aside to a constant pool. The cache
// holds interpreter runtime information for all field access and invoke bytecodes. The cache
// is created and initialized before a class is actively used (i.e., initialized), the indivi-
// dual cache entries are filled at resolution (i.e., "link") time (see also: rewriter.*).
class constantPoolCacheOopDesc: public oopDesc {
friend class VMStructs;
private:
int _length;
constantPoolOop _constant_pool; // the corresponding constant pool
// Sizing
debug_only(friend class ClassVerifier;)
public:
int length() const { return _length; }
private:
void set_length(int length) { _length = length; }
static int header_size() { return sizeof(constantPoolCacheOopDesc) / HeapWordSize; }
static int object_size(int length) { return align_object_size(header_size() + length * in_words(ConstantPoolCacheEntry::size())); }
int object_size() { return object_size(length()); }
// Helpers
constantPoolOop* constant_pool_addr() { return &_constant_pool; }
ConstantPoolCacheEntry* base() const { return (ConstantPoolCacheEntry*)((address)this + in_bytes(base_offset())); }
friend class constantPoolCacheKlass;
friend class ConstantPoolCacheEntry;
public:
// Initialization
void initialize(intArray& inverse_index_map);
// Secondary indexes.
// They must look completely different from normal indexes.
// The main reason is that byte swapping is sometimes done on normal indexes.
// Also, some of the CP accessors do different things for secondary indexes.
// Finally, it is helpful for debugging to tell the two apart.
static bool is_secondary_index(int i) { return (i < 0); }
static int decode_secondary_index(int i) { assert(is_secondary_index(i), ""); return ~i; }
static int encode_secondary_index(int i) { assert(!is_secondary_index(i), ""); return ~i; }
// Accessors
void set_constant_pool(constantPoolOop pool) { oop_store_without_check((oop*)&_constant_pool, (oop)pool); }
constantPoolOop constant_pool() const { return _constant_pool; }
// Fetches the entry at the given index.
// The entry may be either primary or secondary.
// In either case the index must not be encoded or byte-swapped in any way.
ConstantPoolCacheEntry* entry_at(int i) const {
assert(0 <= i && i < length(), "index out of bounds");
return base() + i;
}
// Fetches the secondary entry referred to by index.
// The index may be a secondary index, and must not be byte-swapped.
ConstantPoolCacheEntry* secondary_entry_at(int i) const {
int raw_index = i;
if (is_secondary_index(i)) { // correct these on the fly
raw_index = decode_secondary_index(i);
}
assert(entry_at(raw_index)->is_secondary_entry(), "not a secondary entry");
return entry_at(raw_index);
}
// Given a primary or secondary index, fetch the corresponding primary entry.
// Indirect through the secondary entry, if the index is encoded as a secondary index.
// The index must not be byte-swapped.
ConstantPoolCacheEntry* main_entry_at(int i) const {
int primary_index = i;
if (is_secondary_index(i)) {
// run through an extra level of indirection:
int raw_index = decode_secondary_index(i);
primary_index = entry_at(raw_index)->main_entry_index();
}
assert(!entry_at(primary_index)->is_secondary_entry(), "only one level of indirection");
return entry_at(primary_index);
}
int index_of(ConstantPoolCacheEntry* e) {
assert(base() <= e && e < base() + length(), "oob");
int cpc_index = (e - base());
assert(entry_at(cpc_index) == e, "sanity");
return cpc_index;
}
ConstantPoolCacheEntry* find_secondary_entry_for(ConstantPoolCacheEntry* e) {
const int cpc_index = index_of(e);
if (e->is_secondary_entry()) {
ConstantPoolCacheEntry* e2 = entry_at(cpc_index + 1);
assert(e->main_entry_index() == e2->main_entry_index(), "");
return e2;
} else {
for (int i = length() - 1; i >= 0; i--) {
ConstantPoolCacheEntry* e2 = entry_at(i);
if (cpc_index == e2->main_entry_index())
return e2;
}
}
fatal("no secondary entry found");
return NULL;
}
// Code generation
static ByteSize base_offset() { return in_ByteSize(sizeof(constantPoolCacheOopDesc)); }
static ByteSize entry_offset(int raw_index) {
int index = raw_index;
if (is_secondary_index(raw_index))
index = decode_secondary_index(raw_index);
return (base_offset() + ConstantPoolCacheEntry::size_in_bytes() * index);
}
// RedefineClasses() API support:
// If any entry of this constantPoolCache points to any of
// old_methods, replace it with the corresponding new_method.
// trace_name_printed is set to true if the current call has
// printed the klass name so that other routines in the adjust_*
// group don't print the klass name.
void adjust_method_entries(methodOop* old_methods, methodOop* new_methods,
int methods_length, bool * trace_name_printed);
bool check_no_old_or_obsolete_entries();
void dump_cache();
};
#endif // SHARE_VM_OOPS_CPCACHEOOP_HPP