/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
#include "gc_implementation/g1/g1Log.hpp"
// Helper class for avoiding interleaved logging
class LineBuffer: public StackObj {
private:
static const int BUFFER_LEN = 1024;
static const int INDENT_CHARS = 3;
char _buffer[BUFFER_LEN];
int _indent_level;
int _cur;
void vappend(const char* format, va_list ap) {
int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
if (res != -1) {
_cur += res;
} else {
DEBUG_ONLY(warning("buffer too small in LineBuffer");)
_buffer[BUFFER_LEN -1] = 0;
_cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
}
}
public:
explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
_buffer[_cur] = ' ';
}
}
#ifndef PRODUCT
~LineBuffer() {
assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
}
#endif
void append(const char* format, ...) {
va_list ap;
va_start(ap, format);
vappend(format, ap);
va_end(ap);
}
void append_and_print_cr(const char* format, ...) {
va_list ap;
va_start(ap, format);
vappend(format, ap);
va_end(ap);
gclog_or_tty->print_cr("%s", _buffer);
_cur = _indent_level * INDENT_CHARS;
}
};
template <class T>
void WorkerDataArray<T>::print(int level, const char* title) {
if (_length == 1) {
// No need for min, max, average and sum for only one worker
LineBuffer buf(level);
buf.append("[%s: ", title);
buf.append(_print_format, _data[0]);
buf.append_and_print_cr("]");
return;
}
T min = _data[0];
T max = _data[0];
T sum = 0;
LineBuffer buf(level);
buf.append("[%s:", title);
for (uint i = 0; i < _length; ++i) {
T val = _data[i];
min = MIN2(val, min);
max = MAX2(val, max);
sum += val;
if (G1Log::finest()) {
buf.append(" ");
buf.append(_print_format, val);
}
}
if (G1Log::finest()) {
buf.append_and_print_cr("");
}
double avg = (double)sum / (double)_length;
buf.append(" Min: ");
buf.append(_print_format, min);
buf.append(", Avg: ");
buf.append("%.1lf", avg); // Always print average as a double
buf.append(", Max: ");
buf.append(_print_format, max);
buf.append(", Diff: ");
buf.append(_print_format, max - min);
if (_print_sum) {
// for things like the start and end times the sum is not
// that relevant
buf.append(", Sum: ");
buf.append(_print_format, sum);
}
buf.append_and_print_cr("]");
}
#ifdef ASSERT
template <> const int WorkerDataArray<int>::_uninitialized = -1;
template <> const double WorkerDataArray<double>::_uninitialized = -1.0;
template <> const size_t WorkerDataArray<size_t>::_uninitialized = (size_t)-1;
template <class T>
void WorkerDataArray<T>::reset() {
for (uint i = 0; i < _length; i++) {
_data[i] = (T)_uninitialized;
}
}
template <class T>
void WorkerDataArray<T>::verify() {
for (uint i = 0; i < _length; i++) {
assert(_data[i] != _uninitialized,
err_msg("Invalid data for worker " UINT32_FORMAT ", data: %lf, uninitialized: %lf",
i, (double)_data[i], (double)_uninitialized));
}
}
#endif
G1GCPhaseTimes::G1GCPhaseTimes(uint max_gc_threads) :
_max_gc_threads(max_gc_threads),
_last_gc_worker_start_times_ms(_max_gc_threads, "%.1lf", false),
_last_ext_root_scan_times_ms(_max_gc_threads, "%.1lf"),
_last_satb_filtering_times_ms(_max_gc_threads, "%.1lf"),
_last_update_rs_times_ms(_max_gc_threads, "%.1lf"),
_last_update_rs_processed_buffers(_max_gc_threads, "%d"),
_last_scan_rs_times_ms(_max_gc_threads, "%.1lf"),
_last_obj_copy_times_ms(_max_gc_threads, "%.1lf"),
_last_termination_times_ms(_max_gc_threads, "%.1lf"),
_last_termination_attempts(_max_gc_threads, SIZE_FORMAT),
_last_gc_worker_end_times_ms(_max_gc_threads, "%.1lf", false),
_last_gc_worker_times_ms(_max_gc_threads, "%.1lf"),
_last_gc_worker_other_times_ms(_max_gc_threads, "%.1lf")
{
assert(max_gc_threads > 0, "Must have some GC threads");
}
void G1GCPhaseTimes::note_gc_start(uint active_gc_threads) {
assert(active_gc_threads > 0, "The number of threads must be > 0");
assert(active_gc_threads <= _max_gc_threads, "The number of active threads must be <= the max nubmer of threads");
_active_gc_threads = active_gc_threads;
_last_gc_worker_start_times_ms.reset();
_last_ext_root_scan_times_ms.reset();
_last_satb_filtering_times_ms.reset();
_last_update_rs_times_ms.reset();
_last_update_rs_processed_buffers.reset();
_last_scan_rs_times_ms.reset();
_last_obj_copy_times_ms.reset();
_last_termination_times_ms.reset();
_last_termination_attempts.reset();
_last_gc_worker_end_times_ms.reset();
_last_gc_worker_times_ms.reset();
_last_gc_worker_other_times_ms.reset();
}
void G1GCPhaseTimes::note_gc_end() {
_last_gc_worker_start_times_ms.verify();
_last_ext_root_scan_times_ms.verify();
_last_satb_filtering_times_ms.verify();
_last_update_rs_times_ms.verify();
_last_update_rs_processed_buffers.verify();
_last_scan_rs_times_ms.verify();
_last_obj_copy_times_ms.verify();
_last_termination_times_ms.verify();
_last_termination_attempts.verify();
_last_gc_worker_end_times_ms.verify();
for (uint i = 0; i < _active_gc_threads; i++) {
double worker_time = _last_gc_worker_end_times_ms.get(i) - _last_gc_worker_start_times_ms.get(i);
_last_gc_worker_times_ms.set(i, worker_time);
double worker_known_time = _last_ext_root_scan_times_ms.get(i) +
_last_satb_filtering_times_ms.get(i) +
_last_update_rs_times_ms.get(i) +
_last_scan_rs_times_ms.get(i) +
_last_obj_copy_times_ms.get(i) +
_last_termination_times_ms.get(i);
double worker_other_time = worker_time - worker_known_time;
_last_gc_worker_other_times_ms.set(i, worker_other_time);
}
_last_gc_worker_times_ms.verify();
_last_gc_worker_other_times_ms.verify();
}
void G1GCPhaseTimes::print_stats(int level, const char* str, double value) {
LineBuffer(level).append_and_print_cr("[%s: %.1lf ms]", str, value);
}
void G1GCPhaseTimes::print_stats(int level, const char* str, double value, int workers) {
LineBuffer(level).append_and_print_cr("[%s: %.1lf ms, GC Workers: %d]", str, value, workers);
}
double G1GCPhaseTimes::accounted_time_ms() {
// Subtract the root region scanning wait time. It's initialized to
// zero at the start of the pause.
double misc_time_ms = _root_region_scan_wait_time_ms;
misc_time_ms += _cur_collection_par_time_ms;
// Now subtract the time taken to fix up roots in generated code
misc_time_ms += _cur_collection_code_root_fixup_time_ms;
// Subtract the time taken to clean the card table from the
// current value of "other time"
misc_time_ms += _cur_clear_ct_time_ms;
return misc_time_ms;
}
void G1GCPhaseTimes::print(double pause_time_sec) {
if (_root_region_scan_wait_time_ms > 0.0) {
print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms);
}
if (G1CollectedHeap::use_parallel_gc_threads()) {
print_stats(1, "Parallel Time", _cur_collection_par_time_ms, _active_gc_threads);
_last_gc_worker_start_times_ms.print(2, "GC Worker Start (ms)");
_last_ext_root_scan_times_ms.print(2, "Ext Root Scanning (ms)");
if (_last_satb_filtering_times_ms.sum() > 0.0) {
_last_satb_filtering_times_ms.print(2, "SATB Filtering (ms)");
}
_last_update_rs_times_ms.print(2, "Update RS (ms)");
_last_update_rs_processed_buffers.print(3, "Processed Buffers");
_last_scan_rs_times_ms.print(2, "Scan RS (ms)");
_last_obj_copy_times_ms.print(2, "Object Copy (ms)");
_last_termination_times_ms.print(2, "Termination (ms)");
if (G1Log::finest()) {
_last_termination_attempts.print(3, "Termination Attempts");
}
_last_gc_worker_other_times_ms.print(2, "GC Worker Other (ms)");
_last_gc_worker_times_ms.print(2, "GC Worker Total (ms)");
_last_gc_worker_end_times_ms.print(2, "GC Worker End (ms)");
} else {
_last_ext_root_scan_times_ms.print(1, "Ext Root Scanning (ms)");
if (_last_satb_filtering_times_ms.sum() > 0.0) {
_last_satb_filtering_times_ms.print(1, "SATB Filtering (ms)");
}
_last_update_rs_times_ms.print(1, "Update RS (ms)");
_last_update_rs_processed_buffers.print(2, "Processed Buffers");
_last_scan_rs_times_ms.print(1, "Scan RS (ms)");
_last_obj_copy_times_ms.print(1, "Object Copy (ms)");
}
print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms);
print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
double misc_time_ms = pause_time_sec * MILLIUNITS - accounted_time_ms();
print_stats(1, "Other", misc_time_ms);
if (_cur_verify_before_time_ms > 0.0) {
print_stats(2, "Verify Before", _cur_verify_before_time_ms);
}
print_stats(2, "Choose CSet",
(_recorded_young_cset_choice_time_ms +
_recorded_non_young_cset_choice_time_ms));
print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
print_stats(2, "Free CSet",
(_recorded_young_free_cset_time_ms +
_recorded_non_young_free_cset_time_ms));
if (_cur_verify_after_time_ms > 0.0) {
print_stats(2, "Verify After", _cur_verify_after_time_ms);
}
}