/*
* Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_C1_C1_LIR_HPP
#define SHARE_VM_C1_C1_LIR_HPP
#include "c1/c1_ValueType.hpp"
#include "oops/methodOop.hpp"
class BlockBegin;
class BlockList;
class LIR_Assembler;
class CodeEmitInfo;
class CodeStub;
class CodeStubList;
class ArrayCopyStub;
class LIR_Op;
class ciType;
class ValueType;
class LIR_OpVisitState;
class FpuStackSim;
//---------------------------------------------------------------------
// LIR Operands
// LIR_OprDesc
// LIR_OprPtr
// LIR_Const
// LIR_Address
//---------------------------------------------------------------------
class LIR_OprDesc;
class LIR_OprPtr;
class LIR_Const;
class LIR_Address;
class LIR_OprVisitor;
typedef LIR_OprDesc* LIR_Opr;
typedef int RegNr;
define_array(LIR_OprArray, LIR_Opr)
define_stack(LIR_OprList, LIR_OprArray)
define_array(LIR_OprRefArray, LIR_Opr*)
define_stack(LIR_OprRefList, LIR_OprRefArray)
define_array(CodeEmitInfoArray, CodeEmitInfo*)
define_stack(CodeEmitInfoList, CodeEmitInfoArray)
define_array(LIR_OpArray, LIR_Op*)
define_stack(LIR_OpList, LIR_OpArray)
// define LIR_OprPtr early so LIR_OprDesc can refer to it
class LIR_OprPtr: public CompilationResourceObj {
public:
bool is_oop_pointer() const { return (type() == T_OBJECT); }
bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
virtual LIR_Const* as_constant() { return NULL; }
virtual LIR_Address* as_address() { return NULL; }
virtual BasicType type() const = 0;
virtual void print_value_on(outputStream* out) const = 0;
};
// LIR constants
class LIR_Const: public LIR_OprPtr {
private:
JavaValue _value;
void type_check(BasicType t) const { assert(type() == t, "type check"); }
void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); }
void type_check(BasicType t1, BasicType t2, BasicType t3) const { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
public:
LIR_Const(jint i, bool is_address=false) { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); }
LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); }
LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); }
LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); }
LIR_Const(void* p) {
#ifdef _LP64
assert(sizeof(jlong) >= sizeof(p), "too small");;
_value.set_type(T_LONG); _value.set_jlong((jlong)p);
#else
assert(sizeof(jint) >= sizeof(p), "too small");;
_value.set_type(T_INT); _value.set_jint((jint)p);
#endif
}
virtual BasicType type() const { return _value.get_type(); }
virtual LIR_Const* as_constant() { return this; }
jint as_jint() const { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); }
jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); }
jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); }
jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); }
jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); }
jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); }
#ifdef _LP64
address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); }
#else
address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); }
#endif
jint as_jint_bits() const { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
jint as_jint_lo_bits() const {
if (type() == T_DOUBLE) {
return low(jlong_cast(_value.get_jdouble()));
} else {
return as_jint_lo();
}
}
jint as_jint_hi_bits() const {
if (type() == T_DOUBLE) {
return high(jlong_cast(_value.get_jdouble()));
} else {
return as_jint_hi();
}
}
jlong as_jlong_bits() const {
if (type() == T_DOUBLE) {
return jlong_cast(_value.get_jdouble());
} else {
return as_jlong();
}
}
virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
bool is_zero_float() {
jfloat f = as_jfloat();
jfloat ok = 0.0f;
return jint_cast(f) == jint_cast(ok);
}
bool is_one_float() {
jfloat f = as_jfloat();
return !g_isnan(f) && g_isfinite(f) && f == 1.0;
}
bool is_zero_double() {
jdouble d = as_jdouble();
jdouble ok = 0.0;
return jlong_cast(d) == jlong_cast(ok);
}
bool is_one_double() {
jdouble d = as_jdouble();
return !g_isnan(d) && g_isfinite(d) && d == 1.0;
}
};
//---------------------LIR Operand descriptor------------------------------------
//
// The class LIR_OprDesc represents a LIR instruction operand;
// it can be a register (ALU/FPU), stack location or a constant;
// Constants and addresses are represented as resource area allocated
// structures (see above).
// Registers and stack locations are inlined into the this pointer
// (see value function).
class LIR_OprDesc: public CompilationResourceObj {
public:
// value structure:
// data opr-type opr-kind
// +--------------+-------+-------+
// [max...........|7 6 5 4|3 2 1 0]
// ^
// is_pointer bit
//
// lowest bit cleared, means it is a structure pointer
// we need 4 bits to represent types
private:
friend class LIR_OprFact;
// Conversion
intptr_t value() const { return (intptr_t) this; }
bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
return (value() & mask) == masked_value;
}
enum OprKind {
pointer_value = 0
, stack_value = 1
, cpu_register = 3
, fpu_register = 5
, illegal_value = 7
};
enum OprBits {
pointer_bits = 1
, kind_bits = 3
, type_bits = 4
, size_bits = 2
, destroys_bits = 1
, virtual_bits = 1
, is_xmm_bits = 1
, last_use_bits = 1
, is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation
, non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
, data_bits = BitsPerInt - non_data_bits
, reg_bits = data_bits / 2 // for two registers in one value encoding
};
enum OprShift {
kind_shift = 0
, type_shift = kind_shift + kind_bits
, size_shift = type_shift + type_bits
, destroys_shift = size_shift + size_bits
, last_use_shift = destroys_shift + destroys_bits
, is_fpu_stack_offset_shift = last_use_shift + last_use_bits
, virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
, is_xmm_shift = virtual_shift + virtual_bits
, data_shift = is_xmm_shift + is_xmm_bits
, reg1_shift = data_shift
, reg2_shift = data_shift + reg_bits
};
enum OprSize {
single_size = 0 << size_shift
, double_size = 1 << size_shift
};
enum OprMask {
kind_mask = right_n_bits(kind_bits)
, type_mask = right_n_bits(type_bits) << type_shift
, size_mask = right_n_bits(size_bits) << size_shift
, last_use_mask = right_n_bits(last_use_bits) << last_use_shift
, is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
, virtual_mask = right_n_bits(virtual_bits) << virtual_shift
, is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift
, pointer_mask = right_n_bits(pointer_bits)
, lower_reg_mask = right_n_bits(reg_bits)
, no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
};
uintptr_t data() const { return value() >> data_shift; }
int lo_reg_half() const { return data() & lower_reg_mask; }
int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; }
OprKind kind_field() const { return (OprKind)(value() & kind_mask); }
OprSize size_field() const { return (OprSize)(value() & size_mask); }
static char type_char(BasicType t);
public:
enum {
vreg_base = ConcreteRegisterImpl::number_of_registers,
vreg_max = (1 << data_bits) - 1
};
static inline LIR_Opr illegalOpr();
enum OprType {
unknown_type = 0 << type_shift // means: not set (catch uninitialized types)
, int_type = 1 << type_shift
, long_type = 2 << type_shift
, object_type = 3 << type_shift
, address_type = 4 << type_shift
, float_type = 5 << type_shift
, double_type = 6 << type_shift
};
friend OprType as_OprType(BasicType t);
friend BasicType as_BasicType(OprType t);
OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
static OprSize size_for(BasicType t) {
switch (t) {
case T_LONG:
case T_DOUBLE:
return double_size;
break;
case T_FLOAT:
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
case T_ADDRESS:
case T_OBJECT:
case T_ARRAY:
return single_size;
break;
default:
ShouldNotReachHere();
return single_size;
}
}
void validate_type() const PRODUCT_RETURN;
BasicType type() const {
if (is_pointer()) {
return pointer()->type();
}
return as_BasicType(type_field());
}
ValueType* value_type() const { return as_ValueType(type()); }
char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); }
bool is_equal(LIR_Opr opr) const { return this == opr; }
// checks whether types are same
bool is_same_type(LIR_Opr opr) const {
assert(type_field() != unknown_type &&
opr->type_field() != unknown_type, "shouldn't see unknown_type");
return type_field() == opr->type_field();
}
bool is_same_register(LIR_Opr opr) {
return (is_register() && opr->is_register() &&
kind_field() == opr->kind_field() &&
(value() & no_type_mask) == (opr->value() & no_type_mask));
}
bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); }
bool is_illegal() const { return kind_field() == illegal_value; }
bool is_valid() const { return kind_field() != illegal_value; }
bool is_register() const { return is_cpu_register() || is_fpu_register(); }
bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); }
bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; }
bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; }
bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
bool is_oop() const;
// semantic for fpu- and xmm-registers:
// * is_float and is_double return true for xmm_registers
// (so is_single_fpu and is_single_xmm are true)
// * So you must always check for is_???_xmm prior to is_???_fpu to
// distinguish between fpu- and xmm-registers
bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); }
bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); }
bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); }
bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); }
bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); }
bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); }
bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); }
bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); }
bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); }
bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); }
bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); }
bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); }
bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
// fast accessor functions for special bits that do not work for pointers
// (in this functions, the check for is_pointer() is omitted)
bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); }
bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); }
bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); }
RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); }
RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); }
RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); }
LIR_OprPtr* pointer() const { assert(is_pointer(), "type check"); return (LIR_OprPtr*)this; }
LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); }
LIR_Address* as_address_ptr() const { return pointer()->as_address(); }
Register as_register() const;
Register as_register_lo() const;
Register as_register_hi() const;
Register as_pointer_register() {
#ifdef _LP64
if (is_double_cpu()) {
assert(as_register_lo() == as_register_hi(), "should be a single register");
return as_register_lo();
}
#endif
return as_register();
}
#ifdef X86
XMMRegister as_xmm_float_reg() const;
XMMRegister as_xmm_double_reg() const;
// for compatibility with RInfo
int fpu () const { return lo_reg_half(); }
#endif // X86
#if defined(SPARC) || defined(ARM) || defined(PPC)
FloatRegister as_float_reg () const;
FloatRegister as_double_reg () const;
#endif
jint as_jint() const { return as_constant_ptr()->as_jint(); }
jlong as_jlong() const { return as_constant_ptr()->as_jlong(); }
jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); }
jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
jobject as_jobject() const { return as_constant_ptr()->as_jobject(); }
void print() const PRODUCT_RETURN;
void print(outputStream* out) const PRODUCT_RETURN;
};
inline LIR_OprDesc::OprType as_OprType(BasicType type) {
switch (type) {
case T_INT: return LIR_OprDesc::int_type;
case T_LONG: return LIR_OprDesc::long_type;
case T_FLOAT: return LIR_OprDesc::float_type;
case T_DOUBLE: return LIR_OprDesc::double_type;
case T_OBJECT:
case T_ARRAY: return LIR_OprDesc::object_type;
case T_ADDRESS: return LIR_OprDesc::address_type;
case T_ILLEGAL: // fall through
default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
}
}
inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
switch (t) {
case LIR_OprDesc::int_type: return T_INT;
case LIR_OprDesc::long_type: return T_LONG;
case LIR_OprDesc::float_type: return T_FLOAT;
case LIR_OprDesc::double_type: return T_DOUBLE;
case LIR_OprDesc::object_type: return T_OBJECT;
case LIR_OprDesc::address_type: return T_ADDRESS;
case LIR_OprDesc::unknown_type: // fall through
default: ShouldNotReachHere(); return T_ILLEGAL;
}
}
// LIR_Address
class LIR_Address: public LIR_OprPtr {
friend class LIR_OpVisitState;
public:
// NOTE: currently these must be the log2 of the scale factor (and
// must also be equivalent to the ScaleFactor enum in
// assembler_i486.hpp)
enum Scale {
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3
};
private:
LIR_Opr _base;
LIR_Opr _index;
Scale _scale;
intx _disp;
BasicType _type;
public:
LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
_base(base)
, _index(index)
, _scale(times_1)
, _type(type)
, _disp(0) { verify(); }
LIR_Address(LIR_Opr base, intx disp, BasicType type):
_base(base)
, _index(LIR_OprDesc::illegalOpr())
, _scale(times_1)
, _type(type)
, _disp(disp) { verify(); }
LIR_Address(LIR_Opr base, BasicType type):
_base(base)
, _index(LIR_OprDesc::illegalOpr())
, _scale(times_1)
, _type(type)
, _disp(0) { verify(); }
#if defined(X86) || defined(ARM)
LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
_base(base)
, _index(index)
, _scale(scale)
, _type(type)
, _disp(disp) { verify(); }
#endif // X86 || ARM
LIR_Opr base() const { return _base; }
LIR_Opr index() const { return _index; }
Scale scale() const { return _scale; }
intx disp() const { return _disp; }
bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
virtual LIR_Address* as_address() { return this; }
virtual BasicType type() const { return _type; }
virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
void verify() const PRODUCT_RETURN;
static Scale scale(BasicType type);
};
// operand factory
class LIR_OprFact: public AllStatic {
public:
static LIR_Opr illegalOpr;
static LIR_Opr single_cpu(int reg) {
return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
LIR_OprDesc::int_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size);
}
static LIR_Opr single_cpu_oop(int reg) {
return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
LIR_OprDesc::object_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size);
}
static LIR_Opr single_cpu_address(int reg) {
return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
LIR_OprDesc::address_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size);
}
static LIR_Opr double_cpu(int reg1, int reg2) {
LP64_ONLY(assert(reg1 == reg2, "must be identical"));
return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
(reg2 << LIR_OprDesc::reg2_shift) |
LIR_OprDesc::long_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::double_size);
}
static LIR_Opr single_fpu(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
LIR_OprDesc::float_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::single_size); }
#if defined(ARM)
static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
static LIR_Opr single_softfp(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::float_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
#endif
#ifdef SPARC
static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
(reg2 << LIR_OprDesc::reg2_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::double_size); }
#endif
#ifdef X86
static LIR_Opr double_fpu(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
(reg << LIR_OprDesc::reg2_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::double_size); }
static LIR_Opr single_xmm(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
LIR_OprDesc::float_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::single_size |
LIR_OprDesc::is_xmm_mask); }
static LIR_Opr double_xmm(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
(reg << LIR_OprDesc::reg2_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::double_size |
LIR_OprDesc::is_xmm_mask); }
#endif // X86
#ifdef PPC
static LIR_Opr double_fpu(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
(reg << LIR_OprDesc::reg2_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::double_size); }
static LIR_Opr single_softfp(int reg) { return (LIR_Opr)((reg << LIR_OprDesc::reg1_shift) |
LIR_OprDesc::float_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size); }
static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift) |
(reg1 << LIR_OprDesc::reg2_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::double_size); }
#endif // PPC
static LIR_Opr virtual_register(int index, BasicType type) {
LIR_Opr res;
switch (type) {
case T_OBJECT: // fall through
case T_ARRAY:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::object_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size |
LIR_OprDesc::virtual_mask);
break;
case T_INT:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::int_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size |
LIR_OprDesc::virtual_mask);
break;
case T_ADDRESS:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::address_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size |
LIR_OprDesc::virtual_mask);
break;
case T_LONG:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::long_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::double_size |
LIR_OprDesc::virtual_mask);
break;
#ifdef __SOFTFP__
case T_FLOAT:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::float_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::single_size |
LIR_OprDesc::virtual_mask);
break;
case T_DOUBLE:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::cpu_register |
LIR_OprDesc::double_size |
LIR_OprDesc::virtual_mask);
break;
#else // __SOFTFP__
case T_FLOAT:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::float_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::single_size |
LIR_OprDesc::virtual_mask);
break;
case
T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::double_size |
LIR_OprDesc::virtual_mask);
break;
#endif // __SOFTFP__
default: ShouldNotReachHere(); res = illegalOpr;
}
#ifdef ASSERT
res->validate_type();
assert(res->vreg_number() == index, "conversion check");
assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
// old-style calculation; check if old and new method are equal
LIR_OprDesc::OprType t = as_OprType(type);
#ifdef __SOFTFP__
LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
t |
LIR_OprDesc::cpu_register |
LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
#else // __SOFTFP__
LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
((type == T_FLOAT || type == T_DOUBLE) ? LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
assert(res == old_res, "old and new method not equal");
#endif // __SOFTFP__
#endif // ASSERT
return res;
}
// 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
// the index is platform independent; a double stack useing indeces 2 and 3 has always
// index 2.
static LIR_Opr stack(int index, BasicType type) {
LIR_Opr res;
switch (type) {
case T_OBJECT: // fall through
case T_ARRAY:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::object_type |
LIR_OprDesc::stack_value |
LIR_OprDesc::single_size);
break;
case T_INT:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::int_type |
LIR_OprDesc::stack_value |
LIR_OprDesc::single_size);
break;
case T_ADDRESS:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::address_type |
LIR_OprDesc::stack_value |
LIR_OprDesc::single_size);
break;
case T_LONG:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::long_type |
LIR_OprDesc::stack_value |
LIR_OprDesc::double_size);
break;
case T_FLOAT:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::float_type |
LIR_OprDesc::stack_value |
LIR_OprDesc::single_size);
break;
case T_DOUBLE:
res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::stack_value |
LIR_OprDesc::double_size);
break;
default: ShouldNotReachHere(); res = illegalOpr;
}
#ifdef ASSERT
assert(index >= 0, "index must be positive");
assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
LIR_OprDesc::stack_value |
as_OprType(type) |
LIR_OprDesc::size_for(type));
assert(res == old_res, "old and new method not equal");
#endif
return res;
}
static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); }
static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); }
static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); }
static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); }
static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); }
static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; }
static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); }
static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); }
static LIR_Opr illegal() { return (LIR_Opr)-1; }
static LIR_Opr addressConst(jint i) { return (LIR_Opr)(new LIR_Const(i, true)); }
static LIR_Opr value_type(ValueType* type);
static LIR_Opr dummy_value_type(ValueType* type);
};
//-------------------------------------------------------------------------------
// LIR Instructions
//-------------------------------------------------------------------------------
//
// Note:
// - every instruction has a result operand
// - every instruction has an CodeEmitInfo operand (can be revisited later)
// - every instruction has a LIR_OpCode operand
// - LIR_OpN, means an instruction that has N input operands
//
// class hierarchy:
//
class LIR_Op;
class LIR_Op0;
class LIR_OpLabel;
class LIR_Op1;
class LIR_OpBranch;
class LIR_OpConvert;
class LIR_OpAllocObj;
class LIR_OpRoundFP;
class LIR_Op2;
class LIR_OpDelay;
class LIR_Op3;
class LIR_OpAllocArray;
class LIR_OpCall;
class LIR_OpJavaCall;
class LIR_OpRTCall;
class LIR_OpArrayCopy;
class LIR_OpLock;
class LIR_OpTypeCheck;
class LIR_OpCompareAndSwap;
class LIR_OpProfileCall;
// LIR operation codes
enum LIR_Code {
lir_none
, begin_op0
, lir_word_align
, lir_label
, lir_nop
, lir_backwardbranch_target
, lir_std_entry
, lir_osr_entry
, lir_build_frame
, lir_fpop_raw
, lir_24bit_FPU
, lir_reset_FPU
, lir_breakpoint
, lir_rtcall
, lir_membar
, lir_membar_acquire
, lir_membar_release
, lir_membar_loadload
, lir_membar_storestore
, lir_membar_loadstore
, lir_membar_storeload
, lir_get_thread
, end_op0
, begin_op1
, lir_fxch
, lir_fld
, lir_ffree
, lir_push
, lir_pop
, lir_null_check
, lir_return
, lir_leal
, lir_neg
, lir_branch
, lir_cond_float_branch
, lir_move
, lir_prefetchr
, lir_prefetchw
, lir_convert
, lir_alloc_object
, lir_monaddr
, lir_roundfp
, lir_safepoint
, lir_pack64
, lir_unpack64
, lir_unwind
, end_op1
, begin_op2
, lir_cmp
, lir_cmp_l2i
, lir_ucmp_fd2i
, lir_cmp_fd2i
, lir_cmove
, lir_add
, lir_sub
, lir_mul
, lir_mul_strictfp
, lir_div
, lir_div_strictfp
, lir_rem
, lir_sqrt
, lir_abs
, lir_sin
, lir_cos
, lir_tan
, lir_log
, lir_log10
, lir_exp
, lir_pow
, lir_logic_and
, lir_logic_or
, lir_logic_xor
, lir_shl
, lir_shr
, lir_ushr
, lir_alloc_array
, lir_throw
, lir_compare_to
, lir_xadd
, lir_xchg
, end_op2
, begin_op3
, lir_idiv
, lir_irem
, end_op3
, begin_opJavaCall
, lir_static_call
, lir_optvirtual_call
, lir_icvirtual_call
, lir_virtual_call
, lir_dynamic_call
, end_opJavaCall
, begin_opArrayCopy
, lir_arraycopy
, end_opArrayCopy
, begin_opLock
, lir_lock
, lir_unlock
, end_opLock
, begin_delay_slot
, lir_delay_slot
, end_delay_slot
, begin_opTypeCheck
, lir_instanceof
, lir_checkcast
, lir_store_check
, end_opTypeCheck
, begin_opCompareAndSwap
, lir_cas_long
, lir_cas_obj
, lir_cas_int
, end_opCompareAndSwap
, begin_opMDOProfile
, lir_profile_call
, end_opMDOProfile
};
enum LIR_Condition {
lir_cond_equal
, lir_cond_notEqual
, lir_cond_less
, lir_cond_lessEqual
, lir_cond_greaterEqual
, lir_cond_greater
, lir_cond_belowEqual
, lir_cond_aboveEqual
, lir_cond_always
, lir_cond_unknown = -1
};
enum LIR_PatchCode {
lir_patch_none,
lir_patch_low,
lir_patch_high,
lir_patch_normal
};
enum LIR_MoveKind {
lir_move_normal,
lir_move_volatile,
lir_move_unaligned,
lir_move_wide,
lir_move_max_flag
};
// --------------------------------------------------
// LIR_Op
// --------------------------------------------------
class LIR_Op: public CompilationResourceObj {
friend class LIR_OpVisitState;
#ifdef ASSERT
private:
const char * _file;
int _line;
#endif
protected:
LIR_Opr _result;
unsigned short _code;
unsigned short _flags;
CodeEmitInfo* _info;
int _id; // value id for register allocation
int _fpu_pop_count;
Instruction* _source; // for debugging
static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
protected:
static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; }
public:
LIR_Op()
: _result(LIR_OprFact::illegalOpr)
, _code(lir_none)
, _flags(0)
, _info(NULL)
#ifdef ASSERT
, _file(NULL)
, _line(0)
#endif
, _fpu_pop_count(0)
, _source(NULL)
, _id(-1) {}
LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
: _result(result)
, _code(code)
, _flags(0)
, _info(info)
#ifdef ASSERT
, _file(NULL)
, _line(0)
#endif
, _fpu_pop_count(0)
, _source(NULL)
, _id(-1) {}
CodeEmitInfo* info() const { return _info; }
LIR_Code code() const { return (LIR_Code)_code; }
LIR_Opr result_opr() const { return _result; }
void set_result_opr(LIR_Opr opr) { _result = opr; }
#ifdef ASSERT
void set_file_and_line(const char * file, int line) {
_file = file;
_line = line;
}
#endif
virtual const char * name() const PRODUCT_RETURN0;
int id() const { return _id; }
void set_id(int id) { _id = id; }
// FPU stack simulation helpers -- only used on Intel
void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
int fpu_pop_count() const { return _fpu_pop_count; }
bool pop_fpu_stack() { return _fpu_pop_count > 0; }
Instruction* source() const { return _source; }
void set_source(Instruction* ins) { _source = ins; }
virtual void emit_code(LIR_Assembler* masm) = 0;
virtual void print_instr(outputStream* out) const = 0;
virtual void print_on(outputStream* st) const PRODUCT_RETURN;
virtual LIR_OpCall* as_OpCall() { return NULL; }
virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
virtual LIR_OpLabel* as_OpLabel() { return NULL; }
virtual LIR_OpDelay* as_OpDelay() { return NULL; }
virtual LIR_OpLock* as_OpLock() { return NULL; }
virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
virtual LIR_OpBranch* as_OpBranch() { return NULL; }
virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
virtual LIR_OpConvert* as_OpConvert() { return NULL; }
virtual LIR_Op0* as_Op0() { return NULL; }
virtual LIR_Op1* as_Op1() { return NULL; }
virtual LIR_Op2* as_Op2() { return NULL; }
virtual LIR_Op3* as_Op3() { return NULL; }
virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
virtual void verify() const {}
};
// for calls
class LIR_OpCall: public LIR_Op {
friend class LIR_OpVisitState;
protected:
address _addr;
LIR_OprList* _arguments;
protected:
LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
LIR_OprList* arguments, CodeEmitInfo* info = NULL)
: LIR_Op(code, result, info)
, _arguments(arguments)
, _addr(addr) {}
public:
address addr() const { return _addr; }
const LIR_OprList* arguments() const { return _arguments; }
virtual LIR_OpCall* as_OpCall() { return this; }
};
// --------------------------------------------------
// LIR_OpJavaCall
// --------------------------------------------------
class LIR_OpJavaCall: public LIR_OpCall {
friend class LIR_OpVisitState;
private:
ciMethod* _method;
LIR_Opr _receiver;
LIR_Opr _method_handle_invoke_SP_save_opr; // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
public:
LIR_OpJavaCall(LIR_Code code, ciMethod* method,
LIR_Opr receiver, LIR_Opr result,
address addr, LIR_OprList* arguments,
CodeEmitInfo* info)
: LIR_OpCall(code, addr, result, arguments, info)
, _receiver(receiver)
, _method(method)
, _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
{ assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
LIR_OpJavaCall(LIR_Code code, ciMethod* method,
LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
LIR_OprList* arguments, CodeEmitInfo* info)
: LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
, _receiver(receiver)
, _method(method)
, _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
{ assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
LIR_Opr receiver() const { return _receiver; }
ciMethod* method() const { return _method; }
// JSR 292 support.
bool is_invokedynamic() const { return code() == lir_dynamic_call; }
bool is_method_handle_invoke() const {
return
is_invokedynamic() // An invokedynamic is always a MethodHandle call site.
||
method()->is_compiled_lambda_form() // Java-generated adapter
||
method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic
}
intptr_t vtable_offset() const {
assert(_code == lir_virtual_call, "only have vtable for real vcall");
return (intptr_t) addr();
}
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// --------------------------------------------------
// LIR_OpLabel
// --------------------------------------------------
// Location where a branch can continue
class LIR_OpLabel: public LIR_Op {
friend class LIR_OpVisitState;
private:
Label* _label;
public:
LIR_OpLabel(Label* lbl)
: LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
, _label(lbl) {}
Label* label() const { return _label; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpLabel* as_OpLabel() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// LIR_OpArrayCopy
class LIR_OpArrayCopy: public LIR_Op {
friend class LIR_OpVisitState;
private:
ArrayCopyStub* _stub;
LIR_Opr _src;
LIR_Opr _src_pos;
LIR_Opr _dst;
LIR_Opr _dst_pos;
LIR_Opr _length;
LIR_Opr _tmp;
ciArrayKlass* _expected_type;
int _flags;
public:
enum Flags {
src_null_check = 1 << 0,
dst_null_check = 1 << 1,
src_pos_positive_check = 1 << 2,
dst_pos_positive_check = 1 << 3,
length_positive_check = 1 << 4,
src_range_check = 1 << 5,
dst_range_check = 1 << 6,
type_check = 1 << 7,
overlapping = 1 << 8,
unaligned = 1 << 9,
src_objarray = 1 << 10,
dst_objarray = 1 << 11,
all_flags = (1 << 12) - 1
};
LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
LIR_Opr src() const { return _src; }
LIR_Opr src_pos() const { return _src_pos; }
LIR_Opr dst() const { return _dst; }
LIR_Opr dst_pos() const { return _dst_pos; }
LIR_Opr length() const { return _length; }
LIR_Opr tmp() const { return _tmp; }
int flags() const { return _flags; }
ciArrayKlass* expected_type() const { return _expected_type; }
ArrayCopyStub* stub() const { return _stub; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// --------------------------------------------------
// LIR_Op0
// --------------------------------------------------
class LIR_Op0: public LIR_Op {
friend class LIR_OpVisitState;
public:
LIR_Op0(LIR_Code code)
: LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
: LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_Op0* as_Op0() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// --------------------------------------------------
// LIR_Op1
// --------------------------------------------------
class LIR_Op1: public LIR_Op {
friend class LIR_OpVisitState;
protected:
LIR_Opr _opr; // input operand
BasicType _type; // Operand types
LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
static void print_patch_code(outputStream* out, LIR_PatchCode code);
void set_kind(LIR_MoveKind kind) {
assert(code() == lir_move, "must be");
_flags = kind;
}
public:
LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
: LIR_Op(code, result, info)
, _opr(opr)
, _patch(patch)
, _type(type) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
: LIR_Op(code, result, info)
, _opr(opr)
, _patch(patch)
, _type(type) {
assert(code == lir_move, "must be");
set_kind(kind);
}
LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
: LIR_Op(code, LIR_OprFact::illegalOpr, info)
, _opr(opr)
, _patch(lir_patch_none)
, _type(T_ILLEGAL) { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
LIR_Opr in_opr() const { return _opr; }
LIR_PatchCode patch_code() const { return _patch; }
BasicType type() const { return _type; }
LIR_MoveKind move_kind() const {
assert(code() == lir_move, "must be");
return (LIR_MoveKind)_flags;
}
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_Op1* as_Op1() { return this; }
virtual const char * name() const PRODUCT_RETURN0;
void set_in_opr(LIR_Opr opr) { _opr = opr; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
virtual void verify() const;
};
// for runtime calls
class LIR_OpRTCall: public LIR_OpCall {
friend class LIR_OpVisitState;
private:
LIR_Opr _tmp;
public:
LIR_OpRTCall(address addr, LIR_Opr tmp,
LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
: LIR_OpCall(lir_rtcall, addr, result, arguments, info)
, _tmp(tmp) {}
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpRTCall* as_OpRTCall() { return this; }
LIR_Opr tmp() const { return _tmp; }
virtual void verify() const;
};
class LIR_OpBranch: public LIR_Op {
friend class LIR_OpVisitState;
private:
LIR_Condition _cond;
BasicType _type;
Label* _label;
BlockBegin* _block; // if this is a branch to a block, this is the block
BlockBegin* _ublock; // if this is a float-branch, this is the unorderd block
CodeStub* _stub; // if this is a branch to a stub, this is the stub
public:
LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
: LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
, _cond(cond)
, _type(type)
, _label(lbl)
, _block(NULL)
, _ublock(NULL)
, _stub(NULL) { }
LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
// for unordered comparisons
LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
LIR_Condition cond() const { return _cond; }
BasicType type() const { return _type; }
Label* label() const { return _label; }
BlockBegin* block() const { return _block; }
BlockBegin* ublock() const { return _ublock; }
CodeStub* stub() const { return _stub; }
void change_block(BlockBegin* b);
void change_ublock(BlockBegin* b);
void negate_cond();
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpBranch* as_OpBranch() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
class ConversionStub;
class LIR_OpConvert: public LIR_Op1 {
friend class LIR_OpVisitState;
private:
Bytecodes::Code _bytecode;
ConversionStub* _stub;
#ifdef PPC
LIR_Opr _tmp1;
LIR_Opr _tmp2;
#endif
public:
LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
: LIR_Op1(lir_convert, opr, result)
, _stub(stub)
#ifdef PPC
, _tmp1(LIR_OprDesc::illegalOpr())
, _tmp2(LIR_OprDesc::illegalOpr())
#endif
, _bytecode(code) {}
#ifdef PPC
LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
,LIR_Opr tmp1, LIR_Opr tmp2)
: LIR_Op1(lir_convert, opr, result)
, _stub(stub)
, _tmp1(tmp1)
, _tmp2(tmp2)
, _bytecode(code) {}
#endif
Bytecodes::Code bytecode() const { return _bytecode; }
ConversionStub* stub() const { return _stub; }
#ifdef PPC
LIR_Opr tmp1() const { return _tmp1; }
LIR_Opr tmp2() const { return _tmp2; }
#endif
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpConvert* as_OpConvert() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
};
// LIR_OpAllocObj
class LIR_OpAllocObj : public LIR_Op1 {
friend class LIR_OpVisitState;
private:
LIR_Opr _tmp1;
LIR_Opr _tmp2;
LIR_Opr _tmp3;
LIR_Opr _tmp4;
int _hdr_size;
int _obj_size;
CodeStub* _stub;
bool _init_check;
public:
LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
int hdr_size, int obj_size, bool init_check, CodeStub* stub)
: LIR_Op1(lir_alloc_object, klass, result)
, _tmp1(t1)
, _tmp2(t2)
, _tmp3(t3)
, _tmp4(t4)
, _hdr_size(hdr_size)
, _obj_size(obj_size)
, _init_check(init_check)
, _stub(stub) { }
LIR_Opr klass() const { return in_opr(); }
LIR_Opr obj() const { return result_opr(); }
LIR_Opr tmp1() const { return _tmp1; }
LIR_Opr tmp2() const { return _tmp2; }
LIR_Opr tmp3() const { return _tmp3; }
LIR_Opr tmp4() const { return _tmp4; }
int header_size() const { return _hdr_size; }
int object_size() const { return _obj_size; }
bool init_check() const { return _init_check; }
CodeStub* stub() const { return _stub; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// LIR_OpRoundFP
class LIR_OpRoundFP : public LIR_Op1 {
friend class LIR_OpVisitState;
private:
LIR_Opr _tmp;
public:
LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
: LIR_Op1(lir_roundfp, reg, result)
, _tmp(stack_loc_temp) {}
LIR_Opr tmp() const { return _tmp; }
virtual LIR_OpRoundFP* as_OpRoundFP() { return this; }
void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// LIR_OpTypeCheck
class LIR_OpTypeCheck: public LIR_Op {
friend class LIR_OpVisitState;
private:
LIR_Opr _object;
LIR_Opr _array;
ciKlass* _klass;
LIR_Opr _tmp1;
LIR_Opr _tmp2;
LIR_Opr _tmp3;
bool _fast_check;
CodeEmitInfo* _info_for_patch;
CodeEmitInfo* _info_for_exception;
CodeStub* _stub;
ciMethod* _profiled_method;
int _profiled_bci;
bool _should_profile;
public:
LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
LIR_Opr object() const { return _object; }
LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; }
LIR_Opr tmp1() const { return _tmp1; }
LIR_Opr tmp2() const { return _tmp2; }
LIR_Opr tmp3() const { return _tmp3; }
ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; }
bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; }
CodeEmitInfo* info_for_patch() const { return _info_for_patch; }
CodeEmitInfo* info_for_exception() const { return _info_for_exception; }
CodeStub* stub() const { return _stub; }
// methodDataOop profiling
void set_profiled_method(ciMethod *method) { _profiled_method = method; }
void set_profiled_bci(int bci) { _profiled_bci = bci; }
void set_should_profile(bool b) { _should_profile = b; }
ciMethod* profiled_method() const { return _profiled_method; }
int profiled_bci() const { return _profiled_bci; }
bool should_profile() const { return _should_profile; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// LIR_Op2
class LIR_Op2: public LIR_Op {
friend class LIR_OpVisitState;
int _fpu_stack_size; // for sin/cos implementation on Intel
protected:
LIR_Opr _opr1;
LIR_Opr _opr2;
BasicType _type;
LIR_Opr _tmp1;
LIR_Opr _tmp2;
LIR_Opr _tmp3;
LIR_Opr _tmp4;
LIR_Opr _tmp5;
LIR_Condition _condition;
void verify() const;
public:
LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
: LIR_Op(code, LIR_OprFact::illegalOpr, info)
, _opr1(opr1)
, _opr2(opr2)
, _type(T_ILLEGAL)
, _condition(condition)
, _fpu_stack_size(0)
, _tmp1(LIR_OprFact::illegalOpr)
, _tmp2(LIR_OprFact::illegalOpr)
, _tmp3(LIR_OprFact::illegalOpr)
, _tmp4(LIR_OprFact::illegalOpr)
, _tmp5(LIR_OprFact::illegalOpr) {
assert(code == lir_cmp, "code check");
}
LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
: LIR_Op(code, result, NULL)
, _opr1(opr1)
, _opr2(opr2)
, _type(type)
, _condition(condition)
, _fpu_stack_size(0)
, _tmp1(LIR_OprFact::illegalOpr)
, _tmp2(LIR_OprFact::illegalOpr)
, _tmp3(LIR_OprFact::illegalOpr)
, _tmp4(LIR_OprFact::illegalOpr)
, _tmp5(LIR_OprFact::illegalOpr) {
assert(code == lir_cmove, "code check");
assert(type != T_ILLEGAL, "cmove should have type");
}
LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
: LIR_Op(code, result, info)
, _opr1(opr1)
, _opr2(opr2)
, _type(type)
, _condition(lir_cond_unknown)
, _fpu_stack_size(0)
, _tmp1(LIR_OprFact::illegalOpr)
, _tmp2(LIR_OprFact::illegalOpr)
, _tmp3(LIR_OprFact::illegalOpr)
, _tmp4(LIR_OprFact::illegalOpr)
, _tmp5(LIR_OprFact::illegalOpr) {
assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
}
LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
: LIR_Op(code, result, NULL)
, _opr1(opr1)
, _opr2(opr2)
, _type(T_ILLEGAL)
, _condition(lir_cond_unknown)
, _fpu_stack_size(0)
, _tmp1(tmp1)
, _tmp2(tmp2)
, _tmp3(tmp3)
, _tmp4(tmp4)
, _tmp5(tmp5) {
assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
}
LIR_Opr in_opr1() const { return _opr1; }
LIR_Opr in_opr2() const { return _opr2; }
BasicType type() const { return _type; }
LIR_Opr tmp1_opr() const { return _tmp1; }
LIR_Opr tmp2_opr() const { return _tmp2; }
LIR_Opr tmp3_opr() const { return _tmp3; }
LIR_Opr tmp4_opr() const { return _tmp4; }
LIR_Opr tmp5_opr() const { return _tmp5; }
LIR_Condition condition() const {
assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
}
void set_condition(LIR_Condition condition) {
assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); _condition = condition;
}
void set_fpu_stack_size(int size) { _fpu_stack_size = size; }
int fpu_stack_size() const { return _fpu_stack_size; }
void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_Op2* as_Op2() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
class LIR_OpAllocArray : public LIR_Op {
friend class LIR_OpVisitState;
private:
LIR_Opr _klass;
LIR_Opr _len;
LIR_Opr _tmp1;
LIR_Opr _tmp2;
LIR_Opr _tmp3;
LIR_Opr _tmp4;
BasicType _type;
CodeStub* _stub;
public:
LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
: LIR_Op(lir_alloc_array, result, NULL)
, _klass(klass)
, _len(len)
, _tmp1(t1)
, _tmp2(t2)
, _tmp3(t3)
, _tmp4(t4)
, _type(type)
, _stub(stub) {}
LIR_Opr klass() const { return _klass; }
LIR_Opr len() const { return _len; }
LIR_Opr obj() const { return result_opr(); }
LIR_Opr tmp1() const { return _tmp1; }
LIR_Opr tmp2() const { return _tmp2; }
LIR_Opr tmp3() const { return _tmp3; }
LIR_Opr tmp4() const { return _tmp4; }
BasicType type() const { return _type; }
CodeStub* stub() const { return _stub; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
class LIR_Op3: public LIR_Op {
friend class LIR_OpVisitState;
private:
LIR_Opr _opr1;
LIR_Opr _opr2;
LIR_Opr _opr3;
public:
LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
: LIR_Op(code, result, info)
, _opr1(opr1)
, _opr2(opr2)
, _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
LIR_Opr in_opr1() const { return _opr1; }
LIR_Opr in_opr2() const { return _opr2; }
LIR_Opr in_opr3() const { return _opr3; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_Op3* as_Op3() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
//--------------------------------
class LabelObj: public CompilationResourceObj {
private:
Label _label;
public:
LabelObj() {}
Label* label() { return &_label; }
};
class LIR_OpLock: public LIR_Op {
friend class LIR_OpVisitState;
private:
LIR_Opr _hdr;
LIR_Opr _obj;
LIR_Opr _lock;
LIR_Opr _scratch;
CodeStub* _stub;
public:
LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
: LIR_Op(code, LIR_OprFact::illegalOpr, info)
, _hdr(hdr)
, _obj(obj)
, _lock(lock)
, _scratch(scratch)
, _stub(stub) {}
LIR_Opr hdr_opr() const { return _hdr; }
LIR_Opr obj_opr() const { return _obj; }
LIR_Opr lock_opr() const { return _lock; }
LIR_Opr scratch_opr() const { return _scratch; }
CodeStub* stub() const { return _stub; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpLock* as_OpLock() { return this; }
void print_instr(outputStream* out) const PRODUCT_RETURN;
};
class LIR_OpDelay: public LIR_Op {
friend class LIR_OpVisitState;
private:
LIR_Op* _op;
public:
LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
_op(op) {
assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
}
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpDelay* as_OpDelay() { return this; }
void print_instr(outputStream* out) const PRODUCT_RETURN;
LIR_Op* delay_op() const { return _op; }
CodeEmitInfo* call_info() const { return info(); }
};
// LIR_OpCompareAndSwap
class LIR_OpCompareAndSwap : public LIR_Op {
friend class LIR_OpVisitState;
private:
LIR_Opr _addr;
LIR_Opr _cmp_value;
LIR_Opr _new_value;
LIR_Opr _tmp1;
LIR_Opr _tmp2;
public:
LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
: LIR_Op(code, result, NULL) // no result, no info
, _addr(addr)
, _cmp_value(cmp_value)
, _new_value(new_value)
, _tmp1(t1)
, _tmp2(t2) { }
LIR_Opr addr() const { return _addr; }
LIR_Opr cmp_value() const { return _cmp_value; }
LIR_Opr new_value() const { return _new_value; }
LIR_Opr tmp1() const { return _tmp1; }
LIR_Opr tmp2() const { return _tmp2; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
// LIR_OpProfileCall
class LIR_OpProfileCall : public LIR_Op {
friend class LIR_OpVisitState;
private:
ciMethod* _profiled_method;
int _profiled_bci;
ciMethod* _profiled_callee;
LIR_Opr _mdo;
LIR_Opr _recv;
LIR_Opr _tmp1;
ciKlass* _known_holder;
public:
// Destroys recv
LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
: LIR_Op(code, LIR_OprFact::illegalOpr, NULL) // no result, no info
, _profiled_method(profiled_method)
, _profiled_bci(profiled_bci)
, _profiled_callee(profiled_callee)
, _mdo(mdo)
, _recv(recv)
, _tmp1(t1)
, _known_holder(known_holder) { }
ciMethod* profiled_method() const { return _profiled_method; }
int profiled_bci() const { return _profiled_bci; }
ciMethod* profiled_callee() const { return _profiled_callee; }
LIR_Opr mdo() const { return _mdo; }
LIR_Opr recv() const { return _recv; }
LIR_Opr tmp1() const { return _tmp1; }
ciKlass* known_holder() const { return _known_holder; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
class LIR_InsertionBuffer;
//--------------------------------LIR_List---------------------------------------------------
// Maintains a list of LIR instructions (one instance of LIR_List per basic block)
// The LIR instructions are appended by the LIR_List class itself;
//
// Notes:
// - all offsets are(should be) in bytes
// - local positions are specified with an offset, with offset 0 being local 0
class LIR_List: public CompilationResourceObj {
private:
LIR_OpList _operations;
Compilation* _compilation;
#ifndef PRODUCT
BlockBegin* _block;
#endif
#ifdef ASSERT
const char * _file;
int _line;
#endif
void append(LIR_Op* op) {
if (op->source() == NULL)
op->set_source(_compilation->current_instruction());
#ifndef PRODUCT
if (PrintIRWithLIR) {
_compilation->maybe_print_current_instruction();
op->print(); tty->cr();
}
#endif // PRODUCT
_operations.append(op);
#ifdef ASSERT
op->verify();
op->set_file_and_line(_file, _line);
_file = NULL;
_line = 0;
#endif
}
public:
LIR_List(Compilation* compilation, BlockBegin* block = NULL);
#ifdef ASSERT
void set_file_and_line(const char * file, int line);
#endif
//---------- accessors ---------------
LIR_OpList* instructions_list() { return &_operations; }
int length() const { return _operations.length(); }
LIR_Op* at(int i) const { return _operations.at(i); }
NOT_PRODUCT(BlockBegin* block() const { return _block; });
// insert LIR_Ops in buffer to right places in LIR_List
void append(LIR_InsertionBuffer* buffer);
//---------- mutators ---------------
void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); }
void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); }
void remove_at(int i) { _operations.remove_at(i); }
//---------- printing -------------
void print_instructions() PRODUCT_RETURN;
//---------- instructions -------------
void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
address dest, LIR_OprList* arguments,
CodeEmitInfo* info) {
append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
}
void call_static(ciMethod* method, LIR_Opr result,
address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
}
void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
}
void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
}
void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
}
void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); }
void word_align() { append(new LIR_Op0(lir_word_align)); }
void membar() { append(new LIR_Op0(lir_membar)); }
void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); }
void membar_release() { append(new LIR_Op0(lir_membar_release)); }
void membar_loadload() { append(new LIR_Op0(lir_membar_loadload)); }
void membar_storestore() { append(new LIR_Op0(lir_membar_storestore)); }
void membar_loadstore() { append(new LIR_Op0(lir_membar_loadstore)); }
void membar_storeload() { append(new LIR_Op0(lir_membar_storeload)); }
void nop() { append(new LIR_Op0(lir_nop)); }
void build_frame() { append(new LIR_Op0(lir_build_frame)); }
void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); }
void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); }
void negate(LIR_Opr from, LIR_Opr to) { append(new LIR_Op1(lir_neg, from, to)); }
void leal(LIR_Opr from, LIR_Opr result_reg) { append(new LIR_Op1(lir_leal, from, result_reg)); }
// result is a stack location for old backend and vreg for UseLinearScan
// stack_loc_temp is an illegal register for old backend
void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
if (UseCompressedOops) {
append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
} else {
move(src, dst, info);
}
}
void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
if (UseCompressedOops) {
append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
} else {
move(src, dst, info);
}
}
void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
void oop2reg (jobject o, LIR_Opr reg) { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); }
void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
void return_op(LIR_Opr result) { append(new LIR_Op1(lir_return, result)); }
void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); }
#ifdef PPC
void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
#endif
void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); }
void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); }
void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); }
void pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64, src, dst, T_LONG, lir_patch_none, NULL)); }
void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
void null_check(LIR_Opr opr, CodeEmitInfo* info) { append(new LIR_Op1(lir_null_check, opr, info)); }
void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
}
void unwind_exception(LIR_Opr exceptionOop) {
append(new LIR_Op1(lir_unwind, exceptionOop));
}
void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
append(new LIR_Op2(lir_compare_to, left, right, dst));
}
void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); }
void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); }
void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
append(new LIR_Op2(lir_cmp, condition, left, right, info));
}
void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
cmp(condition, left, LIR_OprFact::intConst(right), info);
}
void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
}
void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); }
void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log, from, LIR_OprFact::illegalOpr, to, tmp)); }
void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); }
void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); }
void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); }
void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
void prefetch(LIR_Address* addr, bool is_store);
void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
// jump is an unconditional branch
void jump(BlockBegin* block) {
append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
}
void jump(CodeStub* stub) {
append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
}
void branch(LIR_Condition cond, BasicType type, Label* lbl) { append(new LIR_OpBranch(cond, type, lbl)); }
void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
append(new LIR_OpBranch(cond, type, block));
}
void branch(LIR_Condition cond, BasicType type, CodeStub* stub) {
assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
append(new LIR_OpBranch(cond, type, stub));
}
void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
append(new LIR_OpBranch(cond, type, block, unordered));
}
void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); }
void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
append(new LIR_OpRTCall(routine, tmp, result, arguments));
}
void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
LIR_OprList* arguments, CodeEmitInfo* info) {
append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
}
void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
void set_24bit_fpu() { append(new LIR_Op0(lir_24bit_FPU )); }
void restore_fpu() { append(new LIR_Op0(lir_reset_FPU )); }
void breakpoint() { append(new LIR_Op0(lir_breakpoint)); }
void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
void fpop_raw() { append(new LIR_Op0(lir_fpop_raw)); }
void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
ciMethod* profiled_method, int profiled_bci);
// methodDataOop profiling
void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
append(new LIR_OpProfileCall(lir_profile_call, method, bci, callee, mdo, recv, t1, cha_klass));
}
void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
};
void print_LIR(BlockList* blocks);
class LIR_InsertionBuffer : public CompilationResourceObj {
private:
LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
// list of insertion points. index and count are stored alternately:
// _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted
// _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
intStack _index_and_count;
// the LIR_Ops to be inserted
LIR_OpList _ops;
void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); }
void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); }
void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); }
#ifdef ASSERT
void verify();
#endif
public:
LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
// must be called before using the insertion buffer
void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
bool initialized() const { return _lir != NULL; }
// called automatically when the buffer is appended to the LIR_List
void finish() { _lir = NULL; }
// accessors
LIR_List* lir_list() const { return _lir; }
int number_of_insertion_points() const { return _index_and_count.length() >> 1; }
int index_at(int i) const { return _index_and_count.at((i << 1)); }
int count_at(int i) const { return _index_and_count.at((i << 1) + 1); }
int number_of_ops() const { return _ops.length(); }
LIR_Op* op_at(int i) const { return _ops.at(i); }
// append an instruction to the buffer
void append(int index, LIR_Op* op);
// instruction
void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
};
//
// LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
// Calling a LIR_Op's visit function with a LIR_OpVisitState causes
// information about the input, output and temporaries used by the
// op to be recorded. It also records whether the op has call semantics
// and also records all the CodeEmitInfos used by this op.
//
class LIR_OpVisitState: public StackObj {
public:
typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
enum {
maxNumberOfOperands = 16,
maxNumberOfInfos = 4
};
private:
LIR_Op* _op;
// optimization: the operands and infos are not stored in a variable-length
// list, but in a fixed-size array to save time of size checks and resizing
int _oprs_len[numModes];
LIR_Opr* _oprs_new[numModes][maxNumberOfOperands];
int _info_len;
CodeEmitInfo* _info_new[maxNumberOfInfos];
bool _has_call;
bool _has_slow_case;
// only include register operands
// addresses are decomposed to the base and index registers
// constants and stack operands are ignored
void append(LIR_Opr& opr, OprMode mode) {
assert(opr->is_valid(), "should not call this otherwise");
assert(mode >= 0 && mode < numModes, "bad mode");
if (opr->is_register()) {
assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
_oprs_new[mode][_oprs_len[mode]++] = &opr;
} else if (opr->is_pointer()) {
LIR_Address* address = opr->as_address_ptr();
if (address != NULL) {
// special handling for addresses: add base and index register of the address
// both are always input operands or temp if we want to extend
// their liveness!
if (mode == outputMode) {
mode = inputMode;
}
assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
if (address->_base->is_valid()) {
assert(address->_base->is_register(), "must be");
assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
_oprs_new[mode][_oprs_len[mode]++] = &address->_base;
}
if (address->_index->is_valid()) {
assert(address->_index->is_register(), "must be");
assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
_oprs_new[mode][_oprs_len[mode]++] = &address->_index;
}
} else {
assert(opr->is_constant(), "constant operands are not processed");
}
} else {
assert(opr->is_stack(), "stack operands are not processed");
}
}
void append(CodeEmitInfo* info) {
assert(info != NULL, "should not call this otherwise");
assert(_info_len < maxNumberOfInfos, "array overflow");
_info_new[_info_len++] = info;
}
public:
LIR_OpVisitState() { reset(); }
LIR_Op* op() const { return _op; }
void set_op(LIR_Op* op) { reset(); _op = op; }
bool has_call() const { return _has_call; }
bool has_slow_case() const { return _has_slow_case; }
void reset() {
_op = NULL;
_has_call = false;
_has_slow_case = false;
_oprs_len[inputMode] = 0;
_oprs_len[tempMode] = 0;
_oprs_len[outputMode] = 0;
_info_len = 0;
}
int opr_count(OprMode mode) const {
assert(mode >= 0 && mode < numModes, "bad mode");
return _oprs_len[mode];
}
LIR_Opr opr_at(OprMode mode, int index) const {
assert(mode >= 0 && mode < numModes, "bad mode");
assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
return *_oprs_new[mode][index];
}
void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
assert(mode >= 0 && mode < numModes, "bad mode");
assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
*_oprs_new[mode][index] = opr;
}
int info_count() const {
return _info_len;
}
CodeEmitInfo* info_at(int index) const {
assert(index < _info_len, "index out of bounds");
return _info_new[index];
}
XHandlers* all_xhandler();
// collects all register operands of the instruction
void visit(LIR_Op* op);
#if ASSERT
// check that an operation has no operands
bool no_operands(LIR_Op* op);
#endif
// LIR_Op visitor functions use these to fill in the state
void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); }
void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); }
void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); }
void do_info(CodeEmitInfo* info) { append(info); }
void do_stub(CodeStub* stub);
void do_call() { _has_call = true; }
void do_slow_case() { _has_slow_case = true; }
void do_slow_case(CodeEmitInfo* info) {
_has_slow_case = true;
append(info);
}
};
inline LIR_Opr LIR_OprDesc::illegalOpr() { return LIR_OprFact::illegalOpr; };
#endif // SHARE_VM_C1_C1_LIR_HPP