/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "os_windows.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/perfMemory.hpp"
#include "services/memTracker.hpp"
#include "utilities/exceptions.hpp"
#include <windows.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <lmcons.h>
typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
// Standard Memory Implementation Details
// create the PerfData memory region in standard memory.
//
static char* create_standard_memory(size_t size) {
// allocate an aligned chuck of memory
char* mapAddress = os::reserve_memory(size);
if (mapAddress == NULL) {
return NULL;
}
// commit memory
if (!os::commit_memory(mapAddress, size, !ExecMem)) {
if (PrintMiscellaneous && Verbose) {
warning("Could not commit PerfData memory\n");
}
os::release_memory(mapAddress, size);
return NULL;
}
return mapAddress;
}
// delete the PerfData memory region
//
static void delete_standard_memory(char* addr, size_t size) {
// there are no persistent external resources to cleanup for standard
// memory. since DestroyJavaVM does not support unloading of the JVM,
// cleanup of the memory resource is not performed. The memory will be
// reclaimed by the OS upon termination of the process.
//
return;
}
// save the specified memory region to the given file
//
static void save_memory_to_file(char* addr, size_t size) {
const char* destfile = PerfMemory::get_perfdata_file_path();
assert(destfile[0] != '\0', "invalid Perfdata file path");
int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
_S_IREAD|_S_IWRITE);
if (fd == OS_ERR) {
if (PrintMiscellaneous && Verbose) {
warning("Could not create Perfdata save file: %s: %s\n",
destfile, strerror(errno));
}
} else {
for (size_t remaining = size; remaining > 0;) {
int nbytes = ::_write(fd, addr, (unsigned int)remaining);
if (nbytes == OS_ERR) {
if (PrintMiscellaneous && Verbose) {
warning("Could not write Perfdata save file: %s: %s\n",
destfile, strerror(errno));
}
break;
}
remaining -= (size_t)nbytes;
addr += nbytes;
}
int result = ::_close(fd);
if (PrintMiscellaneous && Verbose) {
if (result == OS_ERR) {
warning("Could not close %s: %s\n", destfile, strerror(errno));
}
}
}
FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
}
// Shared Memory Implementation Details
// Note: the win32 shared memory implementation uses two objects to represent
// the shared memory: a windows kernel based file mapping object and a backing
// store file. On windows, the name space for shared memory is a kernel
// based name space that is disjoint from other win32 name spaces. Since Java
// is unaware of this name space, a parallel file system based name space is
// maintained, which provides a common file system based shared memory name
// space across the supported platforms and one that Java apps can deal with
// through simple file apis.
//
// For performance and resource cleanup reasons, it is recommended that the
// user specific directory and the backing store file be stored in either a
// RAM based file system or a local disk based file system. Network based
// file systems are not recommended for performance reasons. In addition,
// use of SMB network based file systems may result in unsuccesful cleanup
// of the disk based resource on exit of the VM. The Windows TMP and TEMP
// environement variables, as used by the GetTempPath() Win32 API (see
// os::get_temp_directory() in os_win32.cpp), control the location of the
// user specific directory and the shared memory backing store file.
static HANDLE sharedmem_fileMapHandle = NULL;
static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
static char* sharedmem_fileName = NULL;
// return the user specific temporary directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_tmp_dir(const char* user) {
const char* tmpdir = os::get_temp_directory();
const char* perfdir = PERFDATA_NAME;
size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
// construct the path name to user specific tmp directory
_snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
return dirname;
}
// convert the given file name into a process id. if the file
// does not meet the file naming constraints, return 0.
//
static int filename_to_pid(const char* filename) {
// a filename that doesn't begin with a digit is not a
// candidate for conversion.
//
if (!isdigit(*filename)) {
return 0;
}
// check if file name can be converted to an integer without
// any leftover characters.
//
char* remainder = NULL;
errno = 0;
int pid = (int)strtol(filename, &remainder, 10);
if (errno != 0) {
return 0;
}
// check for left over characters. If any, then the filename is
// not a candidate for conversion.
//
if (remainder != NULL && *remainder != '\0') {
return 0;
}
// successful conversion, return the pid
return pid;
}
// check if the given path is considered a secure directory for
// the backing store files. Returns true if the directory exists
// and is considered a secure location. Returns false if the path
// is a symbolic link or if an error occurred.
//
static bool is_directory_secure(const char* path) {
DWORD fa;
fa = GetFileAttributes(path);
if (fa == 0xFFFFFFFF) {
DWORD lasterror = GetLastError();
if (lasterror == ERROR_FILE_NOT_FOUND) {
return false;
}
else {
// unexpected error, declare the path insecure
if (PrintMiscellaneous && Verbose) {
warning("could not get attributes for file %s: ",
" lasterror = %d\n", path, lasterror);
}
return false;
}
}
if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
// we don't accept any redirection for the user specific directory
// so declare the path insecure. This may be too conservative,
// as some types of reparse points might be acceptable, but it
// is probably more secure to avoid these conditions.
//
if (PrintMiscellaneous && Verbose) {
warning("%s is a reparse point\n", path);
}
return false;
}
if (fa & FILE_ATTRIBUTE_DIRECTORY) {
// this is the expected case. Since windows supports symbolic
// links to directories only, not to files, there is no need
// to check for open write permissions on the directory. If the
// directory has open write permissions, any files deposited that
// are not expected will be removed by the cleanup code.
//
return true;
}
else {
// this is either a regular file or some other type of file,
// any of which are unexpected and therefore insecure.
//
if (PrintMiscellaneous && Verbose) {
warning("%s is not a directory, file attributes = "
INTPTR_FORMAT "\n", path, fa);
}
return false;
}
}
// return the user name for the owner of this process
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name() {
/* get the user name. This code is adapted from code found in
* the jdk in src/windows/native/java/lang/java_props_md.c
* java_props_md.c 1.29 02/02/06. According to the original
* source, the call to GetUserName is avoided because of a resulting
* increase in footprint of 100K.
*/
char* user = getenv("USERNAME");
char buf[UNLEN+1];
DWORD buflen = sizeof(buf);
if (user == NULL || strlen(user) == 0) {
if (GetUserName(buf, &buflen)) {
user = buf;
}
else {
return NULL;
}
}
char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
strcpy(user_name, user);
return user_name;
}
// return the name of the user that owns the process identified by vmid.
//
// This method uses a slow directory search algorithm to find the backing
// store file for the specified vmid and returns the user name, as determined
// by the user name suffix of the hsperfdata_<username> directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name_slow(int vmid) {
// directory search
char* latest_user = NULL;
time_t latest_ctime = 0;
const char* tmpdirname = os::get_temp_directory();
DIR* tmpdirp = os::opendir(tmpdirname);
if (tmpdirp == NULL) {
return NULL;
}
// for each entry in the directory that matches the pattern hsperfdata_*,
// open the directory and check if the file for the given vmid exists.
// The file with the expected name and the latest creation date is used
// to determine the user name for the process id.
//
struct dirent* dentry;
char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
errno = 0;
while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
// check if the directory entry is a hsperfdata file
if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
continue;
}
char* usrdir_name = NEW_C_HEAP_ARRAY(char,
strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
strcpy(usrdir_name, tmpdirname);
strcat(usrdir_name, "\\");
strcat(usrdir_name, dentry->d_name);
DIR* subdirp = os::opendir(usrdir_name);
if (subdirp == NULL) {
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
continue;
}
// Since we don't create the backing store files in directories
// pointed to by symbolic links, we also don't follow them when
// looking for the files. We check for a symbolic link after the
// call to opendir in order to eliminate a small window where the
// symlink can be exploited.
//
if (!is_directory_secure(usrdir_name)) {
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
os::closedir(subdirp);
continue;
}
struct dirent* udentry;
char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
errno = 0;
while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
if (filename_to_pid(udentry->d_name) == vmid) {
struct stat statbuf;
char* filename = NEW_C_HEAP_ARRAY(char,
strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
strcpy(filename, usrdir_name);
strcat(filename, "\\");
strcat(filename, udentry->d_name);
if (::stat(filename, &statbuf) == OS_ERR) {
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
continue;
}
// skip over files that are not regular files.
if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
continue;
}
// If we found a matching file with a newer creation time, then
// save the user name. The newer creation time indicates that
// we found a newer incarnation of the process associated with
// vmid. Due to the way that Windows recycles pids and the fact
// that we can't delete the file from the file system namespace
// until last close, it is possible for there to be more than
// one hsperfdata file with a name matching vmid (diff users).
//
// We no longer ignore hsperfdata files where (st_size == 0).
// In this function, all we're trying to do is determine the
// name of the user that owns the process associated with vmid
// so the size doesn't matter. Very rarely, we have observed
// hsperfdata files where (st_size == 0) and the st_size field
// later becomes the expected value.
//
if (statbuf.st_ctime > latest_ctime) {
char* user = strchr(dentry->d_name, '_') + 1;
if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user, mtInternal);
latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
strcpy(latest_user, user);
latest_ctime = statbuf.st_ctime;
}
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
}
}
os::closedir(subdirp);
FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
}
os::closedir(tmpdirp);
FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
return(latest_user);
}
// return the name of the user that owns the process identified by vmid.
//
// note: this method should only be used via the Perf native methods.
// There are various costs to this method and limiting its use to the
// Perf native methods limits the impact to monitoring applications only.
//
static char* get_user_name(int vmid) {
// A fast implementation is not provided at this time. It's possible
// to provide a fast process id to user name mapping function using
// the win32 apis, but the default ACL for the process object only
// allows processes with the same owner SID to acquire the process
// handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
// to have the JVM change the ACL for the process object to allow arbitrary
// users to access the process handle and the process security token.
// The security ramifications need to be studied before providing this
// mechanism.
//
return get_user_name_slow(vmid);
}
// return the name of the shared memory file mapping object for the
// named shared memory region for the given user name and vmid.
//
// The file mapping object's name is not the file name. It is a name
// in a separate name space.
//
// the caller is expected to free the allocated memory.
//
static char *get_sharedmem_objectname(const char* user, int vmid) {
// construct file mapping object's name, add 3 for two '_' and a
// null terminator.
int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
// the id is converted to an unsigned value here because win32 allows
// negative process ids. However, OpenFileMapping API complains
// about a name containing a '-' characters.
//
nbytes += UINT_CHARS;
char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
_snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
return name;
}
// return the file name of the backing store file for the named
// shared memory region for the given user name and vmid.
//
// the caller is expected to free the allocated memory.
//
static char* get_sharedmem_filename(const char* dirname, int vmid) {
// add 2 for the file separator and a null terminator.
size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
_snprintf(name, nbytes, "%s\\%d", dirname, vmid);
return name;
}
// remove file
//
// this method removes the file with the given file name.
//
// Note: if the indicated file is on an SMB network file system, this
// method may be unsuccessful in removing the file.
//
static void remove_file(const char* dirname, const char* filename) {
size_t nbytes = strlen(dirname) + strlen(filename) + 2;
char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
strcpy(path, dirname);
strcat(path, "\\");
strcat(path, filename);
if (::unlink(path) == OS_ERR) {
if (PrintMiscellaneous && Verbose) {
if (errno != ENOENT) {
warning("Could not unlink shared memory backing"
" store file %s : %s\n", path, strerror(errno));
}
}
}
FREE_C_HEAP_ARRAY(char, path, mtInternal);
}
// returns true if the process represented by pid is alive, otherwise
// returns false. the validity of the result is only accurate if the
// target process is owned by the same principal that owns this process.
// this method should not be used if to test the status of an otherwise
// arbitrary process unless it is know that this process has the appropriate
// privileges to guarantee a result valid.
//
static bool is_alive(int pid) {
HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
if (ph == NULL) {
// the process does not exist.
if (PrintMiscellaneous && Verbose) {
DWORD lastError = GetLastError();
if (lastError != ERROR_INVALID_PARAMETER) {
warning("OpenProcess failed: %d\n", GetLastError());
}
}
return false;
}
DWORD exit_status;
if (!GetExitCodeProcess(ph, &exit_status)) {
if (PrintMiscellaneous && Verbose) {
warning("GetExitCodeProcess failed: %d\n", GetLastError());
}
CloseHandle(ph);
return false;
}
CloseHandle(ph);
return (exit_status == STILL_ACTIVE) ? true : false;
}
// check if the file system is considered secure for the backing store files
//
static bool is_filesystem_secure(const char* path) {
char root_path[MAX_PATH];
char fs_type[MAX_PATH];
if (PerfBypassFileSystemCheck) {
if (PrintMiscellaneous && Verbose) {
warning("bypassing file system criteria checks for %s\n", path);
}
return true;
}
char* first_colon = strchr((char *)path, ':');
if (first_colon == NULL) {
if (PrintMiscellaneous && Verbose) {
warning("expected device specifier in path: %s\n", path);
}
return false;
}
size_t len = (size_t)(first_colon - path);
assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
strncpy(root_path, path, len + 1);
root_path[len + 1] = '\\';
root_path[len + 2] = '\0';
// check that we have something like "C:\" or "AA:\"
assert(strlen(root_path) >= 3, "device specifier too short");
assert(strchr(root_path, ':') != NULL, "bad device specifier format");
assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
DWORD maxpath;
DWORD flags;
if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
&flags, fs_type, MAX_PATH)) {
// we can't get information about the volume, so assume unsafe.
if (PrintMiscellaneous && Verbose) {
warning("could not get device information for %s: "
" path = %s: lasterror = %d\n",
root_path, path, GetLastError());
}
return false;
}
if ((flags & FS_PERSISTENT_ACLS) == 0) {
// file system doesn't support ACLs, declare file system unsafe
if (PrintMiscellaneous && Verbose) {
warning("file system type %s on device %s does not support"
" ACLs\n", fs_type, root_path);
}
return false;
}
if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
// file system is compressed, declare file system unsafe
if (PrintMiscellaneous && Verbose) {
warning("file system type %s on device %s is compressed\n",
fs_type, root_path);
}
return false;
}
return true;
}
// cleanup stale shared memory resources
//
// This method attempts to remove all stale shared memory files in
// the named user temporary directory. It scans the named directory
// for files matching the pattern ^$[0-9]*$. For each file found, the
// process id is extracted from the file name and a test is run to
// determine if the process is alive. If the process is not alive,
// any stale file resources are removed.
//
static void cleanup_sharedmem_resources(const char* dirname) {
// open the user temp directory
DIR* dirp = os::opendir(dirname);
if (dirp == NULL) {
// directory doesn't exist, so there is nothing to cleanup
return;
}
if (!is_directory_secure(dirname)) {
// the directory is not secure, don't attempt any cleanup
return;
}
// for each entry in the directory that matches the expected file
// name pattern, determine if the file resources are stale and if
// so, remove the file resources. Note, instrumented HotSpot processes
// for this user may start and/or terminate during this search and
// remove or create new files in this directory. The behavior of this
// loop under these conditions is dependent upon the implementation of
// opendir/readdir.
//
struct dirent* entry;
char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
errno = 0;
while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
int pid = filename_to_pid(entry->d_name);
if (pid == 0) {
if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
// attempt to remove all unexpected files, except "." and ".."
remove_file(dirname, entry->d_name);
}
errno = 0;
continue;
}
// we now have a file name that converts to a valid integer
// that could represent a process id . if this process id
// matches the current process id or the process is not running,
// then remove the stale file resources.
//
// process liveness is detected by checking the exit status
// of the process. if the process id is valid and the exit status
// indicates that it is still running, the file file resources
// are not removed. If the process id is invalid, or if we don't
// have permissions to check the process status, or if the process
// id is valid and the process has terminated, the the file resources
// are assumed to be stale and are removed.
//
if (pid == os::current_process_id() || !is_alive(pid)) {
// we can only remove the file resources. Any mapped views
// of the file can only be unmapped by the processes that
// opened those views and the file mapping object will not
// get removed until all views are unmapped.
//
remove_file(dirname, entry->d_name);
}
errno = 0;
}
os::closedir(dirp);
FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
}
// create a file mapping object with the requested name, and size
// from the file represented by the given Handle object
//
static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
DWORD lowSize = (DWORD)size;
DWORD highSize = 0;
HANDLE fmh = NULL;
// Create a file mapping object with the given name. This function
// will grow the file to the specified size.
//
fmh = CreateFileMapping(
fh, /* HANDLE file handle for backing store */
fsa, /* LPSECURITY_ATTRIBUTES Not inheritable */
PAGE_READWRITE, /* DWORD protections */
highSize, /* DWORD High word of max size */
lowSize, /* DWORD Low word of max size */
name); /* LPCTSTR name for object */
if (fmh == NULL) {
if (PrintMiscellaneous && Verbose) {
warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
}
return NULL;
}
if (GetLastError() == ERROR_ALREADY_EXISTS) {
// a stale file mapping object was encountered. This object may be
// owned by this or some other user and cannot be removed until
// the other processes either exit or close their mapping objects
// and/or mapped views of this mapping object.
//
if (PrintMiscellaneous && Verbose) {
warning("file mapping already exists, lasterror = %d\n", GetLastError());
}
CloseHandle(fmh);
return NULL;
}
return fmh;
}
// method to free the given security descriptor and the contained
// access control list.
//
static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
BOOL success, exists, isdefault;
PACL pACL;
if (pSD != NULL) {
// get the access control list from the security descriptor
success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
// if an ACL existed and it was not a default acl, then it must
// be an ACL we enlisted. free the resources.
//
if (success && exists && pACL != NULL && !isdefault) {
FREE_C_HEAP_ARRAY(char, pACL, mtInternal);
}
// free the security descriptor
FREE_C_HEAP_ARRAY(char, pSD, mtInternal);
}
}
// method to free up a security attributes structure and any
// contained security descriptors and ACL
//
static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
if (lpSA != NULL) {
// free the contained security descriptor and the ACL
free_security_desc(lpSA->lpSecurityDescriptor);
lpSA->lpSecurityDescriptor = NULL;
// free the security attributes structure
FREE_C_HEAP_ARRAY(char, lpSA, mtInternal);
}
}
// get the user SID for the process indicated by the process handle
//
static PSID get_user_sid(HANDLE hProcess) {
HANDLE hAccessToken;
PTOKEN_USER token_buf = NULL;
DWORD rsize = 0;
if (hProcess == NULL) {
return NULL;
}
// get the process token
if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
if (PrintMiscellaneous && Verbose) {
warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
}
return NULL;
}
// determine the size of the token structured needed to retrieve
// the user token information from the access token.
//
if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
DWORD lasterror = GetLastError();
if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
if (PrintMiscellaneous && Verbose) {
warning("GetTokenInformation failure: lasterror = %d,"
" rsize = %d\n", lasterror, rsize);
}
CloseHandle(hAccessToken);
return NULL;
}
}
token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
// get the user token information
if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
if (PrintMiscellaneous && Verbose) {
warning("GetTokenInformation failure: lasterror = %d,"
" rsize = %d\n", GetLastError(), rsize);
}
FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
CloseHandle(hAccessToken);
return NULL;
}
DWORD nbytes = GetLengthSid(token_buf->User.Sid);
PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
if (PrintMiscellaneous && Verbose) {
warning("GetTokenInformation failure: lasterror = %d,"
" rsize = %d\n", GetLastError(), rsize);
}
FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
FREE_C_HEAP_ARRAY(char, pSID, mtInternal);
CloseHandle(hAccessToken);
return NULL;
}
// close the access token.
CloseHandle(hAccessToken);
FREE_C_HEAP_ARRAY(char, token_buf, mtInternal);
return pSID;
}
// structure used to consolidate access control entry information
//
typedef struct ace_data {
PSID pSid; // SID of the ACE
DWORD mask; // mask for the ACE
} ace_data_t;
// method to add an allow access control entry with the access rights
// indicated in mask for the principal indicated in SID to the given
// security descriptor. Much of the DACL handling was adapted from
// the example provided here:
// http://support.microsoft.com/kb/102102/EN-US/
//
static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
ace_data_t aces[], int ace_count) {
PACL newACL = NULL;
PACL oldACL = NULL;
if (pSD == NULL) {
return false;
}
BOOL exists, isdefault;
// retrieve any existing access control list.
if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
if (PrintMiscellaneous && Verbose) {
warning("GetSecurityDescriptor failure: lasterror = %d \n",
GetLastError());
}
return false;
}
// get the size of the DACL
ACL_SIZE_INFORMATION aclinfo;
// GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
// while oldACL is NULL for some case.
if (oldACL == NULL) {
exists = FALSE;
}
if (exists) {
if (!GetAclInformation(oldACL, &aclinfo,
sizeof(ACL_SIZE_INFORMATION),
AclSizeInformation)) {
if (PrintMiscellaneous && Verbose) {
warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
return false;
}
}
} else {
aclinfo.AceCount = 0; // assume NULL DACL
aclinfo.AclBytesFree = 0;
aclinfo.AclBytesInUse = sizeof(ACL);
}
// compute the size needed for the new ACL
// initial size of ACL is sum of the following:
// * size of ACL structure.
// * size of each ACE structure that ACL is to contain minus the sid
// sidStart member (DWORD) of the ACE.
// * length of the SID that each ACE is to contain.
DWORD newACLsize = aclinfo.AclBytesInUse +
(sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
for (int i = 0; i < ace_count; i++) {
assert(aces[i].pSid != 0, "pSid should not be 0");
newACLsize += GetLengthSid(aces[i].pSid);
}
// create the new ACL
newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
if (PrintMiscellaneous && Verbose) {
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
unsigned int ace_index = 0;
// copy any existing ACEs from the old ACL (if any) to the new ACL.
if (aclinfo.AceCount != 0) {
while (ace_index < aclinfo.AceCount) {
LPVOID ace;
if (!GetAce(oldACL, ace_index, &ace)) {
if (PrintMiscellaneous && Verbose) {
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
// this is an inherited, allowed ACE; break from loop so we can
// add the new access allowed, non-inherited ACE in the correct
// position, immediately following all non-inherited ACEs.
break;
}
// determine if the SID of this ACE matches any of the SIDs
// for which we plan to set ACEs.
int matches = 0;
for (int i = 0; i < ace_count; i++) {
if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
matches++;
break;
}
}
// if there are no SID matches, then add this existing ACE to the new ACL
if (matches == 0) {
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
((PACE_HEADER)ace)->AceSize)) {
if (PrintMiscellaneous && Verbose) {
warning("AddAce failure: lasterror = %d \n", GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
}
ace_index++;
}
}
// add the passed-in access control entries to the new ACL
for (int i = 0; i < ace_count; i++) {
if (!AddAccessAllowedAce(newACL, ACL_REVISION,
aces[i].mask, aces[i].pSid)) {
if (PrintMiscellaneous && Verbose) {
warning("AddAccessAllowedAce failure: lasterror = %d \n",
GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
}
// now copy the rest of the inherited ACEs from the old ACL
if (aclinfo.AceCount != 0) {
// picking up at ace_index, where we left off in the
// previous ace_index loop
while (ace_index < aclinfo.AceCount) {
LPVOID ace;
if (!GetAce(oldACL, ace_index, &ace)) {
if (PrintMiscellaneous && Verbose) {
warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
((PACE_HEADER)ace)->AceSize)) {
if (PrintMiscellaneous && Verbose) {
warning("AddAce failure: lasterror = %d \n", GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
ace_index++;
}
}
// add the new ACL to the security descriptor.
if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
if (PrintMiscellaneous && Verbose) {
warning("SetSecurityDescriptorDacl failure:"
" lasterror = %d \n", GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
// if running on windows 2000 or later, set the automatic inheritance
// control flags.
SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
_SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
"SetSecurityDescriptorControl");
if (_SetSecurityDescriptorControl != NULL) {
// We do not want to further propagate inherited DACLs, so making them
// protected prevents that.
if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
SE_DACL_PROTECTED)) {
if (PrintMiscellaneous && Verbose) {
warning("SetSecurityDescriptorControl failure:"
" lasterror = %d \n", GetLastError());
}
FREE_C_HEAP_ARRAY(char, newACL, mtInternal);
return false;
}
}
// Note, the security descriptor maintains a reference to the newACL, not
// a copy of it. Therefore, the newACL is not freed here. It is freed when
// the security descriptor containing its reference is freed.
//
return true;
}
// method to create a security attributes structure, which contains a
// security descriptor and an access control list comprised of 0 or more
// access control entries. The method take an array of ace_data structures
// that indicate the ACE to be added to the security descriptor.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
// allocate space for a security descriptor
PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
// initialize the security descriptor
if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
if (PrintMiscellaneous && Verbose) {
warning("InitializeSecurityDescriptor failure: "
"lasterror = %d \n", GetLastError());
}
free_security_desc(pSD);
return NULL;
}
// add the access control entries
if (!add_allow_aces(pSD, aces, count)) {
free_security_desc(pSD);
return NULL;
}
// allocate and initialize the security attributes structure and
// return it to the caller.
//
LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
lpSA->lpSecurityDescriptor = pSD;
lpSA->bInheritHandle = FALSE;
return(lpSA);
}
// method to create a security attributes structure with a restrictive
// access control list that creates a set access rights for the user/owner
// of the securable object and a separate set access rights for everyone else.
// also provides for full access rights for the administrator group.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
DWORD umask, DWORD emask, DWORD amask) {
ace_data_t aces[3];
// initialize the user ace data
aces[0].pSid = get_user_sid(GetCurrentProcess());
aces[0].mask = umask;
if (aces[0].pSid == 0)
return NULL;
// get the well known SID for BUILTIN\Administrators
PSID administratorsSid = NULL;
SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
SECURITY_BUILTIN_DOMAIN_RID,
DOMAIN_ALIAS_RID_ADMINS,
0, 0, 0, 0, 0, 0, &administratorsSid)) {
if (PrintMiscellaneous && Verbose) {
warning("AllocateAndInitializeSid failure: "
"lasterror = %d \n", GetLastError());
}
return NULL;
}
// initialize the ace data for administrator group
aces[1].pSid = administratorsSid;
aces[1].mask = amask;
// get the well known SID for the universal Everybody
PSID everybodySid = NULL;
SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
if (PrintMiscellaneous && Verbose) {
warning("AllocateAndInitializeSid failure: "
"lasterror = %d \n", GetLastError());
}
return NULL;
}
// initialize the ace data for everybody else.
aces[2].pSid = everybodySid;
aces[2].mask = emask;
// create a security attributes structure with access control
// entries as initialized above.
LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
FREE_C_HEAP_ARRAY(char, aces[0].pSid, mtInternal);
FreeSid(everybodySid);
FreeSid(administratorsSid);
return(lpSA);
}
// method to create the security attributes structure for restricting
// access to the user temporary directory.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
// create full access rights for the user/owner of the directory
// and read-only access rights for everybody else. This is
// effectively equivalent to UNIX 755 permissions on a directory.
//
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
return make_user_everybody_admin_security_attr(umask, emask, amask);
}
// method to create the security attributes structure for restricting
// access to the shared memory backing store file.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_file_security_attr() {
// create extensive access rights for the user/owner of the file
// and attribute read-only access rights for everybody else. This
// is effectively equivalent to UNIX 600 permissions on a file.
//
DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
return make_user_everybody_admin_security_attr(umask, emask, amask);
}
// method to create the security attributes structure for restricting
// access to the name shared memory file mapping object.
//
// the caller must free the resources associated with the security
// attributes structure created by this method by calling the
// free_security_attr() method.
//
static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
// create extensive access rights for the user/owner of the shared
// memory object and attribute read-only access rights for everybody
// else. This is effectively equivalent to UNIX 600 permissions on
// on the shared memory object.
//
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
DWORD emask = STANDARD_RIGHTS_READ; // attributes only
DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
return make_user_everybody_admin_security_attr(umask, emask, amask);
}
// make the user specific temporary directory
//
static bool make_user_tmp_dir(const char* dirname) {
LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
if (pDirSA == NULL) {
return false;
}
// create the directory with the given security attributes
if (!CreateDirectory(dirname, pDirSA)) {
DWORD lasterror = GetLastError();
if (lasterror == ERROR_ALREADY_EXISTS) {
// The directory already exists and was probably created by another
// JVM instance. However, this could also be the result of a
// deliberate symlink. Verify that the existing directory is safe.
//
if (!is_directory_secure(dirname)) {
// directory is not secure
if (PrintMiscellaneous && Verbose) {
warning("%s directory is insecure\n", dirname);
}
return false;
}
// The administrator should be able to delete this directory.
// But the directory created by previous version of JVM may not
// have permission for administrators to delete this directory.
// So add full permission to the administrator. Also setting new
// DACLs might fix the corrupted the DACLs.
SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
if (PrintMiscellaneous && Verbose) {
lasterror = GetLastError();
warning("SetFileSecurity failed for %s directory. lasterror %d \n",
dirname, lasterror);
}
}
}
else {
if (PrintMiscellaneous && Verbose) {
warning("CreateDirectory failed: %d\n", GetLastError());
}
return false;
}
}
// free the security attributes structure
free_security_attr(pDirSA);
return true;
}
// create the shared memory resources
//
// This function creates the shared memory resources. This includes
// the backing store file and the file mapping shared memory object.
//
static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
HANDLE fh = INVALID_HANDLE_VALUE;
HANDLE fmh = NULL;
// create the security attributes for the backing store file
LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
if (lpFileSA == NULL) {
return NULL;
}
// create the security attributes for the shared memory object
LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
if (lpSmoSA == NULL) {
free_security_attr(lpFileSA);
return NULL;
}
// create the user temporary directory
if (!make_user_tmp_dir(dirname)) {
// could not make/find the directory or the found directory
// was not secure
return NULL;
}
// Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
// file to be deleted by the last process that closes its handle to
// the file. This is important as the apis do not allow a terminating
// JVM being monitored by another process to remove the file name.
//
// the FILE_SHARE_DELETE share mode is valid only in winnt
//
fh = CreateFile(
filename, /* LPCTSTR file name */
GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
(os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
FILE_SHARE_READ, /* DWORD share mode, future READONLY
* open operations allowed
*/
lpFileSA, /* LPSECURITY security attributes */
CREATE_ALWAYS, /* DWORD creation disposition
* create file, if it already
* exists, overwrite it.
*/
FILE_FLAG_DELETE_ON_CLOSE, /* DWORD flags and attributes */
NULL); /* HANDLE template file access */
free_security_attr(lpFileSA);
if (fh == INVALID_HANDLE_VALUE) {
DWORD lasterror = GetLastError();
if (PrintMiscellaneous && Verbose) {
warning("could not create file %s: %d\n", filename, lasterror);
}
return NULL;
}
// try to create the file mapping
fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
free_security_attr(lpSmoSA);
if (fmh == NULL) {
// closing the file handle here will decrement the reference count
// on the file. When all processes accessing the file close their
// handle to it, the reference count will decrement to 0 and the
// OS will delete the file. These semantics are requested by the
// FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
CloseHandle(fh);
fh = NULL;
return NULL;
} else {
// We created the file mapping, but rarely the size of the
// backing store file is reported as zero (0) which can cause
// failures when trying to use the hsperfdata file.
struct stat statbuf;
int ret_code = ::stat(filename, &statbuf);
if (ret_code == OS_ERR) {
if (PrintMiscellaneous && Verbose) {
warning("Could not get status information from file %s: %s\n",
filename, strerror(errno));
}
CloseHandle(fmh);
CloseHandle(fh);
fh = NULL;
fmh = NULL;
return NULL;
}
// We could always call FlushFileBuffers() but the Microsoft
// docs indicate that it is considered expensive so we only
// call it when we observe the size as zero (0).
if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
DWORD lasterror = GetLastError();
if (PrintMiscellaneous && Verbose) {
warning("could not flush file %s: %d\n", filename, lasterror);
}
CloseHandle(fmh);
CloseHandle(fh);
fh = NULL;
fmh = NULL;
return NULL;
}
}
// the file has been successfully created and the file mapping
// object has been created.
sharedmem_fileHandle = fh;
sharedmem_fileName = strdup(filename);
return fmh;
}
// open the shared memory object for the given vmid.
//
static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
HANDLE fmh;
// open the file mapping with the requested mode
fmh = OpenFileMapping(
ofm_access, /* DWORD access mode */
FALSE, /* BOOL inherit flag - Do not allow inherit */
objectname); /* name for object */
if (fmh == NULL) {
if (PrintMiscellaneous && Verbose) {
warning("OpenFileMapping failed for shared memory object %s:"
" lasterror = %d\n", objectname, GetLastError());
}
THROW_MSG_(vmSymbols::java_lang_Exception(),
"Could not open PerfMemory", INVALID_HANDLE_VALUE);
}
return fmh;;
}
// create a named shared memory region
//
// On Win32, a named shared memory object has a name space that
// is independent of the file system name space. Shared memory object,
// or more precisely, file mapping objects, provide no mechanism to
// inquire the size of the memory region. There is also no api to
// enumerate the memory regions for various processes.
//
// This implementation utilizes the shared memory name space in parallel
// with the file system name space. This allows us to determine the
// size of the shared memory region from the size of the file and it
// allows us to provide a common, file system based name space for
// shared memory across platforms.
//
static char* mapping_create_shared(size_t size) {
void *mapAddress;
int vmid = os::current_process_id();
// get the name of the user associated with this process
char* user = get_user_name();
if (user == NULL) {
return NULL;
}
// construct the name of the user specific temporary directory
char* dirname = get_user_tmp_dir(user);
// check that the file system is secure - i.e. it supports ACLs.
if (!is_filesystem_secure(dirname)) {
return NULL;
}
// create the names of the backing store files and for the
// share memory object.
//
char* filename = get_sharedmem_filename(dirname, vmid);
char* objectname = get_sharedmem_objectname(user, vmid);
// cleanup any stale shared memory resources
cleanup_sharedmem_resources(dirname);
assert(((size != 0) && (size % os::vm_page_size() == 0)),
"unexpected PerfMemry region size");
FREE_C_HEAP_ARRAY(char, user, mtInternal);
// create the shared memory resources
sharedmem_fileMapHandle =
create_sharedmem_resources(dirname, filename, objectname, size);
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
if (sharedmem_fileMapHandle == NULL) {
return NULL;
}
// map the file into the address space
mapAddress = MapViewOfFile(
sharedmem_fileMapHandle, /* HANDLE = file mapping object */
FILE_MAP_ALL_ACCESS, /* DWORD access flags */
0, /* DWORD High word of offset */
0, /* DWORD Low word of offset */
(DWORD)size); /* DWORD Number of bytes to map */
if (mapAddress == NULL) {
if (PrintMiscellaneous && Verbose) {
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
}
CloseHandle(sharedmem_fileMapHandle);
sharedmem_fileMapHandle = NULL;
return NULL;
}
// clear the shared memory region
(void)memset(mapAddress, '\0', size);
// it does not go through os api, the operation has to record from here
MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
return (char*) mapAddress;
}
// this method deletes the file mapping object.
//
static void delete_file_mapping(char* addr, size_t size) {
// cleanup the persistent shared memory resources. since DestroyJavaVM does
// not support unloading of the JVM, unmapping of the memory resource is not
// performed. The memory will be reclaimed by the OS upon termination of all
// processes mapping the resource. The file mapping handle and the file
// handle are closed here to expedite the remove of the file by the OS. The
// file is not removed directly because it was created with
// FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
// be unsuccessful.
// close the fileMapHandle. the file mapping will still be retained
// by the OS as long as any other JVM processes has an open file mapping
// handle or a mapped view of the file.
//
if (sharedmem_fileMapHandle != NULL) {
CloseHandle(sharedmem_fileMapHandle);
sharedmem_fileMapHandle = NULL;
}
// close the file handle. This will decrement the reference count on the
// backing store file. When the reference count decrements to 0, the OS
// will delete the file. These semantics apply because the file was
// created with the FILE_FLAG_DELETE_ON_CLOSE flag.
//
if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
CloseHandle(sharedmem_fileHandle);
sharedmem_fileHandle = INVALID_HANDLE_VALUE;
}
}
// this method determines the size of the shared memory file
//
static size_t sharedmem_filesize(const char* filename, TRAPS) {
struct stat statbuf;
// get the file size
//
// on win95/98/me, _stat returns a file size of 0 bytes, but on
// winnt/2k the appropriate file size is returned. support for
// the sharable aspects of performance counters was abandonded
// on the non-nt win32 platforms due to this and other api
// inconsistencies
//
if (::stat(filename, &statbuf) == OS_ERR) {
if (PrintMiscellaneous && Verbose) {
warning("stat %s failed: %s\n", filename, strerror(errno));
}
THROW_MSG_0(vmSymbols::java_io_IOException(),
"Could not determine PerfMemory size");
}
if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
if (PrintMiscellaneous && Verbose) {
warning("unexpected file size: size = " SIZE_FORMAT "\n",
statbuf.st_size);
}
THROW_MSG_0(vmSymbols::java_lang_Exception(),
"Invalid PerfMemory size");
}
return statbuf.st_size;
}
// this method opens a file mapping object and maps the object
// into the address space of the process
//
static void open_file_mapping(const char* user, int vmid,
PerfMemory::PerfMemoryMode mode,
char** addrp, size_t* sizep, TRAPS) {
ResourceMark rm;
void *mapAddress = 0;
size_t size;
HANDLE fmh;
DWORD ofm_access;
DWORD mv_access;
const char* luser = NULL;
if (mode == PerfMemory::PERF_MODE_RO) {
ofm_access = FILE_MAP_READ;
mv_access = FILE_MAP_READ;
}
else if (mode == PerfMemory::PERF_MODE_RW) {
#ifdef LATER
ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
#else
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
"Unsupported access mode");
#endif
}
else {
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
"Illegal access mode");
}
// if a user name wasn't specified, then find the user name for
// the owner of the target vm.
if (user == NULL || strlen(user) == 0) {
luser = get_user_name(vmid);
}
else {
luser = user;
}
if (luser == NULL) {
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
"Could not map vmid to user name");
}
// get the names for the resources for the target vm
char* dirname = get_user_tmp_dir(luser);
// since we don't follow symbolic links when creating the backing
// store file, we also don't following them when attaching
//
if (!is_directory_secure(dirname)) {
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
"Process not found");
}
char* filename = get_sharedmem_filename(dirname, vmid);
char* objectname = get_sharedmem_objectname(luser, vmid);
// copy heap memory to resource memory. the objectname and
// filename are passed to methods that may throw exceptions.
// using resource arrays for these names prevents the leaks
// that would otherwise occur.
//
char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
strcpy(rfilename, filename);
strcpy(robjectname, objectname);
// free the c heap resources that are no longer needed
if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
FREE_C_HEAP_ARRAY(char, objectname, mtInternal);
if (*sizep == 0) {
size = sharedmem_filesize(rfilename, CHECK);
assert(size != 0, "unexpected size");
}
// Open the file mapping object with the given name
fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
// map the entire file into the address space
mapAddress = MapViewOfFile(
fmh, /* HANDLE Handle of file mapping object */
mv_access, /* DWORD access flags */
0, /* DWORD High word of offset */
0, /* DWORD Low word of offset */
size); /* DWORD Number of bytes to map */
if (mapAddress == NULL) {
if (PrintMiscellaneous && Verbose) {
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
}
CloseHandle(fmh);
THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
"Could not map PerfMemory");
}
// it does not go through os api, the operation has to record from here
MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
*addrp = (char*)mapAddress;
*sizep = size;
// File mapping object can be closed at this time without
// invalidating the mapped view of the file
CloseHandle(fmh);
if (PerfTraceMemOps) {
tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
INTPTR_FORMAT "\n", size, vmid, mapAddress);
}
}
// this method unmaps the the mapped view of the the
// file mapping object.
//
static void remove_file_mapping(char* addr) {
// the file mapping object was closed in open_file_mapping()
// after the file map view was created. We only need to
// unmap the file view here.
UnmapViewOfFile(addr);
}
// create the PerfData memory region in shared memory.
static char* create_shared_memory(size_t size) {
return mapping_create_shared(size);
}
// release a named, shared memory region
//
void delete_shared_memory(char* addr, size_t size) {
delete_file_mapping(addr, size);
}
// create the PerfData memory region
//
// This method creates the memory region used to store performance
// data for the JVM. The memory may be created in standard or
// shared memory.
//
void PerfMemory::create_memory_region(size_t size) {
if (PerfDisableSharedMem || !os::win32::is_nt()) {
// do not share the memory for the performance data.
PerfDisableSharedMem = true;
_start = create_standard_memory(size);
}
else {
_start = create_shared_memory(size);
if (_start == NULL) {
// creation of the shared memory region failed, attempt
// to create a contiguous, non-shared memory region instead.
//
if (PrintMiscellaneous && Verbose) {
warning("Reverting to non-shared PerfMemory region.\n");
}
PerfDisableSharedMem = true;
_start = create_standard_memory(size);
}
}
if (_start != NULL) _capacity = size;
}
// delete the PerfData memory region
//
// This method deletes the memory region used to store performance
// data for the JVM. The memory region indicated by the <address, size>
// tuple will be inaccessible after a call to this method.
//
void PerfMemory::delete_memory_region() {
assert((start() != NULL && capacity() > 0), "verify proper state");
// If user specifies PerfDataSaveFile, it will save the performance data
// to the specified file name no matter whether PerfDataSaveToFile is specified
// or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
// -XX:+PerfDataSaveToFile.
if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
save_memory_to_file(start(), capacity());
}
if (PerfDisableSharedMem) {
delete_standard_memory(start(), capacity());
}
else {
delete_shared_memory(start(), capacity());
}
}
// attach to the PerfData memory region for another JVM
//
// This method returns an <address, size> tuple that points to
// a memory buffer that is kept reasonably synchronized with
// the PerfData memory region for the indicated JVM. This
// buffer may be kept in synchronization via shared memory
// or some other mechanism that keeps the buffer updated.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to map
// the indicated process's PerfData memory region into this JVMs
// address space.
//
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
char** addrp, size_t* sizep, TRAPS) {
if (vmid == 0 || vmid == os::current_process_id()) {
*addrp = start();
*sizep = capacity();
return;
}
open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
}
// detach from the PerfData memory region of another JVM
//
// This method detaches the PerfData memory region of another
// JVM, specified as an <address, size> tuple of a buffer
// in this process's address space. This method may perform
// arbitrary actions to accomplish the detachment. The memory
// region specified by <address, size> will be inaccessible after
// a call to this method.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to detach
// the indicated process's PerfData memory region from this
// process's address space.
//
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
assert(addr != 0, "address sanity check");
assert(bytes > 0, "capacity sanity check");
if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
// prevent accidental detachment of this process's PerfMemory region
return;
}
MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
remove_file_mapping(addr);
// it does not go through os api, the operation has to record from here
tkr.record((address)addr, bytes);
}
char* PerfMemory::backing_store_filename() {
return sharedmem_fileName;
}