/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodDataOop.hpp"
#include "oops/methodOop.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#define __ _masm->
#ifndef CC_INTERP
const int method_offset = frame::interpreter_frame_method_offset * wordSize;
const int bci_offset = frame::interpreter_frame_bcx_offset * wordSize;
const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
//------------------------------------------------------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
// Note: There should be a minimal interpreter frame set up when stack
// overflow occurs since we check explicitly for it now.
//
#ifdef ASSERT
{ Label L;
__ lea(rax, Address(rbp,
frame::interpreter_frame_monitor_block_top_offset * wordSize));
__ cmpptr(rax, rsp); // rax, = maximal rsp for current rbp,
// (stack grows negative)
__ jcc(Assembler::aboveEqual, L); // check if frame is complete
__ stop ("interpreter frame not set up");
__ bind(L);
}
#endif // ASSERT
// Restore bcp under the assumption that the current frame is still
// interpreted
__ restore_bcp();
// expression stack must be empty before entering the VM if an exception
// happened
__ empty_expression_stack();
__ empty_FPU_stack();
// throw exception
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
return entry;
}
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
address entry = __ pc();
// expression stack must be empty before entering the VM if an exception happened
__ empty_expression_stack();
__ empty_FPU_stack();
// setup parameters
// ??? convention: expect aberrant index in register rbx,
__ lea(rax, ExternalAddress((address)name));
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
return entry;
}
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// object is at TOS
__ pop(rax);
// expression stack must be empty before entering the VM if an exception
// happened
__ empty_expression_stack();
__ empty_FPU_stack();
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_ClassCastException),
rax);
return entry;
}
address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
assert(!pass_oop || message == NULL, "either oop or message but not both");
address entry = __ pc();
if (pass_oop) {
// object is at TOS
__ pop(rbx);
}
// expression stack must be empty before entering the VM if an exception happened
__ empty_expression_stack();
__ empty_FPU_stack();
// setup parameters
__ lea(rax, ExternalAddress((address)name));
if (pass_oop) {
__ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
} else {
if (message != NULL) {
__ lea(rbx, ExternalAddress((address)message));
} else {
__ movptr(rbx, NULL_WORD);
}
__ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
}
// throw exception
__ jump(ExternalAddress(Interpreter::throw_exception_entry()));
return entry;
}
address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
address entry = __ pc();
// NULL last_sp until next java call
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
__ dispatch_next(state);
return entry;
}
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
TosState incoming_state = state;
address entry = __ pc();
#ifdef COMPILER2
// The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
for (int i = 1; i < 8; i++) {
__ ffree(i);
}
} else if (UseSSE < 2) {
__ empty_FPU_stack();
}
#endif
if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
__ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
} else {
__ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
}
// In SSE mode, interpreter returns FP results in xmm0 but they need
// to end up back on the FPU so it can operate on them.
if (incoming_state == ftos && UseSSE >= 1) {
__ subptr(rsp, wordSize);
__ movflt(Address(rsp, 0), xmm0);
__ fld_s(Address(rsp, 0));
__ addptr(rsp, wordSize);
} else if (incoming_state == dtos && UseSSE >= 2) {
__ subptr(rsp, 2*wordSize);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ addptr(rsp, 2*wordSize);
}
__ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
// Restore stack bottom in case i2c adjusted stack
__ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
// and NULL it as marker that rsp is now tos until next java call
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
__ restore_bcp();
__ restore_locals();
Label L_got_cache, L_giant_index;
if (EnableInvokeDynamic) {
__ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
__ jcc(Assembler::equal, L_giant_index);
}
__ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
__ bind(L_got_cache);
__ movl(rbx, Address(rbx, rcx,
Address::times_ptr, constantPoolCacheOopDesc::base_offset() +
ConstantPoolCacheEntry::flags_offset()));
__ andptr(rbx, 0xFF);
__ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
__ dispatch_next(state, step);
// out of the main line of code...
if (EnableInvokeDynamic) {
__ bind(L_giant_index);
__ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
__ jmp(L_got_cache);
}
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
address entry = __ pc();
// In SSE mode, FP results are in xmm0
if (state == ftos && UseSSE > 0) {
__ subptr(rsp, wordSize);
__ movflt(Address(rsp, 0), xmm0);
__ fld_s(Address(rsp, 0));
__ addptr(rsp, wordSize);
} else if (state == dtos && UseSSE >= 2) {
__ subptr(rsp, 2*wordSize);
__ movdbl(Address(rsp, 0), xmm0);
__ fld_d(Address(rsp, 0));
__ addptr(rsp, 2*wordSize);
}
__ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
// The stack is not extended by deopt but we must NULL last_sp as this
// entry is like a "return".
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
__ restore_bcp();
__ restore_locals();
// handle exceptions
{ Label L;
const Register thread = rcx;
__ get_thread(thread);
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::zero, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
__ dispatch_next(state, step);
return entry;
}
int AbstractInterpreter::BasicType_as_index(BasicType type) {
int i = 0;
switch (type) {
case T_BOOLEAN: i = 0; break;
case T_CHAR : i = 1; break;
case T_BYTE : i = 2; break;
case T_SHORT : i = 3; break;
case T_INT : // fall through
case T_LONG : // fall through
case T_VOID : i = 4; break;
case T_FLOAT : i = 5; break; // have to treat float and double separately for SSE
case T_DOUBLE : i = 6; break;
case T_OBJECT : // fall through
case T_ARRAY : i = 7; break;
default : ShouldNotReachHere();
}
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
return i;
}
address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
address entry = __ pc();
switch (type) {
case T_BOOLEAN: __ c2bool(rax); break;
case T_CHAR : __ andptr(rax, 0xFFFF); break;
case T_BYTE : __ sign_extend_byte (rax); break;
case T_SHORT : __ sign_extend_short(rax); break;
case T_INT : /* nothing to do */ break;
case T_DOUBLE :
case T_FLOAT :
{ const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
__ pop(t); // remove return address first
// Must return a result for interpreter or compiler. In SSE
// mode, results are returned in xmm0 and the FPU stack must
// be empty.
if (type == T_FLOAT && UseSSE >= 1) {
// Load ST0
__ fld_d(Address(rsp, 0));
// Store as float and empty fpu stack
__ fstp_s(Address(rsp, 0));
// and reload
__ movflt(xmm0, Address(rsp, 0));
} else if (type == T_DOUBLE && UseSSE >= 2 ) {
__ movdbl(xmm0, Address(rsp, 0));
} else {
// restore ST0
__ fld_d(Address(rsp, 0));
}
// and pop the temp
__ addptr(rsp, 2 * wordSize);
__ push(t); // restore return address
}
break;
case T_OBJECT :
// retrieve result from frame
__ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
// and verify it
__ verify_oop(rax);
break;
default : ShouldNotReachHere();
}
__ ret(0); // return from result handler
return entry;
}
address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
__ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
return entry;
}
// Helpers for commoning out cases in the various type of method entries.
//
// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test
//
// rbx,: method
// rcx: invocation counter
//
void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
// Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
if (TieredCompilation) {
int increment = InvocationCounter::count_increment;
int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
Label no_mdo, done;
if (ProfileInterpreter) {
// Are we profiling?
__ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
__ testptr(rax, rax);
__ jccb(Assembler::zero, no_mdo);
// Increment counter in the MDO
const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
__ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
__ jmpb(done);
}
__ bind(no_mdo);
// Increment counter in methodOop (we don't need to load it, it's in rcx).
__ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
__ bind(done);
} else {
const Address backedge_counter (rbx, methodOopDesc::backedge_counter_offset() +
InvocationCounter::counter_offset());
if (ProfileInterpreter) { // %%% Merge this into methodDataOop
__ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
}
// Update standard invocation counters
__ movl(rax, backedge_counter); // load backedge counter
__ incrementl(rcx, InvocationCounter::count_increment);
__ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
__ movl(invocation_counter, rcx); // save invocation count
__ addl(rcx, rax); // add both counters
// profile_method is non-null only for interpreted method so
// profile_method != NULL == !native_call
// BytecodeInterpreter only calls for native so code is elided.
if (ProfileInterpreter && profile_method != NULL) {
// Test to see if we should create a method data oop
__ cmp32(rcx,
ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
__ jcc(Assembler::less, *profile_method_continue);
// if no method data exists, go to profile_method
__ test_method_data_pointer(rax, *profile_method);
}
__ cmp32(rcx,
ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
__ jcc(Assembler::aboveEqual, *overflow);
}
}
void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
// Asm interpreter on entry
// rdi - locals
// rsi - bcp
// rbx, - method
// rdx - cpool
// rbp, - interpreter frame
// C++ interpreter on entry
// rsi - new interpreter state pointer
// rbp - interpreter frame pointer
// rbx - method
// On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
// rbx, - method
// rcx - rcvr (assuming there is one)
// top of stack return address of interpreter caller
// rsp - sender_sp
// C++ interpreter only
// rsi - previous interpreter state pointer
const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
// InterpreterRuntime::frequency_counter_overflow takes one argument
// indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
// The call returns the address of the verified entry point for the method or NULL
// if the compilation did not complete (either went background or bailed out).
__ movptr(rax, (intptr_t)false);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
__ movptr(rbx, Address(rbp, method_offset)); // restore methodOop
// Preserve invariant that rsi/rdi contain bcp/locals of sender frame
// and jump to the interpreted entry.
__ jmp(*do_continue, relocInfo::none);
}
void InterpreterGenerator::generate_stack_overflow_check(void) {
// see if we've got enough room on the stack for locals plus overhead.
// the expression stack grows down incrementally, so the normal guard
// page mechanism will work for that.
//
// Registers live on entry:
//
// Asm interpreter
// rdx: number of additional locals this frame needs (what we must check)
// rbx,: methodOop
// destroyed on exit
// rax,
// NOTE: since the additional locals are also always pushed (wasn't obvious in
// generate_method_entry) so the guard should work for them too.
//
// monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// total overhead size: entry_size + (saved rbp, thru expr stack bottom).
// be sure to change this if you add/subtract anything to/from the overhead area
const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
const int page_size = os::vm_page_size();
Label after_frame_check;
// see if the frame is greater than one page in size. If so,
// then we need to verify there is enough stack space remaining
// for the additional locals.
__ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
__ jcc(Assembler::belowEqual, after_frame_check);
// compute rsp as if this were going to be the last frame on
// the stack before the red zone
Label after_frame_check_pop;
__ push(rsi);
const Register thread = rsi;
__ get_thread(thread);
const Address stack_base(thread, Thread::stack_base_offset());
const Address stack_size(thread, Thread::stack_size_offset());
// locals + overhead, in bytes
__ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
#ifdef ASSERT
Label stack_base_okay, stack_size_okay;
// verify that thread stack base is non-zero
__ cmpptr(stack_base, (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, stack_base_okay);
__ stop("stack base is zero");
__ bind(stack_base_okay);
// verify that thread stack size is non-zero
__ cmpptr(stack_size, 0);
__ jcc(Assembler::notEqual, stack_size_okay);
__ stop("stack size is zero");
__ bind(stack_size_okay);
#endif
// Add stack base to locals and subtract stack size
__ addptr(rax, stack_base);
__ subptr(rax, stack_size);
// Use the maximum number of pages we might bang.
const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
(StackRedPages+StackYellowPages);
__ addptr(rax, max_pages * page_size);
// check against the current stack bottom
__ cmpptr(rsp, rax);
__ jcc(Assembler::above, after_frame_check_pop);
__ pop(rsi); // get saved bcp / (c++ prev state ).
// Restore sender's sp as SP. This is necessary if the sender's
// frame is an extended compiled frame (see gen_c2i_adapter())
// and safer anyway in case of JSR292 adaptations.
__ pop(rax); // return address must be moved if SP is changed
__ mov(rsp, rsi);
__ push(rax);
// Note: the restored frame is not necessarily interpreted.
// Use the shared runtime version of the StackOverflowError.
assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
__ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
// all done with frame size check
__ bind(after_frame_check_pop);
__ pop(rsi);
__ bind(after_frame_check);
}
// Allocate monitor and lock method (asm interpreter)
// rbx, - methodOop
//
void InterpreterGenerator::lock_method(void) {
// synchronize method
const Address access_flags (rbx, methodOopDesc::access_flags_offset());
const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
#ifdef ASSERT
{ Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::notZero, L);
__ stop("method doesn't need synchronization");
__ bind(L);
}
#endif // ASSERT
// get synchronization object
{ Label done;
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_STATIC);
__ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0))); // get receiver (assume this is frequent case)
__ jcc(Assembler::zero, done);
__ movptr(rax, Address(rbx, methodOopDesc::const_offset()));
__ movptr(rax, Address(rax, constMethodOopDesc::constants_offset()));
__ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
__ movptr(rax, Address(rax, mirror_offset));
__ bind(done);
}
// add space for monitor & lock
__ subptr(rsp, entry_size); // add space for a monitor entry
__ movptr(monitor_block_top, rsp); // set new monitor block top
__ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
__ mov(rdx, rsp); // object address
__ lock_object(rdx);
}
//
// Generate a fixed interpreter frame. This is identical setup for interpreted methods
// and for native methods hence the shared code.
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// initialize fixed part of activation frame
__ push(rax); // save return address
__ enter(); // save old & set new rbp,
__ push(rsi); // set sender sp
__ push((int32_t)NULL_WORD); // leave last_sp as null
__ movptr(rsi, Address(rbx,methodOopDesc::const_offset())); // get constMethodOop
__ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
__ push(rbx); // save methodOop
if (ProfileInterpreter) {
Label method_data_continue;
__ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
__ testptr(rdx, rdx);
__ jcc(Assembler::zero, method_data_continue);
__ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
__ bind(method_data_continue);
__ push(rdx); // set the mdp (method data pointer)
} else {
__ push(0);
}
__ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
__ movptr(rdx, Address(rdx, constMethodOopDesc::constants_offset()));
__ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
__ push(rdx); // set constant pool cache
__ push(rdi); // set locals pointer
if (native_call) {
__ push(0); // no bcp
} else {
__ push(rsi); // set bcp
}
__ push(0); // reserve word for pointer to expression stack bottom
__ movptr(Address(rsp, 0), rsp); // set expression stack bottom
}
// End of helpers
//
// Various method entries
//------------------------------------------------------------------------------------------------------------------------
//
//
// Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
address InterpreterGenerator::generate_accessor_entry(void) {
// rbx,: methodOop
// rcx: receiver (preserve for slow entry into asm interpreter)
// rsi: senderSP must preserved for slow path, set SP to it on fast path
address entry_point = __ pc();
Label xreturn_path;
// do fastpath for resolved accessor methods
if (UseFastAccessorMethods) {
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
ExternalAddress state(SafepointSynchronize::address_of_state());
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
__ jcc(Assembler::notEqual, slow_path);
// ASM/C++ Interpreter
// Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
// Note: We can only use this code if the getfield has been resolved
// and if we don't have a null-pointer exception => check for
// these conditions first and use slow path if necessary.
// rbx,: method
// rcx: receiver
__ movptr(rax, Address(rsp, wordSize));
// check if local 0 != NULL and read field
__ testptr(rax, rax);
__ jcc(Assembler::zero, slow_path);
// read first instruction word and extract bytecode @ 1 and index @ 2
__ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
__ movptr(rdi, Address(rdx, constMethodOopDesc::constants_offset()));
__ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
// Shift codes right to get the index on the right.
// The bytecode fetched looks like <index><0xb4><0x2a>
__ shrl(rdx, 2*BitsPerByte);
__ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
__ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
// rax,: local 0
// rbx,: method
// rcx: receiver - do not destroy since it is needed for slow path!
// rcx: scratch
// rdx: constant pool cache index
// rdi: constant pool cache
// rsi: sender sp
// check if getfield has been resolved and read constant pool cache entry
// check the validity of the cache entry by testing whether _indices field
// contains Bytecode::_getfield in b1 byte.
assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
__ movl(rcx,
Address(rdi,
rdx,
Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
__ shrl(rcx, 2*BitsPerByte);
__ andl(rcx, 0xFF);
__ cmpl(rcx, Bytecodes::_getfield);
__ jcc(Assembler::notEqual, slow_path);
// Note: constant pool entry is not valid before bytecode is resolved
__ movptr(rcx,
Address(rdi,
rdx,
Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
__ movl(rdx,
Address(rdi,
rdx,
Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
Label notByte, notShort, notChar;
const Address field_address (rax, rcx, Address::times_1);
// Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes.
// Use the type from the constant pool cache
__ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask rdx after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmpl(rdx, btos);
__ jcc(Assembler::notEqual, notByte);
__ load_signed_byte(rax, field_address);
__ jmp(xreturn_path);
__ bind(notByte);
__ cmpl(rdx, stos);
__ jcc(Assembler::notEqual, notShort);
__ load_signed_short(rax, field_address);
__ jmp(xreturn_path);
__ bind(notShort);
__ cmpl(rdx, ctos);
__ jcc(Assembler::notEqual, notChar);
__ load_unsigned_short(rax, field_address);
__ jmp(xreturn_path);
__ bind(notChar);
#ifdef ASSERT
Label okay;
__ cmpl(rdx, atos);
__ jcc(Assembler::equal, okay);
__ cmpl(rdx, itos);
__ jcc(Assembler::equal, okay);
__ stop("what type is this?");
__ bind(okay);
#endif // ASSERT
// All the rest are a 32 bit wordsize
// This is ok for now. Since fast accessors should be going away
__ movptr(rax, field_address);
__ bind(xreturn_path);
// _ireturn/_areturn
__ pop(rdi); // get return address
__ mov(rsp, rsi); // set sp to sender sp
__ jmp(rdi);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
(void) generate_normal_entry(false);
return entry_point;
}
return NULL;
}
// Method entry for java.lang.ref.Reference.get.
address InterpreterGenerator::generate_Reference_get_entry(void) {
#ifndef SERIALGC
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. The "intrinsified" code for G1 (or any SATB based GC),
// 2. The slow path - which is an expansion of the regular method entry.
//
// Notes:-
// * In the G1 code we do not check whether we need to block for
// a safepoint. If G1 is enabled then we must execute the specialized
// code for Reference.get (except when the Reference object is null)
// so that we can log the value in the referent field with an SATB
// update buffer.
// If the code for the getfield template is modified so that the
// G1 pre-barrier code is executed when the current method is
// Reference.get() then going through the normal method entry
// will be fine.
// * The G1 code below can, however, check the receiver object (the instance
// of java.lang.Reference) and jump to the slow path if null. If the
// Reference object is null then we obviously cannot fetch the referent
// and so we don't need to call the G1 pre-barrier. Thus we can use the
// regular method entry code to generate the NPE.
//
// This code is based on generate_accessor_enty.
// rbx,: methodOop
// rcx: receiver (preserve for slow entry into asm interpreter)
// rsi: senderSP must preserved for slow path, set SP to it on fast path
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
if (UseG1GC) {
Label slow_path;
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ movptr(rax, Address(rsp, wordSize));
__ testptr(rax, rax);
__ jcc(Assembler::zero, slow_path);
// rax: local 0 (must be preserved across the G1 barrier call)
//
// rbx: method (at this point it's scratch)
// rcx: receiver (at this point it's scratch)
// rdx: scratch
// rdi: scratch
//
// rsi: sender sp
// Preserve the sender sp in case the pre-barrier
// calls the runtime
__ push(rsi);
// Load the value of the referent field.
const Address field_address(rax, referent_offset);
__ movptr(rax, field_address);
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
__ get_thread(rcx);
__ g1_write_barrier_pre(noreg /* obj */,
rax /* pre_val */,
rcx /* thread */,
rbx /* tmp */,
true /* tosca_save */,
true /* expand_call */);
// _areturn
__ pop(rsi); // get sender sp
__ pop(rdi); // get return address
__ mov(rsp, rsi); // set sp to sender sp
__ jmp(rdi);
__ bind(slow_path);
(void) generate_normal_entry(false);
return entry;
}
#endif // SERIALGC
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return generate_accessor_entry();
}
//
// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the native method
// than the typical interpreter frame setup.
//
address InterpreterGenerator::generate_native_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls;
// rbx,: methodOop
// rsi: sender sp
// rsi: previous interpreter state (C++ interpreter) must preserve
address entry_point = __ pc();
const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
const Address access_flags (rbx, methodOopDesc::access_flags_offset());
// get parameter size (always needed)
__ load_unsigned_short(rcx, size_of_parameters);
// native calls don't need the stack size check since they have no expression stack
// and the arguments are already on the stack and we only add a handful of words
// to the stack
// rbx,: methodOop
// rcx: size of parameters
// rsi: sender sp
__ pop(rax); // get return address
// for natives the size of locals is zero
// compute beginning of parameters (rdi)
__ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
// add 2 zero-initialized slots for native calls
// NULL result handler
__ push((int32_t)NULL_WORD);
// NULL oop temp (mirror or jni oop result)
__ push((int32_t)NULL_WORD);
if (inc_counter) __ movl(rcx, invocation_counter); // (pre-)fetch invocation count
// initialize fixed part of activation frame
generate_fixed_frame(true);
// make sure method is native & not abstract
#ifdef ASSERT
__ movl(rax, access_flags);
{
Label L;
__ testl(rax, JVM_ACC_NATIVE);
__ jcc(Assembler::notZero, L);
__ stop("tried to execute non-native method as native");
__ bind(L);
}
{ Label L;
__ testl(rax, JVM_ACC_ABSTRACT);
__ jcc(Assembler::zero, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. The remove_activation will
// check this flag.
__ get_thread(rax);
const Address do_not_unlock_if_synchronized(rax,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
__ movbool(do_not_unlock_if_synchronized, true);
// increment invocation count & check for overflow
Label invocation_counter_overflow;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
Label continue_after_compile;
__ bind(continue_after_compile);
bang_stack_shadow_pages(true);
// reset the _do_not_unlock_if_synchronized flag
__ get_thread(rax);
__ movbool(do_not_unlock_if_synchronized, false);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
//
if (synchronized) {
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{ Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{ Label L;
const Address monitor_block_top (rbp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
__ movptr(rax, monitor_block_top);
__ cmpptr(rax, rsp);
__ jcc(Assembler::equal, L);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
// jvmti/dtrace support
__ notify_method_entry();
// work registers
const Register method = rbx;
const Register thread = rdi;
const Register t = rcx;
// allocate space for parameters
__ get_method(method);
__ verify_oop(method);
__ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
__ shlptr(t, Interpreter::logStackElementSize);
__ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror
__ subptr(rsp, t);
__ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
// get signature handler
{ Label L;
__ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
__ testptr(t, t);
__ jcc(Assembler::notZero, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
__ get_method(method);
__ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
__ bind(L);
}
// call signature handler
assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code");
assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t , "adjust this code");
// The generated handlers do not touch RBX (the method oop).
// However, large signatures cannot be cached and are generated
// each time here. The slow-path generator will blow RBX
// sometime, so we must reload it after the call.
__ call(t);
__ get_method(method); // slow path call blows RBX on DevStudio 5.0
// result handler is in rax,
// set result handler
__ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
// pass mirror handle if static call
{ Label L;
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ movl(t, Address(method, methodOopDesc::access_flags_offset()));
__ testl(t, JVM_ACC_STATIC);
__ jcc(Assembler::zero, L);
// get mirror
__ movptr(t, Address(method, methodOopDesc:: const_offset()));
__ movptr(t, Address(t, constMethodOopDesc::constants_offset()));
__ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
__ movptr(t, Address(t, mirror_offset));
// copy mirror into activation frame
__ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
// pass handle to mirror
__ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
__ movptr(Address(rsp, wordSize), t);
__ bind(L);
}
// get native function entry point
{ Label L;
__ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
__ cmpptr(rax, unsatisfied.addr());
__ jcc(Assembler::notEqual, L);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
__ get_method(method);
__ verify_oop(method);
__ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
__ bind(L);
}
// pass JNIEnv
__ get_thread(thread);
__ lea(t, Address(thread, JavaThread::jni_environment_offset()));
__ movptr(Address(rsp, 0), t);
// set_last_Java_frame_before_call
// It is enough that the pc()
// points into the right code segment. It does not have to be the correct return pc.
__ set_last_Java_frame(thread, noreg, rbp, __ pc());
// change thread state
#ifdef ASSERT
{ Label L;
__ movl(t, Address(thread, JavaThread::thread_state_offset()));
__ cmpl(t, _thread_in_Java);
__ jcc(Assembler::equal, L);
__ stop("Wrong thread state in native stub");
__ bind(L);
}
#endif
// Change state to native
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
__ call(rax);
// result potentially in rdx:rax or ST0
// Verify or restore cpu control state after JNI call
__ restore_cpu_control_state_after_jni();
// save potential result in ST(0) & rdx:rax
// (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
// the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
// It is safe to do this push because state is _thread_in_native and return address will be found
// via _last_native_pc and not via _last_jave_sp
// NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
// If the order changes or anything else is added to the stack the code in
// interpreter_frame_result will have to be changed.
{ Label L;
Label push_double;
ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
__ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
float_handler.addr());
__ jcc(Assembler::equal, push_double);
__ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
double_handler.addr());
__ jcc(Assembler::notEqual, L);
__ bind(push_double);
__ push(dtos);
__ bind(L);
}
__ push(ltos);
// change thread state
__ get_thread(thread);
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
if(os::is_MP()) {
if (UseMembar) {
// Force this write out before the read below
__ membar(Assembler::Membar_mask_bits(
Assembler::LoadLoad | Assembler::LoadStore |
Assembler::StoreLoad | Assembler::StoreStore));
} else {
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
__ serialize_memory(thread, rcx);
}
}
if (AlwaysRestoreFPU) {
// Make sure the control word is correct.
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
}
// check for safepoint operation in progress and/or pending suspend requests
{ Label Continue;
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
Label L;
__ jcc(Assembler::notEqual, L);
__ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
__ jcc(Assembler::equal, Continue);
__ bind(L);
// Don't use call_VM as it will see a possible pending exception and forward it
// and never return here preventing us from clearing _last_native_pc down below.
// Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
// preserved and correspond to the bcp/locals pointers. So we do a runtime call
// by hand.
//
__ push(thread);
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
JavaThread::check_special_condition_for_native_trans)));
__ increment(rsp, wordSize);
__ get_thread(thread);
__ bind(Continue);
}
// change thread state
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
__ reset_last_Java_frame(thread, true, true);
// reset handle block
__ movptr(t, Address(thread, JavaThread::active_handles_offset()));
__ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
// If result was an oop then unbox and save it in the frame
{ Label L;
Label no_oop, store_result;
ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
__ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
handler.addr());
__ jcc(Assembler::notEqual, no_oop);
__ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
__ pop(ltos);
__ testptr(rax, rax);
__ jcc(Assembler::zero, store_result);
// unbox
__ movptr(rax, Address(rax, 0));
__ bind(store_result);
__ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
// keep stack depth as expected by pushing oop which will eventually be discarded
__ push(ltos);
__ bind(no_oop);
}
{
Label no_reguard;
__ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
__ jcc(Assembler::notEqual, no_reguard);
__ pusha();
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
__ popa();
__ bind(no_reguard);
}
// restore rsi to have legal interpreter frame,
// i.e., bci == 0 <=> rsi == code_base()
// Can't call_VM until bcp is within reasonable.
__ get_method(method); // method is junk from thread_in_native to now.
__ verify_oop(method);
__ movptr(rsi, Address(method,methodOopDesc::const_offset())); // get constMethodOop
__ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
// handle exceptions (exception handling will handle unlocking!)
{ Label L;
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::zero, L);
// Note: At some point we may want to unify this with the code used in call_VM_base();
// i.e., we should use the StubRoutines::forward_exception code. For now this
// doesn't work here because the rsp is not correctly set at this point.
__ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
// do unlocking if necessary
{ Label L;
__ movl(t, Address(method, methodOopDesc::access_flags_offset()));
__ testl(t, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
// the code below should be shared with interpreter macro assembler implementation
{ Label unlock;
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
__ lea(rdx, monitor); // address of first monitor
__ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
__ testptr(t, t);
__ jcc(Assembler::notZero, unlock);
// Entry already unlocked, need to throw exception
__ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
__ bind(unlock);
__ unlock_object(rdx);
}
__ bind(L);
}
// jvmti/dtrace support
// Note: This must happen _after_ handling/throwing any exceptions since
// the exception handler code notifies the runtime of method exits
// too. If this happens before, method entry/exit notifications are
// not properly paired (was bug - gri 11/22/99).
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
// restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
__ pop(ltos);
__ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
__ call(t);
// remove activation
__ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
__ leave(); // remove frame anchor
__ pop(rdi); // get return address
__ mov(rsp, t); // set sp to sender sp
__ jmp(rdi);
if (inc_counter) {
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(&continue_after_compile);
}
return entry_point;
}
//
// Generic interpreted method entry to (asm) interpreter
//
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls;
// rbx,: methodOop
// rsi: sender sp
address entry_point = __ pc();
const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
const Address size_of_locals (rbx, methodOopDesc::size_of_locals_offset());
const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
const Address access_flags (rbx, methodOopDesc::access_flags_offset());
// get parameter size (always needed)
__ load_unsigned_short(rcx, size_of_parameters);
// rbx,: methodOop
// rcx: size of parameters
// rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
__ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
__ subl(rdx, rcx); // rdx = no. of additional locals
// see if we've got enough room on the stack for locals plus overhead.
generate_stack_overflow_check();
// get return address
__ pop(rax);
// compute beginning of parameters (rdi)
__ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
// rdx - # of additional locals
// allocate space for locals
// explicitly initialize locals
{
Label exit, loop;
__ testl(rdx, rdx);
__ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
__ bind(loop);
__ push((int32_t)NULL_WORD); // initialize local variables
__ decrement(rdx); // until everything initialized
__ jcc(Assembler::greater, loop);
__ bind(exit);
}
if (inc_counter) __ movl(rcx, invocation_counter); // (pre-)fetch invocation count
// initialize fixed part of activation frame
generate_fixed_frame(false);
// make sure method is not native & not abstract
#ifdef ASSERT
__ movl(rax, access_flags);
{
Label L;
__ testl(rax, JVM_ACC_NATIVE);
__ jcc(Assembler::zero, L);
__ stop("tried to execute native method as non-native");
__ bind(L);
}
{ Label L;
__ testl(rax, JVM_ACC_ABSTRACT);
__ jcc(Assembler::zero, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. The remove_activation will
// check this flag.
__ get_thread(rax);
const Address do_not_unlock_if_synchronized(rax,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
__ movbool(do_not_unlock_if_synchronized, true);
// increment invocation count & check for overflow
Label invocation_counter_overflow;
Label profile_method;
Label profile_method_continue;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
if (ProfileInterpreter) {
__ bind(profile_method_continue);
}
}
Label continue_after_compile;
__ bind(continue_after_compile);
bang_stack_shadow_pages(false);
// reset the _do_not_unlock_if_synchronized flag
__ get_thread(rax);
__ movbool(do_not_unlock_if_synchronized, false);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
//
if (synchronized) {
// Allocate monitor and lock method
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{ Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{ Label L;
const Address monitor_block_top (rbp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
__ movptr(rax, monitor_block_top);
__ cmpptr(rax, rsp);
__ jcc(Assembler::equal, L);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
// jvmti support
__ notify_method_entry();
__ dispatch_next(vtos);
// invocation counter overflow
if (inc_counter) {
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
__ get_method(rbx);
__ jmp(profile_method_continue);
}
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(&continue_after_compile);
}
return entry_point;
}
//------------------------------------------------------------------------------------------------------------------------
// Entry points
//
// Here we generate the various kind of entries into the interpreter.
// The two main entry type are generic bytecode methods and native call method.
// These both come in synchronized and non-synchronized versions but the
// frame layout they create is very similar. The other method entry
// types are really just special purpose entries that are really entry
// and interpretation all in one. These are for trivial methods like
// accessor, empty, or special math methods.
//
// When control flow reaches any of the entry types for the interpreter
// the following holds ->
//
// Arguments:
//
// rbx,: methodOop
// rcx: receiver
//
//
// Stack layout immediately at entry
//
// [ return address ] <--- rsp
// [ parameter n ]
// ...
// [ parameter 1 ]
// [ expression stack ] (caller's java expression stack)
// Assuming that we don't go to one of the trivial specialized
// entries the stack will look like below when we are ready to execute
// the first bytecode (or call the native routine). The register usage
// will be as the template based interpreter expects (see interpreter_x86.hpp).
//
// local variables follow incoming parameters immediately; i.e.
// the return address is moved to the end of the locals).
//
// [ monitor entry ] <--- rsp
// ...
// [ monitor entry ]
// [ expr. stack bottom ]
// [ saved rsi ]
// [ current rdi ]
// [ methodOop ]
// [ saved rbp, ] <--- rbp,
// [ return address ]
// [ local variable m ]
// ...
// [ local variable 1 ]
// [ parameter n ]
// ...
// [ parameter 1 ] <--- rdi
address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
// determine code generation flags
bool synchronized = false;
address entry_point = NULL;
switch (kind) {
case Interpreter::zerolocals : break;
case Interpreter::zerolocals_synchronized: synchronized = true; break;
case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break;
case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru
case Interpreter::java_lang_math_tan : // fall thru
case Interpreter::java_lang_math_abs : // fall thru
case Interpreter::java_lang_math_log : // fall thru
case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : // fall thru
case Interpreter::java_lang_math_pow : // fall thru
case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
case Interpreter::java_lang_ref_reference_get
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
default:
fatal(err_msg("unexpected method kind: %d", kind));
break;
}
if (entry_point) return entry_point;
return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
}
// These should never be compiled since the interpreter will prefer
// the compiled version to the intrinsic version.
bool AbstractInterpreter::can_be_compiled(methodHandle m) {
switch (method_kind(m)) {
case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru
case Interpreter::java_lang_math_tan : // fall thru
case Interpreter::java_lang_math_abs : // fall thru
case Interpreter::java_lang_math_log : // fall thru
case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : // fall thru
case Interpreter::java_lang_math_pow : // fall thru
case Interpreter::java_lang_math_exp :
return false;
default:
return true;
}
}
// How much stack a method activation needs in words.
int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
const int stub_code = 4; // see generate_call_stub
// Save space for one monitor to get into the interpreted method in case
// the method is synchronized
int monitor_size = method->is_synchronized() ?
1*frame::interpreter_frame_monitor_size() : 0;
// total overhead size: entry_size + (saved rbp, thru expr stack bottom).
// be sure to change this if you add/subtract anything to/from the overhead area
const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
const int extra_stack = methodOopDesc::extra_stack_entries();
const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
Interpreter::stackElementWords;
return overhead_size + method_stack + stub_code;
}
// asm based interpreter deoptimization helpers
int AbstractInterpreter::layout_activation(methodOop method,
int tempcount,
int popframe_extra_args,
int moncount,
int caller_actual_parameters,
int callee_param_count,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame,
bool is_bottom_frame) {
// Note: This calculation must exactly parallel the frame setup
// in AbstractInterpreterGenerator::generate_method_entry.
// If interpreter_frame!=NULL, set up the method, locals, and monitors.
// The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
// as determined by a previous call to this method.
// It is also guaranteed to be walkable even though it is in a skeletal state
// NOTE: return size is in words not bytes
// fixed size of an interpreter frame:
int max_locals = method->max_locals() * Interpreter::stackElementWords;
int extra_locals = (method->max_locals() - method->size_of_parameters()) *
Interpreter::stackElementWords;
int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
// Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
// Since the callee parameters already account for the callee's params we only need to account for
// the extra locals.
int size = overhead +
((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
(moncount*frame::interpreter_frame_monitor_size()) +
tempcount*Interpreter::stackElementWords + popframe_extra_args;
if (interpreter_frame != NULL) {
#ifdef ASSERT
if (!EnableInvokeDynamic)
// @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
// Probably, since deoptimization doesn't work yet.
assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
#endif
interpreter_frame->interpreter_frame_set_method(method);
// NOTE the difference in using sender_sp and interpreter_frame_sender_sp
// interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
// and sender_sp is fp+8
intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
#ifdef ASSERT
if (caller->is_interpreted_frame()) {
assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
}
#endif
interpreter_frame->interpreter_frame_set_locals(locals);
BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
BasicObjectLock* monbot = montop - moncount;
interpreter_frame->interpreter_frame_set_monitor_end(monbot);
// Set last_sp
intptr_t* rsp = (intptr_t*) monbot -
tempcount*Interpreter::stackElementWords -
popframe_extra_args;
interpreter_frame->interpreter_frame_set_last_sp(rsp);
// All frames but the initial (oldest) interpreter frame we fill in have a
// value for sender_sp that allows walking the stack but isn't
// truly correct. Correct the value here.
if (extra_locals != 0 &&
interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
}
*interpreter_frame->interpreter_frame_cache_addr() =
method->constants()->cache();
}
return size;
}
//------------------------------------------------------------------------------------------------------------------------
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
// Entry point in previous activation (i.e., if the caller was interpreted)
Interpreter::_rethrow_exception_entry = __ pc();
const Register thread = rcx;
// Restore sp to interpreter_frame_last_sp even though we are going
// to empty the expression stack for the exception processing.
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
// rax,: exception
// rdx: return address/pc that threw exception
__ restore_bcp(); // rsi points to call/send
__ restore_locals();
// Entry point for exceptions thrown within interpreter code
Interpreter::_throw_exception_entry = __ pc();
// expression stack is undefined here
// rax,: exception
// rsi: exception bcp
__ verify_oop(rax);
// expression stack must be empty before entering the VM in case of an exception
__ empty_expression_stack();
__ empty_FPU_stack();
// find exception handler address and preserve exception oop
__ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
// rax,: exception handler entry point
// rdx: preserved exception oop
// rsi: bcp for exception handler
__ push_ptr(rdx); // push exception which is now the only value on the stack
__ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
// If the exception is not handled in the current frame the frame is removed and
// the exception is rethrown (i.e. exception continuation is _rethrow_exception).
//
// Note: At this point the bci is still the bxi for the instruction which caused
// the exception and the expression stack is empty. Thus, for any VM calls
// at this point, GC will find a legal oop map (with empty expression stack).
// In current activation
// tos: exception
// rsi: exception bcp
//
// JVMTI PopFrame support
//
Interpreter::_remove_activation_preserving_args_entry = __ pc();
__ empty_expression_stack();
__ empty_FPU_stack();
// Set the popframe_processing bit in pending_popframe_condition indicating that we are
// currently handling popframe, so that call_VMs that may happen later do not trigger new
// popframe handling cycles.
__ get_thread(thread);
__ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
__ orl(rdx, JavaThread::popframe_processing_bit);
__ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
{
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
//
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
Label caller_not_deoptimized;
__ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
__ testl(rax, rax);
__ jcc(Assembler::notZero, caller_not_deoptimized);
// Compute size of arguments for saving when returning to deoptimized caller
__ get_method(rax);
__ verify_oop(rax);
__ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::size_of_parameters_offset())));
__ shlptr(rax, Interpreter::logStackElementSize);
__ restore_locals();
__ subptr(rdi, rax);
__ addptr(rdi, wordSize);
// Save these arguments
__ get_thread(thread);
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
__ remove_activation(vtos, rdx,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Inform deoptimization that it is responsible for restoring these arguments
__ get_thread(thread);
__ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
// Continue in deoptimization handler
__ jmp(rdx);
__ bind(caller_not_deoptimized);
}
__ remove_activation(vtos, rdx,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Finish with popframe handling
// A previous I2C followed by a deoptimization might have moved the
// outgoing arguments further up the stack. PopFrame expects the
// mutations to those outgoing arguments to be preserved and other
// constraints basically require this frame to look exactly as
// though it had previously invoked an interpreted activation with
// no space between the top of the expression stack (current
// last_sp) and the top of stack. Rather than force deopt to
// maintain this kind of invariant all the time we call a small
// fixup routine to move the mutated arguments onto the top of our
// expression stack if necessary.
__ mov(rax, rsp);
__ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
__ get_thread(thread);
// PC must point into interpreter here
__ set_last_Java_frame(thread, noreg, rbp, __ pc());
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
__ get_thread(thread);
__ reset_last_Java_frame(thread, true, true);
// Restore the last_sp and null it out
__ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
__ restore_bcp();
__ restore_locals();
// The method data pointer was incremented already during
// call profiling. We have to restore the mdp for the current bcp.
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
}
// Clear the popframe condition flag
__ get_thread(thread);
__ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
__ dispatch_next(vtos);
// end of PopFrame support
Interpreter::_remove_activation_entry = __ pc();
// preserve exception over this code sequence
__ pop_ptr(rax);
__ get_thread(thread);
__ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
// remove the activation (without doing throws on illegalMonitorExceptions)
__ remove_activation(vtos, rdx, false, true, false);
// restore exception
__ get_thread(thread);
__ movptr(rax, Address(thread, JavaThread::vm_result_offset()));
__ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
__ verify_oop(rax);
// Inbetween activations - previous activation type unknown yet
// compute continuation point - the continuation point expects
// the following registers set up:
//
// rax: exception
// rdx: return address/pc that threw exception
// rsp: expression stack of caller
// rbp: rbp, of caller
__ push(rax); // save exception
__ push(rdx); // save return address
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
__ mov(rbx, rax); // save exception handler
__ pop(rdx); // restore return address
__ pop(rax); // restore exception
// Note that an "issuing PC" is actually the next PC after the call
__ jmp(rbx); // jump to exception handler of caller
}
//
// JVMTI ForceEarlyReturn support
//
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
address entry = __ pc();
const Register thread = rcx;
__ restore_bcp();
__ restore_locals();
__ empty_expression_stack();
__ empty_FPU_stack();
__ load_earlyret_value(state);
__ get_thread(thread);
__ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
// Clear the earlyret state
__ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
__ remove_activation(state, rsi,
false, /* throw_monitor_exception */
false, /* install_monitor_exception */
true); /* notify_jvmdi */
__ jmp(rsi);
return entry;
} // end of ForceEarlyReturn support
//------------------------------------------------------------------------------------------------------------------------
// Helper for vtos entry point generation
void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
Label L;
fep = __ pc(); __ push(ftos); __ jmp(L);
dep = __ pc(); __ push(dtos); __ jmp(L);
lep = __ pc(); __ push(ltos); __ jmp(L);
aep = __ pc(); __ push(atos); __ jmp(L);
bep = cep = sep = // fall through
iep = __ pc(); __ push(itos); // fall through
vep = __ pc(); __ bind(L); // fall through
generate_and_dispatch(t);
}
//------------------------------------------------------------------------------------------------------------------------
// Generation of individual instructions
// helpers for generate_and_dispatch
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: TemplateInterpreterGenerator(code) {
generate_all(); // down here so it can be "virtual"
}
//------------------------------------------------------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
address entry = __ pc();
// prepare expression stack
__ pop(rcx); // pop return address so expression stack is 'pure'
__ push(state); // save tosca
// pass tosca registers as arguments & call tracer
__ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
__ mov(rcx, rax); // make sure return address is not destroyed by pop(state)
__ pop(state); // restore tosca
// return
__ jmp(rcx);
return entry;
}
void TemplateInterpreterGenerator::count_bytecode() {
__ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
}
void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
__ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
}
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
__ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
__ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
__ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
ExternalAddress table((address) BytecodePairHistogram::_counters);
Address index(noreg, rbx, Address::times_4);
__ incrementl(ArrayAddress(table, index));
}
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
// Call a little run-time stub to avoid blow-up for each bytecode.
// The run-time runtime saves the right registers, depending on
// the tosca in-state for the given template.
assert(Interpreter::trace_code(t->tos_in()) != NULL,
"entry must have been generated");
__ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
}
void TemplateInterpreterGenerator::stop_interpreter_at() {
Label L;
__ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
StopInterpreterAt);
__ jcc(Assembler::notEqual, L);
__ int3();
__ bind(L);
}
#endif // !PRODUCT
#endif // CC_INTERP