sp-item-transform.cpp revision bf1d02bbf9f93b5d10304fd4f70f367d430c750e
/*
* Transforming single items
*
* Authors:
* Lauris Kaplinski <lauris@kaplinski.com>
* Frank Felfe <innerspace@iname.com>
* bulia byak <buliabyak@gmail.com>
* Johan Engelen <goejendaagh@zonnet.nl>
* Abhishek Sharma
* Diederik van Lierop <mail@diedenrezi.nl>
*
* Copyright (C) 1999-2011 authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include <2geom/transforms.h>
#include "sp-item.h"
void sp_item_rotate_rel(SPItem *item, Geom::Rotate const &rotation)
{
Geom::Point center = item->getCenter();
Geom::Translate const s(item->getCenter());
Geom::Affine affine = Geom::Affine(s).inverse() * Geom::Affine(rotation) * Geom::Affine(s);
// Rotate item.
item->set_i2d_affine(item->i2dt_affine() * (Geom::Affine)affine);
// Use each item's own transform writer, consistent with sp_selection_apply_affine()
item->doWriteTransform(item->getRepr(), item->transform);
// Restore the center position (it's changed because the bbox center changed)
if (item->isCenterSet()) {
item->setCenter(center * affine);
item->updateRepr();
}
}
void sp_item_scale_rel(SPItem *item, Geom::Scale const &scale)
{
Geom::OptRect bbox = item->desktopVisualBounds();
if (bbox) {
Geom::Translate const s(bbox->midpoint()); // use getCenter?
item->set_i2d_affine(item->i2dt_affine() * s.inverse() * scale * s);
item->doWriteTransform(item->getRepr(), item->transform);
}
}
void sp_item_skew_rel(SPItem *item, double skewX, double skewY)
{
Geom::Point center = item->getCenter();
Geom::Translate const s(item->getCenter());
Geom::Affine const skew(1, skewY, skewX, 1, 0, 0);
Geom::Affine affine = Geom::Affine(s).inverse() * skew * Geom::Affine(s);
item->set_i2d_affine(item->i2dt_affine() * affine);
item->doWriteTransform(item->getRepr(), item->transform);
// Restore the center position (it's changed because the bbox center changed)
if (item->isCenterSet()) {
item->setCenter(center * affine);
item->updateRepr();
}
}
void sp_item_move_rel(SPItem *item, Geom::Translate const &tr)
{
item->set_i2d_affine(item->i2dt_affine() * tr);
item->doWriteTransform(item->getRepr(), item->transform);
}
/**
* Calculate the affine transformation required to transform one visual bounding box into another, accounting for a uniform strokewidth.
*
* PS: This function will only return accurate results for the visual bounding box of a selection of one or more objects, all having
* the same strokewidth. If the stroke width varies from object to object in this selection, then the function
* get_scale_transform_for_variable_stroke() should be called instead
*
* When scaling or stretching an object using the selector, e.g. by dragging the handles or by entering a value, we will
* need to calculate the affine transformation for the old dimensions to the new dimensions. When using a geometric bounding
* box this is very straightforward, but when using a visual bounding box this become more tricky as we need to account for
* the strokewidth, which is either constant or scales width the area of the object. This function takes care of the calculation
* of the affine transformation:
* @param bbox_visual Current visual bounding box
* @param strokewidth Strokewidth
* @param transform_stroke If true then the stroke will be scaled proportional to the square root of the area of the geometric bounding box
* @param x0 Coordinate of the target visual bounding box
* @param y0 Coordinate of the target visual bounding box
* @param x1 Coordinate of the target visual bounding box
* @param y1 Coordinate of the target visual bounding box
* PS: we have to pass each coordinate individually, to find out if we are mirroring the object; Using a Geom::Rect() instead is
* not possible here because it will only allow for a positive width and height, and therefore cannot mirror
* @return
*/
Geom::Affine get_scale_transform_for_uniform_stroke(Geom::Rect const &bbox_visual, gdouble strokewidth, bool transform_stroke, gdouble x0, gdouble y0, gdouble x1, gdouble y1)
{
Geom::Affine p2o = Geom::Translate (-bbox_visual.min());
Geom::Affine o2n = Geom::Translate (x0, y0);
Geom::Affine scale = Geom::Scale (1, 1);
Geom::Affine unbudge = Geom::Translate (0, 0); // moves the object(s) to compensate for the drift caused by stroke width change
// 1) We start with a visual bounding box (w0, h0) which we want to transfer into another visual bounding box (w1, h1)
// 2) The stroke is r0, equal for all edges
// 3) Given this visual bounding box we can calculate the geometric bounding box by subtracting half the stroke from each side;
// -> The width and height of the geometric bounding box will therefore be (w0 - 2*0.5*r0) and (h0 - 2*0.5*r0)
gdouble w0 = bbox_visual.width(); // will return a value >= 0, as required further down the road
gdouble h0 = bbox_visual.height();
gdouble r0 = fabs(strokewidth);
// We also know the width and height of the new visual bounding box
gdouble w1 = x1 - x0; // can have any sign
gdouble h1 = y1 - y0;
// The new visual bounding box will have a stroke r1
// Here starts the calculation you've been waiting for; first do some preparation
int flip_x = (w1 > 0) ? 1 : -1;
int flip_y = (h1 > 0) ? 1 : -1;
// w1 and h1 will be negative when mirroring, but if so then e.g. w1-r0 won't make sense
// Therefore we will use the absolute values from this point on
w1 = fabs(w1);
h1 = fabs(h1);
r0 = fabs(r0);
// w0 and h0 will always be positive due to the definition of the width() and height() methods.
// We will now try to calculate the affine transformation required to transform the first visual bounding box into
// the second one, while accounting for strokewidth
if ((fabs(w0 - r0) < 1e-6) && (fabs(h0 - r0) < 1e-6)) {
return Geom::Affine();
}
Geom::Affine direct;
gdouble ratio_x = 1;
gdouble ratio_y = 1;
gdouble scale_x = 1;
gdouble scale_y = 1;
gdouble r1 = r0;
if (fabs(w0 - r0) < 1e-6) { // We have a vertical line at hand
direct = Geom::Scale(flip_x, flip_y * h1 / h0);
ratio_x = 1;
ratio_y = (h1 - r0) / (h0 - r0);
r1 = transform_stroke ? r0 * sqrt(h1/h0) : r0;
scale_x = 1;
scale_y = (h1 - r1)/(h0 - r0);
} else if (fabs(h0 - r0) < 1e-6) { // We have a horizontal line at hand
direct = Geom::Scale(flip_x * w1 / w0, flip_y);
ratio_x = (w1 - r0) / (w0 - r0);
ratio_y = 1;
r1 = transform_stroke ? r0 * sqrt(w1/w0) : r0;
scale_x = (w1 - r1)/(w0 - r0);
scale_y = 1;
} else { // We have a true 2D object at hand
direct = Geom::Scale(flip_x * w1 / w0, flip_y* h1 / h0); // Scaling of the visual bounding box
ratio_x = (w1 - r0) / (w0 - r0); // Only valid when the stroke is kept constant, in which case r1 = r0
ratio_y = (h1 - r0) / (h0 - r0);
/* Initial area of the geometric bounding box: A0 = (w0-r0)*(h0-r0)
* Desired area of the geometric bounding box: A1 = (w1-r1)*(h1-r1)
* This is how the stroke should scale: r1^2 / A1 = r0^2 / A0
* So therefore we will need to solve this equation:
*
* r1^2 * (w0-r0) * (h1-r1) = r0^2 * (w1-r1) * (h0-r0)
*
* This is a quadratic equation in r1, of which the roots can be found using the ABC formula
* */
gdouble A = -w0*h0 + r0*(w0 + h0);
gdouble B = -(w1 + h1) * r0*r0;
gdouble C = w1 * h1 * r0*r0;
if (B*B - 4*A*C > 0) {
// Of the two roots, I verified experimentally that this is the one we need
r1 = fabs((-B - sqrt(B*B - 4*A*C))/(2*A));
// If w1 < 0 then the scale will be wrong if we just assume that scale_x = (w1 - r1)/(w0 - r0);
// Therefore we here need the absolute values of w0, w1, h0, h1, and r0, as taken care of earlier
scale_x = (w1 - r1)/(w0 - r0);
scale_y = (h1 - r1)/(h0 - r0);
} else { // Can't find the roots of the quadratic equation. Likely the input parameters are invalid?
r1 = r0;
scale_x = w1 / w0;
scale_y = h1 / h0;
}
}
// If the stroke is not kept constant however, the scaling of the geometric bbox is more difficult to find
if (transform_stroke && r0 != 0 && r0 != Geom::infinity()) { // Check if there's stroke, and we need to scale it
// Now we account for mirroring by flipping if needed
scale *= Geom::Scale(flip_x * scale_x, flip_y * scale_y);
// Make sure that the lower-left corner of the visual bounding box stays where it is, even though the stroke width has changed
unbudge *= Geom::Translate (-flip_x * 0.5 * (r0 * scale_x - r1), -flip_y * 0.5 * (r0 * scale_y - r1));
} else { // The stroke should not be scaled, or is zero
if (r0 == 0 || r0 == Geom::infinity() ) { // Strokewidth is zero or infinite
scale *= direct;
} else { // Nonscaling strokewidth
scale *= Geom::Scale(flip_x * ratio_x, flip_y * ratio_y); // Scaling of the geometric bounding box for constant stroke width
unbudge *= Geom::Translate (flip_x * 0.5 * r0 * (1 - ratio_x), flip_y * 0.5 * r0 * (1 - ratio_y));
}
}
return (p2o * scale * unbudge * o2n);
}
/**
* Calculate the affine transformation required to transform one visual bounding box into another, accounting for a VARIABLE strokewidth.
*
* Note: Please try to understand get_scale_transform_for_uniform_stroke() first, and read all it's comments carefully. This function
* (get_scale_transform_for_variable_stroke) is a bit different because it will allow for a strokewidth that's different for each
* side of the visual bounding box. Such a situation will arise when transforming the visual bounding box of a selection of objects,
* each having a different stroke width. In fact this function is a generalized version of get_scale_transform_for_uniform_stroke(), but
* will not (yet) replace it because it has not been tested as carefully, and because the old function is can serve as an introduction to
* understand the new one.
*
* When scaling or stretching an object using the selector, e.g. by dragging the handles or by entering a value, we will
* need to calculate the affine transformation for the old dimensions to the new dimensions. When using a geometric bounding
* box this is very straightforward, but when using a visual bounding box this become more tricky as we need to account for
* the strokewidth, which is either constant or scales width the area of the object. This function takes care of the calculation
* of the affine transformation:
*
* @param bbox_visual Current visual bounding box
* @param bbox_geometric Current geometric bounding box (allows for calculating the strokewidth of each edge)
* @param transform_stroke If true then the stroke will be scaled proportional to the square root of the area of the geometric bounding box
* @param x0 Coordinate of the target visual bounding box
* @param y0 Coordinate of the target visual bounding box
* @param x1 Coordinate of the target visual bounding box
* @param y1 Coordinate of the target visual bounding box
* PS: we have to pass each coordinate individually, to find out if we are mirroring the object; Using a Geom::Rect() instead is
* not possible here because it will only allow for a positive width and height, and therefore cannot mirror
* @return
*/
Geom::Affine get_scale_transform_for_variable_stroke(Geom::Rect const &bbox_visual, Geom::Rect const &bbox_geom, bool transform_stroke, gdouble x0, gdouble y0, gdouble x1, gdouble y1)
{
Geom::Affine p2o = Geom::Translate (-bbox_visual.min());
Geom::Affine o2n = Geom::Translate (x0, y0);
Geom::Affine scale = Geom::Scale (1, 1);
Geom::Affine unbudge = Geom::Translate (0, 0); // moves the object(s) to compensate for the drift caused by stroke width change
// 1) We start with a visual bounding box (w0, h0) which we want to transfer into another visual bounding box (w1, h1)
// 2) We will also know the geometric bounding box, which can be used to calculate the strokewidth. The strokewidth will however
// be different for each of the four sides (left/right/top/bottom: r0l, r0r, r0t, r0b)
gdouble w0 = bbox_visual.width(); // will return a value >= 0, as required further down the road
gdouble h0 = bbox_visual.height();
// We also know the width and height of the new visual bounding box
gdouble w1 = x1 - x0; // can have any sign
gdouble h1 = y1 - y0;
// The new visual bounding box will have strokes r1l, r1r, r1t, and r1b
// We will now try to calculate the affine transformation required to transform the first visual bounding box into
// the second one, while accounting for strokewidth
gdouble r0w = w0 - bbox_geom.width(); // r0w is the average strokewidth of the left and right edges, i.e. 0.5*(r0l + r0r)
gdouble r0h = h0 - bbox_geom.height(); // r0h is the average strokewidth of the top and bottom edges, i.e. 0.5*(r0t + r0b)
int flip_x = (w1 > 0) ? 1 : -1;
int flip_y = (h1 > 0) ? 1 : -1;
// w1 and h1 will be negative when mirroring, but if so then e.g. w1-r0 won't make sense
// Therefore we will use the absolute values from this point on
w1 = fabs(w1);
h1 = fabs(h1);
// w0 and h0 will always be positive due to the definition of the width() and height() methods.
if ((fabs(w0 - r0w) < 1e-6) && (fabs(h0 - r0h) < 1e-6)) {
return Geom::Affine();
}
Geom::Affine direct;
gdouble ratio_x = 1;
gdouble ratio_y = 1;
gdouble scale_x = 1;
gdouble scale_y = 1;
gdouble r1h = r0h;
gdouble r1w = r0w;
if (fabs(w0 - r0w) < 1e-6) { // We have a vertical line at hand
direct = Geom::Scale(flip_x, flip_y * h1 / h0);
ratio_x = 1;
ratio_y = (h1 - r0h) / (h0 - r0h);
r1h = transform_stroke ? r0h * sqrt(h1/h0) : r0h;
scale_x = 1;
scale_y = (h1 - r1h)/(h0 - r0h);
} else if (fabs(h0 - r0h) < 1e-6) { // We have a horizontal line at hand
direct = Geom::Scale(flip_x * w1 / w0, flip_y);
ratio_x = (w1 - r0w) / (w0 - r0w);
ratio_y = 1;
r1w = transform_stroke ? r0w * sqrt(w1/w0) : r0w;
scale_x = (w1 - r1w)/(w0 - r0w);
scale_y = 1;
} else { // We have a true 2D object at hand
direct = Geom::Scale(flip_x * w1 / w0, flip_y* h1 / h0); // Scaling of the visual bounding box
ratio_x = (w1 - r0w) / (w0 - r0w); // Only valid when the stroke is kept constant, in which case r1 = r0
ratio_y = (h1 - r0h) / (h0 - r0h);
/* Initial area of the geometric bounding box: A0 = (w0-r0w)*(h0-r0h)
* Desired area of the geometric bounding box: A1 = (w1-r1w)*(h1-r1h)
* This is how the stroke should scale: r1w^2 = A1/A0 * r0w^2, AND
* r1h^2 = A1/A0 * r0h^2
* Now we have to solve this set of two equations and find r1w and r1h; this too complicated to do by hand,
* so I used wxMaxima for that (http://wxmaxima.sourceforge.net/). These lines can be copied into Maxima
*
* A1: (w1-r1w)*(h1-r1h);
* s: A1/A0;
* expr1a: r1w^2 = s*r0w^2;
* expr1b: r1h^2 = s*r0h^2;
* sol: solve([expr1a, expr1b], [r1h, r1w]);
* sol[1][1]; sol[2][1]; sol[3][1]; sol[4][1];
* sol[1][2]; sol[2][2]; sol[3][2]; sol[4][2];
*
* PS1: The last two lines are only needed for readability of the output, and can be omitted if desired
* PS2: A0 is known beforehand and assumed to be constant, instead of using A0 = (w0-r0w)*(h0-r0h). This reduces the
* length of the results significantly
* PS3: You'll get 8 solutions, 4 for each of the strokewidths r1w and r1h. Some experiments quickly showed which of the solutions
* lead to meaningful strokewidths
* */
gdouble r0h2 = r0h*r0h;
gdouble r0h3 = r0h2*r0h;
gdouble r0w2 = r0w*r0w;
gdouble w12 = w1*w1;
gdouble h12 = h1*h1;
gdouble A0 = bbox_geom.area();
gdouble A02 = A0*A0;
gdouble operant = 4*h1*w1*A0+r0h2*w12-2*h1*r0h*r0w*w1+h12*r0w2;
if (operant >= 0) {
// Of the eight roots, I verified experimentally that these are the two we need
r1h = fabs((r0h*sqrt(operant)-r0h2*w1-h1*r0h*r0w)/(2*A0-2*r0h*r0w));
r1w = fabs(-((h1*r0w*A0+r0h2*r0w*w1)*sqrt(operant)+(-3*h1*r0h*r0w*w1-h12*r0w2)*A0-r0h3*r0w*w12+h1*r0h2*r0w2*w1)/((r0h*A0-r0h2*r0w)*sqrt(operant)-2*h1*A02+(3*h1*r0h*r0w-r0h2*w1)*A0+r0h3*r0w*w1-h1*r0h2*r0w2));
// If w1 < 0 then the scale will be wrong if we just assume that scale_x = (w1 - r1)/(w0 - r0);
// Therefore we here need the absolute values of w0, w1, h0, h1, and r0, as taken care of earlier
scale_x = (w1 - r1w)/(w0 - r0w);
scale_y = (h1 - r1h)/(h0 - r0h);
} else { // Can't find the roots of the quadratic equation. Likely the input parameters are invalid?
scale_x = w1 / w0;
scale_y = h1 / h0;
}
}
// Check whether the stroke is negative; i.e. the geometric bounding box is larger than the visual bounding box, which
// occurs for example for clipped objects (see launchpad bug #811819)
if (r0w < 0 || r0h < 0) {
// How should we handle the stroke width scaling of clipped object? I don't know if we can/should handle this,
// so for now we simply return the direct scaling
return (p2o * direct * o2n);
}
// The calculation of the new strokewidth will only use the average stroke for each of the dimensions; To find the new stroke for each
// of the edges individually though, we will use the boundary condition that the ratio of the left/right strokewidth will not change due to the
// scaling. The same holds for the ratio of the top/bottom strokewidth.
gdouble stroke_ratio_w = fabs(r0w) < 1e-6 ? 1 : (bbox_geom[Geom::X].min() - bbox_visual[Geom::X].min())/r0w;
gdouble stroke_ratio_h = fabs(r0h) < 1e-6 ? 1 : (bbox_geom[Geom::Y].min() - bbox_visual[Geom::Y].min())/r0h;
// If the stroke is not kept constant however, the scaling of the geometric bbox is more difficult to find
if (transform_stroke && r0w != 0 && r0w != Geom::infinity() && r0h != 0 && r0h != Geom::infinity()) { // Check if there's stroke, and we need to scale it
// Now we account for mirroring by flipping if needed
scale *= Geom::Scale(flip_x * scale_x, flip_y * scale_y);
// Make sure that the lower-left corner of the visual bounding box stays where it is, even though the stroke width has changed
unbudge *= Geom::Translate (-flip_x * stroke_ratio_w * (r0w * scale_x - r1w), -flip_y * stroke_ratio_h * (r0h * scale_y - r1h));
} else { // The stroke should not be scaled, or is zero (or infinite)
if (r0w == 0 || r0w == Geom::infinity() || r0h == 0 || r0h == Geom::infinity()) { // can't calculate, because apparently strokewidth is zero or infinite
scale *= direct;
} else {
scale *= Geom::Scale(flip_x * ratio_x, flip_y * ratio_y); // Scaling of the geometric bounding box for constant stroke width
unbudge *= Geom::Translate (flip_x * stroke_ratio_w * r0w * (1 - ratio_x), flip_y * stroke_ratio_h * r0h * (1 - ratio_y));
}
}
return (p2o * scale * unbudge * o2n);
}
Geom::Rect get_visual_bbox(Geom::OptRect const &initial_geom_bbox, Geom::Affine const &abs_affine, gdouble const initial_strokewidth, bool const transform_stroke)
{
g_assert(initial_geom_bbox);
// Find the new geometric bounding box; Do this by transforming each corner of
// the initial geometric bounding box individually and fitting a new boundingbox
// around the transformerd corners
Geom::Point const p0 = Geom::Point(initial_geom_bbox->corner(0)) * abs_affine;
Geom::Rect new_geom_bbox(p0, p0);
for (unsigned i = 1 ; i < 4 ; i++) {
new_geom_bbox.expandTo(Geom::Point(initial_geom_bbox->corner(i)) * abs_affine);
}
Geom::Rect new_visual_bbox = new_geom_bbox;
if (initial_strokewidth > 0 && initial_strokewidth < Geom::infinity()) {
if (transform_stroke) {
// scale stroke by: sqrt (((w1-r0)/(w0-r0))*((h1-r0)/(h0-r0))) (for visual bboxes, see get_scale_transform_for_stroke)
// equals scaling by: sqrt ((w1/w0)*(h1/h0)) for geometrical bboxes
// equals scaling by: sqrt (area1/area0) for geometrical bboxes
gdouble const new_strokewidth = initial_strokewidth * sqrt (new_geom_bbox.area() / initial_geom_bbox->area());
new_visual_bbox.expandBy(0.5 * new_strokewidth);
} else {
// Do not transform the stroke
new_visual_bbox.expandBy(0.5 * initial_strokewidth);
}
}
return new_visual_bbox;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :