/*
* Transforming single items
*
* Authors:
* Lauris Kaplinski <lauris@kaplinski.com>
* Frank Felfe <innerspace@iname.com>
* bulia byak <buliabyak@gmail.com>
* Johan Engelen <goejendaagh@zonnet.nl>
* Abhishek Sharma
* Diederik van Lierop <mail@diedenrezi.nl>
*
* Copyright (C) 1999-2011 authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include "sp-item.h"
#include "sp-item-transform.h"
#include <glib.h>
{
// Rotate item.
// Use each item's own transform writer, consistent with sp_selection_apply_affine()
// Restore the center position (it's changed because the bbox center changed)
if (item->isCenterSet()) {
item->updateRepr();
}
}
{
if (bbox) {
}
}
{
// Restore the center position (it's changed because the bbox center changed)
if (item->isCenterSet()) {
item->updateRepr();
}
}
{
}
/**
* Calculate the affine transformation required to transform one visual bounding box into another, accounting for a uniform strokewidth.
*
* PS: This function will only return accurate results for the visual bounding box of a selection of one or more objects, all having
* the same strokewidth. If the stroke width varies from object to object in this selection, then the function
* get_scale_transform_for_variable_stroke() should be called instead
*
* When scaling or stretching an object using the selector, e.g. by dragging the handles or by entering a value, we will
* need to calculate the affine transformation for the old dimensions to the new dimensions. When using a geometric bounding
* box this is very straightforward, but when using a visual bounding box this become more tricky as we need to account for
* the strokewidth, which is either constant or scales width the area of the object. This function takes care of the calculation
* of the affine transformation:
* @param bbox_visual Current visual bounding box
* @param stroke_x Apparent strokewidth in horizontal direction
* @param stroke_y Apparent strokewidth in vertical direction
* @param transform_stroke If true then the stroke will be scaled proportional to the square root of the area of the geometric bounding box
* @param preserve If true then the transform element will be preserved in XML, and evaluated after stroke is applied
* @param x0 Coordinate of the target visual bounding box
* @param y0 Coordinate of the target visual bounding box
* @param x1 Coordinate of the target visual bounding box
* @param y1 Coordinate of the target visual bounding box
* PS: we have to pass each coordinate individually, to find out if we are mirroring the object; Using a Geom::Rect() instead is
* not possible here because it will only allow for a positive width and height, and therefore cannot mirror
* @return
*/
Geom::Affine get_scale_transform_for_uniform_stroke(Geom::Rect const &bbox_visual, gdouble stroke_x, gdouble stroke_y, bool transform_stroke, bool preserve, gdouble x0, gdouble y0, gdouble x1, gdouble y1)
{
Geom::Affine unbudge = Geom::Translate (0, 0); // moves the object(s) to compensate for the drift caused by stroke width change
// 1) We start with a visual bounding box (w0, h0) which we want to transfer into another visual bounding box (w1, h1)
// 2) The stroke is r0, equal for all edges, if preserve transforms is false
// 3) Given this visual bounding box we can calculate the geometric bounding box by subtracting half the stroke from each side;
// -> The width and height of the geometric bounding box will therefore be (w0 - 2*0.5*r0) and (h0 - 2*0.5*r0)
// 4) If preserve transforms is true, then stroke_x != stroke_y, since these are the apparent stroke widths, after transforming
// We also know the width and height of the new visual bounding box
// The new visual bounding box will have a stroke r1
// Here starts the calculation you've been waiting for; first do some preparation
// w1 and h1 will be negative when mirroring, but if so then e.g. w1-r0 won't make sense
// Therefore we will use the absolute values from this point on
// w0 and h0 will always be positive due to the definition of the width() and height() methods.
// Check whether the stroke is negative; i.e. the geometric bounding box is larger than the visual bounding box, which
// occurs for example for clipped objects (see launchpad bug #811819)
Geom::Affine direct = Geom::Scale(flip_x * w1 / w0, flip_y* h1 / h0); // Scaling of the visual bounding box
// How should we handle the stroke width scaling of clipped object? I don't know if we can/should handle this,
// so for now we simply return the direct scaling
}
gdouble r0 = sqrt(stroke_x*stroke_y); // r0 is redundant, used only for those cases where stroke_x = stroke_y
// We will now try to calculate the affine transformation required to transform the first visual bounding box into
// the second one, while accounting for strokewidth
}
unbudge *= Geom::Translate ( flip_x * 0.5 * (w1 - w0), 0); // compensate for the fact that this operation cannot be performed
unbudge *= Geom::Translate (0, flip_y * 0.5 * (h1 - h0)); // compensate for the fact that this operation cannot be performed
} else { // We have a true 2D object at hand
if (transform_stroke && !preserve) {
/* Initial area of the geometric bounding box: A0 = (w0-r0)*(h0-r0)
* Desired area of the geometric bounding box: A1 = (w1-r1)*(h1-r1)
* This is how the stroke should scale: r1^2 / A1 = r0^2 / A0
* So therefore we will need to solve this equation:
*
* r1^2 * (w0-r0) * (h0-r0) = r0^2 * (w1-r1) * (h1-r1)
*
* This is a quadratic equation in r1, of which the roots can be found using the ABC formula
* */
if (B*B - 4*A*C < 0) {
} else {
r1 = -C/B;
// If w1 < 0 then the scale will be wrong if we just assume that scale_x = (w1 - r1)/(w0 - r0);
// Therefore we here need the absolute values of w0, w1, h0, h1, and r0, as taken care of earlier
// Make sure that the lower-left corner of the visual bounding box stays where it is, even though the stroke width has changed
unbudge *= Geom::Translate (-flip_x * 0.5 * (r0 * scale_x - r1), -flip_y * 0.5 * (r0 * scale_y - r1));
}
unbudge *= Geom::Translate (-flip_x * 0.5 * r0 * (scale_x - 1), -flip_y * 0.5 * r0 * (scale_y - 1));
} else if (!transform_stroke) { // 'Preserve Transforms' was chosen.
// geometric mean of stroke_x and stroke_y will be preserved
// scale_x = (w1 - new_stroke_x)/(w0 - stroke_x)
// scale_y = (h1 - new_stroke_y)/(h0 - stroke_y)
if (B*B - 4*A*C < 0) {
g_message("stroke scaling error : %d, %f, %f, %f, %f, %f, %f", preserve, stroke_x, stroke_y, w0, h0, w1, h1);
} else {
unbudge *= Geom::Translate (-flip_x * 0.5 * stroke_x * scale_x * (1.0 - sqrt(1.0/scale_x/scale_y)), -flip_y * 0.5 * stroke_y * scale_y * (1.0 - sqrt(1.0/scale_x/scale_y)));
}
} else { // 'Preserve Transforms' was chosen, and stroke is scaled
}
}
// Now we account for mirroring by flipping if needed
}
/**
* Calculate the affine transformation required to transform one visual bounding box into another, accounting for a VARIABLE strokewidth.
*
* Note: Please try to understand get_scale_transform_for_uniform_stroke() first, and read all it's comments carefully. This function
* (get_scale_transform_for_variable_stroke) is a bit different because it will allow for a strokewidth that's different for each
* side of the visual bounding box. Such a situation will arise when transforming the visual bounding box of a selection of objects,
* each having a different stroke width. In fact this function is a generalized version of get_scale_transform_for_uniform_stroke(), but
* will not (yet) replace it because it has not been tested as carefully, and because the old function is can serve as an introduction to
* understand the new one.
*
* When scaling or stretching an object using the selector, e.g. by dragging the handles or by entering a value, we will
* need to calculate the affine transformation for the old dimensions to the new dimensions. When using a geometric bounding
* box this is very straightforward, but when using a visual bounding box this become more tricky as we need to account for
* the strokewidth, which is either constant or scales width the area of the object. This function takes care of the calculation
* of the affine transformation:
*
* @param bbox_visual Current visual bounding box
* @param bbox_geometric Current geometric bounding box (allows for calculating the strokewidth of each edge)
* @param transform_stroke If true then the stroke will be scaled proportional to the square root of the area of the geometric bounding box
* @param preserve If true then the transform element will be preserved in XML, and evaluated after stroke is applied
* @param x0 Coordinate of the target visual bounding box
* @param y0 Coordinate of the target visual bounding box
* @param x1 Coordinate of the target visual bounding box
* @param y1 Coordinate of the target visual bounding box
* PS: we have to pass each coordinate individually, to find out if we are mirroring the object; Using a Geom::Rect() instead is
* not possible here because it will only allow for a positive width and height, and therefore cannot mirror
* @return
*/
Geom::Affine get_scale_transform_for_variable_stroke(Geom::Rect const &bbox_visual, Geom::Rect const &bbox_geom, bool transform_stroke, bool preserve, gdouble x0, gdouble y0, gdouble x1, gdouble y1)
{
Geom::Affine unbudge = Geom::Translate (0, 0); // moves the object(s) to compensate for the drift caused by stroke width change
// 1) We start with a visual bounding box (w0, h0) which we want to transfer into another visual bounding box (w1, h1)
// 2) We will also know the geometric bounding box, which can be used to calculate the strokewidth. The strokewidth will however
// We also know the width and height of the new visual bounding box
// The new visual bounding box will have strokes r1l, r1r, r1t, and r1b
// We will now try to calculate the affine transformation required to transform the first visual bounding box into
// the second one, while accounting for strokewidth
gdouble r0w = w0 - bbox_geom.width(); // r0w is the average strokewidth of the left and right edges, i.e. 0.5*(r0l + r0r)
gdouble r0h = h0 - bbox_geom.height(); // r0h is the average strokewidth of the top and bottom edges, i.e. 0.5*(r0t + r0b)
// w1 and h1 will be negative when mirroring, but if so then e.g. w1-r0 won't make sense
// Therefore we will use the absolute values from this point on
// w0 and h0 will always be positive due to the definition of the width() and height() methods.
}
// Check whether the stroke is negative; i.e. the geometric bounding box is larger than the visual bounding box, which
// occurs for example for clipped objects (see launchpad bug #811819)
Geom::Affine direct = Geom::Scale(flip_x * w1 / w0, flip_y* h1 / h0); // Scaling of the visual bounding box
// How should we handle the stroke width scaling of clipped object? I don't know if we can/should handle this,
// so for now we simply return the direct scaling
}
// The calculation of the new strokewidth will only use the average stroke for each of the dimensions; To find the new stroke for each
// of the edges individually though, we will use the boundary condition that the ratio of the left/right strokewidth will not change due to the
gdouble stroke_ratio_w = fabs(r0w) < 1e-6 ? 1 : (bbox_geom[Geom::X].min() - bbox_visual[Geom::X].min())/r0w;
gdouble stroke_ratio_h = fabs(r0h) < 1e-6 ? 1 : (bbox_geom[Geom::Y].min() - bbox_visual[Geom::Y].min())/r0h;
unbudge *= Geom::Translate ( flip_x * 0.5 * (w1 - w0), 0); // compensate for the fact that this operation cannot be performed
unbudge *= Geom::Translate (0, flip_y * 0.5 * (h1 - h0)); // compensate for the fact that this operation cannot be performed
} else { // We have a true 2D object at hand
if (transform_stroke && !preserve) {
/* Initial area of the geometric bounding box: A0 = (w0-r0w)*(h0-r0h)
* Desired area of the geometric bounding box: A1 = (w1-r1w)*(h1-r1h)
* and : r1w*r1w*(w0 - r0w)*(h0 - r0h) = r0w*r0w*(w1 - r1w)*(h1 - r1h)
* This leads to a quadratic equation in r1w, solved as follows:
* */
if (B*B - 4*A*C < 0) {
g_message("variable stroke scaling error : %d, %d, %f, %f, %f, %f, %f, %f", transform_stroke, preserve, r0w, r0h, w0, h0, w1, h1);
} else {
// If w1 < 0 then the scale will be wrong if we just assume that scale_x = (w1 - r1)/(w0 - r0);
// Therefore we here need the absolute values of w0, w1, h0, h1, and r0, as taken care of earlier
// Make sure that the lower-left corner of the visual bounding box stays where it is, even though the stroke width has changed
unbudge *= Geom::Translate (-flip_x * stroke_ratio_w * (r0w * scale_x - r1w), -flip_y * stroke_ratio_h * (r0h * scale_y - r1h));
}
unbudge *= Geom::Translate (-flip_x * stroke_ratio_w * r0w * (scale_x - 1), -flip_y * stroke_ratio_h * r0h * (scale_y - 1));
} else if (!transform_stroke) { // 'Preserve Transforms' was chosen.
// geometric mean of r0w and r0h will be preserved
// scale_x = (w1 - new_r0w)/(w0 - r0w)
// scale_y = (h1 - new_r0h)/(h0 - r0h)
if (B*B - 4*A*C < 0) {
g_message("variable stroke scaling error : %d, %d, %f, %f, %f, %f, %f, %f", transform_stroke, preserve, r0w, r0h, w0, h0, w1, h1);
} else {
unbudge *= Geom::Translate (-flip_x * stroke_ratio_w * r0w * scale_x * (1.0 - sqrt(1.0/scale_x/scale_y)), -flip_y * stroke_ratio_h * r0h * scale_y * (1.0 - sqrt(1.0/scale_x/scale_y)));
}
} else { // 'Preserve Transforms' was chosen, and stroke is scaled
}
}
// Now we account for mirroring by flipping if needed
}
Geom::Rect get_visual_bbox(Geom::OptRect const &initial_geom_bbox, Geom::Affine const &abs_affine, gdouble const initial_strokewidth, bool const transform_stroke)
{
// Find the new geometric bounding box; Do this by transforming each corner of
// the initial geometric bounding box individually and fitting a new boundingbox
// around the transformerd corners
for (unsigned i = 1 ; i < 4 ; i++) {
}
if (transform_stroke) {
// scale stroke by: sqrt (((w1-r0)/(w0-r0))*((h1-r0)/(h0-r0))) (for visual bboxes, see get_scale_transform_for_stroke)
gdouble const new_strokewidth = initial_strokewidth * sqrt (new_geom_bbox.area() / initial_geom_bbox->area());
} else {
// Do not transform the stroke
}
}
return new_visual_bbox;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :