/**
* @file
* Pairing heap datastructure implementation.
*
* Based on example code in "Data structures and Algorithm Analysis in C++"
* by Mark Allen Weiss, used and released under the LGPL by permission
* of the author.
*
* No promises about correctness. Use at your own risk!
*/
/*
* Authors:
* Mark Allen Weiss
* Tim Dwyer <tgdwyer@gmail.com>
*
* Copyright (C) 2005 Authors
*
* Released under GNU LGPL. Read the file 'COPYING' for more information.
*/
#include <vector>
#include <list>
#include "dsexceptions.h"
#include "PairingHeap.h"
#ifndef PAIRING_HEAP_CPP
#define PAIRING_HEAP_CPP
using namespace std;
/**
* Construct the pairing heap.
*/
template <class T>
PairingHeap<T>::PairingHeap( bool (*lessThan)(T const &lhs, T const &rhs) )
{
root = NULL;
counter=0;
this->lessThan=lessThan;
}
/**
* Copy constructor
*/
template <class T>
PairingHeap<T>::PairingHeap( const PairingHeap<T> & rhs )
{
root = NULL;
counter=rhs->size();
*this = rhs;
}
/**
* Destroy the leftist heap.
*/
template <class T>
PairingHeap<T>::~PairingHeap( )
{
makeEmpty( );
}
/**
* Insert item x into the priority queue, maintaining heap order.
* Return a pointer to the node containing the new item.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::insert( const T & x )
{
PairNode<T> *newNode = new PairNode<T>( x );
if( root == NULL )
root = newNode;
else
compareAndLink( root, newNode );
counter++;
return newNode;
}
template <class T>
int PairingHeap<T>::size() {
return counter;
}
/**
* Find the smallest item in the priority queue.
* Return the smallest item, or throw Underflow if empty.
*/
template <class T>
const T & PairingHeap<T>::findMin( ) const
{
if( isEmpty( ) )
throw Underflow( );
return root->element;
}
/**
* Remove the smallest item from the priority queue.
* Throws Underflow if empty.
*/
template <class T>
void PairingHeap<T>::deleteMin( )
{
if( isEmpty( ) )
throw Underflow( );
PairNode<T> *oldRoot = root;
if( root->leftChild == NULL )
root = NULL;
else
root = combineSiblings( root->leftChild );
counter--;
delete oldRoot;
}
/**
* Test if the priority queue is logically empty.
* Returns true if empty, false otherwise.
*/
template <class T>
bool PairingHeap<T>::isEmpty( ) const
{
return root == NULL;
}
/**
* Test if the priority queue is logically full.
* Returns false in this implementation.
*/
template <class T>
bool PairingHeap<T>::isFull( ) const
{
return false;
}
/**
* Make the priority queue logically empty.
*/
template <class T>
void PairingHeap<T>::makeEmpty( )
{
reclaimMemory( root );
root = NULL;
}
/**
* Deep copy.
*/
template <class T>
const PairingHeap<T> &
PairingHeap<T>::operator=( const PairingHeap<T> & rhs )
{
if( this != &rhs )
{
makeEmpty( );
root = clone( rhs.root );
}
return *this;
}
/**
* Internal method to make the tree empty.
* WARNING: This is prone to running out of stack space.
*/
template <class T>
void PairingHeap<T>::reclaimMemory( PairNode<T> * t ) const
{
if( t != NULL )
{
reclaimMemory( t->leftChild );
reclaimMemory( t->nextSibling );
delete t;
}
}
/**
* Change the value of the item stored in the pairing heap.
* Does nothing if newVal is larger than currently stored value.
* p points to a node returned by insert.
* newVal is the new value, which must be smaller
* than the currently stored value.
*/
template <class T>
void PairingHeap<T>::decreaseKey( PairNode<T> *p,
const T & newVal )
{
if( lessThan(p->element,newVal) )
return; // newVal cannot be bigger
p->element = newVal;
if( p != root )
{
if( p->nextSibling != NULL )
p->nextSibling->prev = p->prev;
if( p->prev->leftChild == p )
p->prev->leftChild = p->nextSibling;
else
p->prev->nextSibling = p->nextSibling;
p->nextSibling = NULL;
compareAndLink( root, p );
}
}
/**
* Internal method that is the basic operation to maintain order.
* Links first and second together to satisfy heap order.
* first is root of tree 1, which may not be NULL.
* first->nextSibling MUST be NULL on entry.
* second is root of tree 2, which may be NULL.
* first becomes the result of the tree merge.
*/
template <class T>
void PairingHeap<T>::
compareAndLink( PairNode<T> * & first,
PairNode<T> *second ) const
{
if( second == NULL )
return;
if( lessThan(second->element,first->element) )
{
// Attach first as leftmost child of second
second->prev = first->prev;
first->prev = second;
first->nextSibling = second->leftChild;
if( first->nextSibling != NULL )
first->nextSibling->prev = first;
second->leftChild = first;
first = second;
}
else
{
// Attach second as leftmost child of first
second->prev = first;
first->nextSibling = second->nextSibling;
if( first->nextSibling != NULL )
first->nextSibling->prev = first;
second->nextSibling = first->leftChild;
if( second->nextSibling != NULL )
second->nextSibling->prev = second;
first->leftChild = second;
}
}
/**
* Internal method that implements two-pass merging.
* firstSibling the root of the conglomerate;
* assumed not NULL.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::combineSiblings( PairNode<T> *firstSibling ) const
{
if( firstSibling->nextSibling == NULL )
return firstSibling;
// Allocate the array
static vector<PairNode<T> *> treeArray( 5 );
// Store the subtrees in an array
int numSiblings = 0;
for( ; firstSibling != NULL; numSiblings++ )
{
if( numSiblings == (int)treeArray.size( ) )
treeArray.resize( numSiblings * 2 );
treeArray[ numSiblings ] = firstSibling;
firstSibling->prev->nextSibling = NULL; // break links
firstSibling = firstSibling->nextSibling;
}
if( numSiblings == (int)treeArray.size( ) )
treeArray.resize( numSiblings + 1 );
treeArray[ numSiblings ] = NULL;
// Combine subtrees two at a time, going left to right
int i = 0;
for( ; i + 1 < numSiblings; i += 2 )
compareAndLink( treeArray[ i ], treeArray[ i + 1 ] );
int j = i - 2;
// j has the result of last compareAndLink.
// If an odd number of trees, get the last one.
if( j == numSiblings - 3 )
compareAndLink( treeArray[ j ], treeArray[ j + 2 ] );
// Now go right to left, merging last tree with
// next to last. The result becomes the new last.
for( ; j >= 2; j -= 2 )
compareAndLink( treeArray[ j - 2 ], treeArray[ j ] );
return treeArray[ 0 ];
}
/**
* Internal method to clone subtree.
* WARNING: This is prone to running out of stack space.
*/
template <class T>
PairNode<T> *
PairingHeap<T>::clone( PairNode<T> * t ) const
{
if( t == NULL )
return NULL;
else
{
PairNode<T> *p = new PairNode<T>( t->element );
if( ( p->leftChild = clone( t->leftChild ) ) != NULL )
p->leftChild->prev = p;
if( ( p->nextSibling = clone( t->nextSibling ) ) != NULL )
p->nextSibling->prev = p;
return p;
}
}
template <class T>
ostream& operator <<(ostream &os, const PairingHeap<T> &b)
{
os<<"Heap:";
if (b.root != NULL) {
PairNode<T> *r = b.root;
list<PairNode<T>*> q;
q.push_back(r);
while (!q.empty()) {
r = q.front();
q.pop_front();
if (r->leftChild != NULL) {
os << *r->element << ">";
PairNode<T> *c = r->leftChild;
while (c != NULL) {
q.push_back(c);
os << "," << *c->element;
c = c->nextSibling;
}
os << "|";
}
}
}
return os;
}
#endif