odf.cpp revision b1b4903f1f71e4fc3269509a9dd04c69ec62f3ea
/*
* OpenDocument <drawing> input and output
*
* This is an an entry in the extensions mechanism to begin to enable
* the inputting and outputting of OpenDocument Format (ODF) files from
* within Inkscape. Although the initial implementations will be very lossy
* due to the differences in the models of SVG and ODF, they will hopefully
* improve greatly with time. People should consider this to be a framework
* that can be continously upgraded for ever improving fidelity. Potential
* developers should especially look in preprocess() and writeTree() to see how
* the SVG tree is scanned, read, translated, and then written to ODF.
*
*
* Authors:
* Bob Jamison
* Abhishek Sharma
* Kris De Gussem
*
* Copyright (C) 2006, 2007 Bob Jamison
* Copyright (C) 2013 Kris De Gussem
*
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "odf.h"
//# System includes
#include <stdio.h>
#include <time.h>
#include <vector>
//# Inkscape includes
#include "clear-n_.h"
#include "inkscape.h"
#include <style.h>
#include "helper/geom-curves.h"
#include "xml/attribute-record.h"
#include "sp-image.h"
#include "sp-gradient.h"
#include "sp-stop.h"
#include "gradient-chemistry.h"
#include "sp-linear-gradient.h"
#include "sp-radial-gradient.h"
#include "sp-path.h"
#include "sp-text.h"
#include "sp-flowtext.h"
#include "text-editing.h"
//# DOM-specific includes
#include "dom/io/domstream.h"
#include "dom/io/bufferstream.h"
#include "dom/io/stringstream.h"
#include "inkscape-version.h"
#include "document.h"
#include "extension/extension.h"
namespace Inkscape
{
namespace Extension
{
namespace Internal
{
//# Shorthand notation
//########################################################################
//# C L A S S SingularValueDecomposition
//########################################################################
#include <math.h>
class SVDMatrix
{
public:
{
init();
}
{
init();
d = new double[size];
for (unsigned int i=0 ; i<size ; i++)
d[i] = 0.0;
}
{
init();
d = new double[size];
for (unsigned int i=0 ; i<size ; i++)
d[i] = vals[i];
}
{
init();
}
{
return *this;
}
virtual ~SVDMatrix()
{
delete[] d;
}
{
return badval;
}
{
return badval;
}
unsigned int getRows()
{
return rows;
}
unsigned int getCols()
{
return cols;
}
{
{
return dummy;
}
for (unsigned int i=0 ; i<rows ; i++)
{
{
double sum = 0.0;
for (unsigned int k=0 ; k<cols ; k++)
{
//sum += a[i][k] * b[k][j];
}
}
}
return result;
}
{
for (unsigned int i=0 ; i<rows ; i++){
for (unsigned int j=0 ; j<cols ; j++){
}
}
return result;
}
private:
virtual void init()
{
badval = 0.0;
d = NULL;
rows = 0;
cols = 0;
size = 0;
}
{
if (d)
{
delete[] d;
d = 0;
}
d = new double[size];
for (unsigned int i=0 ; i<size ; i++){
d[i] = other.d[i];
}
}
double badval;
double *d;
unsigned int rows;
unsigned int cols;
unsigned int size;
};
/**
*
* ====================================================
*
* NOTE:
* This class is ported almost verbatim from the public domain
* JAMA Matrix package. It is modified to handle only 3x3 matrices
* and our Geom::Affine affine transform class. We give full
* attribution to them, along with many thanks. JAMA can be found at:
*
* ====================================================
*
* Singular Value Decomposition.
* <P>
* For an m-by-n matrix A with m >= n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
* an n-by-n orthogonal matrix V so that A = U*S*V'.
* <P>
* The singular values, sigma[k] = S[k][k], are ordered so that
* sigma[0] >= sigma[1] >= ... >= sigma[n-1].
* <P>
* The singular value decompostion always exists, so the constructor will
* never fail. The matrix condition number and the effective numerical
* rank can be computed from this decomposition.
*/
{
public:
/** Construct the singular value decomposition
@param A Rectangular matrix
@return Structure to access U, S and V.
*/
A (mat),
U (),
s (NULL),
s_size (0),
V ()
{
calculate();
}
virtual ~SingularValueDecomposition()
{
delete[] s;
}
/**
* Return the left singular vectors
* @return U
*/
/**
* Return the right singular vectors
* @return V
*/
/**
* Return the s[index] value
/**
* Two norm
* @return max(S)
*/
double norm2();
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double cond();
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int rank();
private:
void calculate();
SVDMatrix A;
SVDMatrix U;
double *s;
unsigned int s_size;
SVDMatrix V;
};
static double svd_hypot(double a, double b)
{
double r;
{
r = b/a;
}
else if (b != 0)
{
r = a/b;
}
else
{
r = 0.0;
}
return r;
}
void SingularValueDecomposition::calculate()
{
// Initialize.
int m = A.getRows();
int n = A.getCols();
int nu = (m > n) ? m : n;
s = new double[s_size];
V = SVDMatrix(n, n);
double *e = new double[n];
double *work = new double[m];
bool wantu = true;
bool wantv = true;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
for (int k = 0; k < 2; k++) {
if (k < nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
s[k] = 0;
for (int i = k; i < m; i++) {
s[k] = svd_hypot(s[k],A(i, k));
}
if (s[k] != 0.0) {
if (A(k, k) < 0.0) {
s[k] = -s[k];
}
for (int i = k; i < m; i++) {
A(i, k) /= s[k];
}
A(k, k) += 1.0;
}
s[k] = -s[k];
}
for (int j = k+1; j < n; j++) {
if ((k < nct) & (s[k] != 0.0)) {
// Apply the transformation.
double t = 0;
for (int i = k; i < m; i++) {
t += A(i, k) * A(i, j);
}
t = -t/A(k, k);
for (int i = k; i < m; i++) {
A(i, j) += t*A(i, k);
}
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = A(k, j);
}
// Place the transformation in U for subsequent back
// multiplication.
for (int i = k; i < m; i++) {
U(i, k) = A(i, k);
}
}
if (k < nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
e[k] = 0;
for (int i = k+1; i < n; i++) {
e[k] = svd_hypot(e[k],e[i]);
}
if (e[k] != 0.0) {
if (e[k+1] < 0.0) {
e[k] = -e[k];
}
for (int i = k+1; i < n; i++) {
e[i] /= e[k];
}
e[k+1] += 1.0;
}
e[k] = -e[k];
if ((k+1 < m) & (e[k] != 0.0)) {
// Apply the transformation.
for (int i = k+1; i < m; i++) {
work[i] = 0.0;
}
for (int j = k+1; j < n; j++) {
for (int i = k+1; i < m; i++) {
work[i] += e[j]*A(i, j);
}
}
for (int j = k+1; j < n; j++) {
double t = -e[j]/e[k+1];
for (int i = k+1; i < m; i++) {
A(i, j) += t*work[i];
}
}
}
if (wantv) {
// Place the transformation in V for subsequent
// back multiplication.
for (int i = k+1; i < n; i++) {
V(i, k) = e[i];
}
}
}
}
// Set up the final bidiagonal matrix or order p.
int p = (n < m+1) ? n : m+1;
if (nct < n) {
}
if (m < p) {
s[p-1] = 0.0;
}
if (nrt+1 < p) {
}
e[p-1] = 0.0;
// If required, generate U.
if (wantu) {
for (int i = 0; i < m; i++) {
U(i, j) = 0.0;
}
U(j, j) = 1.0;
}
for (int k = nct-1; k >= 0; k--) {
if (s[k] != 0.0) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k; i < m; i++) {
t += U(i, k)*U(i, j);
}
t = -t/U(k, k);
for (int i = k; i < m; i++) {
U(i, j) += t*U(i, k);
}
}
for (int i = k; i < m; i++ ) {
U(i, k) = -U(i, k);
}
U(k, k) = 1.0 + U(k, k);
for (int i = 0; i < k-1; i++) {
U(i, k) = 0.0;
}
} else {
for (int i = 0; i < m; i++) {
U(i, k) = 0.0;
}
U(k, k) = 1.0;
}
}
}
// If required, generate V.
if (wantv) {
for (int k = n-1; k >= 0; k--) {
if ((k < nrt) & (e[k] != 0.0)) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k+1; i < n; i++) {
t += V(i, k)*V(i, j);
}
t = -t/V(k+1, k);
for (int i = k+1; i < n; i++) {
V(i, j) += t*V(i, k);
}
}
}
for (int i = 0; i < n; i++) {
V(i, k) = 0.0;
}
V(k, k) = 1.0;
}
}
// Main iteration loop for the singular values.
int pp = p-1;
//double eps = pow(2.0,-52.0);
//double tiny = pow(2.0,-966.0);
//let's just calculate these now
//a double can be e ± 308.25, so this is safe
double eps = 2.22e-16;
double tiny = 1.6e-291;
while (p > 0) {
int k,kase;
// Here is where a test for too many iterations would go.
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; k--) {
if (k == -1) {
break;
}
if (fabs(e[k]) <=
e[k] = 0.0;
break;
}
}
if (k == p-2) {
kase = 4;
} else {
int ks;
if (ks == k) {
break;
}
s[ks] = 0.0;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p-1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
double f = e[p-2];
e[p-2] = 0.0;
for (int j = p-2; j >= k; j--) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
if (j != k) {
f = -sn*e[j-1];
}
if (wantv) {
for (int i = 0; i < n; i++) {
V(i, j) = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2: {
double f = e[k-1];
e[k-1] = 0.0;
for (int j = k; j < p; j++) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu) {
for (int i = 0; i < m; i++) {
U(i, j) = t;
}
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
double d = fabs(s[p-2]);
d = fabs(e[p-2]);
d = fabs(s[k]);
d = fabs(e[k]);
double shift = 0.0;
if ((b != 0.0) | (c != 0.0)) {
if (b < 0.0) {
}
}
// Chase zeros.
for (int j = k; j < p-1; j++) {
double t = svd_hypot(f,g);
double cs = f/t;
double sn = g/t;
if (j != k) {
e[j-1] = t;
}
g = sn*s[j+1];
if (wantv) {
for (int i = 0; i < n; i++) {
V(i, j) = t;
}
}
t = svd_hypot(f,g);
cs = f/t;
sn = g/t;
s[j] = t;
g = sn*e[j+1];
if (wantu && (j < m-1)) {
for (int i = 0; i < m; i++) {
U(i, j) = t;
}
}
}
e[p-2] = f;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if (s[k] <= 0.0) {
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv) {
for (int i = 0; i <= pp; i++) {
V(i, k) = -V(i, k);
}
}
}
// Order the singular values.
while (k < pp) {
if (s[k] >= s[k+1]) {
break;
}
double t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if (wantv && (k < n-1)) {
for (int i = 0; i < n; i++) {
t = V(i, k+1); V(i, k+1) = V(i, k); V(i, k) = t;
}
}
if (wantu && (k < m-1)) {
for (int i = 0; i < m; i++) {
t = U(i, k+1); U(i, k+1) = U(i, k); U(i, k) = t;
}
}
k++;
}
p--;
}
break;
}
}
delete [] e;
delete [] work;
}
/**
* Return the left singular vectors
* @return U
*/
{
return U;
}
/**
* Return the right singular vectors
* @return V
*/
{
return V;
}
/**
* Return the s[0] value
*/
{
return 0.0;
return s[index];
}
/**
* Two norm
* @return max(S)
*/
double SingularValueDecomposition::norm2()
{
return s[0];
}
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double SingularValueDecomposition::cond()
{
return s[0]/s[2];
}
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int SingularValueDecomposition::rank()
{
int r = 0;
for (int i = 0; i < 3; i++)
{
if (s[i] > tol)
r++;
}
return r;
}
//########################################################################
//# E N D C L A S S SingularValueDecomposition
//########################################################################
#define pi 3.14159
//#define pxToCm 0.0275
#define pxToCm 0.03
#define piToRad 0.0174532925
#define docHeightCm 22.86
//########################################################################
//# O U T P U T
//########################################################################
/**
*/
{
if (valstr)
return val;
}
/**
* Get the extension suffix from the end of a file name
*/
{
{
ext = "";
}
else
{
}
return ext;
}
{
if (!tf.isIdentity())
{
}
return str;
}
/**
* Get the general transform from SVG pixels to
* ODF cm
*/
{
//### Get SVG-to-ODF transform
//Flip Y into document coordinates
Geom::Affine doc2dt_tf = Geom::Affine(Geom::Scale(1.0, -1.0)); /// @fixme hardcoded desktop transform
return tf;
}
/**
* Get the bounding box of an item, as mapped onto
* an ODF document, in cm.
*/
{
// TODO: geometric or visual?
if (bbox) {
}
return bbox;
}
/**
* Get the transform for an item, correcting for
* handedness reversal
*/
{
return itemTransform;
}
/**
* Get some fun facts from the transform
*/
{
//g_message("## s0:%.3f s1:%.3f", s0, s1);
//g_message("## u:%.3f %.3f %.3f %.3f", U(0,0), U(0,1), U(1,0), U(1,1));
//g_message("## v:%.3f %.3f %.3f %.3f", V(0,0), V(0,1), V(1,0), V(1,1));
//g_message("## vt:%.3f %.3f %.3f %.3f", Vt(0,0), Vt(0,1), Vt(1,0), Vt(1,1));
//g_message("## uvt:%.3f %.3f %.3f %.3f", UVt(0,0), UVt(0,1), UVt(1,0), UVt(1,1));
}
{
{
if (s)
}
{
}
}
/**
* FIRST PASS.
* Method descends into the repr tree, converting image, style, and gradient info
* into forms compatible in ODF.
*/
void
{
//### First, check for metadata
{
return;
return;
{
}
return;
}
//Now consider items.
if (!reprobj)
{
return;
}
if (!SP_IS_ITEM(reprobj))
{
return;
}
//SPItem *item = SP_ITEM(reprobj);
//### Get SVG-to-ODF transform
//Geom::Affine tf = getODFTransform(item);
{
//g_message("image");
{
if (ext == ".jpeg")
ext = ".jpg";
{
char buf[64];
//g_message("oldpath:%s", oldUri.getNativePath().c_str());
//# if relative to the documentURI, get proper path
//g_message("native path:%s", pathName.c_str());
if (ze)
{
}
else
{
}
}
}
}
}
/**
* Writes the manifest. Currently it only changes according to the
* file names of images packed into the zip file.
*/
{
outs.printf("<!DOCTYPE manifest:manifest PUBLIC \"-//OpenOffice.org//DTD Manifest 1.0//EN\" \"Manifest.dtd\">\n");
outs.printf("<manifest:manifest xmlns:manifest=\"urn:oasis:names:tc:opendocument:xmlns:manifest:1.0\">\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"application/vnd.oasis.opendocument.graphics\" manifest:full-path=\"/\"/>\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"content.xml\"/>\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"styles.xml\"/>\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"meta.xml\"/>\n");
{
if (ext == ".jpeg")
ext = ".jpg";
if (ext == ".gif")
else if (ext == ".png")
else if (ext == ".jpg")
}
//Make our entry
return true;
}
/**
* This writes the document meta information to meta.xml
*/
{
{
}
{
}
{
{
}
}
//Make our entry
return true;
}
/**
* This is called just before writeTree(), since it will write style and
* gradient information above the <draw> tag in the content.xml file
*/
{
/*
==========================================================
Dump our style table. Styles should have a general layout
something like the following. Look in:
http://books.evc-cit.info/odbook/ch06.html#draw-style-file-section
for style and gradient information.
<style:style style:name="gr13"
style:family="graphic" style:parent-style-name="standard">
<style:graphic-properties draw:stroke="solid"
svg:stroke-width="0.1cm"
svg:stroke-color="#ff0000"
draw:fill="solid" draw:fill-color="#e6e6ff"/>
</style:style>
==========================================================
*/
{
if (s.fill != "none")
{
}
if (s.stroke != "none")
{
}
}
//## Dump our gradient table
unsigned int gradientCount = 0;
{
{
/*
===================================================================
LINEAR gradient. We need something that looks like this:
<draw:gradient draw:name="Gradient_20_7"
draw:display-name="Gradient 7"
draw:style="linear"
draw:start-color="#008080" draw:end-color="#993366"
draw:start-intensity="100%" draw:end-intensity="100%"
draw:angle="150" draw:border="0%"/>
===================================================================
*/
{
g_warning("Need at least 2 tops for a linear gradient");
continue;
}
}
{
/*
===================================================================
RADIAL gradient. We need something that looks like this:
<!-- radial gradient, light gray to white, centered, 0% border -->
<draw:gradient draw:name="radial_20_borderless"
draw:display-name="radial borderless"
draw:style="radial"
draw:cx="50%" draw:cy="50%"
draw:start-color="#999999" draw:end-color="#ffffff"
draw:border="0%"/>
===================================================================
*/
{
g_warning("Need at least 2 tops for a radial gradient");
continue;
}
gi.r);
}
else
{
}
}
//Make our entry
return true;
}
/**
* Writes an SVG path as an ODF <draw:path> and returns the number of points written
*/
static int
{
using Geom::X;
using Geom::Y;
int nrPoints = 0;
// convert the path to only lineto's and cubic curveto's:
Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv * tf * Geom::Translate(xoff, yoff) * Geom::Scale(1000.));
nrPoints++;
if( is_straight_curve(*cit) )
{
}
for (unsigned i = 1; i <= 3; i++) {
if (fabs(points[i][X])<1.0) points[i][X] = 0.0; // Why is this needed? Shouldn't we just round all numbers then?
}
outs.printf("C %.3f %.3f %.3f %.3f %.3f %.3f ", points[1][X],points[1][Y], points[2][X],points[2][Y], points[3][X],points[3][Y]);
}
else {
g_error ("logical error, because pathv_to_linear_and_cubic_beziers was used");
}
nrPoints++;
}
}
}
return nrPoints;
}
{
//## FILL
{
char buf[16];
//g_message("## %s %lx", id.c_str(), (unsigned int)fillCol);
double opacityPercent = 100.0 *
}
//## STROKE
{
char buf[16];
double opacityPercent = 100.0 *
}
//Look for existing identical style;
bool styleMatch = false;
{
{
//map to existing styleTable entry
//g_message("found duplicate style:%s", styleName.c_str());
styleMatch = true;
break;
}
}
//## Dont need a new style
if (styleMatch)
return false;
char buf[16];
{
}
{
}
return true;
}
{
if (!item)
return false;
if (!style)
return false;
return false;
//## Gradient. Look in writeStyle() below to see what info
// we need to read into GradientInfo.
return false;
{
}
if (SP_IS_LINEARGRADIENT(gradient))
{
/*
Geom::Point p1(linGrad->x1.value, linGrad->y1.value);
p1 = p1 * tf;
gi.x1 = p1[Geom::X];
gi.y1 = p1[Geom::Y];
Geom::Point p2(linGrad->x2.value, linGrad->y2.value);
p2 = p2 * tf;
gi.x2 = p2[Geom::X];
gi.y2 = p2[Geom::Y];
*/
}
else if (SP_IS_RADIALGRADIENT(gradient))
{
}
else
{
g_warning("not a supported gradient type");
return false;
}
//Look for existing identical style;
bool gradientMatch = false;
{
{
//map to existing gradientTable entry
//g_message("found duplicate style:%s", gradientName.c_str());
gradientMatch = true;
break;
}
}
if (gradientMatch)
return true;
//## No match, let us write a new entry
char buf[16];
{
/*
===================================================================
LINEAR gradient. We need something that looks like this:
<draw:gradient draw:name="Gradient_20_7"
draw:display-name="Gradient 7"
draw:style="linear"
draw:start-color="#008080" draw:end-color="#993366"
draw:start-intensity="100%" draw:end-intensity="100%"
draw:angle="150" draw:border="0%"/>
===================================================================
*/
{
g_warning("Need at least 2 stops for a linear gradient");
return false;;
}
}
{
/*
===================================================================
RADIAL gradient. We need something that looks like this:
<!-- radial gradient, light gray to white, centered, 0% border -->
<draw:gradient draw:name="radial_20_borderless"
draw:display-name="radial borderless"
draw:style="radial"
draw:cx="50%" draw:cy="50%"
draw:start-color="#999999" draw:end-color="#ffffff"
draw:border="0%"/>
===================================================================
*/
{
g_warning("Need at least 2 stops for a radial gradient");
return false;
}
gi.r);
}
else
{
return false;
}
return true;
}
/**
* SECOND PASS.
* This is the main SPObject tree output to ODF. preprocess()
* must be called prior to this, as elements will often reference
* data parsed and tabled in preprocess().
*/
{
//# Get the SPItem, if applicable
if (!reprobj)
return true;
if (!SP_IS_ITEM(reprobj))
{
return true;
}
//### Get SVG-to-ODF transform
//### Get ODF bounding box params for item
if (!bbox) {
return true;
}
double rotate;
double xskew;
double yskew;
double xscale;
double yscale;
//# Do our stuff
{
//# Iterate through the children
{
{
return false;
}
}
return true;
}
{
{
}
else
{
}
//# Iterate through the children
{
{
return false;
}
}
{
}
else
{
}
return true;
}
//######################################
//# S T Y L E
//######################################
//######################################
//# G R A D I E N T
//######################################
//######################################
//# I T E M D A T A
//######################################
//g_message("##### %s #####", nodeName.c_str());
{
if (!SP_IS_IMAGE(item))
{
g_warning("<image> is not an SPImage. Why? ;-)");
return false;
}
{
return false;
}
{
}
//no x or y. make them the translate transform, last one
if (!itemTransformString.empty())
{
}
else
{
}
return true;
}
else if (SP_IS_SHAPE(item))
{
}
{
}
if (curve)
{
//### Default <path> output
{
}
{
}
{
gradientName.c_str());
}
}
return true;
}
/**
* Write the header for the content.xml file
*/
{
return true;
}
/**
* Write the footer for the style.xml file
*/
{
outs.printf("<style:style style:name=\"gr1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
outs.printf(" draw:luminance=\"0%%\" draw:contrast=\"0%%\" draw:gamma=\"100%%\" draw:red=\"0%%\"\n");
return true;
}
/**
* Write the header for the content.xml file
*/
{
return true;
}
/**
* Write the footer for the content.xml file
*/
{
return true;
}
/**
* Write the content.xml file. Writes the namesspace headers, then
* calls writeTree().
*/
{
//Content.xml stream
if (!writeContentHeader(couts))
{
return false;
}
//Style.xml stream
if (!writeStyleHeader(souts))
{
return false;
}
//# Descend into the tree, doing all of our conversions
//# to both files at the same time
{
g_warning("Failed to convert SVG tree");
return false;
}
//# Finish content file
if (!writeContentFooter(couts))
{
return false;
}
//# Finish style file
if (!writeStyleFooter(souts))
{
return false;
}
return true;
}
/**
* Resets class to its pristine condition, ready to use again
*/
void
{
styleTable.clear();
imageTable.clear();
}
/**
* Descends into the SVG tree, mapping things to ODF when appropriate
*/
void
{
reset();
//g_message("native file:%s\n", filename);
/* fixme: It looks like we really are using documentUri as a URI, so we ought to call
* g_filename_to_uri for the URI constructor. */
if (!writeManifest(zf))
{
g_warning("Failed to write manifest");
return;
}
{
g_warning("Failed to write content");
return;
}
{
g_warning("Failed to write metafile");
return;
}
{
return;
}
}
/**
* This is the definition of PovRay output. This function just
* calls the extension system with the memory allocated XML that
* describes the data.
*/
void
{
"<id>org.inkscape.output.odf</id>\n"
"<output>\n"
"<extension>.odg</extension>\n"
"<mimetype>text/x-povray-script</mimetype>\n"
"</output>\n"
"</inkscape-extension>",
new OdfOutput());
}
/**
* Make sure that we are in the database
*/
bool
{
/* We don't need a Key
if (NULL == Inkscape::Extension::db.get(SP_MODULE_KEY_OUTPUT_POV))
return FALSE;
*/
return TRUE;
}
} //namespace Internal
} //namespace Extension
} //namespace Inkscape
//########################################################################
//# E N D O F F I L E
//########################################################################
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :