/*
* OpenDocument <drawing> input and output
*
* This is an an entry in the extensions mechanism to begin to enable
* the inputting and outputting of OpenDocument Format (ODF) files from
* within Inkscape. Although the initial implementations will be very lossy
* due to the differences in the models of SVG and ODF, they will hopefully
* improve greatly with time. People should consider this to be a framework
* that can be continously upgraded for ever improving fidelity. Potential
* developers should especially look in preprocess() and writeTree() to see how
* the SVG tree is scanned, read, translated, and then written to ODF.
*
* http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/idl-definitions.html
*
* Authors:
* Bob Jamison
* Abhishek Sharma
* Kris De Gussem
*
* Copyright (C) 2006, 2007 Bob Jamison
* Copyright (C) 2013 Kris De Gussem
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "odf.h"
//# System includes
#include <stdio.h>
#include <time.h>
#include <vector>
#include <math.h>
//# Inkscape includes
#include "clear-n_.h"
#include "inkscape.h"
#include <style.h>
#include "display/curve.h"
#include <2geom/pathvector.h>
#include <2geom/curves.h>
#include <2geom/transforms.h>
#include <helper/geom.h>
#include "helper/geom-curves.h"
#include "extension/system.h"
#include "xml/repr.h"
#include "xml/attribute-record.h"
#include "sp-image.h"
#include "sp-gradient.h"
#include "sp-stop.h"
#include "gradient-chemistry.h"
#include "sp-linear-gradient.h"
#include "sp-radial-gradient.h"
#include "sp-path.h"
#include "sp-text.h"
#include "sp-flowtext.h"
#include "svg/svg.h"
#include "text-editing.h"
#include "util/units.h"
#include "uri.h"
#include "inkscape-version.h"
#include "document.h"
#include "extension/extension.h"
#include "io/inkscapestream.h"
#include "io/bufferstream.h"
#include <util/ziptool.h>
#include <iomanip>
namespace Inkscape
{
namespace Extension
{
namespace Internal
{
//# Shorthand notation
typedef Inkscape::IO::BufferOutputStream BufferOutputStream;
typedef Inkscape::IO::OutputStreamWriter OutputStreamWriter;
typedef Inkscape::IO::StringOutputStream StringOutputStream;
//########################################################################
//# C L A S S SingularValueDecomposition
//########################################################################
#include <math.h>
class SVDMatrix
{
public:
SVDMatrix()
{
init();
}
SVDMatrix(unsigned int rowSize, unsigned int colSize)
{
init();
rows = rowSize;
cols = colSize;
size = rows * cols;
d = new double[size];
for (unsigned int i=0 ; i<size ; i++)
d[i] = 0.0;
}
SVDMatrix(double *vals, unsigned int rowSize, unsigned int colSize)
{
init();
rows = rowSize;
cols = colSize;
size = rows * cols;
d = new double[size];
for (unsigned int i=0 ; i<size ; i++)
d[i] = vals[i];
}
SVDMatrix(const SVDMatrix &other)
{
init();
assign(other);
}
SVDMatrix &operator=(const SVDMatrix &other)
{
assign(other);
return *this;
}
virtual ~SVDMatrix()
{
delete[] d;
}
double& operator() (unsigned int row, unsigned int col)
{
if (row >= rows || col >= cols)
return badval;
return d[cols*row + col];
}
double operator() (unsigned int row, unsigned int col) const
{
if (row >= rows || col >= cols)
return badval;
return d[cols*row + col];
}
unsigned int getRows()
{
return rows;
}
unsigned int getCols()
{
return cols;
}
SVDMatrix multiply(const SVDMatrix &other)
{
if (cols != other.rows)
{
SVDMatrix dummy;
return dummy;
}
SVDMatrix result(rows, other.cols);
for (unsigned int i=0 ; i<rows ; i++)
{
for (unsigned int j=0 ; j<other.cols ; j++)
{
double sum = 0.0;
for (unsigned int k=0 ; k<cols ; k++)
{
//sum += a[i][k] * b[k][j];
sum += d[i*cols +k] * other(k, j);
}
result(i, j) = sum;
}
}
return result;
}
SVDMatrix transpose()
{
SVDMatrix result(cols, rows);
for (unsigned int i=0 ; i<rows ; i++){
for (unsigned int j=0 ; j<cols ; j++){
result(j, i) = d[i*cols + j];
}
}
return result;
}
private:
virtual void init()
{
badval = 0.0;
d = NULL;
rows = 0;
cols = 0;
size = 0;
}
void assign(const SVDMatrix &other)
{
if (d)
{
delete[] d;
d = 0;
}
rows = other.rows;
cols = other.cols;
size = other.size;
badval = other.badval;
d = new double[size];
for (unsigned int i=0 ; i<size ; i++){
d[i] = other.d[i];
}
}
double badval;
double *d;
unsigned int rows;
unsigned int cols;
unsigned int size;
};
/**
*
* ====================================================
*
* NOTE:
* This class is ported almost verbatim from the public domain
* JAMA Matrix package. It is modified to handle only 3x3 matrices
* and our Geom::Affine affine transform class. We give full
* attribution to them, along with many thanks. JAMA can be found at:
* http://math.nist.gov/javanumerics/jama
*
* ====================================================
*
* Singular Value Decomposition.
* <P>
* For an m-by-n matrix A with m >= n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
* an n-by-n orthogonal matrix V so that A = U*S*V'.
* <P>
* The singular values, sigma[k] = S[k][k], are ordered so that
* sigma[0] >= sigma[1] >= ... >= sigma[n-1].
* <P>
* The singular value decompostion always exists, so the constructor will
* never fail. The matrix condition number and the effective numerical
* rank can be computed from this decomposition.
*/
class SingularValueDecomposition
{
public:
/** Construct the singular value decomposition
@param A Rectangular matrix
@return Structure to access U, S and V.
*/
SingularValueDecomposition (const SVDMatrix &mat) :
A (mat),
U (),
s (NULL),
s_size (0),
V ()
{
calculate();
}
virtual ~SingularValueDecomposition()
{
delete[] s;
}
/**
* Return the left singular vectors
* @return U
*/
SVDMatrix &getU();
/**
* Return the right singular vectors
* @return V
*/
SVDMatrix &getV();
/**
* Return the s[index] value
*/ double getS(unsigned int index);
/**
* Two norm
* @return max(S)
*/
double norm2();
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double cond();
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int rank();
private:
void calculate();
SVDMatrix A;
SVDMatrix U;
double *s;
unsigned int s_size;
SVDMatrix V;
};
static double svd_hypot(double a, double b)
{
double r;
if (fabs(a) > fabs(b))
{
r = b/a;
r = fabs(a) * sqrt(1+r*r);
}
else if (b != 0)
{
r = a/b;
r = fabs(b) * sqrt(1+r*r);
}
else
{
r = 0.0;
}
return r;
}
void SingularValueDecomposition::calculate()
{
// Initialize.
int m = A.getRows();
int n = A.getCols();
int nu = (m > n) ? m : n;
s_size = (m+1 < n) ? m+1 : n;
s = new double[s_size];
U = SVDMatrix(m, nu);
V = SVDMatrix(n, n);
double *e = new double[n];
double *work = new double[m];
bool wantu = true;
bool wantv = true;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = (m-1<n) ? m-1 : n;
int nrtx = (n-2<m) ? n-2 : m;
int nrt = (nrtx>0) ? nrtx : 0;
for (int k = 0; k < 2; k++) {
if (k < nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
s[k] = 0;
for (int i = k; i < m; i++) {
s[k] = svd_hypot(s[k],A(i, k));
}
if (s[k] != 0.0) {
if (A(k, k) < 0.0) {
s[k] = -s[k];
}
for (int i = k; i < m; i++) {
A(i, k) /= s[k];
}
A(k, k) += 1.0;
}
s[k] = -s[k];
}
for (int j = k+1; j < n; j++) {
if ((k < nct) & (s[k] != 0.0)) {
// Apply the transformation.
double t = 0;
for (int i = k; i < m; i++) {
t += A(i, k) * A(i, j);
}
t = -t/A(k, k);
for (int i = k; i < m; i++) {
A(i, j) += t*A(i, k);
}
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = A(k, j);
}
if (wantu & (k < nct)) {
// Place the transformation in U for subsequent back
// multiplication.
for (int i = k; i < m; i++) {
U(i, k) = A(i, k);
}
}
if (k < nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
// Compute 2-norm without under/overflow.
e[k] = 0;
for (int i = k+1; i < n; i++) {
e[k] = svd_hypot(e[k],e[i]);
}
if (e[k] != 0.0) {
if (e[k+1] < 0.0) {
e[k] = -e[k];
}
for (int i = k+1; i < n; i++) {
e[i] /= e[k];
}
e[k+1] += 1.0;
}
e[k] = -e[k];
if ((k+1 < m) & (e[k] != 0.0)) {
// Apply the transformation.
for (int i = k+1; i < m; i++) {
work[i] = 0.0;
}
for (int j = k+1; j < n; j++) {
for (int i = k+1; i < m; i++) {
work[i] += e[j]*A(i, j);
}
}
for (int j = k+1; j < n; j++) {
double t = -e[j]/e[k+1];
for (int i = k+1; i < m; i++) {
A(i, j) += t*work[i];
}
}
}
if (wantv) {
// Place the transformation in V for subsequent
// back multiplication.
for (int i = k+1; i < n; i++) {
V(i, k) = e[i];
}
}
}
}
// Set up the final bidiagonal matrix or order p.
int p = (n < m+1) ? n : m+1;
if (nct < n) {
s[nct] = A(nct, nct);
}
if (m < p) {
s[p-1] = 0.0;
}
if (nrt+1 < p) {
e[nrt] = A(nrt, p-1);
}
e[p-1] = 0.0;
// If required, generate U.
if (wantu) {
for (int j = nct; j < nu; j++) {
for (int i = 0; i < m; i++) {
U(i, j) = 0.0;
}
U(j, j) = 1.0;
}
for (int k = nct-1; k >= 0; k--) {
if (s[k] != 0.0) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k; i < m; i++) {
t += U(i, k)*U(i, j);
}
t = -t/U(k, k);
for (int i = k; i < m; i++) {
U(i, j) += t*U(i, k);
}
}
for (int i = k; i < m; i++ ) {
U(i, k) = -U(i, k);
}
U(k, k) = 1.0 + U(k, k);
for (int i = 0; i < k-1; i++) {
U(i, k) = 0.0;
}
} else {
for (int i = 0; i < m; i++) {
U(i, k) = 0.0;
}
U(k, k) = 1.0;
}
}
}
// If required, generate V.
if (wantv) {
for (int k = n-1; k >= 0; k--) {
if ((k < nrt) & (e[k] != 0.0)) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k+1; i < n; i++) {
t += V(i, k)*V(i, j);
}
t = -t/V(k+1, k);
for (int i = k+1; i < n; i++) {
V(i, j) += t*V(i, k);
}
}
}
for (int i = 0; i < n; i++) {
V(i, k) = 0.0;
}
V(k, k) = 1.0;
}
}
// Main iteration loop for the singular values.
int pp = p-1;
//double eps = pow(2.0,-52.0);
//double tiny = pow(2.0,-966.0);
//let's just calculate these now
//a double can be e ± 308.25, so this is safe
double eps = 2.22e-16;
double tiny = 1.6e-291;
while (p > 0) {
int k,kase;
// Here is where a test for too many iterations would go.
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; k--) {
if (k == -1) {
break;
}
if (fabs(e[k]) <=
tiny + eps*(fabs(s[k]) + fabs(s[k+1]))) {
e[k] = 0.0;
break;
}
}
if (k == p-2) {
kase = 4;
} else {
int ks;
for (ks = p-1; ks >= k; ks--) {
if (ks == k) {
break;
}
double t = (ks != p ? fabs(e[ks]) : 0.) +
(ks != k+1 ? fabs(e[ks-1]) : 0.);
if (fabs(s[ks]) <= tiny + eps*t) {
s[ks] = 0.0;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p-1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
double f = e[p-2];
e[p-2] = 0.0;
for (int j = p-2; j >= k; j--) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
if (j != k) {
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if (wantv) {
for (int i = 0; i < n; i++) {
t = cs*V(i, j) + sn*V(i, p-1);
V(i, p-1) = -sn*V(i, j) + cs*V(i, p-1);
V(i, j) = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2: {
double f = e[k-1];
e[k-1] = 0.0;
for (int j = k; j < p; j++) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu) {
for (int i = 0; i < m; i++) {
t = cs*U(i, j) + sn*U(i, k-1);
U(i, k-1) = -sn*U(i, j) + cs*U(i, k-1);
U(i, j) = t;
}
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
double scale = fabs(s[p-1]);
double d = fabs(s[p-2]);
if (d>scale) scale=d;
d = fabs(e[p-2]);
if (d>scale) scale=d;
d = fabs(s[k]);
if (d>scale) scale=d;
d = fabs(e[k]);
if (d>scale) scale=d;
double sp = s[p-1]/scale;
double spm1 = s[p-2]/scale;
double epm1 = e[p-2]/scale;
double sk = s[k]/scale;
double ek = e[k]/scale;
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
double c = (sp*epm1)*(sp*epm1);
double shift = 0.0;
if ((b != 0.0) | (c != 0.0)) {
shift = sqrt(b*b + c);
if (b < 0.0) {
shift = -shift;
}
shift = c/(b + shift);
}
double f = (sk + sp)*(sk - sp) + shift;
double g = sk*ek;
// Chase zeros.
for (int j = k; j < p-1; j++) {
double t = svd_hypot(f,g);
double cs = f/t;
double sn = g/t;
if (j != k) {
e[j-1] = t;
}
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
if (wantv) {
for (int i = 0; i < n; i++) {
t = cs*V(i, j) + sn*V(i, j+1);
V(i, j+1) = -sn*V(i, j) + cs*V(i, j+1);
V(i, j) = t;
}
}
t = svd_hypot(f,g);
cs = f/t;
sn = g/t;
s[j] = t;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if (wantu && (j < m-1)) {
for (int i = 0; i < m; i++) {
t = cs*U(i, j) + sn*U(i, j+1);
U(i, j+1) = -sn*U(i, j) + cs*U(i, j+1);
U(i, j) = t;
}
}
}
e[p-2] = f;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if (s[k] <= 0.0) {
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv) {
for (int i = 0; i <= pp; i++) {
V(i, k) = -V(i, k);
}
}
}
// Order the singular values.
while (k < pp) {
if (s[k] >= s[k+1]) {
break;
}
double t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if (wantv && (k < n-1)) {
for (int i = 0; i < n; i++) {
t = V(i, k+1); V(i, k+1) = V(i, k); V(i, k) = t;
}
}
if (wantu && (k < m-1)) {
for (int i = 0; i < m; i++) {
t = U(i, k+1); U(i, k+1) = U(i, k); U(i, k) = t;
}
}
k++;
}
p--;
}
break;
}
}
delete [] e;
delete [] work;
}
/**
* Return the left singular vectors
* @return U
*/
SVDMatrix &SingularValueDecomposition::getU()
{
return U;
}
/**
* Return the right singular vectors
* @return V
*/
SVDMatrix &SingularValueDecomposition::getV()
{
return V;
}
/**
* Return the s[0] value
*/
double SingularValueDecomposition::getS(unsigned int index)
{
if (index >= s_size)
return 0.0;
return s[index];
}
/**
* Two norm
* @return max(S)
*/
double SingularValueDecomposition::norm2()
{
return s[0];
}
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double SingularValueDecomposition::cond()
{
return s[0]/s[2];
}
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int SingularValueDecomposition::rank()
{
double eps = pow(2.0,-52.0);
double tol = 3.0*s[0]*eps;
int r = 0;
for (int i = 0; i < 3; i++)
{
if (s[i] > tol)
r++;
}
return r;
}
//########################################################################
//# E N D C L A S S SingularValueDecomposition
//########################################################################
#define pi 3.14159
//#define pxToCm 0.0275
#define pxToCm 0.03
#define piToRad 0.0174532925
#define docHeightCm 22.86
//########################################################################
//# O U T P U T
//########################################################################
/**
* Get the value of a node/attribute pair
*/
static Glib::ustring getAttribute( Inkscape::XML::Node *node, char const *attrName)
{
Glib::ustring val;
char const *valstr = node->attribute(attrName);
if (valstr)
val = valstr;
return val;
}
/**
* Get the extension suffix from the end of a file name
*/
static Glib::ustring getExtension(const Glib::ustring &fname)
{
Glib::ustring ext;
std::string::size_type pos = fname.rfind('.');
if (pos == fname.npos)
{
ext = "";
}
else
{
ext = fname.substr(pos);
}
return ext;
}
static Glib::ustring formatTransform(Geom::Affine &tf)
{
Glib::ustring str;
if (!tf.isIdentity())
{
StringOutputStream outs;
OutputStreamWriter out(outs);
out.printf("matrix(%.3f %.3f %.3f %.3f %.3f %.3f)",
tf[0], tf[1], tf[2], tf[3], tf[4], tf[5]);
str = outs.getString();
}
return str;
}
/**
* Get the general transform from SVG pixels to
* ODF cm
*/
static Geom::Affine getODFTransform(const SPItem *item)
{
//### Get SVG-to-ODF transform
Geom::Affine tf (item->i2dt_affine());
//Flip Y into document coordinates
double doc_height = SP_ACTIVE_DOCUMENT->getHeight().value("px");
Geom::Affine doc2dt_tf = Geom::Affine(Geom::Scale(1.0, -1.0)); /// @fixme hardcoded desktop transform
doc2dt_tf = doc2dt_tf * Geom::Affine(Geom::Translate(0, doc_height));
tf = tf * doc2dt_tf;
tf = tf * Geom::Affine(Geom::Scale(pxToCm));
return tf;
}
/**
* Get the bounding box of an item, as mapped onto
* an ODF document, in cm.
*/
static Geom::OptRect getODFBoundingBox(const SPItem *item)
{
// TODO: geometric or visual?
Geom::OptRect bbox = item->documentVisualBounds();
if (bbox) {
*bbox *= Geom::Affine(Geom::Scale(pxToCm));
}
return bbox;
}
/**
* Get the transform for an item, correcting for
* handedness reversal
*/
static Geom::Affine getODFItemTransform(const SPItem *item)
{
Geom::Affine itemTransform (Geom::Scale(1, -1)); /// @fixme hardcoded doc2dt transform?
itemTransform = itemTransform * (Geom::Affine)item->transform;
itemTransform = itemTransform * Geom::Scale(1, -1);
return itemTransform;
}
/**
* Get some fun facts from the transform
*/
static void analyzeTransform(Geom::Affine &tf,
double &rotate, double &/*xskew*/, double &/*yskew*/,
double &xscale, double &yscale)
{
SVDMatrix mat(2, 2);
mat(0, 0) = tf[0];
mat(0, 1) = tf[1];
mat(1, 0) = tf[2];
mat(1, 1) = tf[3];
SingularValueDecomposition svd(mat);
SVDMatrix U = svd.getU();
SVDMatrix V = svd.getV();
SVDMatrix Vt = V.transpose();
SVDMatrix UVt = U.multiply(Vt);
double s0 = svd.getS(0);
double s1 = svd.getS(1);
xscale = s0;
yscale = s1;
rotate = UVt(0,0);
}
static void gatherText(Inkscape::XML::Node *node, Glib::ustring &buf)
{
if (node->type() == Inkscape::XML::TEXT_NODE)
{
char *s = (char *)node->content();
if (s)
buf.append(s);
}
for (Inkscape::XML::Node *child = node->firstChild() ;
child != NULL; child = child->next())
{
gatherText(child, buf);
}
}
/**
* FIRST PASS.
* Method descends into the repr tree, converting image, style, and gradient info
* into forms compatible in ODF.
*/
void OdfOutput::preprocess(ZipFile &zf, Inkscape::XML::Node *node)
{
Glib::ustring nodeName = node->name();
Glib::ustring id = getAttribute(node, "id");
//### First, check for metadata
if (nodeName == "metadata" || nodeName == "svg:metadata")
{
Inkscape::XML::Node *mchild = node->firstChild() ;
if (!mchild || strcmp(mchild->name(), "rdf:RDF"))
return;
Inkscape::XML::Node *rchild = mchild->firstChild() ;
if (!rchild || strcmp(rchild->name(), "cc:Work"))
return;
for (Inkscape::XML::Node *cchild = rchild->firstChild() ;
cchild ; cchild = cchild->next())
{
Glib::ustring ccName = cchild->name();
Glib::ustring ccVal;
gatherText(cchild, ccVal);
//g_message("ccName: %s ccVal:%s", ccName.c_str(), ccVal.c_str());
metadata[ccName] = ccVal;
}
return;
}
//Now consider items.
SPObject *reprobj = SP_ACTIVE_DOCUMENT->getObjectByRepr(node);
if (!reprobj)
{
return;
}
if (!SP_IS_ITEM(reprobj))
{
return;
}
if (nodeName == "image" || nodeName == "svg:image")
{
Glib::ustring href = getAttribute(node, "xlink:href");
if (href.size() > 0)
{
Glib::ustring oldName = href;
Glib::ustring ext = getExtension(oldName);
if (ext == ".jpeg")
ext = ".jpg";
if (imageTable.find(oldName) == imageTable.end())
{
char buf[64];
snprintf(buf, sizeof(buf), "Pictures/image%u%s",
static_cast<unsigned int>(imageTable.size()), ext.c_str());
Glib::ustring newName = buf;
imageTable[oldName] = newName;
Glib::ustring comment = "old name was: ";
comment.append(oldName);
Inkscape::URI oldUri(oldName.c_str());
//# if relative to the documentURI, get proper path
std::string pathName = documentUri.getFullPath(oldUri.getFullPath(""));
ZipEntry *ze = zf.addFile(pathName, comment);
if (ze)
{
ze->setFileName(newName);
}
else
{
g_warning("Could not load image file '%s'", pathName.c_str());
}
}
}
}
for (Inkscape::XML::Node *child = node->firstChild() ;
child ; child = child->next())
preprocess(zf, child);
}
/**
* Writes the manifest. Currently it only changes according to the
* file names of images packed into the zip file.
*/
bool OdfOutput::writeManifest(ZipFile &zf)
{
BufferOutputStream bouts;
OutputStreamWriter outs(bouts);
time_t tim;
time(&tim);
outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
outs.writeString("<!DOCTYPE manifest:manifest PUBLIC \"-//OpenOffice.org//DTD Manifest 1.0//EN\" \"Manifest.dtd\">\n");
outs.writeString("\n");
outs.writeString("\n");
outs.writeString("<!--\n");
outs.writeString("*************************************************************************\n");
outs.writeString(" file: manifest.xml\n");
outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
outs.writeString(" http://www.inkscape.org\n");
outs.writeString("*************************************************************************\n");
outs.writeString("-->\n");
outs.writeString("\n");
outs.writeString("\n");
outs.writeString("<manifest:manifest xmlns:manifest=\"urn:oasis:names:tc:opendocument:xmlns:manifest:1.0\">\n");
outs.writeString(" <manifest:file-entry manifest:media-type=\"application/vnd.oasis.opendocument.graphics\" manifest:full-path=\"/\"/>\n");
outs.writeString(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"content.xml\"/>\n");
outs.writeString(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"styles.xml\"/>\n");
outs.writeString(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"meta.xml\"/>\n");
outs.writeString(" <!--List our images here-->\n");
std::map<Glib::ustring, Glib::ustring>::iterator iter;
for (iter = imageTable.begin() ; iter!=imageTable.end() ; ++iter)
{
Glib::ustring oldName = iter->first;
Glib::ustring newName = iter->second;
Glib::ustring ext = getExtension(oldName);
if (ext == ".jpeg")
ext = ".jpg";
outs.printf(" <manifest:file-entry manifest:media-type=\"");
if (ext == ".gif")
outs.printf("image/gif");
else if (ext == ".png")
outs.printf("image/png");
else if (ext == ".jpg")
outs.printf("image/jpeg");
outs.printf("\" manifest:full-path=\"");
outs.writeString(newName.c_str());
outs.printf("\"/>\n");
}
outs.printf("</manifest:manifest>\n");
outs.close();
//Make our entry
ZipEntry *ze = zf.newEntry("META-INF/manifest.xml", "ODF file manifest");
ze->setUncompressedData(bouts.getBuffer());
ze->finish();
return true;
}
/**
* This writes the document meta information to meta.xml
*/
bool OdfOutput::writeMeta(ZipFile &zf)
{
BufferOutputStream bouts;
OutputStreamWriter outs(bouts);
time_t tim;
time(&tim);
std::map<Glib::ustring, Glib::ustring>::iterator iter;
Glib::ustring InkscapeVersion = Glib::ustring("Inkscape.org - ") + Inkscape::version_string;
Glib::ustring creator = InkscapeVersion;
iter = metadata.find("dc:creator");
if (iter != metadata.end())
{
creator = iter->second;
}
Glib::ustring date;
Glib::ustring moddate;
char buf [80];
time_t rawtime;
struct tm * timeinfo;
time (&rawtime);
timeinfo = localtime (&rawtime);
strftime (buf,80,"%Y-%m-%d %H:%M:%S",timeinfo);
moddate = Glib::ustring(buf);
iter = metadata.find("dc:date");
if (iter != metadata.end())
{
date = iter->second;
}
else
{
date = moddate;
}
outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
outs.writeString("\n");
outs.writeString("<!--\n");
outs.writeString("*************************************************************************\n");
outs.writeString(" file: meta.xml\n");
outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
outs.writeString(" http://www.inkscape.org\n");
outs.writeString("*************************************************************************\n");
outs.writeString("-->\n");
outs.writeString("\n");
outs.writeString("<office:document-meta\n");
outs.writeString("xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
outs.writeString("xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
outs.writeString("xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
outs.writeString("xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
outs.writeString("xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
outs.writeString("xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
outs.writeString("xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
outs.writeString("xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
outs.writeString("office:version=\"1.0\">\n");
outs.writeString("<office:meta>\n");
Glib::ustring tmp = Glib::ustring::compose(" <meta:generator>%1</meta:generator>\n", InkscapeVersion);
tmp += Glib::ustring::compose(" <meta:initial-creator>%1</meta:initial-creator>\n", creator);
tmp += Glib::ustring::compose(" <meta:creation-date>%1</meta:creation-date>\n", date);
tmp += Glib::ustring::compose(" <dc:date>%1</dc:date>\n", moddate);
outs.writeUString(tmp);
for (iter = metadata.begin() ; iter != metadata.end() ; ++iter)
{
Glib::ustring name = iter->first;
Glib::ustring value = iter->second;
if (!name.empty() && !value.empty())
{
tmp = Glib::ustring::compose(" <%1>%2</%3>\n", name, value, name);
outs.writeUString(tmp);
}
}
// outs.writeString(" <meta:editing-cycles>2</meta:editing-cycles>\n");
// outs.writeString(" <meta:editing-duration>PT56S</meta:editing-duration>\n");
// outs.writeString(" <meta:user-defined meta:name=\"Info 1\"/>\n");
// outs.writeString(" <meta:user-defined meta:name=\"Info 2\"/>\n");
// outs.writeString(" <meta:user-defined meta:name=\"Info 3\"/>\n");
// outs.writeString(" <meta:user-defined meta:name=\"Info 4\"/>\n");
// outs.writeString(" <meta:document-statistic meta:object-count=\"2\"/>\n");
outs.writeString("</office:meta>\n");
outs.writeString("</office:document-meta>\n");
outs.close();
//Make our entry
ZipEntry *ze = zf.newEntry("meta.xml", "ODF info file");
ze->setUncompressedData(bouts.getBuffer());
ze->finish();
return true;
}
/**
* Writes an SVG path as an ODF <draw:path> and returns the number of points written
*/
static int
writePath(Writer &outs, Geom::PathVector const &pathv,
Geom::Affine const &tf, double xoff, double yoff)
{
using Geom::X;
using Geom::Y;
int nrPoints = 0;
// convert the path to only lineto's and cubic curveto's:
Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv * tf * Geom::Translate(xoff, yoff) * Geom::Scale(1000.));
for (Geom::PathVector::const_iterator pit = pv.begin(); pit != pv.end(); ++pit) {
double destx = pit->initialPoint()[X];
double desty = pit->initialPoint()[Y];
if (fabs(destx)<1.0) destx = 0.0; // Why is this needed? Shouldn't we just round all numbers then?
if (fabs(desty)<1.0) desty = 0.0;
outs.printf("M %.3f %.3f ", destx, desty);
nrPoints++;
for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_closed(); ++cit) {
if( is_straight_curve(*cit) )
{
double destx = cit->finalPoint()[X];
double desty = cit->finalPoint()[Y];
if (fabs(destx)<1.0) destx = 0.0; // Why is this needed? Shouldn't we just round all numbers then?
if (fabs(desty)<1.0) desty = 0.0;
outs.printf("L %.3f %.3f ", destx, desty);
}
else if(Geom::CubicBezier const *cubic = dynamic_cast<Geom::CubicBezier const*>(&*cit)) {
std::vector<Geom::Point> points = cubic->controlPoints();
for (unsigned i = 1; i <= 3; i++) {
if (fabs(points[i][X])<1.0) points[i][X] = 0.0; // Why is this needed? Shouldn't we just round all numbers then?
if (fabs(points[i][Y])<1.0) points[i][Y] = 0.0;
}
outs.printf("C %.3f %.3f %.3f %.3f %.3f %.3f ", points[1][X],points[1][Y], points[2][X],points[2][Y], points[3][X],points[3][Y]);
}
else {
g_error ("logical error, because pathv_to_linear_and_cubic_beziers was used");
}
nrPoints++;
}
if (pit->closed()) {
outs.printf("Z");
}
}
return nrPoints;
}
bool OdfOutput::processStyle(SPItem *item, const Glib::ustring &id, const Glib::ustring &gradientNameFill, const Glib::ustring &gradientNameStroke, Glib::ustring& output)
{
output.clear();
if (!item)
{
return false;
}
SPStyle *style = item->style;
if (!style)
{
return false;
}
StyleInfo si;
// FILL
if (style->fill.isColor())
{
guint32 fillCol = style->fill.value.color.toRGBA32( 0 );
char buf[16];
int r = (fillCol >> 24) & 0xff;
int g = (fillCol >> 16) & 0xff;
int b = (fillCol >> 8) & 0xff;
snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
si.fillColor = buf;
si.fill = "solid";
double opacityPercent = 100.0 *
(SP_SCALE24_TO_FLOAT(style->fill_opacity.value));
snprintf(buf, 15, "%.3f%%", opacityPercent);
si.fillOpacity = buf;
}
else if (style->fill.isPaintserver())
{
SPGradient *gradient = SP_GRADIENT(SP_STYLE_FILL_SERVER(style));
if (gradient)
{
si.fill = "gradient";
}
}
// STROKE
if (style->stroke.isColor())
{
guint32 strokeCol = style->stroke.value.color.toRGBA32( 0 );
char buf[16];
int r = (strokeCol >> 24) & 0xff;
int g = (strokeCol >> 16) & 0xff;
int b = (strokeCol >> 8) & 0xff;
snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
si.strokeColor = buf;
snprintf(buf, 15, "%.3fpt", style->stroke_width.value);
si.strokeWidth = buf;
si.stroke = "solid";
double opacityPercent = 100.0 *
(SP_SCALE24_TO_FLOAT(style->stroke_opacity.value));
snprintf(buf, 15, "%.3f%%", opacityPercent);
si.strokeOpacity = buf;
}
else if (style->stroke.isPaintserver())
{
SPGradient *gradient = SP_GRADIENT(SP_STYLE_STROKE_SERVER(style));
if (gradient)
{
si.stroke = "gradient";
}
}
//Look for existing identical style;
bool styleMatch = false;
std::vector<StyleInfo>::iterator iter;
for (iter=styleTable.begin() ; iter!=styleTable.end() ; ++iter)
{
if (si.equals(*iter))
{
//map to existing styleTable entry
Glib::ustring styleName = iter->name;
styleLookupTable[id] = styleName;
styleMatch = true;
break;
}
}
// Dont need a new style
if (styleMatch)
{
return false;
}
Glib::ustring styleName = Glib::ustring::compose("style%1", styleTable.size());
si.name = styleName;
styleTable.push_back(si);
styleLookupTable[id] = styleName;
output = Glib::ustring::compose ("<style:style style:name=\"%1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n", si.name);
output += "<style:graphic-properties";
if (si.fill == "gradient")
{
output += Glib::ustring::compose (" draw:fill=\"gradient\" draw:fill-gradient-name=\"%1\"", gradientNameFill);
}
else
{
output += Glib::ustring(" draw:fill=\"") + si.fill + "\"";
if(si.fill != "none")
{
output += Glib::ustring::compose(" draw:fill-color=\"%1\"", si.fillColor);
}
}
if (si.stroke == "gradient")
{
//does not seem to be supported by Open Office.org
output += Glib::ustring::compose (" draw:stroke=\"gradient\" draw:stroke-gradient-name=\"%1\"", gradientNameStroke);
}
else
{
output += Glib::ustring(" draw:stroke=\"") + si.stroke + "\"";
if (si.stroke != "none")
{
output += Glib::ustring::compose (" svg:stroke-width=\"%1\" svg:stroke-color=\"%2\" ", si.strokeWidth, si.strokeColor);
}
}
output += "/>\n</style:style>\n";
return true;
}
bool OdfOutput::processGradient(SPItem *item,
const Glib::ustring &id, Geom::Affine &/*tf*/,
Glib::ustring& gradientName, Glib::ustring& output, bool checkFillGradient)
{
output.clear();
if (!item)
{
return false;
}
SPStyle *style = item->style;
if (!style)
{
return false;
}
if ((checkFillGradient? (!style->fill.isPaintserver()) : (!style->stroke.isPaintserver())))
{
return false;
}
//## Gradient
SPGradient *gradient = SP_GRADIENT((checkFillGradient?(SP_STYLE_FILL_SERVER(style)) :(SP_STYLE_STROKE_SERVER(style))));
if (gradient == NULL)
{
return false;
}
GradientInfo gi;
SPGradient *grvec = gradient->getVector(FALSE);
for (SPStop *stop = grvec->getFirstStop();
stop ; stop = stop->getNextStop())
{
unsigned long rgba = stop->get_rgba32();
unsigned long rgb = (rgba >> 8) & 0xffffff;
double opacity = (static_cast<double>(rgba & 0xff)) / 256.0;
GradientStop gs(rgb, opacity);
gi.stops.push_back(gs);
}
Glib::ustring gradientName2;
if (SP_IS_LINEARGRADIENT(gradient))
{
gi.style = "linear";
SPLinearGradient *linGrad = SP_LINEARGRADIENT(gradient);
gi.x1 = linGrad->x1.value;
gi.y1 = linGrad->y1.value;
gi.x2 = linGrad->x2.value;
gi.y2 = linGrad->y2.value;
gradientName2 = Glib::ustring::compose("ImportedLinearGradient%1", gradientTable.size());
}
else if (SP_IS_RADIALGRADIENT(gradient))
{
gi.style = "radial";
SPRadialGradient *radGrad = SP_RADIALGRADIENT(gradient);
Geom::OptRect bbox = item->documentVisualBounds();
gi.cx = (radGrad->cx.value-bbox->left())/bbox->width();
gi.cy = (radGrad->cy.value-bbox->top())/bbox->height();
gradientName2 = Glib::ustring::compose("ImportedRadialGradient%1", gradientTable.size());
}
else
{
g_warning("not a supported gradient type");
return false;
}
//Look for existing identical style;
bool gradientMatch = false;
std::vector<GradientInfo>::iterator iter;
for (iter=gradientTable.begin() ; iter!=gradientTable.end() ; ++iter)
{
if (gi.equals(*iter))
{
//map to existing gradientTable entry
gradientName = iter->name;
gradientLookupTable[id] = gradientName;
gradientMatch = true;
break;
}
}
if (gradientMatch)
{
return true;
}
// No match, let us write a new entry
gradientName = gradientName2;
gi.name = gradientName;
gradientTable.push_back(gi);
gradientLookupTable[id] = gradientName;
// int gradientCount = gradientTable.size();
char buf[128];
if (gi.style == "linear")
{
/*
===================================================================
LINEAR gradient. We need something that looks like this:
<draw:gradient draw:name="Gradient_20_7"
draw:display-name="Gradient 7"
draw:style="linear"
draw:start-color="#008080" draw:end-color="#993366"
draw:start-intensity="100%" draw:end-intensity="100%"
draw:angle="150" draw:border="0%"/>
===================================================================
*/
if (gi.stops.size() < 2)
{
g_warning("Need at least 2 stops for a linear gradient");
return false;
}
output += Glib::ustring::compose("<draw:gradient draw:name=\"%1\"", gi.name);
output += Glib::ustring::compose(" draw:display-name=\"%1\"", gi.name);
output += " draw:style=\"linear\"";
snprintf(buf, 127, " draw:start-color=\"#%06lx\" draw:end-color=\"#%06lx\"", gi.stops[0].rgb, gi.stops[1].rgb);
output += buf;
//TODO: apply maths, to define begin of gradient, taking gradient begin and end, as well as object boundary into account
double angle = (gi.y2-gi.y1);
angle = (angle != 0.) ? (atan((gi.x2-gi.x1)/(gi.y2-gi.y1))* 180. / pi) : 90;
angle = (angle < 0)?(180+angle):angle;
angle = angle * 10; //why do we need this: precision?????????????
output += Glib::ustring::compose(" draw:start-intensity=\"%1\" draw:end-intensity=\"%2\" draw:angle=\"%3\"/>\n",
gi.stops[0].opacity * 100.0, gi.stops[1].opacity * 100.0, angle);// draw:border=\"0%%\"
}
else if (gi.style == "radial")
{
/*
===================================================================
RADIAL gradient. We need something that looks like this:
<!-- radial gradient, light gray to white, centered, 0% border -->
<draw:gradient draw:name="radial_20_borderless"
draw:display-name="radial borderless"
draw:style="radial"
draw:cx="50%" draw:cy="50%"
draw:start-color="#999999" draw:end-color="#ffffff"
draw:border="0%"/>
===================================================================
*/
if (gi.stops.size() < 2)
{
g_warning("Need at least 2 stops for a radial gradient");
return false;
}
output += Glib::ustring::compose("<draw:gradient draw:name=\"%1\" draw:display-name=\"%1\" ", gi.name);
snprintf(buf, 127, "draw:cx=\"%05.3f\" draw:cy=\"%05.3f\" ", gi.cx*100, gi.cy*100);
output += Glib::ustring("draw:style=\"radial\" ") + buf;
snprintf(buf, 127, "draw:start-color=\"#%06lx\" draw:end-color=\"#%06lx\" ", gi.stops[0].rgb, gi.stops[1].rgb);
output += buf;
snprintf(buf, 127, "draw:start-intensity=\"%f%%\" draw:end-intensity=\"%f%%\" ", gi.stops[0].opacity*100.0, gi.stops[1].opacity*100.0);
output += buf;
output += "/>\n";//draw:border=\"0%\"
}
else
{
g_warning("unsupported gradient style '%s'", gi.style.c_str());
return false;
}
return true;
}
/**
* SECOND PASS.
* This is the main SPObject tree output to ODF.
*/
bool OdfOutput::writeTree(Writer &couts, Writer &souts,
Inkscape::XML::Node *node)
{
//# Get the SPItem, if applicable
SPObject *reprobj = SP_ACTIVE_DOCUMENT->getObjectByRepr(node);
if (!reprobj)
{
return true;
}
if (!SP_IS_ITEM(reprobj))
{
return true;
}
SPItem *item = SP_ITEM(reprobj);
Glib::ustring nodeName = node->name();
Glib::ustring id = getAttribute(node, "id");
Geom::Affine tf = getODFTransform(item);//Get SVG-to-ODF transform
Geom::OptRect bbox = getODFBoundingBox(item);//Get ODF bounding box params for item
if (!bbox) {
return true;
}
double bbox_x = bbox->min()[Geom::X];
double bbox_y = bbox->min()[Geom::Y];
double bbox_width = (*bbox)[Geom::X].extent();
double bbox_height = (*bbox)[Geom::Y].extent();
double rotate;
double xskew;
double yskew;
double xscale;
double yscale;
analyzeTransform(tf, rotate, xskew, yskew, xscale, yscale);
//# Do our stuff
SPCurve *curve = NULL;
if (nodeName == "svg" || nodeName == "svg:svg")
{
//# Iterate through the children
for (Inkscape::XML::Node *child = node->firstChild() ;
child ; child = child->next())
{
if (!writeTree(couts, souts, child))
{
return false;
}
}
return true;
}
else if (nodeName == "g" || nodeName == "svg:g")
{
if (!id.empty())
{
couts.printf("<draw:g id=\"%s\">\n", id.c_str());
}
else
{
couts.printf("<draw:g>\n");
}
//# Iterate through the children
for (Inkscape::XML::Node *child = node->firstChild() ;
child ; child = child->next())
{
if (!writeTree(couts, souts, child))
{
return false;
}
}
if (!id.empty())
{
couts.printf("</draw:g> <!-- id=\"%s\" -->\n", id.c_str());
}
else
{
couts.printf("</draw:g>\n");
}
return true;
}
//# GRADIENT
Glib::ustring gradientNameFill;
Glib::ustring gradientNameStroke;
Glib::ustring outputFill;
Glib::ustring outputStroke;
Glib::ustring outputStyle;
processGradient(item, id, tf, gradientNameFill, outputFill, 1);
processGradient(item, id, tf, gradientNameStroke, outputStroke, 0);
souts.writeUString(outputFill);
souts.writeUString(outputStroke);
//# STYLE
processStyle(item, id, gradientNameFill, gradientNameStroke, outputStyle);
souts.writeUString(outputStyle);
//# ITEM DATA
if (nodeName == "image" || nodeName == "svg:image")
{
if (!SP_IS_IMAGE(item))
{
g_warning("<image> is not an SPImage.");
return false;
}
SPImage *img = SP_IMAGE(item);
double ix = img->x.value;
double iy = img->y.value;
double iwidth = img->width.value;
double iheight = img->height.value;
Geom::Rect ibbox(Geom::Point(ix, iy), Geom::Point(ix+iwidth, iy+iheight));
ibbox = ibbox * tf;
ix = ibbox.min()[Geom::X];
iy = ibbox.min()[Geom::Y];
iwidth = xscale * iwidth;
iheight = yscale * iheight;
Geom::Affine itemTransform = getODFItemTransform(item);
Glib::ustring itemTransformString = formatTransform(itemTransform);
Glib::ustring href = getAttribute(node, "xlink:href");
std::map<Glib::ustring, Glib::ustring>::iterator iter = imageTable.find(href);
if (iter == imageTable.end())
{
g_warning("image '%s' not in table", href.c_str());
return false;
}
Glib::ustring newName = iter->second;
couts.printf("<draw:frame ");
if (!id.empty())
{
couts.printf("id=\"%s\" ", id.c_str());
}
couts.printf("draw:style-name=\"gr1\" draw:text-style-name=\"P1\" draw:layer=\"layout\" ");
//no x or y. make them the translate transform, last one
couts.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
iwidth, iheight);
if (!itemTransformString.empty())
{
couts.printf("draw:transform=\"%s translate(%.3fcm, %.3fcm)\" ",
itemTransformString.c_str(), ix, iy);
}
else
{
couts.printf("draw:transform=\"translate(%.3fcm, %.3fcm)\" ", ix, iy);
}
couts.writeString(">\n");
couts.printf(" <draw:image xlink:href=\"%s\" xlink:type=\"simple\"\n",
newName.c_str());
couts.writeString(" xlink:show=\"embed\" xlink:actuate=\"onLoad\">\n");
couts.writeString(" <text:p/>\n");
couts.writeString(" </draw:image>\n");
couts.writeString("</draw:frame>\n");
return true;
}
else if (SP_IS_SHAPE(item))
{
curve = SP_SHAPE(item)->getCurve();
}
else if (SP_IS_TEXT(item) || SP_IS_FLOWTEXT(item))
{
curve = te_get_layout(item)->convertToCurves();
}
if (curve)
{
//### Default <path> output
couts.writeString("<draw:path ");
if (!id.empty())
{
couts.printf("id=\"%s\" ", id.c_str());
}
std::map<Glib::ustring, Glib::ustring>::iterator siter;
siter = styleLookupTable.find(id);
if (siter != styleLookupTable.end())
{
Glib::ustring styleName = siter->second;
couts.printf("draw:style-name=\"%s\" ", styleName.c_str());
}
couts.printf("draw:layer=\"layout\" svg:x=\"%.3fcm\" svg:y=\"%.3fcm\" ",
bbox_x, bbox_y);
couts.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
bbox_width, bbox_height);
couts.printf("svg:viewBox=\"0.0 0.0 %.3f %.3f\"",
bbox_width * 1000.0, bbox_height * 1000.0);
couts.printf(" svg:d=\"");
int nrPoints = writePath(couts, curve->get_pathvector(),
tf, bbox_x, bbox_y);
couts.writeString("\"");
couts.writeString(">\n");
couts.printf(" <!-- %d nodes -->\n", nrPoints);
couts.writeString("</draw:path>\n\n");
curve->unref();
}
return true;
}
/**
* Write the header for the content.xml file
*/
bool OdfOutput::writeStyleHeader(Writer &outs)
{
time_t tim;
time(&tim);
outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
outs.writeString("\n");
outs.writeString("<!--\n");
outs.writeString("*************************************************************************\n");
outs.writeString(" file: styles.xml\n");
outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
outs.writeString(" http://www.inkscape.org\n");
outs.writeString("*************************************************************************\n");
outs.writeString("-->\n");
outs.writeString("\n");
outs.writeString("<office:document-styles\n");
outs.writeString(" xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
outs.writeString(" xmlns:style=\"urn:oasis:names:tc:opendocument:xmlns:style:1.0\"\n");
outs.writeString(" xmlns:text=\"urn:oasis:names:tc:opendocument:xmlns:text:1.0\"\n");
outs.writeString(" xmlns:table=\"urn:oasis:names:tc:opendocument:xmlns:table:1.0\"\n");
outs.writeString(" xmlns:draw=\"urn:oasis:names:tc:opendocument:xmlns:drawing:1.0\"\n");
outs.writeString(" xmlns:fo=\"urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0\"\n");
outs.writeString(" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
outs.writeString(" xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
outs.writeString(" xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
outs.writeString(" xmlns:number=\"urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0\"\n");
outs.writeString(" xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
outs.writeString(" xmlns:svg=\"urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0\"\n");
outs.writeString(" xmlns:chart=\"urn:oasis:names:tc:opendocument:xmlns:chart:1.0\"\n");
outs.writeString(" xmlns:dr3d=\"urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0\"\n");
outs.writeString(" xmlns:math=\"http://www.w3.org/1998/Math/MathML\"\n");
outs.writeString(" xmlns:form=\"urn:oasis:names:tc:opendocument:xmlns:form:1.0\"\n");
outs.writeString(" xmlns:script=\"urn:oasis:names:tc:opendocument:xmlns:script:1.0\"\n");
outs.writeString(" xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
outs.writeString(" xmlns:ooow=\"http://openoffice.org/2004/writer\"\n");
outs.writeString(" xmlns:oooc=\"http://openoffice.org/2004/calc\"\n");
outs.writeString(" xmlns:dom=\"http://www.w3.org/2001/xml-events\"\n");
outs.writeString(" xmlns:xforms=\"http://www.w3.org/2002/xforms\"\n");
outs.writeString(" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"\n");
outs.writeString(" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
outs.writeString(" xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
outs.writeString(" xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
outs.writeString(" office:version=\"1.0\">\n");
outs.writeString("\n");
outs.writeString("<!--\n");
outs.writeString("*************************************************************************\n");
outs.writeString(" S T Y L E S\n");
outs.writeString(" Style entries have been pulled from the svg style and\n");
outs.writeString(" representation attributes in the SVG tree. The tree elements\n");
outs.writeString(" then refer to them by name, in the ODF manner\n");
outs.writeString("*************************************************************************\n");
outs.writeString("-->\n");
outs.writeString("\n");
outs.writeString("<office:styles>\n");
outs.writeString("\n");
return true;
}
/**
* Write the footer for the style.xml file
*/
bool OdfOutput::writeStyleFooter(Writer &outs)
{
outs.writeString("\n");
outs.writeString("</office:styles>\n");
outs.writeString("\n");
outs.writeString("<office:automatic-styles>\n");
outs.writeString("<!-- ####### 'Standard' styles ####### -->\n");
outs.writeString("<style:style style:name=\"dp1\" style:family=\"drawing-page\"/>\n");
outs.writeString("<style:style style:name=\"standard\" style:family=\"graphic\">\n");
///TODO: add default document style here
outs.writeString("</style:style>\n");
outs.writeString("<style:style style:name=\"gr1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
outs.writeString(" <style:graphic-properties draw:stroke=\"none\" draw:fill=\"none\"\n");
outs.writeString(" draw:textarea-horizontal-align=\"center\"\n");
outs.writeString(" draw:textarea-vertical-align=\"middle\" draw:color-mode=\"standard\"\n");
outs.writeString(" draw:luminance=\"0%\" draw:contrast=\"0%\" draw:gamma=\"100%\" draw:red=\"0%\"\n");
outs.writeString(" draw:green=\"0%\" draw:blue=\"0%\" fo:clip=\"rect(0cm 0cm 0cm 0cm)\"\n");
outs.writeString(" draw:image-opacity=\"100%\" style:mirror=\"none\"/>\n");
outs.writeString("</style:style>\n");
outs.writeString("<style:style style:name=\"P1\" style:family=\"paragraph\">\n");
outs.writeString(" <style:paragraph-properties fo:text-align=\"center\"/>\n");
outs.writeString("</style:style>\n");
outs.writeString("</office:automatic-styles>\n");
outs.writeString("\n");
outs.writeString("<office:master-styles>\n");
outs.writeString("<draw:layer-set>\n");
outs.writeString(" <draw:layer draw:name=\"layout\"/>\n");
outs.writeString(" <draw:layer draw:name=\"background\"/>\n");
outs.writeString(" <draw:layer draw:name=\"backgroundobjects\"/>\n");
outs.writeString(" <draw:layer draw:name=\"controls\"/>\n");
outs.writeString(" <draw:layer draw:name=\"measurelines\"/>\n");
outs.writeString("</draw:layer-set>\n");
outs.writeString("\n");
outs.writeString("<style:master-page style:name=\"Default\"\n");
outs.writeString(" style:page-master-name=\"PM1\" draw:style-name=\"dp1\"/>\n");
outs.writeString("</office:master-styles>\n");
outs.writeString("\n");
outs.writeString("</office:document-styles>\n");
return true;
}
/**
* Write the header for the content.xml file
*/
bool OdfOutput::writeContentHeader(Writer &outs)
{
time_t tim;
time(&tim);
outs.writeString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
outs.writeString("\n");
outs.writeString("<!--\n");
outs.writeString("*************************************************************************\n");
outs.writeString(" file: content.xml\n");
outs.printf (" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
outs.writeString(" http://www.inkscape.org\n");
outs.writeString("*************************************************************************\n");
outs.writeString("-->\n");
outs.writeString("\n");
outs.writeString("<office:document-content\n");
outs.writeString(" xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
outs.writeString(" xmlns:style=\"urn:oasis:names:tc:opendocument:xmlns:style:1.0\"\n");
outs.writeString(" xmlns:text=\"urn:oasis:names:tc:opendocument:xmlns:text:1.0\"\n");
outs.writeString(" xmlns:table=\"urn:oasis:names:tc:opendocument:xmlns:table:1.0\"\n");
outs.writeString(" xmlns:draw=\"urn:oasis:names:tc:opendocument:xmlns:drawing:1.0\"\n");
outs.writeString(" xmlns:fo=\"urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0\"\n");
outs.writeString(" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
outs.writeString(" xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
outs.writeString(" xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
outs.writeString(" xmlns:number=\"urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0\"\n");
outs.writeString(" xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
outs.writeString(" xmlns:svg=\"urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0\"\n");
outs.writeString(" xmlns:chart=\"urn:oasis:names:tc:opendocument:xmlns:chart:1.0\"\n");
outs.writeString(" xmlns:dr3d=\"urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0\"\n");
outs.writeString(" xmlns:math=\"http://www.w3.org/1998/Math/MathML\"\n");
outs.writeString(" xmlns:form=\"urn:oasis:names:tc:opendocument:xmlns:form:1.0\"\n");
outs.writeString(" xmlns:script=\"urn:oasis:names:tc:opendocument:xmlns:script:1.0\"\n");
outs.writeString(" xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
outs.writeString(" xmlns:ooow=\"http://openoffice.org/2004/writer\"\n");
outs.writeString(" xmlns:oooc=\"http://openoffice.org/2004/calc\"\n");
outs.writeString(" xmlns:dom=\"http://www.w3.org/2001/xml-events\"\n");
outs.writeString(" xmlns:xforms=\"http://www.w3.org/2002/xforms\"\n");
outs.writeString(" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"\n");
outs.writeString(" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
outs.writeString(" xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
outs.writeString(" xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
outs.writeString(" office:version=\"1.0\">\n");
outs.writeString("<office:scripts/>\n");
outs.writeString("\n");
outs.writeString("<!--\n");
outs.writeString("*************************************************************************\n");
outs.writeString(" D R A W I N G\n");
outs.writeString(" This section is the heart of SVG-ODF conversion. We are\n");
outs.writeString(" starting with simple conversions, and will slowly evolve\n");
outs.writeString(" into a 'smarter' translation as time progresses. Any help\n");
outs.writeString(" in improving .odg export is welcome.\n");
outs.writeString("*************************************************************************\n");
outs.writeString("-->\n");
outs.writeString("\n");
outs.writeString("<office:body>\n");
outs.writeString("<office:drawing>\n");
outs.writeString("<draw:page draw:name=\"page1\" draw:style-name=\"dp1\"\n");
outs.writeString(" draw:master-page-name=\"Default\">\n");
outs.writeString("\n");
return true;
}
/**
* Write the footer for the content.xml file
*/
bool OdfOutput::writeContentFooter(Writer &outs)
{
outs.writeString("\n");
outs.writeString("</draw:page>\n");
outs.writeString("</office:drawing>\n");
outs.writeString("\n");
outs.writeString("<!-- ######### CONVERSION FROM SVG ENDS ######## -->\n");
outs.writeString("\n");
outs.writeString("</office:body>\n");
outs.writeString("</office:document-content>\n");
return true;
}
/**
* Write the content.xml file. Writes the namesspace headers, then
* calls writeTree().
*/
bool OdfOutput::writeContent(ZipFile &zf, Inkscape::XML::Node *node)
{
//Content.xml stream
BufferOutputStream cbouts;
OutputStreamWriter couts(cbouts);
if (!writeContentHeader(couts))
{
return false;
}
//Style.xml stream
BufferOutputStream sbouts;
OutputStreamWriter souts(sbouts);
if (!writeStyleHeader(souts))
{
return false;
}
//# Descend into the tree, doing all of our conversions
//# to both files at the same time
char *oldlocale = g_strdup (setlocale (LC_NUMERIC, NULL));
setlocale (LC_NUMERIC, "C");
if (!writeTree(couts, souts, node))
{
g_warning("Failed to convert SVG tree");
setlocale (LC_NUMERIC, oldlocale);
g_free (oldlocale);
return false;
}
setlocale (LC_NUMERIC, oldlocale);
g_free (oldlocale);
//# Finish content file
if (!writeContentFooter(couts))
{
return false;
}
ZipEntry *ze = zf.newEntry("content.xml", "ODF master content file");
ze->setUncompressedData(cbouts.getBuffer());
ze->finish();
//# Finish style file
if (!writeStyleFooter(souts))
{
return false;
}
ze = zf.newEntry("styles.xml", "ODF style file");
ze->setUncompressedData(sbouts.getBuffer());
ze->finish();
return true;
}
/**
* Resets class to its pristine condition, ready to use again
*/
void OdfOutput::reset()
{
metadata.clear();
styleTable.clear();
styleLookupTable.clear();
gradientTable.clear();
gradientLookupTable.clear();
imageTable.clear();
}
/**
* Descends into the SVG tree, mapping things to ODF when appropriate
*/
void OdfOutput::save(Inkscape::Extension::Output */*mod*/, SPDocument *doc, gchar const *filename)
{
reset();
documentUri = Inkscape::URI(filename);
ZipFile zf;
preprocess(zf, doc->rroot);
if (!writeManifest(zf))
{
g_warning("Failed to write manifest");
return;
}
if (!writeContent(zf, doc->rroot))
{
g_warning("Failed to write content");
return;
}
if (!writeMeta(zf))
{
g_warning("Failed to write metafile");
return;
}
if (!zf.writeFile(filename))
{
return;
}
}
/**
* This is the definition of PovRay output. This function just
* calls the extension system with the memory allocated XML that
* describes the data.
*/
void OdfOutput::init()
{
Inkscape::Extension::build_from_mem(
"<inkscape-extension xmlns=\"" INKSCAPE_EXTENSION_URI "\">\n"
"<name>" N_("OpenDocument Drawing Output") "</name>\n"
"<id>org.inkscape.output.odf</id>\n"
"<output>\n"
"<extension>.odg</extension>\n"
"<mimetype>text/x-povray-script</mimetype>\n"
"<filetypename>" N_("OpenDocument drawing (*.odg)") "</filetypename>\n"
"<filetypetooltip>" N_("OpenDocument drawing file") "</filetypetooltip>\n"
"</output>\n"
"</inkscape-extension>",
new OdfOutput());
}
/**
* Make sure that we are in the database
*/
bool OdfOutput::check (Inkscape::Extension::Extension */*module*/)
{
/* We don't need a Key
if (NULL == Inkscape::Extension::db.get(SP_MODULE_KEY_OUTPUT_POV))
return FALSE;
*/
return TRUE;
}
} //namespace Internal
} //namespace Extension
} //namespace Inkscape
//########################################################################
//# E N D O F F I L E
//########################################################################
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :