odf.cpp revision 7986287edfe168feb5d5107a327edbd594e465dd
/**
* OpenDocument <drawing> input and output
*
* This is an an entry in the extensions mechanism to begin to enable
* the inputting and outputting of OpenDocument Format (ODF) files from
* within Inkscape. Although the initial implementations will be very lossy
* do to the differences in the models of SVG and ODF, they will hopefully
* improve greatly with time.
*
*
* Authors:
* Bob Jamison
*
* Copyright (C) 2006 Bob Jamison
*
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "odf.h"
//# System includes
#include <stdio.h>
#include <time.h>
#include <vector>
//# Inkscape includes
#include "clear-n_.h"
#include "inkscape.h"
#include <style.h>
#include "libnr/n-art-bpath.h"
#include "xml/attribute-record.h"
#include "sp-image.h"
#include "sp-path.h"
#include "sp-text.h"
#include "sp-flowtext.h"
#include "text-editing.h"
//# DOM-specific includes
#include "dom/io/domstream.h"
#include "dom/io/bufferstream.h"
namespace Inkscape
{
namespace Extension
{
namespace Internal
{
//# Shorthand notation
//########################################################################
//# C L A S S SingularValueDecomposition
//########################################################################
#include <math.h>
/**
*
* ====================================================
*
* NOTE:
* This class is ported almost verbatim from the public domain
* JAMA Matrix package. It is modified to handle only 3x3 matrices
* and our NR::Matrix affine transform class. We give full
* attribution to them, along with many thanks. JAMA can be found at:
*
* ====================================================
*
* Singular Value Decomposition.
* <P>
* For an m-by-n matrix A with m >= n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
* an n-by-n orthogonal matrix V so that A = U*S*V'.
* <P>
* The singular values, sigma[k] = S[k][k], are ordered so that
* sigma[0] >= sigma[1] >= ... >= sigma[n-1].
* <P>
* The singular value decompostion always exists, so the constructor will
* never fail. The matrix condition number and the effective numerical
* rank can be computed from this decomposition.
*/
{
public:
/** Construct the singular value decomposition
@param A Rectangular matrix
@return Structure to access U, S and V.
*/
{
calculate();
}
virtual ~SingularValueDecomposition()
{}
/**
* Return the left singular vectors
* @return U
*/
/**
* Return the right singular vectors
* @return V
*/
/**
* Return the right singular vectors
* @return U x Vtransposed
*/
/**
* Return the s[0] value
*/
double getS0();
/**
* Return the s[1] value
*/
double getS1();
/**
* Return the s[2] value
*/
double getS2();
/**
* Two norm
* @return max(S)
*/
double norm2();
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double cond();
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int rank();
private:
void calculate();
double A[3][3];
double U[3][3];
double s[3];
double V[3][3];
};
static double svd_hypot(double a, double b)
{
double r;
{
r = b/a;
}
else if (b != 0)
{
r = a/b;
}
else
{
r = 0.0;
}
return r;
}
void SingularValueDecomposition::calculate()
{
// Initialize.
A[0][0] = matrix[0];
A[2][0] = 0.0;
A[2][1] = 0.0;
A[2][2] = 1.0;
double e[3];
double work[3];
bool wantu = true;
bool wantv = true;
int m = 3;
int n = 3;
int nu = 3;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = 2;
int nrt = 1;
for (int k = 0; k < 2; k++) {
if (k < nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
s[k] = 0;
for (int i = k; i < m; i++) {
s[k] = svd_hypot(s[k],A[i][k]);
}
if (s[k] != 0.0) {
if (A[k][k] < 0.0) {
s[k] = -s[k];
}
for (int i = k; i < m; i++) {
A[i][k] /= s[k];
}
A[k][k] += 1.0;
}
s[k] = -s[k];
}
for (int j = k+1; j < n; j++) {
if ((k < nct) & (s[k] != 0.0)) {
// Apply the transformation.
double t = 0;
for (int i = k; i < m; i++) {
t += A[i][k]*A[i][j];
}
t = -t/A[k][k];
for (int i = k; i < m; i++) {
A[i][j] += t*A[i][k];
}
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = A[k][j];
}
// Place the transformation in U for subsequent back
// multiplication.
for (int i = k; i < m; i++) {
U[i][k] = A[i][k];
}
}
if (k < nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
e[k] = 0;
for (int i = k+1; i < n; i++) {
e[k] = svd_hypot(e[k],e[i]);
}
if (e[k] != 0.0) {
if (e[k+1] < 0.0) {
e[k] = -e[k];
}
for (int i = k+1; i < n; i++) {
e[i] /= e[k];
}
e[k+1] += 1.0;
}
e[k] = -e[k];
if ((k+1 < m) & (e[k] != 0.0)) {
// Apply the transformation.
for (int i = k+1; i < m; i++) {
work[i] = 0.0;
}
for (int j = k+1; j < n; j++) {
for (int i = k+1; i < m; i++) {
work[i] += e[j]*A[i][j];
}
}
for (int j = k+1; j < n; j++) {
double t = -e[j]/e[k+1];
for (int i = k+1; i < m; i++) {
A[i][j] += t*work[i];
}
}
}
if (wantv) {
// Place the transformation in V for subsequent
// back multiplication.
for (int i = k+1; i < n; i++) {
V[i][k] = e[i];
}
}
}
}
// Set up the final bidiagonal matrix or order p.
int p = 3;
if (nct < n) {
}
if (m < p) {
s[p-1] = 0.0;
}
if (nrt+1 < p) {
}
e[p-1] = 0.0;
// If required, generate U.
if (wantu) {
for (int i = 0; i < m; i++) {
U[i][j] = 0.0;
}
U[j][j] = 1.0;
}
for (int k = nct-1; k >= 0; k--) {
if (s[k] != 0.0) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k; i < m; i++) {
t += U[i][k]*U[i][j];
}
t = -t/U[k][k];
for (int i = k; i < m; i++) {
U[i][j] += t*U[i][k];
}
}
for (int i = k; i < m; i++ ) {
U[i][k] = -U[i][k];
}
U[k][k] = 1.0 + U[k][k];
for (int i = 0; i < k-1; i++) {
U[i][k] = 0.0;
}
} else {
for (int i = 0; i < m; i++) {
U[i][k] = 0.0;
}
U[k][k] = 1.0;
}
}
}
// If required, generate V.
if (wantv) {
for (int k = n-1; k >= 0; k--) {
if ((k < nrt) & (e[k] != 0.0)) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k+1; i < n; i++) {
t += V[i][k]*V[i][j];
}
t = -t/V[k+1][k];
for (int i = k+1; i < n; i++) {
V[i][j] += t*V[i][k];
}
}
}
for (int i = 0; i < n; i++) {
V[i][k] = 0.0;
}
V[k][k] = 1.0;
}
}
// Main iteration loop for the singular values.
int pp = p-1;
int iter = 0;
//double eps = pow(2.0,-52.0);
//double tiny = pow(2.0,-966.0);
//let's just calculate these now
//a double can be e � 308.25, so this is safe
double eps = 2.22e-16;
double tiny = 1.6e-291;
while (p > 0) {
int k,kase;
// Here is where a test for too many iterations would go.
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; k--) {
if (k == -1) {
break;
}
if (fabs(e[k]) <=
e[k] = 0.0;
break;
}
}
if (k == p-2) {
kase = 4;
} else {
int ks;
if (ks == k) {
break;
}
s[ks] = 0.0;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p-1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
double f = e[p-2];
e[p-2] = 0.0;
for (int j = p-2; j >= k; j--) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
if (j != k) {
f = -sn*e[j-1];
}
if (wantv) {
for (int i = 0; i < n; i++) {
V[i][j] = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2: {
double f = e[k-1];
e[k-1] = 0.0;
for (int j = k; j < p; j++) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu) {
for (int i = 0; i < m; i++) {
U[i][j] = t;
}
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
double d = fabs(s[p-2]);
d = fabs(e[p-2]);
d = fabs(s[k]);
d = fabs(e[k]);
double shift = 0.0;
if ((b != 0.0) | (c != 0.0)) {
if (b < 0.0) {
}
}
// Chase zeros.
for (int j = k; j < p-1; j++) {
double t = svd_hypot(f,g);
double cs = f/t;
double sn = g/t;
if (j != k) {
e[j-1] = t;
}
g = sn*s[j+1];
if (wantv) {
for (int i = 0; i < n; i++) {
V[i][j] = t;
}
}
t = svd_hypot(f,g);
cs = f/t;
sn = g/t;
s[j] = t;
g = sn*e[j+1];
if (wantu && (j < m-1)) {
for (int i = 0; i < m; i++) {
U[i][j] = t;
}
}
}
e[p-2] = f;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if (s[k] <= 0.0) {
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv) {
for (int i = 0; i <= pp; i++) {
V[i][k] = -V[i][k];
}
}
}
// Order the singular values.
while (k < pp) {
if (s[k] >= s[k+1]) {
break;
}
double t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if (wantv && (k < n-1)) {
for (int i = 0; i < n; i++) {
t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
}
}
if (wantu && (k < m-1)) {
for (int i = 0; i < m; i++) {
t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
}
/**
* Return the left singular vectors
* @return U
*/
{
U[1][1], U[0][2], U[1][2]);
return mat;
}
/**
* Return the right singular vectors
* @return V
*/
{
V[1][1], V[0][2], V[1][2]);
return mat;
}
/**
* Return the right singular vectors
* @return U x Vtransposed
*/
{
//instead of sum(row*column), sum(column, column)
double a = U[0][0] * V[0][0] + U[1][0] * V[1][0];
double b = U[0][0] * V[0][1] + U[1][0] * V[1][1];
double c = U[0][1] * V[0][0] + U[1][1] * V[1][0];
double d = U[0][1] * V[0][1] + U[1][1] * V[1][1];
double e = U[0][2] * V[0][0] + U[1][2] * V[1][0];
double f = U[0][2] * V[0][1] + U[1][2] * V[1][1];
return mat;
}
/**
* Return the s[0] value
*/
double SingularValueDecomposition::getS0()
{
return s[0];
}
/**
* Return the s[1] value
*/
double SingularValueDecomposition::getS1()
{
return s[1];
}
/**
* Return the s[2] value
*/
double SingularValueDecomposition::getS2()
{
return s[2];
}
/**
* Two norm
* @return max(S)
*/
double SingularValueDecomposition::norm2()
{
return s[0];
}
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double SingularValueDecomposition::cond()
{
return s[0]/s[2];
}
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int SingularValueDecomposition::rank()
{
int r = 0;
for (int i = 0; i < 3; i++)
{
if (s[i] > tol)
r++;
}
return r;
}
//########################################################################
//# E N D C L A S S SingularValueDecomposition
//########################################################################
#define pi 3.14159
//#define pxToCm 0.0275
#define pxToCm 0.04
#define piToRad 0.0174532925
#define docHeightCm 22.86
//########################################################################
//# O U T P U T
//########################################################################
{
if (valstr)
return val;
}
{
{
ext = "";
}
else
{
}
return ext;
}
{
if (!tf.test_identity())
{
char buf[128];
}
return str;
}
/**
* An affine transformation Q may be decomposed via
* singular value decomposition into
*
* T = UDVt
* = (UDUt)UVt
* ('t' means transposed)
* where U and V are orthonormal matrices and D is a diagonal
* matrix. The decomposition may be interpreted as such:
* the image is firstly rotated by UVt. The image is then
* rotated by Ut, stretched in the coordinate directions
* by D then rotated back by U. The net effect is a slant operation in
* some tilt direction followed by an isotropic scale. If rot(x)
* is a matrix that rotates by x we can rewrite this as
* T = rot(-tau)( k 0, 0 1) rot(tau) rot(theta) S
* where S is a scaling matrix, k is a multiplying (contraction)
* factor related to slant, tau is the tilt direction and theta
* is the initial rotation angle.
*/
/*
static void analyzeTransform1(NR::Matrix &tf)
{
SingularValueDecomposition svd(tf);
double scale1 = svd.getS0();
double rotate = svd.getS1();
double scale2 = svd.getS2();
NR::Matrix u = svd.getU();
NR::Matrix v = svd.getV();
NR::Matrix uvt = svd.getUVt();
//g_message("s1:%f rot:%f s2:%f", scale1, rotate, scale2);
std::string us = formatTransform(u);
//g_message("u:%s", us.c_str());
std::string vs = formatTransform(v);
//g_message("v:%s", vs.c_str());
std::string uvts = formatTransform(uvt);
//g_message("uvt:%s", uvts.c_str());
}
*/
{
//Let's calculate some of the qualities of the transform directly
//Make a unit rect and transform it
bottom_left *= tf;
bottom_right *= tf;
double xskew_angle = 0.0;
double yskew_angle = 0.0;
{
if (dy_tr>0)
else
}
else
{
}
{
if (dx_bl>0)
else
}
else
{
}
xscale =
yscale =
//g_message("xskew:%f yskew:%f xscale:%f yscale:%f",
// xskew_angle, yskew_angle, xscale, yscale);
xskew = xskew_angle;
yskew = xskew_angle;
}
/**
* Method descends into the repr tree, converting image and style info
* into forms compatible in ODF.
*/
void
{
{
//g_message("image");
{
if (ext == ".jpeg")
ext = ".jpg";
{
char buf[64];
//g_message("oldpath:%s", oldUri.getNativePath().c_str());
//# if relative to the documentURI, get proper path
//g_message("native path:%s", pathName.c_str());
if (ze)
{
}
else
{
}
}
}
}
if (!reprobj)
return;
if (!SP_IS_ITEM(reprobj))
{
return;
}
{
{
char buf[16];
//g_message("## %s %lx", id.c_str(), (unsigned int)fillCol);
double opacityPercent = 100.0 *
}
{
char buf[16];
double opacityPercent = 100.0 *
}
//Look for existing identical style;
bool styleMatch = false;
{
{
//map to existing styleTable entry
//g_message("found duplicate style:%s", styleName.c_str());
styleMatch = true;
break;
}
}
//None found, make a new pair or entries
if (!styleMatch)
{
char buf[16];
}
}
}
{
outs.printf("<!DOCTYPE manifest:manifest PUBLIC \"-//OpenOffice.org//DTD Manifest 1.0//EN\" \"Manifest.dtd\">\n");
outs.printf("<manifest:manifest xmlns:manifest=\"urn:oasis:names:tc:opendocument:xmlns:manifest:1.0\">\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"application/vnd.oasis.opendocument.graphics\" manifest:full-path=\"/\"/>\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"content.xml\"/>\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"meta.xml\"/>\n");
{
if (ext == ".jpeg")
ext = ".jpg";
if (ext == ".gif")
else if (ext == ".png")
else if (ext == ".jpg")
}
//Make our entry
return true;
}
{
//Make our entry
return true;
}
{
outs.printf("<style:style style:name=\"gr1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
//## Dump our style table
{
if (s.fill != "none")
{
}
if (s.stroke != "none")
{
}
}
return true;
}
static void
{
bool closed = false;
{
{
case NR_LINETO:
break;
case NR_CURVETO:
break;
case NR_MOVETO_OPEN:
case NR_MOVETO:
if (closed)
break;
default:
break;
}
}
if (closed)
}
{
//# Get the SPItem, if applicable
if (!reprobj)
return true;
if (!SP_IS_ITEM(reprobj))
{
return true;
}
//Flip Y into document coordinates
double xskew;
double yskew;
double xscale;
double yscale;
double item_xskew;
double item_yskew;
double item_xscale;
double item_yscale;
//# Do our stuff
//g_message("##### %s #####", nodeName.c_str());
{
//# Iterate through the children
{
return false;
}
return true;
}
{
else
//# Iterate through the children
{
return false;
}
else
return true;
}
{
if (!SP_IS_IMAGE(item))
{
g_warning("<image> is not an SPImage. Why? ;-)");
return false;
}
//iwidth = pxToCm * ( ibbox.max()[NR::X] - ibbox.min()[NR::X] );
//iheight = pxToCm * ( ibbox.max()[NR::Y] - ibbox.min()[NR::Y] );
{
return false;
}
//no x or y. make them the translate transform, last one
if (itemTransformString.size() > 0)
return true;
}
else if (SP_IS_SHAPE(item))
{
//g_message("### %s is a shape", nodeName.c_str());
}
{
}
if (curve)
{
//### Default <path> output
{
}
x, y);
}
return true;
}
{
//AffineTransform trans = new AffineTransform();
//trans.scale(12.0, 12.0);
if (!writeStyle(outs))
{
g_warning("Failed to write styles");
return false;
}
{
g_warning("Failed to convert SVG tree");
return false;
}
//Make our entry
return true;
}
/**
* Descends into the SVG tree, mapping things to ODF when appropriate
*/
void
{
//g_message("native file:%s\n", uri);
styleTable.clear();
imageTable.clear();
if (!writeManifest(zf))
{
g_warning("Failed to write manifest");
return;
}
{
g_warning("Failed to write metafile");
return;
}
{
g_warning("Failed to write content");
return;
}
{
return;
}
}
/**
* This is the definition of PovRay output. This function just
* calls the extension system with the memory allocated XML that
* describes the data.
*/
void
{
"<inkscape-extension>\n"
"<id>org.inkscape.output.odf</id>\n"
"<output>\n"
"<extension>.odg</extension>\n"
"<mimetype>text/x-povray-script</mimetype>\n"
"</output>\n"
"</inkscape-extension>",
new OdfOutput());
}
/**
* Make sure that we are in the database
*/
bool
{
/* We don't need a Key
if (NULL == Inkscape::Extension::db.get(SP_MODULE_KEY_OUTPUT_POV))
return FALSE;
*/
return TRUE;
}
//########################################################################
//# I N P U T
//########################################################################
//#######################
//# L A T E R !!! :-)
//#######################
} //namespace Internal
} //namespace Extension
} //namespace Inkscape
//########################################################################
//# E N D O F F I L E
//########################################################################
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :