odf.cpp revision 1f27c925a64180ac16f2153a6c22da9b3cf20dc2
/**
* OpenDocument <drawing> input and output
*
* This is an an entry in the extensions mechanism to begin to enable
* the inputting and outputting of OpenDocument Format (ODF) files from
* within Inkscape. Although the initial implementations will be very lossy
* do to the differences in the models of SVG and ODF, they will hopefully
* improve greatly with time.
*
* http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/idl-definitions.html
*
* Authors:
* Bob Jamison
*
* Copyright (C) 2006 Bob Jamison
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "odf.h"
//# System includes
#include <stdio.h>
#include <time.h>
#include <vector>
//# Inkscape includes
#include "clear-n_.h"
#include "inkscape.h"
#include <style.h>
#include "display/curve.h"
#include "libnr/n-art-bpath.h"
#include "extension/system.h"
#include "xml/repr.h"
#include "xml/attribute-record.h"
#include "sp-image.h"
#include "sp-path.h"
#include "sp-text.h"
#include "sp-flowtext.h"
#include "svg/svg.h"
#include "text-editing.h"
//# DOM-specific includes
#include "dom/dom.h"
#include "dom/util/ziptool.h"
#include "dom/io/domstream.h"
#include "dom/io/bufferstream.h"
namespace Inkscape
{
namespace Extension
{
namespace Internal
{
//# Shorthand notation
typedef org::w3c::dom::DOMString DOMString;
typedef org::w3c::dom::io::OutputStreamWriter OutputStreamWriter;
typedef org::w3c::dom::io::BufferOutputStream BufferOutputStream;
//########################################################################
//# C L A S S SingularValueDecomposition
//########################################################################
#include <math.h>
/**
*
* ====================================================
*
* NOTE:
* This class is ported almost verbatim from the public domain
* JAMA Matrix package. It is modified to handle only 3x3 matrices
* and our NR::Matrix affine transform class. We give full
* attribution to them, along with many thanks. JAMA can be found at:
* http://math.nist.gov/javanumerics/jama
*
* ====================================================
*
* Singular Value Decomposition.
* <P>
* For an m-by-n matrix A with m >= n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
* an n-by-n orthogonal matrix V so that A = U*S*V'.
* <P>
* The singular values, sigma[k] = S[k][k], are ordered so that
* sigma[0] >= sigma[1] >= ... >= sigma[n-1].
* <P>
* The singular value decompostion always exists, so the constructor will
* never fail. The matrix condition number and the effective numerical
* rank can be computed from this decomposition.
*/
class SingularValueDecomposition
{
public:
/** Construct the singular value decomposition
@param A Rectangular matrix
@return Structure to access U, S and V.
*/
SingularValueDecomposition (const NR::Matrix &matrixArg)
{
matrix = matrixArg;
calculate();
}
virtual ~SingularValueDecomposition()
{}
/**
* Return the left singular vectors
* @return U
*/
NR::Matrix getU();
/**
* Return the right singular vectors
* @return V
*/
NR::Matrix getV();
/**
* Return the right singular vectors
* @return U x Vtransposed
*/
NR::Matrix getUVt();
/**
* Return the s[0] value
*/
double getS0();
/**
* Return the s[1] value
*/
double getS1();
/**
* Return the s[2] value
*/
double getS2();
/**
* Two norm
* @return max(S)
*/
double norm2();
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double cond();
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int rank();
private:
void calculate();
NR::Matrix matrix;
double A[3][3];
double U[3][3];
double s[3];
double V[3][3];
};
static double svd_hypot(double a, double b)
{
double r;
if (fabs(a) > fabs(b))
{
r = b/a;
r = fabs(a) * sqrt(1+r*r);
}
else if (b != 0)
{
r = a/b;
r = fabs(b) * sqrt(1+r*r);
}
else
{
r = 0.0;
}
return r;
}
void SingularValueDecomposition::calculate()
{
// Initialize.
A[0][0] = matrix[0];
A[0][1] = matrix[2];
A[0][2] = matrix[4];
A[1][0] = matrix[1];
A[1][1] = matrix[3];
A[1][2] = matrix[5];
A[2][0] = 0.0;
A[2][1] = 0.0;
A[2][2] = 1.0;
double e[3];
double work[3];
bool wantu = true;
bool wantv = true;
int m = 3;
int n = 3;
int nu = 3;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = 2;
int nrt = 1;
for (int k = 0; k < 2; k++) {
if (k < nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
s[k] = 0;
for (int i = k; i < m; i++) {
s[k] = svd_hypot(s[k],A[i][k]);
}
if (s[k] != 0.0) {
if (A[k][k] < 0.0) {
s[k] = -s[k];
}
for (int i = k; i < m; i++) {
A[i][k] /= s[k];
}
A[k][k] += 1.0;
}
s[k] = -s[k];
}
for (int j = k+1; j < n; j++) {
if ((k < nct) & (s[k] != 0.0)) {
// Apply the transformation.
double t = 0;
for (int i = k; i < m; i++) {
t += A[i][k]*A[i][j];
}
t = -t/A[k][k];
for (int i = k; i < m; i++) {
A[i][j] += t*A[i][k];
}
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = A[k][j];
}
if (wantu & (k < nct)) {
// Place the transformation in U for subsequent back
// multiplication.
for (int i = k; i < m; i++) {
U[i][k] = A[i][k];
}
}
if (k < nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
// Compute 2-norm without under/overflow.
e[k] = 0;
for (int i = k+1; i < n; i++) {
e[k] = svd_hypot(e[k],e[i]);
}
if (e[k] != 0.0) {
if (e[k+1] < 0.0) {
e[k] = -e[k];
}
for (int i = k+1; i < n; i++) {
e[i] /= e[k];
}
e[k+1] += 1.0;
}
e[k] = -e[k];
if ((k+1 < m) & (e[k] != 0.0)) {
// Apply the transformation.
for (int i = k+1; i < m; i++) {
work[i] = 0.0;
}
for (int j = k+1; j < n; j++) {
for (int i = k+1; i < m; i++) {
work[i] += e[j]*A[i][j];
}
}
for (int j = k+1; j < n; j++) {
double t = -e[j]/e[k+1];
for (int i = k+1; i < m; i++) {
A[i][j] += t*work[i];
}
}
}
if (wantv) {
// Place the transformation in V for subsequent
// back multiplication.
for (int i = k+1; i < n; i++) {
V[i][k] = e[i];
}
}
}
}
// Set up the final bidiagonal matrix or order p.
int p = 3;
if (nct < n) {
s[nct] = A[nct][nct];
}
if (m < p) {
s[p-1] = 0.0;
}
if (nrt+1 < p) {
e[nrt] = A[nrt][p-1];
}
e[p-1] = 0.0;
// If required, generate U.
if (wantu) {
for (int j = nct; j < nu; j++) {
for (int i = 0; i < m; i++) {
U[i][j] = 0.0;
}
U[j][j] = 1.0;
}
for (int k = nct-1; k >= 0; k--) {
if (s[k] != 0.0) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k; i < m; i++) {
t += U[i][k]*U[i][j];
}
t = -t/U[k][k];
for (int i = k; i < m; i++) {
U[i][j] += t*U[i][k];
}
}
for (int i = k; i < m; i++ ) {
U[i][k] = -U[i][k];
}
U[k][k] = 1.0 + U[k][k];
for (int i = 0; i < k-1; i++) {
U[i][k] = 0.0;
}
} else {
for (int i = 0; i < m; i++) {
U[i][k] = 0.0;
}
U[k][k] = 1.0;
}
}
}
// If required, generate V.
if (wantv) {
for (int k = n-1; k >= 0; k--) {
if ((k < nrt) & (e[k] != 0.0)) {
for (int j = k+1; j < nu; j++) {
double t = 0;
for (int i = k+1; i < n; i++) {
t += V[i][k]*V[i][j];
}
t = -t/V[k+1][k];
for (int i = k+1; i < n; i++) {
V[i][j] += t*V[i][k];
}
}
}
for (int i = 0; i < n; i++) {
V[i][k] = 0.0;
}
V[k][k] = 1.0;
}
}
// Main iteration loop for the singular values.
int pp = p-1;
int iter = 0;
//double eps = pow(2.0,-52.0);
//double tiny = pow(2.0,-966.0);
//let's just calculate these now
//a double can be e � 308.25, so this is safe
double eps = 2.22e-16;
double tiny = 1.6e-291;
while (p > 0) {
int k,kase;
// Here is where a test for too many iterations would go.
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; k--) {
if (k == -1) {
break;
}
if (fabs(e[k]) <=
tiny + eps*(fabs(s[k]) + fabs(s[k+1]))) {
e[k] = 0.0;
break;
}
}
if (k == p-2) {
kase = 4;
} else {
int ks;
for (ks = p-1; ks >= k; ks--) {
if (ks == k) {
break;
}
double t = (ks != p ? fabs(e[ks]) : 0.) +
(ks != k+1 ? fabs(e[ks-1]) : 0.);
if (fabs(s[ks]) <= tiny + eps*t) {
s[ks] = 0.0;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p-1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
double f = e[p-2];
e[p-2] = 0.0;
for (int j = p-2; j >= k; j--) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
if (j != k) {
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if (wantv) {
for (int i = 0; i < n; i++) {
t = cs*V[i][j] + sn*V[i][p-1];
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
V[i][j] = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2: {
double f = e[k-1];
e[k-1] = 0.0;
for (int j = k; j < p; j++) {
double t = svd_hypot(s[j],f);
double cs = s[j]/t;
double sn = f/t;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu) {
for (int i = 0; i < m; i++) {
t = cs*U[i][j] + sn*U[i][k-1];
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
U[i][j] = t;
}
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
double scale = fabs(s[p-1]);
double d = fabs(s[p-2]);
if (d>scale) scale=d;
d = fabs(e[p-2]);
if (d>scale) scale=d;
d = fabs(s[k]);
if (d>scale) scale=d;
d = fabs(e[k]);
if (d>scale) scale=d;
double sp = s[p-1]/scale;
double spm1 = s[p-2]/scale;
double epm1 = e[p-2]/scale;
double sk = s[k]/scale;
double ek = e[k]/scale;
double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
double c = (sp*epm1)*(sp*epm1);
double shift = 0.0;
if ((b != 0.0) | (c != 0.0)) {
shift = sqrt(b*b + c);
if (b < 0.0) {
shift = -shift;
}
shift = c/(b + shift);
}
double f = (sk + sp)*(sk - sp) + shift;
double g = sk*ek;
// Chase zeros.
for (int j = k; j < p-1; j++) {
double t = svd_hypot(f,g);
double cs = f/t;
double sn = g/t;
if (j != k) {
e[j-1] = t;
}
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
if (wantv) {
for (int i = 0; i < n; i++) {
t = cs*V[i][j] + sn*V[i][j+1];
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
V[i][j] = t;
}
}
t = svd_hypot(f,g);
cs = f/t;
sn = g/t;
s[j] = t;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if (wantu && (j < m-1)) {
for (int i = 0; i < m; i++) {
t = cs*U[i][j] + sn*U[i][j+1];
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
U[i][j] = t;
}
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if (s[k] <= 0.0) {
s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
if (wantv) {
for (int i = 0; i <= pp; i++) {
V[i][k] = -V[i][k];
}
}
}
// Order the singular values.
while (k < pp) {
if (s[k] >= s[k+1]) {
break;
}
double t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if (wantv && (k < n-1)) {
for (int i = 0; i < n; i++) {
t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
}
}
if (wantu && (k < m-1)) {
for (int i = 0; i < m; i++) {
t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
}
/**
* Return the left singular vectors
* @return U
*/
NR::Matrix SingularValueDecomposition::getU()
{
NR::Matrix mat(U[0][0], U[1][0], U[0][1],
U[1][1], U[0][2], U[1][2]);
return mat;
}
/**
* Return the right singular vectors
* @return V
*/
NR::Matrix SingularValueDecomposition::getV()
{
NR::Matrix mat(V[0][0], V[1][0], V[0][1],
V[1][1], V[0][2], V[1][2]);
return mat;
}
/**
* Return the right singular vectors
* @return U x Vtransposed
*/
NR::Matrix SingularValueDecomposition::getUVt()
{
//instead of sum(row*column), sum(column, column)
double a = U[0][0] * V[0][0] + U[1][0] * V[1][0];
double b = U[0][0] * V[0][1] + U[1][0] * V[1][1];
double c = U[0][1] * V[0][0] + U[1][1] * V[1][0];
double d = U[0][1] * V[0][1] + U[1][1] * V[1][1];
double e = U[0][2] * V[0][0] + U[1][2] * V[1][0];
double f = U[0][2] * V[0][1] + U[1][2] * V[1][1];
NR::Matrix mat(a, b, c, d, e, f);
return mat;
}
/**
* Return the s[0] value
*/
double SingularValueDecomposition::getS0()
{
return s[0];
}
/**
* Return the s[1] value
*/
double SingularValueDecomposition::getS1()
{
return s[1];
}
/**
* Return the s[2] value
*/
double SingularValueDecomposition::getS2()
{
return s[2];
}
/**
* Two norm
* @return max(S)
*/
double SingularValueDecomposition::norm2()
{
return s[0];
}
/**
* Two norm condition number
* @return max(S)/min(S)
*/
double SingularValueDecomposition::cond()
{
return s[0]/s[2];
}
/**
* Effective numerical matrix rank
* @return Number of nonnegligible singular values.
*/
int SingularValueDecomposition::rank()
{
double eps = pow(2.0,-52.0);
double tol = 3.0*s[0]*eps;
int r = 0;
for (int i = 0; i < 3; i++)
{
if (s[i] > tol)
r++;
}
return r;
}
//########################################################################
//# E N D C L A S S SingularValueDecomposition
//########################################################################
//#define pxToCm 0.0275
#define pxToCm 0.04
#define piToRad 0.0174532925
#define docHeightCm 22.86
//########################################################################
//# O U T P U T
//########################################################################
static std::string getAttribute( Inkscape::XML::Node *node, char *attrName)
{
std::string val;
char *valstr = (char *)node->attribute(attrName);
if (valstr)
val = (const char *)valstr;
return val;
}
static std::string getExtension(const std::string &fname)
{
std::string ext;
unsigned int pos = fname.rfind('.');
if (pos == fname.npos)
{
ext = "";
}
else
{
ext = fname.substr(pos);
}
return ext;
}
static std::string formatTransform(NR::Matrix &tf)
{
std::string str;
if (!tf.test_identity())
{
char buf[128];
snprintf(buf, 127, "matrix(%.3f %.3f %.3f %.3f %.3f %.3f)",
tf[0], tf[1], tf[2], tf[3], tf[4], tf[5]);
str = buf;
}
return str;
}
/**
* An affine transformation Q may be decomposed via
* singular value decomposition into
*
* T = UDVt
* = (UDUt)UVt
* ('t' means transposed)
* where U and V are orthonormal matrices and D is a diagonal
* matrix. The decomposition may be interpreted as such:
* the image is firstly rotated by UVt. The image is then
* rotated by Ut, stretched in the coordinate directions
* by D then rotated back by U. The net effect is a slant operation in
* some tilt direction followed by an isotropic scale. If rot(x)
* is a matrix that rotates by x we can rewrite this as
* T = rot(-tau)( k 0, 0 1) rot(tau) rot(theta) S
* where S is a scaling matrix, k is a multiplying (contraction)
* factor related to slant, tau is the tilt direction and theta
* is the initial rotation angle.
*/
static void analyzeTransform(NR::Matrix &tf)
{
SingularValueDecomposition svd(tf);
double scale1 = svd.getS0();
double rotate = svd.getS1();
double scale2 = svd.getS2();
NR::Matrix u = svd.getU();
NR::Matrix v = svd.getV();
NR::Matrix uvt = svd.getUVt();
g_message("s1:%f rot:%f s2:%f", scale1, rotate, scale2);
std::string us = formatTransform(u);
g_message("u:%s", us.c_str());
std::string vs = formatTransform(v);
g_message("v:%s", vs.c_str());
std::string uvts = formatTransform(uvt);
g_message("uvt:%s", uvts.c_str());
}
/**
* Method descends into the repr tree, converting image and style info
* into forms compatible in ODF.
*/
void
OdfOutput::preprocess(ZipFile &zf, Inkscape::XML::Node *node)
{
std::string nodeName = node->name();
std::string id = getAttribute(node, "id");
if (nodeName == "image" || nodeName == "svg:image")
{
//g_message("image");
std::string href = getAttribute(node, "xlink:href");
if (href.size() > 0)
{
std::string oldName = href;
std::string ext = getExtension(oldName);
if (ext == ".jpeg")
ext = ".jpg";
if (imageTable.find(oldName) == imageTable.end())
{
char buf[64];
snprintf(buf, 63, "Pictures/image%d%s",
imageTable.size(), ext.c_str());
std::string newName = buf;
imageTable[oldName] = newName;
std::string comment = "old name was: ";
comment.append(oldName);
URI oldUri(oldName);
//g_message("oldpath:%s", oldUri.getNativePath().c_str());
//# if relative to the documentURI, get proper path
URI resUri = documentUri.resolve(oldUri);
DOMString pathName = resUri.getNativePath();
//g_message("native path:%s", pathName.c_str());
ZipEntry *ze = zf.addFile(pathName, comment);
if (ze)
{
ze->setFileName(newName);
}
else
{
g_warning("Could not load image file '%s'", pathName.c_str());
}
}
}
}
SPObject *reprobj = SP_ACTIVE_DOCUMENT->getObjectByRepr(node);
if (!reprobj)
return;
if (!SP_IS_ITEM(reprobj))
{
return;
}
SPItem *item = SP_ITEM(reprobj);
SPStyle *style = SP_OBJECT_STYLE(item);
if (style && id.size()>0)
{
StyleInfo si;
if (style->fill.type == SP_PAINT_TYPE_COLOR)
{
guint32 fillCol =
sp_color_get_rgba32_ualpha(&style->fill.value.color, 0);
char buf[16];
int r = (fillCol >> 24) & 0xff;
int g = (fillCol >> 16) & 0xff;
int b = (fillCol >> 8) & 0xff;
//g_message("## %s %lx", id.c_str(), (unsigned int)fillCol);
snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
si.fillColor = buf;
si.fill = "solid";
double opacityPercent = 100.0 *
(SP_SCALE24_TO_FLOAT(style->fill_opacity.value));
snprintf(buf, 15, "%.2f%%", opacityPercent);
si.fillOpacity = buf;
}
if (style->stroke.type == SP_PAINT_TYPE_COLOR)
{
guint32 strokeCol =
sp_color_get_rgba32_ualpha(&style->stroke.value.color, 0);
char buf[16];
int r = (strokeCol >> 24) & 0xff;
int g = (strokeCol >> 16) & 0xff;
int b = (strokeCol >> 8) & 0xff;
snprintf(buf, 15, "#%02x%02x%02x", r, g, b);
si.strokeColor = buf;
snprintf(buf, 15, "%.2fpt", style->stroke_width.value);
si.strokeWidth = buf;
si.stroke = "solid";
double opacityPercent = 100.0 *
(SP_SCALE24_TO_FLOAT(style->stroke_opacity.value));
snprintf(buf, 15, "%.2f%%", opacityPercent);
si.strokeOpacity = buf;
}
//Look for existing identical style;
bool styleMatch = false;
std::vector<StyleInfo>::iterator iter;
for (iter=styleTable.begin() ; iter!=styleTable.end() ; iter++)
{
if (si.equals(*iter))
{
//map to existing styleTable entry
std::string styleName = iter->name;
//g_message("found duplicate style:%s", styleName.c_str());
styleLookupTable[id] = styleName;
styleMatch = true;
break;
}
}
//None found, make a new pair or entries
if (!styleMatch)
{
char buf[16];
snprintf(buf, 15, "style%d", styleTable.size());
std::string styleName = buf;
si.name = styleName;
styleTable.push_back(si);
styleLookupTable[id] = styleName;
}
}
for (Inkscape::XML::Node *child = node->firstChild() ;
child ; child = child->next())
preprocess(zf, child);
}
bool OdfOutput::writeManifest(ZipFile &zf)
{
BufferOutputStream bouts;
OutputStreamWriter outs(bouts);
time_t tim;
time(&tim);
outs.printf("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
outs.printf("<!DOCTYPE manifest:manifest PUBLIC \"-//OpenOffice.org//DTD Manifest 1.0//EN\" \"Manifest.dtd\">\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<!--\n");
outs.printf("*************************************************************************\n");
outs.printf(" file: manifest.xml\n");
outs.printf(" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
outs.printf(" http://www.inkscape.org\n");
outs.printf("*************************************************************************\n");
outs.printf("-->\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<manifest:manifest xmlns:manifest=\"urn:oasis:names:tc:opendocument:xmlns:manifest:1.0\">\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"application/vnd.oasis.opendocument.graphics\" manifest:full-path=\"/\"/>\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"content.xml\"/>\n");
outs.printf(" <manifest:file-entry manifest:media-type=\"text/xml\" manifest:full-path=\"meta.xml\"/>\n");
outs.printf(" <!--List our images here-->\n");
std::map<std::string, std::string>::iterator iter;
for (iter = imageTable.begin() ; iter!=imageTable.end() ; iter++)
{
std::string oldName = iter->first;
std::string newName = iter->second;
std::string ext = getExtension(oldName);
if (ext == ".jpeg")
ext = ".jpg";
outs.printf(" <manifest:file-entry manifest:media-type=\"");
if (ext == ".gif")
outs.printf("image/gif");
else if (ext == ".png")
outs.printf("image/png");
else if (ext == ".jpg")
outs.printf("image/jpeg");
outs.printf("\" manifest:full-path=\"");
outs.printf((char *)newName.c_str());
outs.printf("\"/>\n");
}
outs.printf("</manifest:manifest>\n");
outs.close();
//Make our entry
ZipEntry *ze = zf.newEntry("META-INF/manifest.xml", "ODF file manifest");
ze->setUncompressedData(bouts.getBuffer());
ze->finish();
return true;
}
bool OdfOutput::writeMeta(ZipFile &zf)
{
BufferOutputStream bouts;
OutputStreamWriter outs(bouts);
time_t tim;
time(&tim);
outs.printf("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<!--\n");
outs.printf("*************************************************************************\n");
outs.printf(" file: meta.xml\n");
outs.printf(" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
outs.printf(" http://www.inkscape.org\n");
outs.printf("*************************************************************************\n");
outs.printf("-->\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<office:document-meta\n");
outs.printf("xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
outs.printf("xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
outs.printf("xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
outs.printf("xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
outs.printf("xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
outs.printf("xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
outs.printf("xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
outs.printf("xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
outs.printf("office:version=\"1.0\">\n");
outs.printf("<office:meta>\n");
outs.printf(" <meta:generator>Inkscape.org - 0.44</meta:generator>\n");
outs.printf(" <meta:initial-creator>clark kent</meta:initial-creator>\n");
outs.printf(" <meta:creation-date>2006-04-13T17:12:29</meta:creation-date>\n");
outs.printf(" <dc:creator>clark kent</dc:creator>\n");
outs.printf(" <dc:date>2006-04-13T17:13:20</dc:date>\n");
outs.printf(" <dc:language>en-US</dc:language>\n");
outs.printf(" <meta:editing-cycles>2</meta:editing-cycles>\n");
outs.printf(" <meta:editing-duration>PT56S</meta:editing-duration>\n");
outs.printf(" <meta:user-defined meta:name=\"Info 1\"/>\n");
outs.printf(" <meta:user-defined meta:name=\"Info 2\"/>\n");
outs.printf(" <meta:user-defined meta:name=\"Info 3\"/>\n");
outs.printf(" <meta:user-defined meta:name=\"Info 4\"/>\n");
outs.printf(" <meta:document-statistic meta:object-count=\"2\"/>\n");
outs.printf("</office:meta>\n");
outs.printf("</office:document-meta>\n");
outs.printf("\n");
outs.printf("\n");
outs.close();
//Make our entry
ZipEntry *ze = zf.newEntry("meta.xml", "ODF info file");
ze->setUncompressedData(bouts.getBuffer());
ze->finish();
return true;
}
bool OdfOutput::writeStyle(Writer &outs)
{
outs.printf("<office:automatic-styles>\n");
outs.printf("<!-- ####### 'Standard' styles ####### -->\n");
outs.printf("<style:style style:name=\"dp1\" style:family=\"drawing-page\"/>\n");
outs.printf("<style:style style:name=\"gr1\" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
outs.printf(" <style:graphic-properties draw:stroke=\"none\" draw:fill=\"none\"\n");
outs.printf(" draw:textarea-horizontal-align=\"center\"\n");
outs.printf(" draw:textarea-vertical-align=\"middle\" draw:color-mode=\"standard\"\n");
outs.printf(" draw:luminance=\"0%\" draw:contrast=\"0%\" draw:gamma=\"100%\" draw:red=\"0%\"\n");
outs.printf(" draw:green=\"0%\" draw:blue=\"0%\" fo:clip=\"rect(0cm 0cm 0cm 0cm)\"\n");
outs.printf(" draw:image-opacity=\"100%\" style:mirror=\"none\"/>\n");
outs.printf("</style:style>\n");
outs.printf("<style:style style:name=\"P1\" style:family=\"paragraph\">\n");
outs.printf(" <style:paragraph-properties fo:text-align=\"center\"/>\n");
outs.printf("</style:style>\n");
//## Dump our style table
outs.printf("<!-- ####### Styles from Inkscape document ####### -->\n");
std::vector<StyleInfo>::iterator iter;
for (iter = styleTable.begin() ; iter != styleTable.end() ; iter++)
{
outs.printf("<style:style style:name=\"%s\"", iter->name.c_str());
StyleInfo s(*iter);
outs.printf(" style:family=\"graphic\" style:parent-style-name=\"standard\">\n");
outs.printf(" <style:graphic-properties");
outs.printf(" draw:fill=\"%s\" ", s.fill.c_str());
if (s.fill != "none")
{
outs.printf(" draw:fill-color=\"%s\" ", s.fillColor.c_str());
outs.printf(" draw:fill-opacity=\"%s\" ", s.fillOpacity.c_str());
}
outs.printf(" draw:stroke=\"%s\" ", s.stroke.c_str());
if (s.stroke != "none")
{
outs.printf(" svg:stroke-width=\"%s\" ", s.strokeWidth.c_str());
outs.printf(" svg:stroke-color=\"%s\" ", s.strokeColor.c_str());
outs.printf(" svg:stroke-opacity=\"%s\" ", s.strokeOpacity.c_str());
}
outs.printf("/>\n");
outs.printf("</style:style>\n");
}
outs.printf("</office:automatic-styles>\n");
outs.printf("\n");
return true;
}
static void
writePath(Writer &outs, NArtBpath const *bpath,
NR::Matrix &tf, double xoff, double yoff)
{
bool closed = false;
NArtBpath *bp = (NArtBpath *)bpath;
for ( ; bp->code != NR_END; bp++)
{
NR::Point const p1(bp->c(1) * tf);
NR::Point const p2(bp->c(2) * tf);
NR::Point const p3(bp->c(3) * tf);
double x1 = (p1[NR::X] * pxToCm - xoff) * 1000.0;
double y1 = (p1[NR::Y] * pxToCm - yoff) * 1000.0;
double x2 = (p2[NR::X] * pxToCm - xoff) * 1000.0;
double y2 = (p2[NR::Y] * pxToCm - yoff) * 1000.0;
double x3 = (p3[NR::X] * pxToCm - xoff) * 1000.0;
double y3 = (p3[NR::Y] * pxToCm - yoff) * 1000.0;
switch (bp->code)
{
case NR_LINETO:
outs.printf("L %.3f,%.3f ", x3 , y3);
break;
case NR_CURVETO:
outs.printf("C %.3f,%.3f %.3f,%.3f %.3f,%.3f ",
x1, y1, x2, y2, x3, y3);
break;
case NR_MOVETO_OPEN:
case NR_MOVETO:
if (closed)
outs.printf("z ");
closed = ( bp->code == NR_MOVETO );
outs.printf("M %.3f,%.3f ", x3 , y3);
break;
default:
break;
}
}
if (closed)
outs.printf("z");;
}
bool OdfOutput::writeTree(Writer &outs, Inkscape::XML::Node *node)
{
//# Get the SPItem, if applicable
SPObject *reprobj = SP_ACTIVE_DOCUMENT->getObjectByRepr(node);
if (!reprobj)
return true;
if (!SP_IS_ITEM(reprobj))
{
return true;
}
SPItem *item = SP_ITEM(reprobj);
std::string nodeName = node->name();
std::string id = getAttribute(node, "id");
NR::Matrix tf = sp_item_i2d_affine(item);
NR::Rect bbox = sp_item_bbox_desktop(item);
//Flip Y into document coordinates
double doc_height = sp_document_height(SP_ACTIVE_DOCUMENT);
NR::Matrix doc2dt_tf = NR::Matrix(NR::scale(1, -1));
doc2dt_tf = doc2dt_tf * NR::Matrix(NR::translate(0, doc_height));
tf = tf * doc2dt_tf;
bbox = bbox * doc2dt_tf;
double x = pxToCm * bbox.min()[NR::X];
double y = pxToCm * bbox.min()[NR::Y];
double width = pxToCm * ( bbox.max()[NR::X] - bbox.min()[NR::X] );
double height = pxToCm * ( bbox.max()[NR::Y] - bbox.min()[NR::Y] );
//# Do our stuff
SPCurve *curve = NULL;
//g_message("##### %s #####", nodeName.c_str());
if (nodeName == "svg" || nodeName == "svg:svg")
{
//# Iterate through the children
for (Inkscape::XML::Node *child = node->firstChild() ; child ; child = child->next())
{
if (!writeTree(outs, child))
return false;
}
return true;
}
else if (nodeName == "g" || nodeName == "svg:g")
{
if (id.size() > 0)
outs.printf("<draw:g id=\"%s\">\n", id.c_str());
else
outs.printf("<draw:g>\n");
//# Iterate through the children
for (Inkscape::XML::Node *child = node->firstChild() ; child ; child = child->next())
{
if (!writeTree(outs, child))
return false;
}
if (id.size() > 0)
outs.printf("</draw:g> <!-- id=\"%s\" -->\n", id.c_str());
else
outs.printf("</draw:g>\n");
return true;
}
else if (nodeName == "image" || nodeName == "svg:image")
{
if (!SP_IS_IMAGE(item))
{
g_warning("<image> is not an SPImage. Why? ;-)");
return false;
}
SPImage *img = SP_IMAGE(item);
double ix = img->x.computed;
double iy = img->y.computed;
double iwidth = img->width.computed;
double iheight = img->height.computed;
NR::Rect ibbox(NR::Point(ix, iy), NR::Point(iwidth, iheight));
ix = pxToCm * ibbox.min()[NR::X];
iy = pxToCm * ibbox.min()[NR::Y];
iwidth = pxToCm * ( ibbox.max()[NR::X] - ibbox.min()[NR::X] );
iheight = pxToCm * ( ibbox.max()[NR::Y] - ibbox.min()[NR::Y] );
NR::Matrix itemTransform = item->transform;
std::string itemTransformString = formatTransform(itemTransform);
g_message("trans:%s", itemTransformString.c_str());
analyzeTransform(itemTransform);
std::string href = getAttribute(node, "xlink:href");
std::map<std::string, std::string>::iterator iter = imageTable.find(href);
if (iter == imageTable.end())
{
g_warning("image '%s' not in table", href.c_str());
return false;
}
std::string newName = iter->second;
outs.printf("<draw:frame ");
if (id.size() > 0)
outs.printf("id=\"%s\" ", id.c_str());
outs.printf("draw:style-name=\"gr1\" draw:text-style-name=\"P1\" draw:layer=\"layout\" ");
outs.printf("svg:x=\"%.3fcm\" svg:y=\"%.3fcm\" ",
ix, iy);
outs.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
iwidth, iheight);
if (itemTransformString.size() > 0)
outs.printf("draw:transform=\"%s\" ", itemTransformString.c_str());
outs.printf(">\n");
outs.printf(" <draw:image xlink:href=\"%s\" xlink:type=\"simple\"\n",
newName.c_str());
outs.printf(" xlink:show=\"embed\" xlink:actuate=\"onLoad\">\n");
outs.printf(" <text:p/>\n");
outs.printf(" </draw:image>\n");
outs.printf("</draw:frame>\n");
return true;
}
else if (SP_IS_SHAPE(item))
{
//g_message("### %s is a shape", nodeName.c_str());
curve = sp_shape_get_curve(SP_SHAPE(item));
}
else if (SP_IS_TEXT(item) || SP_IS_FLOWTEXT(item))
{
curve = te_get_layout(item)->convertToCurves();
}
if (curve)
{
//### Default <path> output
outs.printf("<draw:path ");
if (id.size()>0)
outs.printf("id=\"%s\" ", id.c_str());
std::map<std::string, std::string>::iterator iter;
iter = styleLookupTable.find(id);
if (iter != styleLookupTable.end())
{
std::string styleName = iter->second;
outs.printf("draw:style-name=\"%s\" ", styleName.c_str());
}
outs.printf("draw:layer=\"layout\" svg:x=\"%.3fcm\" svg:y=\"%.3fcm\" ",
x, y);
outs.printf("svg:width=\"%.3fcm\" svg:height=\"%.3fcm\" ",
width, height);
outs.printf("svg:viewBox=\"0.0 0.0 %.3f %.3f\"\n",
width * 1000.0, height * 1000.0);
outs.printf(" svg:d=\"");
writePath(outs, curve->bpath, tf, x, y);
outs.printf("\"");
outs.printf(">\n");
outs.printf("</draw:path>\n");
sp_curve_unref(curve);
}
return true;
}
bool OdfOutput::writeContent(ZipFile &zf, Inkscape::XML::Node *node)
{
BufferOutputStream bouts;
OutputStreamWriter outs(bouts);
time_t tim;
time(&tim);
outs.printf("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<!--\n");
outs.printf("*************************************************************************\n");
outs.printf(" file: content.xml\n");
outs.printf(" Generated by Inkscape: %s", ctime(&tim)); //ctime has its own <cr>
outs.printf(" http://www.inkscape.org\n");
outs.printf("*************************************************************************\n");
outs.printf("-->\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<office:document-content\n");
outs.printf(" xmlns:office=\"urn:oasis:names:tc:opendocument:xmlns:office:1.0\"\n");
outs.printf(" xmlns:style=\"urn:oasis:names:tc:opendocument:xmlns:style:1.0\"\n");
outs.printf(" xmlns:text=\"urn:oasis:names:tc:opendocument:xmlns:text:1.0\"\n");
outs.printf(" xmlns:table=\"urn:oasis:names:tc:opendocument:xmlns:table:1.0\"\n");
outs.printf(" xmlns:draw=\"urn:oasis:names:tc:opendocument:xmlns:drawing:1.0\"\n");
outs.printf(" xmlns:fo=\"urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0\"\n");
outs.printf(" xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n");
outs.printf(" xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n");
outs.printf(" xmlns:meta=\"urn:oasis:names:tc:opendocument:xmlns:meta:1.0\"\n");
outs.printf(" xmlns:number=\"urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0\"\n");
outs.printf(" xmlns:presentation=\"urn:oasis:names:tc:opendocument:xmlns:presentation:1.0\"\n");
outs.printf(" xmlns:svg=\"urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0\"\n");
outs.printf(" xmlns:chart=\"urn:oasis:names:tc:opendocument:xmlns:chart:1.0\"\n");
outs.printf(" xmlns:dr3d=\"urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0\"\n");
outs.printf(" xmlns:math=\"http://www.w3.org/1998/Math/MathML\"\n");
outs.printf(" xmlns:form=\"urn:oasis:names:tc:opendocument:xmlns:form:1.0\"\n");
outs.printf(" xmlns:script=\"urn:oasis:names:tc:opendocument:xmlns:script:1.0\"\n");
outs.printf(" xmlns:ooo=\"http://openoffice.org/2004/office\"\n");
outs.printf(" xmlns:ooow=\"http://openoffice.org/2004/writer\"\n");
outs.printf(" xmlns:oooc=\"http://openoffice.org/2004/calc\"\n");
outs.printf(" xmlns:dom=\"http://www.w3.org/2001/xml-events\"\n");
outs.printf(" xmlns:xforms=\"http://www.w3.org/2002/xforms\"\n");
outs.printf(" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"\n");
outs.printf(" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"\n");
outs.printf(" xmlns:smil=\"urn:oasis:names:tc:opendocument:xmlns:smil-compatible:1.0\"\n");
outs.printf(" xmlns:anim=\"urn:oasis:names:tc:opendocument:xmlns:animation:1.0\"\n");
outs.printf(" office:version=\"1.0\">\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<office:scripts/>\n");
outs.printf("\n");
outs.printf("\n");
//AffineTransform trans = new AffineTransform();
//trans.scale(12.0, 12.0);
outs.printf("<!-- ######### CONVERSION FROM SVG STARTS ######## -->\n");
outs.printf("<!--\n");
outs.printf("*************************************************************************\n");
outs.printf(" S T Y L E S\n");
outs.printf(" Style entries have been pulled from the svg style and\n");
outs.printf(" representation attributes in the SVG tree. The tree elements\n");
outs.printf(" then refer to them by name, in the ODF manner\n");
outs.printf("*************************************************************************\n");
outs.printf("-->\n");
outs.printf("\n");
outs.printf("\n");
if (!writeStyle(outs))
{
g_warning("Failed to write styles");
return false;
}
outs.printf("\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<!--\n");
outs.printf("*************************************************************************\n");
outs.printf(" D R A W I N G\n");
outs.printf(" This section is the heart of SVG-ODF conversion. We are\n");
outs.printf(" starting with simple conversions, and will slowly evolve\n");
outs.printf(" into a 'smarter' translation as time progresses. Any help\n");
outs.printf(" in improving .odg export is welcome.\n");
outs.printf("*************************************************************************\n");
outs.printf("-->\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<office:body>\n");
outs.printf("<office:drawing>\n");
outs.printf("<draw:page draw:name=\"page1\" draw:style-name=\"dp1\"\n");
outs.printf(" draw:master-page-name=\"Default\">\n");
outs.printf("\n");
outs.printf("\n");
if (!writeTree(outs, node))
{
g_warning("Failed to convert SVG tree");
return false;
}
outs.printf("\n");
outs.printf("\n");
outs.printf("</draw:page>\n");
outs.printf("</office:drawing>\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<!-- ######### CONVERSION FROM SVG ENDS ######## -->\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("</office:body>\n");
outs.printf("</office:document-content>\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("\n");
outs.printf("<!--\n");
outs.printf("*************************************************************************\n");
outs.printf(" E N D O F F I L E\n");
outs.printf(" Have a nice day - ishmal\n");
outs.printf("*************************************************************************\n");
outs.printf("-->\n");
outs.printf("\n");
outs.printf("\n");
//Make our entry
ZipEntry *ze = zf.newEntry("content.xml", "ODF master content file");
ze->setUncompressedData(bouts.getBuffer());
ze->finish();
return true;
}
/**
* Descends into the SVG tree, mapping things to ODF when appropriate
*/
void
OdfOutput::save(Inkscape::Extension::Output *mod, SPDocument *doc, gchar const *uri)
{
//g_message("native file:%s\n", uri);
documentUri = URI(uri);
ZipFile zf;
styleTable.clear();
styleLookupTable.clear();
imageTable.clear();
preprocess(zf, doc->rroot);
if (!writeManifest(zf))
{
g_warning("Failed to write manifest");
return;
}
if (!writeMeta(zf))
{
g_warning("Failed to write metafile");
return;
}
if (!writeContent(zf, doc->rroot))
{
g_warning("Failed to write content");
return;
}
if (!zf.writeFile(uri))
{
return;
}
}
/**
* This is the definition of PovRay output. This function just
* calls the extension system with the memory allocated XML that
* describes the data.
*/
void
OdfOutput::init()
{
Inkscape::Extension::build_from_mem(
"<inkscape-extension>\n"
"<name>" N_("OpenDocument Drawing Output") "</name>\n"
"<id>org.inkscape.output.odf</id>\n"
"<output>\n"
"<extension>.odg</extension>\n"
"<mimetype>text/x-povray-script</mimetype>\n"
"<filetypename>" N_("OpenDocument drawing (*.odg)") "</filetypename>\n"
"<filetypetooltip>" N_("OpenDocument drawing file") "</filetypetooltip>\n"
"</output>\n"
"</inkscape-extension>",
new OdfOutput());
}
/**
* Make sure that we are in the database
*/
bool
OdfOutput::check (Inkscape::Extension::Extension *module)
{
/* We don't need a Key
if (NULL == Inkscape::Extension::db.get(SP_MODULE_KEY_OUTPUT_POV))
return FALSE;
*/
return TRUE;
}
//########################################################################
//# I N P U T
//########################################################################
//#######################
//# L A T E R !!! :-)
//#######################
} //namespace Internal
} //namespace Extension
} //namespace Inkscape
//########################################################################
//# E N D O F F I L E
//########################################################################
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :