nr-filter-specularlighting.cpp revision 259fbef23dd30285e7355b13c6ce524565fa0cb6
/*
* feSpecularLighting renderer
*
* Authors:
* Niko Kiirala <niko@kiirala.com>
* Jean-Rene Reinhard <jr@komite.net>
*
* Copyright (C) 2007 authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include <glib/gmessages.h>
#include <cmath>
#include "display/cairo-templates.h"
#include "display/cairo-utils.h"
#include "display/nr-3dutils.h"
#include "display/nr-filter-specularlighting.h"
#include "display/nr-filter-getalpha.h"
#include "display/nr-filter-slot.h"
#include "display/nr-filter-units.h"
#include "display/nr-filter-utils.h"
#include "display/nr-light.h"
#include "libnr/nr-rect-l.h"
namespace Inkscape {
namespace Filters {
FilterSpecularLighting::FilterSpecularLighting()
{
light_type = NO_LIGHT;
specularConstant = 1;
specularExponent = 1;
surfaceScale = 1;
lighting_color = 0xffffffff;
}
FilterPrimitive * FilterSpecularLighting::create() {
return new FilterSpecularLighting();
}
FilterSpecularLighting::~FilterSpecularLighting()
{}
//Investigating Phong Lighting model we should not take N.H but
//R.E which equals to 2*N.H^2 - 1
//replace the second line by
//gdouble scal = scalar_product((N), (H)); scal = 2 * scal * scal - 1;
//to get the expected formula
#define COMPUTE_INTER(inter, H, N, ks, speculaExponent) \
do {\
gdouble scal = NR::scalar_product((N), (H)); \
if (scal <= 0)\
(inter) = 0;\
else\
(inter) = (ks) * std::pow(scal, (specularExponent));\
}while(0)
struct SpecularLight : public SurfaceSynth {
SpecularLight(cairo_surface_t *bumpmap, double scale, double specular_constant,
double specular_exponent)
: SurfaceSynth(bumpmap)
, _scale(scale)
, _ks(specular_constant)
, _exp(specular_exponent)
{}
protected:
guint32 specularLighting(int x, int y, NR::Fvector const &halfway, NR::Fvector const &light_components) {
NR::Fvector normal = surfaceNormalAt(x, y, _scale);
double sp = NR::scalar_product(normal, halfway);
double k = sp <= 0.0 ? 0.0 : _ks * pow(sp, _exp);
guint32 r = CLAMP_D_TO_U8(k * light_components[LIGHT_RED]);
guint32 g = CLAMP_D_TO_U8(k * light_components[LIGHT_GREEN]);
guint32 b = CLAMP_D_TO_U8(k * light_components[LIGHT_BLUE]);
guint32 a = std::max(std::max(r, g), b);
r = premul_alpha(r, a);
g = premul_alpha(g, a);
b = premul_alpha(b, a);
ASSEMBLE_ARGB32(pxout, a,r,g,b)
return pxout;
}
double _scale, _ks, _exp;
};
struct SpecularDistantLight : public SpecularLight {
SpecularDistantLight(cairo_surface_t *bumpmap, SPFeDistantLight *light, guint32 color,
double scale, double specular_constant, double specular_exponent)
: SpecularLight(bumpmap, scale, specular_constant, specular_exponent)
{
DistantLight dl(light, color);
NR::Fvector lv;
dl.light_vector(lv);
dl.light_components(_light_components);
NR::normalized_sum(_halfway, lv, NR::EYE_VECTOR);
}
guint32 operator()(int x, int y) {
return specularLighting(x, y, _halfway, _light_components);
}
private:
NR::Fvector _halfway, _light_components;
};
struct SpecularPointLight : public SpecularLight {
SpecularPointLight(cairo_surface_t *bumpmap, SPFePointLight *light, guint32 color,
Geom::Matrix const &trans, double scale, double specular_constant,
double specular_exponent, double x0, double y0)
: SpecularLight(bumpmap, scale, specular_constant, specular_exponent)
, _light(light, color, trans)
, _x0(x0)
, _y0(y0)
{
_light.light_components(_light_components);
}
guint32 operator()(int x, int y) {
NR::Fvector light, halfway;
_light.light_vector(light, _x0 + x, _y0 + y, alphaAt(x, y)/255.0);
NR::normalized_sum(halfway, light, NR::EYE_VECTOR);
return specularLighting(x, y, halfway, _light_components);
}
private:
PointLight _light;
NR::Fvector _light_components;
double _x0, _y0;
};
struct SpecularSpotLight : public SpecularLight {
SpecularSpotLight(cairo_surface_t *bumpmap, SPFeSpotLight *light, guint32 color,
Geom::Matrix const &trans, double scale, double specular_constant,
double specular_exponent, double x0, double y0)
: SpecularLight(bumpmap, scale, specular_constant, specular_exponent)
, _light(light, color, trans)
, _x0(x0)
, _y0(y0)
{}
guint32 operator()(int x, int y) {
NR::Fvector light, halfway, light_components;
_light.light_vector(light, _x0 + x, _y0 + y, alphaAt(x, y)/255.0);
_light.light_components(light_components, light);
NR::normalized_sum(halfway, light, NR::EYE_VECTOR);
return specularLighting(x, y, halfway, light_components);
}
private:
SpotLight _light;
double _x0, _y0;
};
void FilterSpecularLighting::render_cairo(FilterSlot &slot)
{
cairo_surface_t *input = slot.getcairo(_input);
cairo_surface_t *out = ink_cairo_surface_create_same_size(input, CAIRO_CONTENT_COLOR_ALPHA);
NRRectL const &slot_area = slot.get_slot_area();
Geom::Matrix trans = slot.get_units().get_matrix_primitiveunits2pb();
double x0 = slot_area.x0, y0 = slot_area.y0;
double scale = surfaceScale * trans.descrim();
double ks = specularConstant;
double se = specularExponent;
switch (light_type) {
case DISTANT_LIGHT:
ink_cairo_surface_synthesize(out,
SpecularDistantLight(input, light.distant, lighting_color, scale, ks, se));
break;
case POINT_LIGHT:
ink_cairo_surface_synthesize(out,
SpecularPointLight(input, light.point, lighting_color, trans, scale, ks, se, x0, y0));
break;
case SPOT_LIGHT:
ink_cairo_surface_synthesize(out,
SpecularSpotLight(input, light.spot, lighting_color, trans, scale, ks, se, x0, y0));
break;
default: {
cairo_t *ct = cairo_create(out);
cairo_set_source_rgba(ct, 0,0,0,1);
cairo_set_operator(ct, CAIRO_OPERATOR_SOURCE);
cairo_paint(ct);
cairo_destroy(ct);
} break;
}
slot.set(_output, out);
cairo_surface_destroy(out);
}
/*
int FilterSpecularLighting::render(FilterSlot &slot, FilterUnits const &units) {
NRPixBlock *in = slot.get(_input);
if (!in) {
g_warning("Missing source image for feSpecularLighting (in=%d)", _input);
return 1;
}
NRPixBlock *out = new NRPixBlock;
//Fvector *L = NULL; //vector to the light
int w = in->area.x1 - in->area.x0;
int h = in->area.y1 - in->area.y0;
int x0 = in->area.x0;
int y0 = in->area.y0;
int i, j;
//As long as FilterRes and kernel unit is not supported we hardcode the
//default value
int dx = 1; //TODO setup
int dy = 1; //TODO setup
//surface scale
Geom::Matrix trans = units.get_matrix_primitiveunits2pb();
gdouble ss = surfaceScale * trans[0];
gdouble ks = specularConstant; //diffuse lighting constant
NR::Fvector L, N, LC, H;
gdouble inter;
nr_pixblock_setup_fast(out, NR_PIXBLOCK_MODE_R8G8B8A8N,
in->area.x0, in->area.y0, in->area.x1, in->area.y1,
true);
unsigned char *data_i = NR_PIXBLOCK_PX (in);
unsigned char *data_o = NR_PIXBLOCK_PX (out);
//No light, nothing to do
switch (light_type) {
case DISTANT_LIGHT:
//the light vector is constant
{
DistantLight *dl = new DistantLight(light.distant, lighting_color);
dl->light_vector(L);
dl->light_components(LC);
NR::normalized_sum(H, L, NR::EYE_VECTOR);
//finish the work
for (i = 0, j = 0; i < w*h; i++) {
NR::compute_surface_normal(N, ss, in, i / w, i % w, dx, dy);
COMPUTE_INTER(inter, N, H, ks, specularExponent);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_RED]); // CLAMP includes rounding!
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_GREEN]);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_BLUE]);
data_o[j] = MAX(MAX(data_o[j-3], data_o[j-2]), data_o[j-1]);
++j;
}
out->empty = FALSE;
delete dl;
}
break;
case POINT_LIGHT:
{
PointLight *pl = new PointLight(light.point, lighting_color, trans);
pl->light_components(LC);
//TODO we need a reference to the filter to determine primitiveUnits
//if objectBoundingBox is used, use a different matrix for light_vector
// UPDATE: trans is now correct matrix from primitiveUnits to
// pixblock coordinates
//finish the work
for (i = 0, j = 0; i < w*h; i++) {
NR::compute_surface_normal(N, ss, in, i / w, i % w, dx, dy);
pl->light_vector(L,
i % w + x0,
i / w + y0,
ss * (double) data_i[4*i+3]/ 255);
NR::normalized_sum(H, L, NR::EYE_VECTOR);
COMPUTE_INTER(inter, N, H, ks, specularExponent);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_RED]);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_GREEN]);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_BLUE]);
data_o[j] = MAX(MAX(data_o[j-3], data_o[j-2]), data_o[j-1]);
++j;
}
out->empty = FALSE;
delete pl;
}
break;
case SPOT_LIGHT:
{
SpotLight *sl = new SpotLight(light.spot, lighting_color, trans);
//TODO we need a reference to the filter to determine primitiveUnits
//if objectBoundingBox is used, use a different matrix for light_vector
// UPDATE: trans is now correct matrix from primitiveUnits to
// pixblock coordinates
//finish the work
for (i = 0, j = 0; i < w*h; i++) {
NR::compute_surface_normal(N, ss, in, i / w, i % w, dx, dy);
sl->light_vector(L,
i % w + x0,
i / w + y0,
ss * (double) data_i[4*i+3]/ 255);
sl->light_components(LC, L);
NR::normalized_sum(H, L, NR::EYE_VECTOR);
COMPUTE_INTER(inter, N, H, ks, specularExponent);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_RED]);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_GREEN]);
data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_BLUE]);
data_o[j] = MAX(MAX(data_o[j-3], data_o[j-2]), data_o[j-1]);
++j;
}
out->empty = FALSE;
delete sl;
}
break;
//else unknown light source, doing nothing
case NO_LIGHT:
default:
{
if (light_type != NO_LIGHT)
g_warning("unknown light source %d", light_type);
out->empty = false;
}
}
//finishing
slot.set(_output, out);
//nr_pixblock_release(in);
//delete in;
return 0;
}*/
void FilterSpecularLighting::area_enlarge(NRRectL &area, Geom::Matrix const &trans)
{
// TODO: support kernelUnitLength
area.x0 -= 1;
area.x1 += 1;
area.y0 -= 1;
area.y1 += 1;
}
} /* namespace Filters */
} /* namespace Inkscape */
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :