/*
* Infinite Straight Line
*
* Copyright 2008 Marco Cecchetti <mrcekets at gmail.com>
* Nathan Hurst
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <algorithm>
#include <2geom/line.h>
#include <2geom/math-utils.h>
namespace Geom
{
/**
* @class Line
* @brief Infinite line on a plane.
*
* A line is specified as two points through which it passes. Lines can be interpreted as functions
* \f$ f: (-\infty, \infty) \to \mathbb{R}^2\f$. Zero corresponds to the first (origin) point,
* one corresponds to the second (final) point. All other points are computed as a linear
* interpolation between those two: \f$p = (1-t) a + t b\f$. Many such functions have the same
* image and therefore represent the same lines; for example, adding \f$b-a\f$ to both points
* yields the same line.
*
* 2Geom can represent the same line in many ways by design: using a different representation
* would lead to precision loss. For example, a line from (1e30, 1e30) to (10,0) would actually
* evaluate to (0,0) at time 1 if it was stored as origin and normalized versor,
* or origin and angle.
*
* @ingroup Primitives
*/
/** @brief Set the line by solving the line equation.
* A line is a set of points that satisfies the line equation
* \f$Ax + By + C = 0\f$. This function changes the line so that its points
* satisfy the line equation with the given coefficients. */
void Line::setCoefficients (Coord a, Coord b, Coord c)
{
// degenerate case
if (a == 0 && b == 0) {
if (c != 0) {
THROW_LOGICALERROR("the passed coefficients give the empty set");
}
_initial = Point(0,0);
_final = Point(0,0);
return;
}
// The way final / initial points are set based on coefficients is somewhat unusual.
// This is done to make sure that calling coefficients() will give back
// (almost) the same values.
// vertical case
if (a == 0) {
// b must be nonzero
_initial = Point(-b/2, -c / b);
_final = _initial;
_final[X] = b/2;
return;
}
// horizontal case
if (b == 0) {
_initial = Point(-c / a, a/2);
_final = _initial;
_final[Y] = -a/2;
return;
}
// This gives reasonable results regardless of the magnitudes of a, b and c.
_initial = Point(-b/2,a/2);
_final = Point(b/2,-a/2);
Point offset(-c/(2*a), -c/(2*b));
_initial += offset;
_final += offset;
}
void Line::coefficients(Coord &a, Coord &b, Coord &c) const
{
Point v = vector().cw();
a = v[X];
b = v[Y];
c = cross(_initial, _final);
}
/** @brief Get the implicit line equation coefficients.
* Note that conversion to implicit form always causes loss of
* precision when dealing with lines that start far from the origin
* and end very close to it. It is recommended to normalize the line
* before converting it to implicit form.
* @return Vector with three values corresponding to the A, B and C
* coefficients of the line equation for this line. */
std::vector<Coord> Line::coefficients() const
{
std::vector<Coord> c(3);
coefficients(c[0], c[1], c[2]);
return c;
}
/** @brief Find intersection with an axis-aligned line.
* @param v Coordinate of the axis-aligned line
* @param d Which axis the coordinate is on. X means a vertical line, Y means a horizontal line.
* @return Time values at which this line intersects the query line. */
std::vector<Coord> Line::roots(Coord v, Dim2 d) const {
std::vector<Coord> result;
Coord r = root(v, d);
if (IS_FINITE(r)) {
result.push_back(r);
}
return result;
}
Coord Line::root(Coord v, Dim2 d) const
{
assert(d == X || d == Y);
Point vs = vector();
if (vs[d] != 0) {
return (v - _initial[d]) / vs[d];
} else {
return nan("");
}
}
boost::optional<LineSegment> Line::clip(Rect const &r) const
{
Point v = vector();
// handle horizontal and vertical lines first,
// since the root-based code below will break for them
for (unsigned i = 0; i < 2; ++i) {
Dim2 d = (Dim2) i;
Dim2 o = other_dimension(d);
if (v[d] != 0) continue;
if (r[d].contains(_initial[d])) {
Point a, b;
a[o] = r[o].min();
b[o] = r[o].max();
a[d] = b[d] = _initial[d];
if (v[o] > 0) {
return LineSegment(a, b);
} else {
return LineSegment(b, a);
}
} else {
return boost::none;
}
}
Interval xpart(root(r[X].min(), X), root(r[X].max(), X));
Interval ypart(root(r[Y].min(), Y), root(r[Y].max(), Y));
if (!xpart.isFinite() || !ypart.isFinite()) {
return boost::none;
}
OptInterval common = xpart & ypart;
if (common) {
Point p1 = pointAt(common->min()), p2 = pointAt(common->max());
LineSegment result(r.clamp(p1), r.clamp(p2));
return result;
} else {
return boost::none;
}
/* old implementation using coefficients:
if (fabs(b) > fabs(a)) {
p0 = Point(r[X].min(), (-c - a*r[X].min())/b);
if (p0[Y] < r[Y].min())
p0 = Point((-c - b*r[Y].min())/a, r[Y].min());
if (p0[Y] > r[Y].max())
p0 = Point((-c - b*r[Y].max())/a, r[Y].max());
p1 = Point(r[X].max(), (-c - a*r[X].max())/b);
if (p1[Y] < r[Y].min())
p1 = Point((-c - b*r[Y].min())/a, r[Y].min());
if (p1[Y] > r[Y].max())
p1 = Point((-c - b*r[Y].max())/a, r[Y].max());
} else {
p0 = Point((-c - b*r[Y].min())/a, r[Y].min());
if (p0[X] < r[X].min())
p0 = Point(r[X].min(), (-c - a*r[X].min())/b);
if (p0[X] > r[X].max())
p0 = Point(r[X].max(), (-c - a*r[X].max())/b);
p1 = Point((-c - b*r[Y].max())/a, r[Y].max());
if (p1[X] < r[X].min())
p1 = Point(r[X].min(), (-c - a*r[X].min())/b);
if (p1[X] > r[X].max())
p1 = Point(r[X].max(), (-c - a*r[X].max())/b);
}
return LineSegment(p0, p1); */
}
/** @brief Get a time value corresponding to a point.
* @param p Point on the line. If the point is not on the line,
* the returned value will be meaningless.
* @return Time value t such that \f$f(t) = p\f$.
* @see timeAtProjection */
Coord Line::timeAt(Point const &p) const
{
Point v = vector();
// degenerate case
if (v[X] == 0 && v[Y] == 0) {
return 0;
}
// use the coordinate that will give better precision
if (fabs(v[X]) > fabs(v[Y])) {
return (p[X] - _initial[X]) / v[X];
} else {
return (p[Y] - _initial[Y]) / v[Y];
}
}
/** @brief Create a transformation that maps one line to another.
* This will return a transformation \f$A\f$ such that
* \f$L_1(t) \cdot A = L_2(t)\f$, where \f$L_1\f$ is this line
* and \f$L_2\f$ is the line passed as the parameter. The returned
* transformation will preserve angles. */
Affine Line::transformTo(Line const &other) const
{
Affine result = Translate(-_initial);
result *= Rotate(angle_between(vector(), other.vector()));
result *= Scale(other.vector().length() / vector().length());
result *= Translate(other._initial);
return result;
}
std::vector<ShapeIntersection> Line::intersect(Line const &other) const
{
std::vector<ShapeIntersection> result;
Point v1 = vector();
Point v2 = other.vector();
Coord cp = cross(v1, v2);
if (cp == 0) return result;
Point odiff = other.initialPoint() - initialPoint();
Coord t1 = cross(odiff, v2) / cp;
Coord t2 = cross(odiff, v1) / cp;
result.push_back(ShapeIntersection(*this, other, t1, t2));
return result;
}
std::vector<ShapeIntersection> Line::intersect(Ray const &r) const
{
Line other(r);
std::vector<ShapeIntersection> result = intersect(other);
filter_ray_intersections(result, false, true);
return result;
}
std::vector<ShapeIntersection> Line::intersect(LineSegment const &ls) const
{
Line other(ls);
std::vector<ShapeIntersection> result = intersect(other);
filter_line_segment_intersections(result, false, true);
return result;
}
void filter_line_segment_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b)
{
Interval unit(0, 1);
std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend();
while (i != last) {
if ((a && !unit.contains(i->first)) || (b && !unit.contains(i->second))) {
xs.erase((++i).base());
} else {
++i;
}
}
}
void filter_ray_intersections(std::vector<ShapeIntersection> &xs, bool a, bool b)
{
Interval unit(0, 1);
std::vector<ShapeIntersection>::reverse_iterator i = xs.rbegin(), last = xs.rend();
while (i != last) {
if ((a && i->first < 0) || (b && i->second < 0)) {
xs.erase((++i).base());
} else {
++i;
}
}
}
namespace detail
{
inline
OptCrossing intersection_impl(Point const &v1, Point const &o1,
Point const &v2, Point const &o2)
{
Coord cp = cross(v1, v2);
if (cp == 0) return OptCrossing();
Point odiff = o2 - o1;
Crossing c;
c.ta = cross(odiff, v2) / cp;
c.tb = cross(odiff, v1) / cp;
return c;
}
OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i)
{
using std::swap;
OptCrossing crossing =
intersection_impl(r1.vector(), r1.origin(),
l2.vector(), l2.origin() );
if (crossing) {
if (crossing->ta < 0) {
return OptCrossing();
} else {
if (i != 0) {
swap(crossing->ta, crossing->tb);
}
return crossing;
}
}
if (are_near(r1.origin(), l2)) {
THROW_INFINITESOLUTIONS();
} else {
return OptCrossing();
}
}
OptCrossing intersection_impl( LineSegment const& ls1,
Line const& l2,
unsigned int i )
{
using std::swap;
OptCrossing crossing =
intersection_impl(ls1.finalPoint() - ls1.initialPoint(),
ls1.initialPoint(),
l2.vector(),
l2.origin() );
if (crossing) {
if ( crossing->getTime(0) < 0
|| crossing->getTime(0) > 1 )
{
return OptCrossing();
} else {
if (i != 0) {
swap((*crossing).ta, (*crossing).tb);
}
return crossing;
}
}
if (are_near(ls1.initialPoint(), l2)) {
THROW_INFINITESOLUTIONS();
} else {
return OptCrossing();
}
}
OptCrossing intersection_impl( LineSegment const& ls1,
Ray const& r2,
unsigned int i )
{
using std::swap;
Point direction = ls1.finalPoint() - ls1.initialPoint();
OptCrossing crossing =
intersection_impl( direction,
ls1.initialPoint(),
r2.vector(),
r2.origin() );
if (crossing) {
if ( (crossing->getTime(0) < 0)
|| (crossing->getTime(0) > 1)
|| (crossing->getTime(1) < 0) )
{
return OptCrossing();
} else {
if (i != 0) {
swap(crossing->ta, crossing->tb);
}
return crossing;
}
}
if ( are_near(r2.origin(), ls1) ) {
bool eqvs = (dot(direction, r2.vector()) > 0);
if ( are_near(ls1.initialPoint(), r2.origin()) && !eqvs) {
crossing->ta = crossing->tb = 0;
return crossing;
} else if ( are_near(ls1.finalPoint(), r2.origin()) && eqvs) {
if (i == 0) {
crossing->ta = 1;
crossing->tb = 0;
} else {
crossing->ta = 0;
crossing->tb = 1;
}
return crossing;
} else {
THROW_INFINITESOLUTIONS();
}
} else if ( are_near(ls1.initialPoint(), r2) ) {
THROW_INFINITESOLUTIONS();
} else {
OptCrossing no_crossing;
return no_crossing;
}
}
} // end namespace detail
OptCrossing intersection(Line const& l1, Line const& l2)
{
OptCrossing c = detail::intersection_impl(
l1.vector(), l1.origin(),
l2.vector(), l2.origin());
if (!c && distance(l1.origin(), l2) == 0) {
THROW_INFINITESOLUTIONS();
}
return c;
}
OptCrossing intersection(Ray const& r1, Ray const& r2)
{
OptCrossing crossing =
detail::intersection_impl( r1.vector(), r1.origin(),
r2.vector(), r2.origin() );
if (crossing)
{
if ( crossing->ta < 0
|| crossing->tb < 0 )
{
OptCrossing no_crossing;
return no_crossing;
}
else
{
return crossing;
}
}
if ( are_near(r1.origin(), r2) || are_near(r2.origin(), r1) )
{
if ( are_near(r1.origin(), r2.origin())
&& !are_near(r1.vector(), r2.vector()) )
{
crossing->ta = crossing->tb = 0;
return crossing;
}
else
{
THROW_INFINITESOLUTIONS();
}
}
else
{
OptCrossing no_crossing;
return no_crossing;
}
}
OptCrossing intersection( LineSegment const& ls1, LineSegment const& ls2 )
{
Point direction1 = ls1.finalPoint() - ls1.initialPoint();
Point direction2 = ls2.finalPoint() - ls2.initialPoint();
OptCrossing crossing =
detail::intersection_impl( direction1,
ls1.initialPoint(),
direction2,
ls2.initialPoint() );
if (crossing)
{
if ( crossing->getTime(0) < 0
|| crossing->getTime(0) > 1
|| crossing->getTime(1) < 0
|| crossing->getTime(1) > 1 )
{
OptCrossing no_crossing;
return no_crossing;
}
else
{
return crossing;
}
}
bool eqvs = (dot(direction1, direction2) > 0);
if ( are_near(ls2.initialPoint(), ls1) )
{
if ( are_near(ls1.initialPoint(), ls2.initialPoint()) && !eqvs )
{
crossing->ta = crossing->tb = 0;
return crossing;
}
else if ( are_near(ls1.finalPoint(), ls2.initialPoint()) && eqvs )
{
crossing->ta = 1;
crossing->tb = 0;
return crossing;
}
else
{
THROW_INFINITESOLUTIONS();
}
}
else if ( are_near(ls2.finalPoint(), ls1) )
{
if ( are_near(ls1.finalPoint(), ls2.finalPoint()) && !eqvs )
{
crossing->ta = crossing->tb = 1;
return crossing;
}
else if ( are_near(ls1.initialPoint(), ls2.finalPoint()) && eqvs )
{
crossing->ta = 0;
crossing->tb = 1;
return crossing;
}
else
{
THROW_INFINITESOLUTIONS();
}
}
else
{
OptCrossing no_crossing;
return no_crossing;
}
}
Line make_angle_bisector_line(Line const& l1, Line const& l2)
{
OptCrossing crossing;
try
{
crossing = intersection(l1, l2);
}
catch(InfiniteSolutions const &e)
{
return l1;
}
if (!crossing)
{
THROW_RANGEERROR("passed lines are parallel");
}
Point O = l1.pointAt(crossing->ta);
Point A = l1.pointAt(crossing->ta + 1);
double angle = angle_between(l1.vector(), l2.vector());
Point B = (angle > 0) ? l2.pointAt(crossing->tb + 1)
: l2.pointAt(crossing->tb - 1);
return make_angle_bisector_line(A, O, B);
}
} // end namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(substatement-open . 0))
indent-tabs-mode:nil
c-brace-offset:0
fill-column:99
End:
vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
*/