/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Virtual disk server
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/crc32.h>
#include <sys/ddi.h>
#include <sys/dkio.h>
#include <sys/file.h>
#include <sys/fs/hsfs_isospec.h>
#include <sys/mdeg.h>
#include <sys/mhd.h>
#include <sys/modhash.h>
#include <sys/note.h>
#include <sys/pathname.h>
#include <sys/sdt.h>
#include <sys/sunddi.h>
#include <sys/sunldi.h>
#include <sys/sysmacros.h>
#include <sys/vio_common.h>
#include <sys/vio_util.h>
#include <sys/vdsk_mailbox.h>
#include <sys/vdsk_common.h>
#include <sys/vtoc.h>
#include <sys/vfs.h>
#include <sys/stat.h>
#include <sys/scsi/impl/uscsi.h>
#include <sys/ontrap.h>
#include <vm/seg_map.h>
#define ONE_MEGABYTE (1ULL << 20)
#define ONE_GIGABYTE (1ULL << 30)
#define ONE_TERABYTE (1ULL << 40)
/* Virtual disk server initialization flags */
#define VDS_LDI 0x01
#define VDS_MDEG 0x02
/* Virtual disk server tunable parameters */
#define VDS_RETRIES 5
#define VDS_LDC_DELAY 1000 /* 1 msecs */
#define VDS_DEV_DELAY 10000000 /* 10 secs */
#define VDS_NCHAINS 32
/* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
#define VDS_NAME "virtual-disk-server"
#define VD_NAME "vd"
#define VD_VOLUME_NAME "vdisk"
#define VD_ASCIILABEL "Virtual Disk"
#define VD_CHANNEL_ENDPOINT "channel-endpoint"
#define VD_ID_PROP "id"
#define VD_BLOCK_DEVICE_PROP "vds-block-device"
#define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts"
#define VD_REG_PROP "reg"
/* Virtual disk initialization flags */
#define VD_DISK_READY 0x01
#define VD_LOCKING 0x02
#define VD_LDC 0x04
#define VD_DRING 0x08
#define VD_SID 0x10
#define VD_SEQ_NUM 0x20
#define VD_SETUP_ERROR 0x40
/* Number of backup labels */
#define VD_DSKIMG_NUM_BACKUP 5
/* Timeout for SCSI I/O */
#define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */
/*
* Default number of threads for the I/O queue. In many cases, we will not
* receive more than 8 I/O requests at the same time. However there are
* cases (for example during the OS installation) where we can have a lot
* more (up to the limit of the DRing size).
*/
#define VD_IOQ_NTHREADS 8
/* Maximum number of logical partitions */
#define VD_MAXPART (NDKMAP + 1)
/*
* By Solaris convention, slice/partition 2 represents the entire disk;
* unfortunately, this convention does not appear to be codified.
*/
#define VD_ENTIRE_DISK_SLICE 2
/* Logical block address for EFI */
#define VD_EFI_LBA_GPT 1 /* LBA of the GPT */
#define VD_EFI_LBA_GPE 2 /* LBA of the GPE */
#define VD_EFI_DEV_SET(dev, vdsk, ioctl) \
VDSK_EFI_DEV_SET(dev, vdsk, ioctl, \
(vdsk)->vdisk_bsize, (vdsk)->vdisk_size)
/*
* Flags defining the behavior for flushing asynchronous writes used to
* performed some write I/O requests.
*
* The VD_AWFLUSH_IMMEDIATE enables immediate flushing of asynchronous
* writes. This ensures that data are committed to the backend when the I/O
* request reply is sent to the guest domain so this prevents any data to
* be lost in case a service domain unexpectedly crashes.
*
* The flag VD_AWFLUSH_DEFER indicates that flushing is deferred to another
* thread while the request is immediatly marked as completed. In that case,
* a guest domain can a receive a reply that its write request is completed
* while data haven't been flushed to disk yet.
*
* Flags VD_AWFLUSH_IMMEDIATE and VD_AWFLUSH_DEFER are mutually exclusive.
*/
#define VD_AWFLUSH_IMMEDIATE 0x01 /* immediate flushing */
#define VD_AWFLUSH_DEFER 0x02 /* defer flushing */
#define VD_AWFLUSH_GROUP 0x04 /* group requests before flushing */
/* Driver types */
typedef enum vd_driver {
VD_DRIVER_UNKNOWN = 0, /* driver type unknown */
VD_DRIVER_DISK, /* disk driver */
VD_DRIVER_VOLUME /* volume driver */
} vd_driver_t;
#define VD_DRIVER_NAME_LEN 64
#define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
typedef struct vd_driver_type {
char name[VD_DRIVER_NAME_LEN]; /* driver name */
vd_driver_t type; /* driver type (disk or volume) */
} vd_driver_type_t;
/*
* There is no reliable way to determine if a device is representing a disk
* or a volume, especially with pseudo devices. So we maintain a list of well
* known drivers and the type of device they represent (either a disk or a
* volume).
*
* The list can be extended by adding a "driver-type-list" entry in vds.conf
* with the following syntax:
*
* driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
*
* Where:
* <driver> is the name of a driver (limited to 64 characters)
* <type> is either the string "disk" or "volume"
*
* Invalid entries in "driver-type-list" will be ignored.
*
* For example, the following line in vds.conf:
*
* driver-type-list="foo:disk","bar:volume";
*
* defines that "foo" is a disk driver, and driver "bar" is a volume driver.
*
* When a list is defined in vds.conf, it is checked before the built-in list
* (vds_driver_types[]) so that any definition from this list can be overriden
* using vds.conf.
*/
vd_driver_type_t vds_driver_types[] = {
{ "dad", VD_DRIVER_DISK }, /* Solaris */
{ "did", VD_DRIVER_DISK }, /* Sun Cluster */
{ "dlmfdrv", VD_DRIVER_DISK }, /* Hitachi HDLM */
{ "emcp", VD_DRIVER_DISK }, /* EMC Powerpath */
{ "lofi", VD_DRIVER_VOLUME }, /* Solaris */
{ "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */
{ "sd", VD_DRIVER_DISK }, /* Solaris */
{ "ssd", VD_DRIVER_DISK }, /* Solaris */
{ "vdc", VD_DRIVER_DISK }, /* Solaris */
{ "vxdmp", VD_DRIVER_DISK }, /* Veritas */
{ "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */
{ "zfs", VD_DRIVER_VOLUME } /* Solaris */
};
/* Return a cpp token as a string */
#define STRINGIZE(token) #token
/*
* Print a message prefixed with the current function name to the message log
* (and optionally to the console for verbose boots); these macros use cpp's
* concatenation of string literals and C99 variable-length-argument-list
* macros
*/
#define PRN(...) _PRN("?%s(): "__VA_ARGS__, "")
#define _PRN(format, ...) \
cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
/* Return a pointer to the "i"th vdisk dring element */
#define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \
(vd->dring + (i)*vd->descriptor_size))
/* Return the virtual disk client's type as a string (for use in messages) */
#define VD_CLIENT(vd) \
(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \
(((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \
(((vd)->xfer_mode == 0) ? "null client" : \
"unsupported client")))
/* Read disk label from a disk image */
#define VD_DSKIMG_LABEL_READ(vd, labelp) \
vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
0, sizeof (struct dk_label))
/* Write disk label to a disk image */
#define VD_DSKIMG_LABEL_WRITE(vd, labelp) \
vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
0, sizeof (struct dk_label))
/* Identify if a backend is a disk image */
#define VD_DSKIMG(vd) ((vd)->vdisk_type == VD_DISK_TYPE_DISK && \
((vd)->file || (vd)->volume))
/* Next index in a write queue */
#define VD_WRITE_INDEX_NEXT(vd, id) \
((((id) + 1) >= vd->dring_len)? 0 : (id) + 1)
/* Message for disk access rights reset failure */
#define VD_RESET_ACCESS_FAILURE_MSG \
"Fail to reset disk access rights for disk %s"
/*
* Specification of an MD node passed to the MDEG to filter any
* 'vport' nodes that do not belong to the specified node. This
* template is copied for each vds instance and filled in with
* the appropriate 'cfg-handle' value before being passed to the MDEG.
*/
static mdeg_prop_spec_t vds_prop_template[] = {
{ MDET_PROP_STR, "name", VDS_NAME },
{ MDET_PROP_VAL, "cfg-handle", NULL },
{ MDET_LIST_END, NULL, NULL }
};
#define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
/*
* Matching criteria passed to the MDEG to register interest
* in changes to 'virtual-device-port' nodes identified by their
* 'id' property.
*/
static md_prop_match_t vd_prop_match[] = {
{ MDET_PROP_VAL, VD_ID_PROP },
{ MDET_LIST_END, NULL }
};
static mdeg_node_match_t vd_match = {"virtual-device-port",
vd_prop_match};
/*
* Options for the VD_BLOCK_DEVICE_OPTS property.
*/
#define VD_OPT_RDONLY 0x1 /* read-only */
#define VD_OPT_SLICE 0x2 /* single slice */
#define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */
#define VD_OPTION_NLEN 128
typedef struct vd_option {
char vdo_name[VD_OPTION_NLEN];
uint64_t vdo_value;
} vd_option_t;
vd_option_t vd_bdev_options[] = {
{ "ro", VD_OPT_RDONLY },
{ "slice", VD_OPT_SLICE },
{ "excl", VD_OPT_EXCLUSIVE }
};
/* Debugging macros */
#ifdef DEBUG
static int vd_msglevel = 0;
#define PR0 if (vd_msglevel > 0) PRN
#define PR1 if (vd_msglevel > 1) PRN
#define PR2 if (vd_msglevel > 2) PRN
#define VD_DUMP_DRING_ELEM(elem) \
PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \
elem->hdr.dstate, \
elem->payload.operation, \
elem->payload.status, \
elem->payload.nbytes, \
elem->payload.addr, \
elem->payload.ncookies);
char *
vd_decode_state(int state)
{
char *str;
#define CASE_STATE(_s) case _s: str = #_s; break;
switch (state) {
CASE_STATE(VD_STATE_INIT)
CASE_STATE(VD_STATE_VER)
CASE_STATE(VD_STATE_ATTR)
CASE_STATE(VD_STATE_DRING)
CASE_STATE(VD_STATE_RDX)
CASE_STATE(VD_STATE_DATA)
default: str = "unknown"; break;
}
#undef CASE_STATE
return (str);
}
void
vd_decode_tag(vio_msg_t *msg)
{
char *tstr, *sstr, *estr;
#define CASE_TYPE(_s) case _s: tstr = #_s; break;
switch (msg->tag.vio_msgtype) {
CASE_TYPE(VIO_TYPE_CTRL)
CASE_TYPE(VIO_TYPE_DATA)
CASE_TYPE(VIO_TYPE_ERR)
default: tstr = "unknown"; break;
}
#undef CASE_TYPE
#define CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
switch (msg->tag.vio_subtype) {
CASE_SUBTYPE(VIO_SUBTYPE_INFO)
CASE_SUBTYPE(VIO_SUBTYPE_ACK)
CASE_SUBTYPE(VIO_SUBTYPE_NACK)
default: sstr = "unknown"; break;
}
#undef CASE_SUBTYPE
#define CASE_ENV(_s) case _s: estr = #_s; break;
switch (msg->tag.vio_subtype_env) {
CASE_ENV(VIO_VER_INFO)
CASE_ENV(VIO_ATTR_INFO)
CASE_ENV(VIO_DRING_REG)
CASE_ENV(VIO_DRING_UNREG)
CASE_ENV(VIO_RDX)
CASE_ENV(VIO_PKT_DATA)
CASE_ENV(VIO_DESC_DATA)
CASE_ENV(VIO_DRING_DATA)
default: estr = "unknown"; break;
}
#undef CASE_ENV
PR1("(%x/%x/%x) message : (%s/%s/%s)",
msg->tag.vio_msgtype, msg->tag.vio_subtype,
msg->tag.vio_subtype_env, tstr, sstr, estr);
}
#else /* !DEBUG */
#define PR0(...)
#define PR1(...)
#define PR2(...)
#define VD_DUMP_DRING_ELEM(elem)
#define vd_decode_state(_s) (NULL)
#define vd_decode_tag(_s) (NULL)
#endif /* DEBUG */
/*
* Soft state structure for a vds instance
*/
typedef struct vds {
uint_t initialized; /* driver inst initialization flags */
dev_info_t *dip; /* driver inst devinfo pointer */
ldi_ident_t ldi_ident; /* driver's identifier for LDI */
mod_hash_t *vd_table; /* table of virtual disks served */
mdeg_node_spec_t *ispecp; /* mdeg node specification */
mdeg_handle_t mdeg; /* handle for MDEG operations */
vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */
int num_drivers; /* num of extra driver types */
} vds_t;
/*
* Types of descriptor-processing tasks
*/
typedef enum vd_task_type {
VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */
VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */
} vd_task_type_t;
/*
* Structure describing the task for processing a descriptor
*/
typedef struct vd_task {
struct vd *vd; /* vd instance task is for */
vd_task_type_t type; /* type of descriptor task */
int index; /* dring elem index for task */
vio_msg_t *msg; /* VIO message task is for */
size_t msglen; /* length of message content */
vd_dring_payload_t *request; /* request task will perform */
struct buf buf; /* buf(9s) for I/O request */
ldc_mem_handle_t mhdl; /* task memory handle */
int status; /* status of processing task */
int (*completef)(struct vd_task *task); /* completion func ptr */
uint32_t write_index; /* index in the write_queue */
} vd_task_t;
/*
* Soft state structure for a virtual disk instance
*/
typedef struct vd {
uint64_t id; /* vdisk id */
uint_t initialized; /* vdisk initialization flags */
uint64_t operations; /* bitmask of VD_OPs exported */
vio_ver_t version; /* ver negotiated with client */
vds_t *vds; /* server for this vdisk */
ddi_taskq_t *startq; /* queue for I/O start tasks */
ddi_taskq_t *completionq; /* queue for completion tasks */
ddi_taskq_t *ioq; /* queue for I/O */
uint32_t write_index; /* next write index */
buf_t **write_queue; /* queue for async writes */
ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */
char device_path[MAXPATHLEN + 1]; /* vdisk device */
dev_t dev[V_NUMPAR]; /* dev numbers for slices */
int open_flags; /* open flags */
uint_t nslices; /* number of slices we export */
size_t vdisk_size; /* number of blocks in vdisk */
size_t vdisk_bsize; /* blk size of the vdisk */
vd_disk_type_t vdisk_type; /* slice or entire disk */
vd_disk_label_t vdisk_label; /* EFI or VTOC label */
vd_media_t vdisk_media; /* media type of backing dev. */
boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */
ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */
size_t backend_bsize; /* blk size of backend device */
int vio_bshift; /* shift for blk convertion */
boolean_t volume; /* is vDisk backed by volume */
boolean_t zvol; /* is vDisk backed by a zvol */
boolean_t file; /* is vDisk backed by a file? */
boolean_t scsi; /* is vDisk backed by scsi? */
vnode_t *file_vnode; /* file vnode */
size_t dskimg_size; /* size of disk image */
ddi_devid_t dskimg_devid; /* devid for disk image */
int efi_reserved; /* EFI reserved slice */
caddr_t flabel; /* fake label for slice type */
uint_t flabel_size; /* fake label size */
uint_t flabel_limit; /* limit of the fake label */
struct dk_geom dk_geom; /* synthetic for slice type */
struct extvtoc vtoc; /* synthetic for slice type */
vd_slice_t slices[VD_MAXPART]; /* logical partitions */
boolean_t ownership; /* disk ownership status */
ldc_status_t ldc_state; /* LDC connection state */
ldc_handle_t ldc_handle; /* handle for LDC comm */
size_t max_msglen; /* largest LDC message len */
vd_state_t state; /* client handshake state */
uint8_t xfer_mode; /* transfer mode with client */
uint32_t sid; /* client's session ID */
uint64_t seq_num; /* message sequence number */
uint64_t dring_ident; /* identifier of dring */
ldc_dring_handle_t dring_handle; /* handle for dring ops */
uint32_t descriptor_size; /* num bytes in desc */
uint32_t dring_len; /* number of dring elements */
uint8_t dring_mtype; /* dring mem map type */
caddr_t dring; /* address of dring */
caddr_t vio_msgp; /* vio msg staging buffer */
vd_task_t inband_task; /* task for inband descriptor */
vd_task_t *dring_task; /* tasks dring elements */
kmutex_t lock; /* protects variables below */
boolean_t enabled; /* is vdisk enabled? */
boolean_t reset_state; /* reset connection state? */
boolean_t reset_ldc; /* reset LDC channel? */
} vd_t;
/*
* Macros to manipulate the fake label (flabel) for single slice disks.
*
* If we fake a VTOC label then the fake label consists of only one block
* containing the VTOC label (struct dk_label).
*
* If we fake an EFI label then the fake label consists of a blank block
* followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
*
*/
#define VD_LABEL_VTOC_SIZE(lba) \
P2ROUNDUP(sizeof (struct dk_label), (lba))
#define VD_LABEL_EFI_SIZE(lba) \
P2ROUNDUP(2 * (lba) + sizeof (efi_gpe_t) * VD_MAXPART, \
(lba))
#define VD_LABEL_VTOC(vd) \
((struct dk_label *)(void *)((vd)->flabel))
#define VD_LABEL_EFI_GPT(vd, lba) \
((efi_gpt_t *)(void *)((vd)->flabel + (lba)))
#define VD_LABEL_EFI_GPE(vd, lba) \
((efi_gpe_t *)(void *)((vd)->flabel + 2 * (lba)))
typedef struct vds_operation {
char *namep;
uint8_t operation;
int (*start)(vd_task_t *task);
int (*complete)(vd_task_t *task);
} vds_operation_t;
typedef struct vd_ioctl {
uint8_t operation; /* vdisk operation */
const char *operation_name; /* vdisk operation name */
size_t nbytes; /* size of operation buffer */
int cmd; /* corresponding ioctl cmd */
const char *cmd_name; /* ioctl cmd name */
void *arg; /* ioctl cmd argument */
/* convert input vd_buf to output ioctl_arg */
int (*copyin)(void *vd_buf, size_t, void *ioctl_arg);
/* convert input ioctl_arg to output vd_buf */
void (*copyout)(void *ioctl_arg, void *vd_buf);
/* write is true if the operation writes any data to the backend */
boolean_t write;
} vd_ioctl_t;
/* Define trivial copyin/copyout conversion function flag */
#define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1)
#define VD_IDENTITY_OUT ((void (*)(void *, void *))-1)
static int vds_ldc_retries = VDS_RETRIES;
static int vds_ldc_delay = VDS_LDC_DELAY;
static int vds_dev_retries = VDS_RETRIES;
static int vds_dev_delay = VDS_DEV_DELAY;
static void *vds_state;
static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
static int vd_scsi_debug = USCSI_SILENT;
/*
* Number of threads in the taskq handling vdisk I/O. This can be set up to
* the size of the DRing which is the maximum number of I/O we can receive
* in parallel. Note that using a high number of threads can improve performance
* but this is going to consume a lot of resources if there are many vdisks.
*/
static int vd_ioq_nthreads = VD_IOQ_NTHREADS;
/*
* Tunable to define the behavior for flushing asynchronous writes used to
* performed some write I/O requests. The default behavior is to group as
* much asynchronous writes as possible and to flush them immediatly.
*
* If the tunable is set to 0 then explicit flushing is disabled. In that
* case, data will be flushed by traditional mechanism (like fsflush) but
* this might not happen immediatly.
*
*/
static int vd_awflush = VD_AWFLUSH_IMMEDIATE | VD_AWFLUSH_GROUP;
/*
* Tunable to define the behavior of the service domain if the vdisk server
* fails to reset disk exclusive access when a LDC channel is reset. When a
* LDC channel is reset the vdisk server will try to reset disk exclusive
* access by releasing any SCSI-2 reservation or resetting the disk. If these
* actions fail then the default behavior (vd_reset_access_failure = 0) is to
* print a warning message. This default behavior can be changed by setting
* the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
* cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
* the service domain to panic. In both cases, the reset of the service domain
* should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
*/
static int vd_reset_access_failure = 0;
/*
* Tunable for backward compatibility. When this variable is set to B_TRUE,
* all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
* slice disks whether or not they have the "slice" option set. This is
* to provide a simple backward compatibility mechanism when upgrading
* the vds driver and using a domain configuration created before the
* "slice" option was available.
*/
static boolean_t vd_volume_force_slice = B_FALSE;
/*
* The label of disk images created with some earlier versions of the virtual
* disk software is not entirely correct and have an incorrect v_sanity field
* (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
* these images because we are now validating that the disk label (and the
* sanity) is correct when a disk image is opened.
*
* This tunable is set to false to not validate the sanity field and ensure
* compatibility. If the tunable is set to true, we will do a strict checking
* of the sanity but this can create compatibility problems with old disk
* images.
*/
static boolean_t vd_dskimg_validate_sanity = B_FALSE;
/*
* Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
*/
static boolean_t vd_direct_mapped_drings = B_TRUE;
/*
* When a backend is exported as a single-slice disk then we entirely fake
* its disk label. So it can be exported either with a VTOC label or with
* an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
* single-slice disks will be exported with a VTOC label; and if it is set
* to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
* an EFI label.
*
* If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
* or volume device then it will be exported with the same type of label as
* defined on the device. Otherwise if the backend is a file then it will
* exported with the disk label type set in the vd_file_slice_label variable.
*
* Note that if the backend size is greater than 1TB then it will always be
* exported with an EFI label no matter what the setting is.
*/
static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
/*
* Tunable for backward compatibility. If this variable is set to B_TRUE then
* single-slice disks are exported as disks with only one slice instead of
* faking a complete disk partitioning.
*/
static boolean_t vd_slice_single_slice = B_FALSE;
/*
* Supported protocol version pairs, from highest (newest) to lowest (oldest)
*
* Each supported major version should appear only once, paired with (and only
* with) its highest supported minor version number (as the protocol requires
* supporting all lower minor version numbers as well)
*/
static const vio_ver_t vds_version[] = {{1, 1}};
static const size_t vds_num_versions =
sizeof (vds_version)/sizeof (vds_version[0]);
static void vd_free_dring_task(vd_t *vdp);
static int vd_setup_vd(vd_t *vd);
static int vd_setup_single_slice_disk(vd_t *vd);
static int vd_setup_slice_image(vd_t *vd);
static int vd_setup_disk_image(vd_t *vd);
static int vd_backend_check_size(vd_t *vd);
static boolean_t vd_enabled(vd_t *vd);
static ushort_t vd_lbl2cksum(struct dk_label *label);
static int vd_dskimg_validate_geometry(vd_t *vd);
static boolean_t vd_dskimg_is_iso_image(vd_t *vd);
static void vd_set_exported_operations(vd_t *vd);
static void vd_reset_access(vd_t *vd);
static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
static void vds_driver_types_free(vds_t *vds);
static void vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
struct dk_label *label);
static void vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
struct dk_geom *geom);
static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc);
extern int is_pseudo_device(dev_info_t *);
/*
* Function:
* vd_get_readable_size
*
* Description:
* Convert a given size in bytes to a human readable format in
* kilobytes, megabytes, gigabytes or terabytes.
*
* Parameters:
* full_size - the size to convert in bytes.
* size - the converted size.
* unit - the unit of the converted size: 'K' (kilobyte),
* 'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
*
* Return Code:
* none
*/
static void
vd_get_readable_size(size_t full_size, size_t *size, char *unit)
{
if (full_size < (1ULL << 20)) {
*size = full_size >> 10;
*unit = 'K'; /* Kilobyte */
} else if (full_size < (1ULL << 30)) {
*size = full_size >> 20;
*unit = 'M'; /* Megabyte */
} else if (full_size < (1ULL << 40)) {
*size = full_size >> 30;
*unit = 'G'; /* Gigabyte */
} else {
*size = full_size >> 40;
*unit = 'T'; /* Terabyte */
}
}
/*
* Function:
* vd_dskimg_io_params
*
* Description:
* Convert virtual disk I/O parameters (slice, block, length) to
* (offset, length) relative to the disk image and according to
* the virtual disk partitioning.
*
* Parameters:
* vd - disk on which the operation is performed.
* slice - slice to which is the I/O parameters apply.
* VD_SLICE_NONE indicates that parameters are
* are relative to the entire virtual disk.
* blkp - pointer to the starting block relative to the
* slice; return the starting block relative to
* the disk image.
* lenp - pointer to the number of bytes requested; return
* the number of bytes that can effectively be used.
*
* Return Code:
* 0 - I/O parameters have been successfully converted;
* blkp and lenp point to the converted values.
* ENODATA - no data are available for the given I/O parameters;
* This occurs if the starting block is past the limit
* of the slice.
* EINVAL - I/O parameters are invalid.
*/
static int
vd_dskimg_io_params(vd_t *vd, int slice, size_t *blkp, size_t *lenp)
{
size_t blk = *blkp;
size_t len = *lenp;
size_t offset, maxlen;
ASSERT(vd->file || VD_DSKIMG(vd));
ASSERT(len > 0);
ASSERT(vd->vdisk_bsize == DEV_BSIZE);
/*
* If a file is exported as a slice then we don't care about the vtoc.
* In that case, the vtoc is a fake mainly to make newfs happy and we
* handle any I/O as a raw disk access so that we can have access to the
* entire backend.
*/
if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
/* raw disk access */
offset = blk * DEV_BSIZE;
if (offset >= vd->dskimg_size) {
/* offset past the end of the disk */
PR0("offset (0x%lx) >= size (0x%lx)",
offset, vd->dskimg_size);
return (ENODATA);
}
maxlen = vd->dskimg_size - offset;
} else {
ASSERT(slice >= 0 && slice < V_NUMPAR);
/*
* v1.0 vDisk clients depended on the server not verifying
* the label of a unformatted disk. This "feature" is
* maintained for backward compatibility but all versions
* from v1.1 onwards must do the right thing.
*/
if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
vio_ver_is_supported(vd->version, 1, 1)) {
(void) vd_dskimg_validate_geometry(vd);
if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
PR0("Unknown disk label, can't do I/O "
"from slice %d", slice);
return (EINVAL);
}
}
if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
} else {
ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
}
if (blk >= vd->slices[slice].nblocks) {
/* address past the end of the slice */
PR0("req_addr (0x%lx) >= psize (0x%lx)",
blk, vd->slices[slice].nblocks);
return (ENODATA);
}
offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
}
/*
* If the requested size is greater than the size
* of the partition, truncate the read/write.
*/
if (len > maxlen) {
PR0("I/O size truncated to %lu bytes from %lu bytes",
maxlen, len);
len = maxlen;
}
/*
* We have to ensure that we are reading/writing into the mmap
* range. If we have a partial disk image (e.g. an image of
* s0 instead s2) the system can try to access slices that
* are not included into the disk image.
*/
if ((offset + len) > vd->dskimg_size) {
PR0("offset + nbytes (0x%lx + 0x%lx) > "
"dskimg_size (0x%lx)", offset, len, vd->dskimg_size);
return (EINVAL);
}
*blkp = offset / DEV_BSIZE;
*lenp = len;
return (0);
}
/*
* Function:
* vd_dskimg_rw
*
* Description:
* Read or write to a disk image. It handles the case where the disk
* image is a file or a volume exported as a full disk or a file
* exported as single-slice disk. Read or write to volumes exported as
* single slice disks are done by directly using the ldi interface.
*
* Parameters:
* vd - disk on which the operation is performed.
* slice - slice on which the operation is performed,
* VD_SLICE_NONE indicates that the operation
* is done using an absolute disk offset.
* operation - operation to execute: read (VD_OP_BREAD) or
* write (VD_OP_BWRITE).
* data - buffer where data are read to or written from.
* blk - starting block for the operation.
* len - number of bytes to read or write.
*
* Return Code:
* n >= 0 - success, n indicates the number of bytes read
* or written.
* -1 - error.
*/
static ssize_t
vd_dskimg_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t offset,
size_t len)
{
ssize_t resid;
struct buf buf;
int status;
ASSERT(vd->file || VD_DSKIMG(vd));
ASSERT(len > 0);
ASSERT(vd->vdisk_bsize == DEV_BSIZE);
if ((status = vd_dskimg_io_params(vd, slice, &offset, &len)) != 0)
return ((status == ENODATA)? 0: -1);
if (vd->volume) {
bioinit(&buf);
buf.b_flags = B_BUSY |
((operation == VD_OP_BREAD)? B_READ : B_WRITE);
buf.b_bcount = len;
buf.b_lblkno = offset;
buf.b_edev = vd->dev[0];
buf.b_un.b_addr = data;
/*
* We use ldi_strategy() and not ldi_read()/ldi_write() because
* the read/write functions of the underlying driver may try to
* lock pages of the data buffer, and this requires the data
* buffer to be kmem_alloc'ed (and not allocated on the stack).
*
* Also using ldi_strategy() ensures that writes are immediatly
* commited and not cached as this may be the case with
* ldi_write() (for example with a ZFS volume).
*/
if (ldi_strategy(vd->ldi_handle[0], &buf) != 0) {
biofini(&buf);
return (-1);
}
if (biowait(&buf) != 0) {
biofini(&buf);
return (-1);
}
resid = buf.b_resid;
biofini(&buf);
ASSERT(resid <= len);
return (len - resid);
}
ASSERT(vd->file);
status = vn_rdwr((operation == VD_OP_BREAD)? UIO_READ : UIO_WRITE,
vd->file_vnode, data, len, offset * DEV_BSIZE, UIO_SYSSPACE, FSYNC,
RLIM64_INFINITY, kcred, &resid);
if (status != 0)
return (-1);
return (len);
}
/*
* Function:
* vd_build_default_label
*
* Description:
* Return a default label for a given disk size. This is used when the disk
* does not have a valid VTOC so that the user can get a valid default
* configuration. The default label has all slice sizes set to 0 (except
* slice 2 which is the entire disk) to force the user to write a valid
* label onto the disk image.
*
* Parameters:
* disk_size - the disk size in bytes
* bsize - the disk block size in bytes
* label - the returned default label.
*
* Return Code:
* none.
*/
static void
vd_build_default_label(size_t disk_size, size_t bsize, struct dk_label *label)
{
size_t size;
char unit;
ASSERT(bsize > 0);
bzero(label, sizeof (struct dk_label));
/*
* Ideally we would like the cylinder size (nsect * nhead) to be the
* same whatever the disk size is. That way the VTOC label could be
* easily updated in case the disk size is increased (keeping the
* same cylinder size allows to preserve the existing partitioning
* when updating the VTOC label). But it is not possible to have
* a fixed cylinder size and to cover all disk size.
*
* So we define different cylinder sizes depending on the disk size.
* The cylinder size is chosen so that we don't have too few cylinders
* for a small disk image, or so many on a big disk image that you
* waste space for backup superblocks or cylinder group structures.
* Also we must have a resonable number of cylinders and sectors so
* that newfs can run using default values.
*
* +-----------+--------+---------+--------+
* | disk_size | < 2MB | 2MB-4GB | >= 8GB |
* +-----------+--------+---------+--------+
* | nhead | 1 | 1 | 96 |
* | nsect | 200 | 600 | 768 |
* +-----------+--------+---------+--------+
*
* Other parameters are computed from these values:
*
* pcyl = disk_size / (nhead * nsect * 512)
* acyl = (pcyl > 2)? 2 : 0
* ncyl = pcyl - acyl
*
* The maximum number of cylinder is 65535 so this allows to define a
* geometry for a disk size up to 65535 * 96 * 768 * 512 = 2.24 TB
* which is more than enough to cover the maximum size allowed by the
* extended VTOC format (2TB).
*/
if (disk_size >= 8 * ONE_GIGABYTE) {
label->dkl_nhead = 96;
label->dkl_nsect = 768;
} else if (disk_size >= 2 * ONE_MEGABYTE) {
label->dkl_nhead = 1;
label->dkl_nsect = 600;
} else {
label->dkl_nhead = 1;
label->dkl_nsect = 200;
}
label->dkl_pcyl = disk_size /
(label->dkl_nsect * label->dkl_nhead * bsize);
if (label->dkl_pcyl == 0)
label->dkl_pcyl = 1;
label->dkl_acyl = 0;
if (label->dkl_pcyl > 2)
label->dkl_acyl = 2;
label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
label->dkl_write_reinstruct = 0;
label->dkl_read_reinstruct = 0;
label->dkl_rpm = 7200;
label->dkl_apc = 0;
label->dkl_intrlv = 0;
PR0("requested disk size: %ld bytes\n", disk_size);
PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
label->dkl_nhead, label->dkl_nsect);
PR0("provided disk size: %ld bytes\n", (uint64_t)
(label->dkl_pcyl * label->dkl_nhead *
label->dkl_nsect * bsize));
vd_get_readable_size(disk_size, &size, &unit);
/*
* We must have a correct label name otherwise format(1m) will
* not recognized the disk as labeled.
*/
(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
"SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
size, unit,
label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
label->dkl_nsect);
/* default VTOC */
label->dkl_vtoc.v_version = V_EXTVERSION;
label->dkl_vtoc.v_nparts = V_NUMPAR;
label->dkl_vtoc.v_sanity = VTOC_SANE;
label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
label->dkl_nhead * label->dkl_nsect;
label->dkl_magic = DKL_MAGIC;
label->dkl_cksum = vd_lbl2cksum(label);
}
/*
* Function:
* vd_dskimg_set_vtoc
*
* Description:
* Set the vtoc of a disk image by writing the label and backup
* labels into the disk image backend.
*
* Parameters:
* vd - disk on which the operation is performed.
* label - the data to be written.
*
* Return Code:
* 0 - success.
* n > 0 - error, n indicates the errno code.
*/
static int
vd_dskimg_set_vtoc(vd_t *vd, struct dk_label *label)
{
size_t blk, sec, cyl, head, cnt;
ASSERT(VD_DSKIMG(vd));
if (VD_DSKIMG_LABEL_WRITE(vd, label) < 0) {
PR0("fail to write disk label");
return (EIO);
}
/*
* Backup labels are on the last alternate cylinder's
* first five odd sectors.
*/
if (label->dkl_acyl == 0) {
PR0("no alternate cylinder, can not store backup labels");
return (0);
}
cyl = label->dkl_ncyl + label->dkl_acyl - 1;
head = label->dkl_nhead - 1;
blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
(head * label->dkl_nsect);
/*
* Write the backup labels. Make sure we don't try to write past
* the last cylinder.
*/
sec = 1;
for (cnt = 0; cnt < VD_DSKIMG_NUM_BACKUP; cnt++) {
if (sec >= label->dkl_nsect) {
PR0("not enough sector to store all backup labels");
return (0);
}
if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
(caddr_t)label, blk + sec, sizeof (struct dk_label)) < 0) {
PR0("error writing backup label at block %lu\n",
blk + sec);
return (EIO);
}
PR1("wrote backup label at block %lu\n", blk + sec);
sec += 2;
}
return (0);
}
/*
* Function:
* vd_dskimg_get_devid_block
*
* Description:
* Return the block number where the device id is stored.
*
* Parameters:
* vd - disk on which the operation is performed.
* blkp - pointer to the block number
*
* Return Code:
* 0 - success
* ENOSPC - disk has no space to store a device id
*/
static int
vd_dskimg_get_devid_block(vd_t *vd, size_t *blkp)
{
diskaddr_t spc, head, cyl;
ASSERT(VD_DSKIMG(vd));
if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
/*
* If no label is defined we don't know where to find
* a device id.
*/
return (ENOSPC);
}
if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
/*
* For an EFI disk, the devid is at the beginning of
* the reserved slice
*/
if (vd->efi_reserved == -1) {
PR0("EFI disk has no reserved slice");
return (ENOSPC);
}
*blkp = vd->slices[vd->efi_reserved].start;
return (0);
}
ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
/* this geometry doesn't allow us to have a devid */
if (vd->dk_geom.dkg_acyl < 2) {
PR0("not enough alternate cylinder available for devid "
"(acyl=%u)", vd->dk_geom.dkg_acyl);
return (ENOSPC);
}
/* the devid is in on the track next to the last cylinder */
cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
head = vd->dk_geom.dkg_nhead - 1;
*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
(head * vd->dk_geom.dkg_nsect) + 1;
return (0);
}
/*
* Return the checksum of a disk block containing an on-disk devid.
*/
static uint_t
vd_dkdevid2cksum(struct dk_devid *dkdevid)
{
uint_t chksum, *ip;
int i;
chksum = 0;
ip = (void *)dkdevid;
for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
chksum ^= ip[i];
return (chksum);
}
/*
* Function:
* vd_dskimg_read_devid
*
* Description:
* Read the device id stored on a disk image.
*
* Parameters:
* vd - disk on which the operation is performed.
* devid - the return address of the device ID.
*
* Return Code:
* 0 - success
* EIO - I/O error while trying to access the disk image
* EINVAL - no valid device id was found
* ENOSPC - disk has no space to store a device id
*/
static int
vd_dskimg_read_devid(vd_t *vd, ddi_devid_t *devid)
{
struct dk_devid *dkdevid;
size_t blk;
uint_t chksum;
int status, sz;
ASSERT(vd->vdisk_bsize == DEV_BSIZE);
if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
return (status);
dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
/* get the devid */
if ((vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
DEV_BSIZE)) < 0) {
PR0("error reading devid block at %lu", blk);
status = EIO;
goto done;
}
/* validate the revision */
if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
(dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
PR0("invalid devid found at block %lu (bad revision)", blk);
status = EINVAL;
goto done;
}
/* compute checksum */
chksum = vd_dkdevid2cksum(dkdevid);
/* compare the checksums */
if (DKD_GETCHKSUM(dkdevid) != chksum) {
PR0("invalid devid found at block %lu (bad checksum)", blk);
status = EINVAL;
goto done;
}
/* validate the device id */
if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
PR0("invalid devid found at block %lu", blk);
status = EINVAL;
goto done;
}
PR1("devid read at block %lu", blk);
sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
*devid = kmem_alloc(sz, KM_SLEEP);
bcopy(&dkdevid->dkd_devid, *devid, sz);
done:
kmem_free(dkdevid, DEV_BSIZE);
return (status);
}
/*
* Function:
* vd_dskimg_write_devid
*
* Description:
* Write a device id into disk image.
*
* Parameters:
* vd - disk on which the operation is performed.
* devid - the device ID to store.
*
* Return Code:
* 0 - success
* EIO - I/O error while trying to access the disk image
* ENOSPC - disk has no space to store a device id
*/
static int
vd_dskimg_write_devid(vd_t *vd, ddi_devid_t devid)
{
struct dk_devid *dkdevid;
uint_t chksum;
size_t blk;
int status;
ASSERT(vd->vdisk_bsize == DEV_BSIZE);
if (devid == NULL) {
/* nothing to write */
return (0);
}
if ((status = vd_dskimg_get_devid_block(vd, &blk)) != 0)
return (status);
dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
/* set revision */
dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
/* copy devid */
bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
/* compute checksum */
chksum = vd_dkdevid2cksum(dkdevid);
/* set checksum */
DKD_FORMCHKSUM(chksum, dkdevid);
/* store the devid */
if ((status = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
(caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
PR0("Error writing devid block at %lu", blk);
status = EIO;
} else {
PR1("devid written at block %lu", blk);
status = 0;
}
kmem_free(dkdevid, DEV_BSIZE);
return (status);
}
/*
* Function:
* vd_do_scsi_rdwr
*
* Description:
* Read or write to a SCSI disk using an absolute disk offset.
*
* Parameters:
* vd - disk on which the operation is performed.
* operation - operation to execute: read (VD_OP_BREAD) or
* write (VD_OP_BWRITE).
* data - buffer where data are read to or written from.
* blk - starting block for the operation.
* len - number of bytes to read or write.
*
* Return Code:
* 0 - success
* n != 0 - error.
*/
static int
vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
{
struct uscsi_cmd ucmd;
union scsi_cdb cdb;
int nsectors, nblk;
int max_sectors;
int status, rval;
ASSERT(!vd->file);
ASSERT(!vd->volume);
ASSERT(vd->vdisk_bsize > 0);
max_sectors = vd->max_xfer_sz;
nblk = (len / vd->vdisk_bsize);
if (len % vd->vdisk_bsize != 0)
return (EINVAL);
/*
* Build and execute the uscsi ioctl. We build a group0, group1
* or group4 command as necessary, since some targets
* do not support group1 commands.
*/
while (nblk) {
bzero(&ucmd, sizeof (ucmd));
bzero(&cdb, sizeof (cdb));
nsectors = (max_sectors < nblk) ? max_sectors : nblk;
/*
* Some of the optical drives on sun4v machines are ATAPI
* devices which use Group 1 Read/Write commands so we need
* to explicitly check a flag which is set when a domain
* is bound.
*/
if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
FORMG0ADDR(&cdb, blk);
FORMG0COUNT(&cdb, (uchar_t)nsectors);
ucmd.uscsi_cdblen = CDB_GROUP0;
} else if (blk > 0xffffffff) {
FORMG4LONGADDR(&cdb, blk);
FORMG4COUNT(&cdb, nsectors);
ucmd.uscsi_cdblen = CDB_GROUP4;
cdb.scc_cmd |= SCMD_GROUP4;
} else {
FORMG1ADDR(&cdb, blk);
FORMG1COUNT(&cdb, nsectors);
ucmd.uscsi_cdblen = CDB_GROUP1;
cdb.scc_cmd |= SCMD_GROUP1;
}
ucmd.uscsi_cdb = (caddr_t)&cdb;
ucmd.uscsi_bufaddr = data;
ucmd.uscsi_buflen = nsectors * vd->backend_bsize;
ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
/*
* Set flags so that the command is isolated from normal
* commands and no error message is printed.
*/
ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
if (operation == VD_OP_BREAD) {
cdb.scc_cmd |= SCMD_READ;
ucmd.uscsi_flags |= USCSI_READ;
} else {
cdb.scc_cmd |= SCMD_WRITE;
}
status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
kcred, &rval);
if (status == 0)
status = ucmd.uscsi_status;
if (status != 0)
break;
/*
* Check if partial DMA breakup is required. If so, reduce
* the request size by half and retry the last request.
*/
if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
max_sectors >>= 1;
if (max_sectors <= 0) {
status = EIO;
break;
}
continue;
}
if (ucmd.uscsi_resid != 0) {
status = EIO;
break;
}
blk += nsectors;
nblk -= nsectors;
data += nsectors * vd->vdisk_bsize;
}
return (status);
}
/*
* Function:
* vd_scsi_rdwr
*
* Description:
* Wrapper function to read or write to a SCSI disk using an absolute
* disk offset. It checks the blocksize of the underlying device and,
* if necessary, adjusts the buffers accordingly before calling
* vd_do_scsi_rdwr() to do the actual read or write.
*
* Parameters:
* vd - disk on which the operation is performed.
* operation - operation to execute: read (VD_OP_BREAD) or
* write (VD_OP_BWRITE).
* data - buffer where data are read to or written from.
* blk - starting block for the operation.
* len - number of bytes to read or write.
*
* Return Code:
* 0 - success
* n != 0 - error.
*/
static int
vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
{
int rv;
size_t pblk; /* physical device block number of data on device */
size_t delta; /* relative offset between pblk and vblk */
size_t pnblk; /* number of physical blocks to be read from device */
size_t plen; /* length of data to be read from physical device */
char *buf; /* buffer area to fit physical device's block size */
if (vd->backend_bsize == 0) {
/*
* The block size was not available during the attach,
* try to update it now.
*/
if (vd_backend_check_size(vd) != 0)
return (EIO);
}
/*
* If the vdisk block size and the block size of the underlying device
* match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
* to create a buffer large enough to handle the device's block size
* and adjust the block to be read from and the amount of data to
* read to correspond with the device's block size.
*/
if (vd->vdisk_bsize == vd->backend_bsize)
return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
if (vd->vdisk_bsize > vd->backend_bsize)
return (EINVAL);
/*
* Writing of physical block sizes larger than the virtual block size
* is not supported. This would be added if/when support for guests
* writing to DVDs is implemented.
*/
if (operation == VD_OP_BWRITE)
return (ENOTSUP);
/* BEGIN CSTYLED */
/*
* Below is a diagram showing the relationship between the physical
* and virtual blocks. If the virtual blocks marked by 'X' below are
* requested, then the physical blocks denoted by 'Y' are read.
*
* vblk
* | vlen
* |<--------------->|
* v v
* --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk:
* | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is
* --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_bsize
* : : : :
* >:==:< delta : :
* : : : :
* --+-----+-----+-----+-----+-----+-----+-----+-- physical disk:
* | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is
* --+-----+-----+-----+-----+-----+-----+-----+-- vd->backend_bsize
* ^ ^
* |<--------------------->|
* | plen
* pblk
*/
/* END CSTYLED */
pblk = (vblk * vd->vdisk_bsize) / vd->backend_bsize;
delta = (vblk * vd->vdisk_bsize) - (pblk * vd->backend_bsize);
pnblk = ((delta + vlen - 1) / vd->backend_bsize) + 1;
plen = pnblk * vd->backend_bsize;
PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
bcopy(buf + delta, data, vlen);
kmem_free(buf, sizeof (caddr_t) * plen);
return (rv);
}
/*
* Function:
* vd_slice_flabel_read
*
* Description:
* This function simulates a read operation from the fake label of
* a single-slice disk.
*
* Parameters:
* vd - single-slice disk to read from
* data - buffer where data should be read to
* offset - offset in byte where the read should start
* length - number of bytes to read
*
* Return Code:
* n >= 0 - success, n indicates the number of bytes read
* -1 - error
*/
static ssize_t
vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
{
size_t n = 0;
uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
ASSERT(vd->flabel != NULL);
/* if offset is past the fake label limit there's nothing to read */
if (offset >= limit)
return (0);
/* data with offset 0 to flabel_size are read from flabel */
if (offset < vd->flabel_size) {
if (offset + length <= vd->flabel_size) {
bcopy(vd->flabel + offset, data, length);
return (length);
}
n = vd->flabel_size - offset;
bcopy(vd->flabel + offset, data, n);
data += n;
}
/* data with offset from flabel_size to flabel_limit are all zeros */
if (offset + length <= limit) {
bzero(data, length - n);
return (length);
}
bzero(data, limit - offset - n);
return (limit - offset);
}
/*
* Function:
* vd_slice_flabel_write
*
* Description:
* This function simulates a write operation to the fake label of
* a single-slice disk. Write operations are actually faked and return
* success although the label is never changed. This is mostly to
* simulate a successful label update.
*
* Parameters:
* vd - single-slice disk to write to
* data - buffer where data should be written from
* offset - offset in byte where the write should start
* length - number of bytes to written
*
* Return Code:
* n >= 0 - success, n indicates the number of bytes written
* -1 - error
*/
static ssize_t
vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
{
uint_t limit = vd->flabel_limit * vd->vdisk_bsize;
struct dk_label *label;
struct dk_geom geom;
struct extvtoc vtoc;
ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
ASSERT(vd->flabel != NULL);
if (offset >= limit)
return (0);
/*
* If this is a request to overwrite the VTOC disk label, check that
* the new label is similar to the previous one and return that the
* write was successful, but note that nothing is actually overwritten.
*/
if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
offset == 0 && length == vd->vdisk_bsize) {
label = (void *)data;
/* check that this is a valid label */
if (label->dkl_magic != DKL_MAGIC ||
label->dkl_cksum != vd_lbl2cksum(label))
return (-1);
/* check the vtoc and geometry */
vd_label_to_vtocgeom(label, &vtoc, &geom);
if (vd_slice_geom_isvalid(vd, &geom) &&
vd_slice_vtoc_isvalid(vd, &vtoc))
return (length);
}
/* fail any other write */
return (-1);
}
/*
* Function:
* vd_slice_fake_rdwr
*
* Description:
* This function simulates a raw read or write operation to a single-slice
* disk. It only handles the faked part of the operation i.e. I/Os to
* blocks which have no mapping with the vdisk backend (I/Os to the
* beginning and to the end of the vdisk).
*
* The function returns 0 is the operation is completed and it has been
* entirely handled as a fake read or write. In that case, lengthp points
* to the number of bytes not read or written. Values returned by datap
* and blkp are undefined.
*
* If the fake operation has succeeded but the read or write is not
* complete (i.e. the read/write operation extends beyond the blocks
* we fake) then the function returns EAGAIN and datap, blkp and lengthp
* pointers points to the parameters for completing the operation.
*
* In case of an error, for example if the slice is empty or parameters
* are invalid, then the function returns a non-zero value different
* from EAGAIN. In that case, the returned values of datap, blkp and
* lengthp are undefined.
*
* Parameters:
* vd - single-slice disk on which the operation is performed
* slice - slice on which the operation is performed,
* VD_SLICE_NONE indicates that the operation
* is done using an absolute disk offset.
* operation - operation to execute: read (VD_OP_BREAD) or
* write (VD_OP_BWRITE).
* datap - pointer to the buffer where data are read to
* or written from. Return the pointer where remaining
* data have to be read to or written from.
* blkp - pointer to the starting block for the operation.
* Return the starting block relative to the vdisk
* backend for the remaining operation.
* lengthp - pointer to the number of bytes to read or write.
* This should be a multiple of vdisk_bsize. Return the
* remaining number of bytes to read or write.
*
* Return Code:
* 0 - read/write operation is completed
* EAGAIN - read/write operation is not completed
* other values - error
*/
static int
vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
size_t *blkp, size_t *lengthp)
{
struct dk_label *label;
caddr_t data;
size_t blk, length, csize;
size_t ablk, asize, aoff, alen;
ssize_t n;
int sec, status;
size_t bsize = vd->vdisk_bsize;
ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
ASSERT(slice != 0);
data = *datap;
blk = *blkp;
length = *lengthp;
/*
* If this is not a raw I/O or an I/O from a full disk slice then
* this is an I/O to/from an empty slice.
*/
if (slice != VD_SLICE_NONE &&
(slice != VD_ENTIRE_DISK_SLICE ||
vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
(slice != VD_EFI_WD_SLICE ||
vd->vdisk_label != VD_DISK_LABEL_EFI)) {
return (EIO);
}
if (length % bsize != 0)
return (EINVAL);
/* handle any I/O with the fake label */
if (operation == VD_OP_BWRITE)
n = vd_slice_flabel_write(vd, data, blk * bsize, length);
else
n = vd_slice_flabel_read(vd, data, blk * bsize, length);
if (n == -1)
return (EINVAL);
ASSERT(n % bsize == 0);
/* adjust I/O arguments */
data += n;
blk += n / bsize;
length -= n;
/* check if there's something else to process */
if (length == 0) {
status = 0;
goto done;
}
if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
slice == VD_ENTIRE_DISK_SLICE) {
status = EAGAIN;
goto done;
}
if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
asize = EFI_MIN_RESV_SIZE + (EFI_MIN_ARRAY_SIZE / bsize) + 1;
ablk = vd->vdisk_size - asize;
} else {
ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
ASSERT(vd->dk_geom.dkg_apc == 0);
csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
ablk = vd->dk_geom.dkg_ncyl * csize;
asize = vd->dk_geom.dkg_acyl * csize;
}
alen = length / bsize;
aoff = blk;
/* if we have reached the last block then the I/O is completed */
if (aoff == ablk + asize) {
status = 0;
goto done;
}
/* if we are past the last block then return an error */
if (aoff > ablk + asize)
return (EIO);
/* check if there is any I/O to end of the disk */
if (aoff + alen < ablk) {
status = EAGAIN;
goto done;
}
/* we don't allow any write to the end of the disk */
if (operation == VD_OP_BWRITE)
return (EIO);
if (aoff < ablk) {
alen -= (ablk - aoff);
aoff = ablk;
}
if (aoff + alen > ablk + asize) {
alen = ablk + asize - aoff;
}
alen *= bsize;
if (operation == VD_OP_BREAD) {
bzero(data + (aoff - blk) * bsize, alen);
if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
/* check if we read backup labels */
label = VD_LABEL_VTOC(vd);
ablk += (label->dkl_acyl - 1) * csize +
(label->dkl_nhead - 1) * label->dkl_nsect;
for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
if (ablk + sec >= blk &&
ablk + sec < blk + (length / bsize)) {
bcopy(label, data +
(ablk + sec - blk) * bsize,
sizeof (struct dk_label));
}
}
}
}
length -= alen;
status = (length == 0)? 0: EAGAIN;
done:
ASSERT(length == 0 || blk >= vd->flabel_limit);
/*
* Return the parameters for the remaining I/O. The starting block is
* adjusted so that it is relative to the vdisk backend.
*/
*datap = data;
*blkp = blk - vd->flabel_limit;
*lengthp = length;
return (status);
}
static int
vd_flush_write(vd_t *vd)
{
int status, rval;
if (vd->file) {
status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
} else {
status = ldi_ioctl(vd->ldi_handle[0], DKIOCFLUSHWRITECACHE,
NULL, vd->open_flags | FKIOCTL, kcred, &rval);
}
return (status);
}
static void
vd_bio_task(void *arg)
{
struct buf *buf = (struct buf *)arg;
vd_task_t *task = (vd_task_t *)buf->b_private;
vd_t *vd = task->vd;
ssize_t resid;
int status;
ASSERT(vd->vdisk_bsize == DEV_BSIZE);
if (vd->zvol) {
status = ldi_strategy(vd->ldi_handle[0], buf);
} else {
ASSERT(vd->file);
status = vn_rdwr((buf->b_flags & B_READ)? UIO_READ : UIO_WRITE,
vd->file_vnode, buf->b_un.b_addr, buf->b_bcount,
buf->b_lblkno * DEV_BSIZE, UIO_SYSSPACE, 0,
RLIM64_INFINITY, kcred, &resid);
if (status == 0) {
buf->b_resid = resid;
biodone(buf);
return;
}
}
if (status != 0) {
bioerror(buf, status);
biodone(buf);
}
}
/*
* We define our own biodone function so that buffers used for
* asynchronous writes are not released when biodone() is called.
*/
static int
vd_biodone(struct buf *bp)
{
ASSERT((bp->b_flags & B_DONE) == 0);
ASSERT(SEMA_HELD(&bp->b_sem));
bp->b_flags |= B_DONE;
sema_v(&bp->b_io);
return (0);
}
/*
* Return Values
* EINPROGRESS - operation was successfully started
* EIO - encountered LDC (aka. task error)
* 0 - operation completed successfully
*
* Side Effect
* sets request->status = <disk operation status>
*/
static int
vd_start_bio(vd_task_t *task)
{
int rv, status = 0;
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
struct buf *buf = &task->buf;
uint8_t mtype;
int slice;
char *bufaddr = 0;
size_t buflen;
size_t offset, length, nbytes;
ASSERT(vd != NULL);
ASSERT(request != NULL);
slice = request->slice;
ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
ASSERT((request->operation == VD_OP_BREAD) ||
(request->operation == VD_OP_BWRITE));
if (request->nbytes == 0) {
/* no service for trivial requests */
request->status = EINVAL;
return (0);
}
PR1("%s %lu bytes at block %lu",
(request->operation == VD_OP_BREAD) ? "Read" : "Write",
request->nbytes, request->addr);
/*
* We have to check the open flags because the functions processing
* the read/write request will not do it.
*/
if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
PR0("write fails because backend is opened read-only");
request->nbytes = 0;
request->status = EROFS;
return (0);
}
mtype = LDC_SHADOW_MAP;
/* Map memory exported by client */
status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
&bufaddr, NULL);
if (status != 0) {
PR0("ldc_mem_map() returned err %d ", status);
return (EIO);
}
/*
* The buffer size has to be 8-byte aligned, so the client should have
* sent a buffer which size is roundup to the next 8-byte aligned value.
*/
buflen = P2ROUNDUP(request->nbytes, 8);
status = ldc_mem_acquire(task->mhdl, 0, buflen);
if (status != 0) {
(void) ldc_mem_unmap(task->mhdl);
PR0("ldc_mem_acquire() returned err %d ", status);
return (EIO);
}
offset = request->addr;
nbytes = request->nbytes;
length = nbytes;
/* default number of byte returned by the I/O */
request->nbytes = 0;
if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
if (slice != 0) {
/* handle any fake I/O */
rv = vd_slice_fake_rdwr(vd, slice, request->operation,
&bufaddr, &offset, &length);
/* record the number of bytes from the fake I/O */
request->nbytes = nbytes - length;
if (rv == 0) {
request->status = 0;
goto io_done;
}
if (rv != EAGAIN) {
request->nbytes = 0;
request->status = EIO;
goto io_done;
}
/*
* If we return with EAGAIN then this means that there
* are still data to read or write.
*/
ASSERT(length != 0);
/*
* We need to continue the I/O from the slice backend to
* complete the request. The variables bufaddr, offset
* and length have been adjusted to have the right
* information to do the remaining I/O from the backend.
* The backend is entirely mapped to slice 0 so we just
* have to complete the I/O from that slice.
*/
slice = 0;
}
} else if (vd->volume || vd->file) {
rv = vd_dskimg_io_params(vd, slice, &offset, &length);
if (rv != 0) {
request->status = (rv == ENODATA)? 0: EIO;
goto io_done;
}
slice = 0;
} else if (slice == VD_SLICE_NONE) {
/*
* This is not a disk image so it is a real disk. We
* assume that the underlying device driver supports
* USCSICMD ioctls. This is the case of all SCSI devices
* (sd, ssd...).
*
* In the future if we have non-SCSI disks we would need
* to invoke the appropriate function to do I/O using an
* absolute disk offset (for example using DIOCTL_RWCMD
* for IDE disks).
*/
rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
length);
if (rv != 0) {
request->status = EIO;
} else {
request->nbytes = length;
request->status = 0;
}
goto io_done;
}
/* Start the block I/O */
bioinit(buf);
buf->b_flags = B_BUSY;
buf->b_bcount = length;
buf->b_lblkno = offset;
buf->b_bufsize = buflen;
buf->b_edev = vd->dev[slice];
buf->b_un.b_addr = bufaddr;
buf->b_iodone = vd_biodone;
if (vd->file || vd->zvol) {
/*
* I/O to a file are dispatched to an I/O queue, so that several
* I/Os can be processed in parallel. We also do that for ZFS
* volumes because the ZFS volume strategy() function will only
* return after the I/O is completed (instead of just starting
* the I/O).
*/
if (request->operation == VD_OP_BREAD) {
buf->b_flags |= B_READ;
} else {
/*
* For ZFS volumes and files, we do an asynchronous
* write and we will wait for the completion of the
* write in vd_complete_bio() by flushing the volume
* or file.
*
* This done for performance reasons, so that we can
* group together several write requests into a single
* flush operation.
*/
buf->b_flags |= B_WRITE | B_ASYNC;
/*
* We keep track of the write so that we can group
* requests when flushing. The write queue has the
* same number of slots as the dring so this prevents
* the write queue from wrapping and overwriting
* existing entries: if the write queue gets full
* then that means that the dring is full so we stop
* receiving new requests until an existing request
* is processed, removed from the write queue and
* then from the dring.
*/
task->write_index = vd->write_index;
vd->write_queue[task->write_index] = buf;
vd->write_index =
VD_WRITE_INDEX_NEXT(vd, vd->write_index);
}
buf->b_private = task;
ASSERT(vd->ioq != NULL);
request->status = 0;
(void) ddi_taskq_dispatch(task->vd->ioq, vd_bio_task, buf,
DDI_SLEEP);
} else {
if (request->operation == VD_OP_BREAD) {
buf->b_flags |= B_READ;
} else {
buf->b_flags |= B_WRITE;
}
/* convert VIO block number to buf block number */
buf->b_lblkno = offset << vd->vio_bshift;
request->status = ldi_strategy(vd->ldi_handle[slice], buf);
}
/*
* This is to indicate to the caller that the request
* needs to be finished by vd_complete_bio() by calling
* biowait() there and waiting for that to return before
* triggering the notification of the vDisk client.
*
* This is necessary when writing to real disks as
* otherwise calls to ldi_strategy() would be serialized
* behind the calls to biowait() and performance would
* suffer.
*/
if (request->status == 0)
return (EINPROGRESS);
biofini(buf);
io_done:
/* Clean up after error or completion */
rv = ldc_mem_release(task->mhdl, 0, buflen);
if (rv) {
PR0("ldc_mem_release() returned err %d ", rv);
status = EIO;
}
rv = ldc_mem_unmap(task->mhdl);
if (rv) {
PR0("ldc_mem_unmap() returned err %d ", rv);
status = EIO;
}
return (status);
}
/*
* This function should only be called from vd_notify to ensure that requests
* are responded to in the order that they are received.
*/
static int
send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
{
int status;
size_t nbytes;
do {
nbytes = msglen;
status = ldc_write(ldc_handle, msg, &nbytes);
if (status != EWOULDBLOCK)
break;
drv_usecwait(vds_ldc_delay);
} while (status == EWOULDBLOCK);
if (status != 0) {
if (status != ECONNRESET)
PR0("ldc_write() returned errno %d", status);
return (status);
} else if (nbytes != msglen) {
PR0("ldc_write() performed only partial write");
return (EIO);
}
PR1("SENT %lu bytes", msglen);
return (0);
}
static void
vd_need_reset(vd_t *vd, boolean_t reset_ldc)
{
mutex_enter(&vd->lock);
vd->reset_state = B_TRUE;
vd->reset_ldc = reset_ldc;
mutex_exit(&vd->lock);
}
/*
* Reset the state of the connection with a client, if needed; reset the LDC
* transport as well, if needed. This function should only be called from the
* "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
*/
static void
vd_reset_if_needed(vd_t *vd)
{
int status = 0;
mutex_enter(&vd->lock);
if (!vd->reset_state) {
ASSERT(!vd->reset_ldc);
mutex_exit(&vd->lock);
return;
}
mutex_exit(&vd->lock);
PR0("Resetting connection state with %s", VD_CLIENT(vd));
/*
* Let any asynchronous I/O complete before possibly pulling the rug
* out from under it; defer checking vd->reset_ldc, as one of the
* asynchronous tasks might set it
*/
if (vd->ioq != NULL)
ddi_taskq_wait(vd->ioq);
ddi_taskq_wait(vd->completionq);
status = vd_flush_write(vd);
if (status) {
PR0("flushwrite returned error %d", status);
}
if ((vd->initialized & VD_DRING) &&
((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
PR0("ldc_mem_dring_unmap() returned errno %d", status);
vd_free_dring_task(vd);
/* Free the staging buffer for msgs */
if (vd->vio_msgp != NULL) {
kmem_free(vd->vio_msgp, vd->max_msglen);
vd->vio_msgp = NULL;
}
/* Free the inband message buffer */
if (vd->inband_task.msg != NULL) {
kmem_free(vd->inband_task.msg, vd->max_msglen);
vd->inband_task.msg = NULL;
}
mutex_enter(&vd->lock);
if (vd->reset_ldc)
PR0("taking down LDC channel");
if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
PR0("ldc_down() returned errno %d", status);
/* Reset exclusive access rights */
vd_reset_access(vd);
vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
vd->state = VD_STATE_INIT;
vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */
/* Allocate the staging buffer */
vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
PR0("calling ldc_up\n");
(void) ldc_up(vd->ldc_handle);
vd->reset_state = B_FALSE;
vd->reset_ldc = B_FALSE;
mutex_exit(&vd->lock);
}
static void vd_recv_msg(void *arg);
static void
vd_mark_in_reset(vd_t *vd)
{
int status;
PR0("vd_mark_in_reset: marking vd in reset\n");
vd_need_reset(vd, B_FALSE);
status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
if (status == DDI_FAILURE) {
PR0("cannot schedule task to recv msg\n");
vd_need_reset(vd, B_TRUE);
return;
}
}
static int
vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
{
boolean_t accepted;
int status;
on_trap_data_t otd;
vd_dring_entry_t *elem = VD_DRING_ELEM(idx);
if (vd->reset_state)
return (0);
/* Acquire the element */
if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
vd->dring_handle, idx, idx)) != 0) {
if (status == ECONNRESET) {
vd_mark_in_reset(vd);
return (0);
} else {
return (status);
}
}
/* Set the element's status and mark it done */
accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
if (accepted) {
elem->payload.nbytes = elem_nbytes;
elem->payload.status = elem_status;
elem->hdr.dstate = VIO_DESC_DONE;
} else {
/* Perhaps client timed out waiting for I/O... */
PR0("element %u no longer \"accepted\"", idx);
VD_DUMP_DRING_ELEM(elem);
}
/* Release the element */
if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
vd->dring_handle, idx, idx)) != 0) {
if (status == ECONNRESET) {
vd_mark_in_reset(vd);
return (0);
} else {
PR0("VIO_DRING_RELEASE() returned errno %d",
status);
return (status);
}
}
return (accepted ? 0 : EINVAL);
}
/*
* Return Values
* 0 - operation completed successfully
* EIO - encountered LDC / task error
*
* Side Effect
* sets request->status = <disk operation status>
*/
static int
vd_complete_bio(vd_task_t *task)
{
int status = 0;
int rv = 0;
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
struct buf *buf = &task->buf;
int wid, nwrites;
ASSERT(vd != NULL);
ASSERT(request != NULL);
ASSERT(task->msg != NULL);
ASSERT(task->msglen >= sizeof (*task->msg));
if (buf->b_flags & B_DONE) {
/*
* If the I/O is already done then we don't call biowait()
* because biowait() might already have been called when
* flushing a previous asynchronous write. So we just
* retrieve the status of the request.
*/
request->status = geterror(buf);
} else {
/*
* Wait for the I/O. For synchronous I/O, biowait() will return
* when the I/O has completed. For asynchronous write, it will
* return the write has been submitted to the backend, but it
* may not have been committed.
*/
request->status = biowait(buf);
}
if (buf->b_flags & B_ASYNC) {
/*
* Asynchronous writes are used when writing to a file or a
* ZFS volume. In that case the bio notification indicates
* that the write has started. We have to flush the backend
* to ensure that the write has been committed before marking
* the request as completed.
*/
ASSERT(task->request->operation == VD_OP_BWRITE);
wid = task->write_index;
/* check if write has been already flushed */
if (vd->write_queue[wid] != NULL) {
vd->write_queue[wid] = NULL;
wid = VD_WRITE_INDEX_NEXT(vd, wid);
/*
* Because flushing is time consuming, it is worth
* waiting for any other writes so that they can be
* included in this single flush request.
*/
if (vd_awflush & VD_AWFLUSH_GROUP) {
nwrites = 1;
while (vd->write_queue[wid] != NULL) {
(void) biowait(vd->write_queue[wid]);
vd->write_queue[wid] = NULL;
wid = VD_WRITE_INDEX_NEXT(vd, wid);
nwrites++;
}
DTRACE_PROBE2(flushgrp, vd_task_t *, task,
int, nwrites);
}
if (vd_awflush & VD_AWFLUSH_IMMEDIATE) {
request->status = vd_flush_write(vd);
} else if (vd_awflush & VD_AWFLUSH_DEFER) {
(void) taskq_dispatch(system_taskq,
(void (*)(void *))vd_flush_write, vd,
DDI_SLEEP);
request->status = 0;
}
}
}
/* Update the number of bytes read/written */
request->nbytes += buf->b_bcount - buf->b_resid;
/* Release the buffer */
if (!vd->reset_state)
status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
if (status) {
PR0("ldc_mem_release() returned errno %d copying to "
"client", status);
if (status == ECONNRESET) {
vd_mark_in_reset(vd);
}
rv = EIO;
}
/* Unmap the memory, even if in reset */
status = ldc_mem_unmap(task->mhdl);
if (status) {
PR0("ldc_mem_unmap() returned errno %d copying to client",
status);
if (status == ECONNRESET) {
vd_mark_in_reset(vd);
}
rv = EIO;
}
biofini(buf);
return (rv);
}
/*
* Description:
* This function is called by the two functions called by a taskq
* [ vd_complete_notify() and vd_serial_notify()) ] to send the
* message to the client.
*
* Parameters:
* arg - opaque pointer to structure containing task to be completed
*
* Return Values
* None
*/
static void
vd_notify(vd_task_t *task)
{
int status;
ASSERT(task != NULL);
ASSERT(task->vd != NULL);
/*
* Send the "ack" or "nack" back to the client; if sending the message
* via LDC fails, arrange to reset both the connection state and LDC
* itself
*/
PR2("Sending %s",
(task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
switch (status) {
case 0:
break;
case ECONNRESET:
vd_mark_in_reset(task->vd);
break;
default:
PR0("initiating full reset");
vd_need_reset(task->vd, B_TRUE);
break;
}
DTRACE_PROBE1(task__end, vd_task_t *, task);
}
/*
* Description:
* Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
* the vDisk client
*
* Parameters:
* task - structure containing the request sent from client
*
* Return Values
* None
*/
static void
vd_complete_notify(vd_task_t *task)
{
int status = 0;
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
/* Update the dring element for a dring client */
if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
status = vd_mark_elem_done(vd, task->index,
request->status, request->nbytes);
if (status == ECONNRESET)
vd_mark_in_reset(vd);
else if (status == EACCES)
vd_need_reset(vd, B_TRUE);
}
/*
* If a transport error occurred while marking the element done or
* previously while executing the task, arrange to "nack" the message
* when the final task in the descriptor element range completes
*/
if ((status != 0) || (task->status != 0))
task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
/*
* Only the final task for a range of elements will respond to and
* free the message
*/
if (task->type == VD_NONFINAL_RANGE_TASK) {
return;
}
/*
* We should only send an ACK/NACK here if we are not currently in
* reset as, depending on how we reset, the dring may have been
* blown away and we don't want to ACK/NACK a message that isn't
* there.
*/
if (!vd->reset_state)
vd_notify(task);
}
/*
* Description:
* This is the basic completion function called to handle inband data
* requests and handshake messages. All it needs to do is trigger a
* message to the client that the request is completed.
*
* Parameters:
* arg - opaque pointer to structure containing task to be completed
*
* Return Values
* None
*/
static void
vd_serial_notify(void *arg)
{
vd_task_t *task = (vd_task_t *)arg;
ASSERT(task != NULL);
vd_notify(task);
}
/* ARGSUSED */
static int
vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
{
VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
return (0);
}
/* ARGSUSED */
static int
vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
{
VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct extvtoc *)ioctl_arg);
return (0);
}
static void
dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
{
DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
}
static void
vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
{
VTOC2VD_VTOC((struct extvtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
}
static int
vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
{
vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
size_t data_len;
data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
if (vd_efi->length > data_len)
return (EINVAL);
dk_efi->dki_lba = vd_efi->lba;
dk_efi->dki_length = vd_efi->length;
dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
return (0);
}
static void
vd_get_efi_out(void *ioctl_arg, void *vd_buf)
{
int len;
vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
len = vd_efi->length;
DK_EFI2VD_EFI(dk_efi, vd_efi);
kmem_free(dk_efi->dki_data, len);
}
static int
vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
{
vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
size_t data_len;
data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
if (vd_efi->length > data_len)
return (EINVAL);
dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
VD_EFI2DK_EFI(vd_efi, dk_efi);
return (0);
}
static void
vd_set_efi_out(void *ioctl_arg, void *vd_buf)
{
vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
kmem_free(dk_efi->dki_data, vd_efi->length);
}
static int
vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
{
size_t vd_scsi_len;
vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
/* check buffer size */
vd_scsi_len = VD_SCSI_SIZE;
vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
if (vd_buf_len < vd_scsi_len)
return (EINVAL);
/* set flags */
uscsi->uscsi_flags = vd_scsi_debug;
if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
uscsi->uscsi_flags |= USCSI_ISOLATE;
uscsi->uscsi_flags |= USCSI_DIAGNOSE;
}
/* task attribute */
switch (vd_scsi->task_attribute) {
case VD_SCSI_TASK_ACA:
uscsi->uscsi_flags |= USCSI_HEAD;
break;
case VD_SCSI_TASK_HQUEUE:
uscsi->uscsi_flags |= USCSI_HTAG;
break;
case VD_SCSI_TASK_ORDERED:
uscsi->uscsi_flags |= USCSI_OTAG;
break;
default:
uscsi->uscsi_flags |= USCSI_NOTAG;
break;
}
/* timeout */
uscsi->uscsi_timeout = vd_scsi->timeout;
/* cdb data */
uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
uscsi->uscsi_cdblen = vd_scsi->cdb_len;
/* sense buffer */
if (vd_scsi->sense_len != 0) {
uscsi->uscsi_flags |= USCSI_RQENABLE;
uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
uscsi->uscsi_rqlen = vd_scsi->sense_len;
}
if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
/* uscsi does not support read/write request */
return (EINVAL);
}
/* request data-in */
if (vd_scsi->datain_len != 0) {
uscsi->uscsi_flags |= USCSI_READ;
uscsi->uscsi_buflen = vd_scsi->datain_len;
uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
}
/* request data-out */
if (vd_scsi->dataout_len != 0) {
uscsi->uscsi_buflen = vd_scsi->dataout_len;
uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
}
return (0);
}
static void
vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
{
vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
/* output fields */
vd_scsi->cmd_status = uscsi->uscsi_status;
/* sense data */
if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
(uscsi->uscsi_status == STATUS_CHECK ||
uscsi->uscsi_status == STATUS_TERMINATED)) {
vd_scsi->sense_status = uscsi->uscsi_rqstatus;
if (uscsi->uscsi_rqstatus == STATUS_GOOD)
vd_scsi->sense_len -= uscsi->uscsi_rqresid;
else
vd_scsi->sense_len = 0;
} else {
vd_scsi->sense_len = 0;
}
if (uscsi->uscsi_status != STATUS_GOOD) {
vd_scsi->dataout_len = 0;
vd_scsi->datain_len = 0;
return;
}
if (uscsi->uscsi_flags & USCSI_READ) {
/* request data (read) */
vd_scsi->datain_len -= uscsi->uscsi_resid;
vd_scsi->dataout_len = 0;
} else {
/* request data (write) */
vd_scsi->datain_len = 0;
vd_scsi->dataout_len -= uscsi->uscsi_resid;
}
}
static ushort_t
vd_lbl2cksum(struct dk_label *label)
{
int count;
ushort_t sum, *sp;
count = (sizeof (struct dk_label)) / (sizeof (short)) - 1;
sp = (ushort_t *)label;
sum = 0;
while (count--) {
sum ^= *sp++;
}
return (sum);
}
/*
* Copy information from a vtoc and dk_geom structures to a dk_label structure.
*/
static void
vd_vtocgeom_to_label(struct extvtoc *vtoc, struct dk_geom *geom,
struct dk_label *label)
{
int i;
ASSERT(vtoc->v_nparts == V_NUMPAR);
ASSERT(vtoc->v_sanity == VTOC_SANE);
bzero(label, sizeof (struct dk_label));
label->dkl_ncyl = geom->dkg_ncyl;
label->dkl_acyl = geom->dkg_acyl;
label->dkl_pcyl = geom->dkg_pcyl;
label->dkl_nhead = geom->dkg_nhead;
label->dkl_nsect = geom->dkg_nsect;
label->dkl_intrlv = geom->dkg_intrlv;
label->dkl_apc = geom->dkg_apc;
label->dkl_rpm = geom->dkg_rpm;
label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
label->dkl_vtoc.v_nparts = V_NUMPAR;
label->dkl_vtoc.v_sanity = VTOC_SANE;
label->dkl_vtoc.v_version = vtoc->v_version;
for (i = 0; i < V_NUMPAR; i++) {
label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
(label->dkl_nhead * label->dkl_nsect);
label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
}
/*
* The bootinfo array can not be copied with bcopy() because
* elements are of type long in vtoc (so 64-bit) and of type
* int in dk_vtoc (so 32-bit).
*/
label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
/* re-compute checksum */
label->dkl_magic = DKL_MAGIC;
label->dkl_cksum = vd_lbl2cksum(label);
}
/*
* Copy information from a dk_label structure to a vtoc and dk_geom structures.
*/
static void
vd_label_to_vtocgeom(struct dk_label *label, struct extvtoc *vtoc,
struct dk_geom *geom)
{
int i;
bzero(vtoc, sizeof (struct extvtoc));
bzero(geom, sizeof (struct dk_geom));
geom->dkg_ncyl = label->dkl_ncyl;
geom->dkg_acyl = label->dkl_acyl;
geom->dkg_nhead = label->dkl_nhead;
geom->dkg_nsect = label->dkl_nsect;
geom->dkg_intrlv = label->dkl_intrlv;
geom->dkg_apc = label->dkl_apc;
geom->dkg_rpm = label->dkl_rpm;
geom->dkg_pcyl = label->dkl_pcyl;
geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
vtoc->v_sanity = label->dkl_vtoc.v_sanity;
vtoc->v_version = label->dkl_vtoc.v_version;
vtoc->v_sectorsz = DEV_BSIZE;
vtoc->v_nparts = label->dkl_vtoc.v_nparts;
for (i = 0; i < vtoc->v_nparts; i++) {
vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
(label->dkl_nhead * label->dkl_nsect);
vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
}
/*
* The bootinfo array can not be copied with bcopy() because
* elements are of type long in vtoc (so 64-bit) and of type
* int in dk_vtoc (so 32-bit).
*/
vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
}
/*
* Check if a geometry is valid for a single-slice disk. A geometry is
* considered valid if the main attributes of the geometry match with the
* attributes of the fake geometry we have created.
*/
static boolean_t
vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
{
ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
return (B_FALSE);
return (B_TRUE);
}
/*
* Check if a vtoc is valid for a single-slice disk. A vtoc is considered
* valid if the main attributes of the vtoc match with the attributes of the
* fake vtoc we have created.
*/
static boolean_t
vd_slice_vtoc_isvalid(vd_t *vd, struct extvtoc *vtoc)
{
size_t csize;
int i;
ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
if (vtoc->v_sanity != vd->vtoc.v_sanity ||
vtoc->v_version != vd->vtoc.v_version ||
vtoc->v_nparts != vd->vtoc.v_nparts ||
strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
return (B_FALSE);
/* slice 2 should be unchanged */
if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
return (B_FALSE);
/*
* Slice 0 should be mostly unchanged and cover most of the disk.
* However we allow some flexibility wrt to the start and the size
* of this slice mainly because we can't exactly know how it will
* be defined by the OS installer.
*
* We allow slice 0 to be defined as starting on any of the first
* 4 cylinders.
*/
csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
if (vtoc->v_part[0].p_start > 4 * csize ||
vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
return (B_FALSE);
if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
return (B_FALSE);
/* any other slice should have a size of 0 */
for (i = 1; i < vtoc->v_nparts; i++) {
if (i != VD_ENTIRE_DISK_SLICE &&
vtoc->v_part[i].p_size != 0)
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Handle ioctls to a disk slice.
*
* Return Values
* 0 - Indicates that there are no errors in disk operations
* ENOTSUP - Unknown disk label type or unsupported DKIO ioctl
* EINVAL - Not enough room to copy the EFI label
*
*/
static int
vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
{
dk_efi_t *dk_ioc;
struct extvtoc *vtoc;
struct dk_geom *geom;
size_t len, lba;
ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
if (cmd == DKIOCFLUSHWRITECACHE)
return (vd_flush_write(vd));
switch (vd->vdisk_label) {
/* ioctls for a single slice disk with a VTOC label */
case VD_DISK_LABEL_VTOC:
switch (cmd) {
case DKIOCGGEOM:
ASSERT(ioctl_arg != NULL);
bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
return (0);
case DKIOCGEXTVTOC:
ASSERT(ioctl_arg != NULL);
bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
return (0);
case DKIOCSGEOM:
ASSERT(ioctl_arg != NULL);
if (vd_slice_single_slice)
return (ENOTSUP);
/* fake success only if new geometry is valid */
geom = (struct dk_geom *)ioctl_arg;
if (!vd_slice_geom_isvalid(vd, geom))
return (EINVAL);
return (0);
case DKIOCSEXTVTOC:
ASSERT(ioctl_arg != NULL);
if (vd_slice_single_slice)
return (ENOTSUP);
/* fake sucess only if the new vtoc is valid */
vtoc = (struct extvtoc *)ioctl_arg;
if (!vd_slice_vtoc_isvalid(vd, vtoc))
return (EINVAL);
return (0);
default:
return (ENOTSUP);
}
/* ioctls for a single slice disk with an EFI label */
case VD_DISK_LABEL_EFI:
if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
return (ENOTSUP);
ASSERT(ioctl_arg != NULL);
dk_ioc = (dk_efi_t *)ioctl_arg;
len = dk_ioc->dki_length;
lba = dk_ioc->dki_lba;
if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
(lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
(lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
return (EINVAL);
switch (cmd) {
case DKIOCGETEFI:
len = vd_slice_flabel_read(vd,
(caddr_t)dk_ioc->dki_data,
lba * vd->vdisk_bsize, len);
ASSERT(len > 0);
return (0);
case DKIOCSETEFI:
if (vd_slice_single_slice)
return (ENOTSUP);
/* we currently don't support writing EFI */
return (EIO);
}
default:
/* Unknown disk label type */
return (ENOTSUP);
}
}
static int
vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
{
vd_efi_dev_t edev;
int status;
VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
status = vd_efi_alloc_and_read(&edev, gpt, gpe);
return (status);
}
static void
vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
{
vd_efi_dev_t edev;
VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
vd_efi_free(&edev, gpt, gpe);
}
static int
vd_dskimg_validate_efi(vd_t *vd)
{
efi_gpt_t *gpt;
efi_gpe_t *gpe;
int i, nparts, status;
struct uuid efi_reserved = EFI_RESERVED;
if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
return (status);
bzero(&vd->vtoc, sizeof (struct extvtoc));
bzero(&vd->dk_geom, sizeof (struct dk_geom));
bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
vd->efi_reserved = -1;
nparts = gpt->efi_gpt_NumberOfPartitionEntries;
for (i = 0; i < nparts && i < VD_MAXPART; i++) {
if (gpe[i].efi_gpe_StartingLBA == 0 &&
gpe[i].efi_gpe_EndingLBA == 0) {
continue;
}
vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
gpe[i].efi_gpe_StartingLBA + 1;
if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
sizeof (struct uuid)) == 0)
vd->efi_reserved = i;
}
ASSERT(vd->vdisk_size != 0);
vd->slices[VD_EFI_WD_SLICE].start = 0;
vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
vds_efi_free(vd, gpt, gpe);
return (status);
}
/*
* Function:
* vd_dskimg_validate_geometry
*
* Description:
* Read the label and validate the geometry of a disk image. The driver
* label, vtoc and geometry information are updated according to the
* label read from the disk image.
*
* If no valid label is found, the label is set to unknown and the
* function returns EINVAL, but a default vtoc and geometry are provided
* to the driver. If an EFI label is found, ENOTSUP is returned.
*
* Parameters:
* vd - disk on which the operation is performed.
*
* Return Code:
* 0 - success.
* EIO - error reading the label from the disk image.
* EINVAL - unknown disk label.
* ENOTSUP - geometry not applicable (EFI label).
*/
static int
vd_dskimg_validate_geometry(vd_t *vd)
{
struct dk_label label;
struct dk_geom *geom = &vd->dk_geom;
struct extvtoc *vtoc = &vd->vtoc;
int i;
int status = 0;
ASSERT(VD_DSKIMG(vd));
if (VD_DSKIMG_LABEL_READ(vd, &label) < 0)
return (EIO);
if (label.dkl_magic != DKL_MAGIC ||
label.dkl_cksum != vd_lbl2cksum(&label) ||
(vd_dskimg_validate_sanity &&
label.dkl_vtoc.v_sanity != VTOC_SANE) ||
label.dkl_vtoc.v_nparts != V_NUMPAR) {
if (vd_dskimg_validate_efi(vd) == 0) {
vd->vdisk_label = VD_DISK_LABEL_EFI;
return (ENOTSUP);
}
vd->vdisk_label = VD_DISK_LABEL_UNK;
vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
&label);
status = EINVAL;
} else {
vd->vdisk_label = VD_DISK_LABEL_VTOC;
}
/* Update the driver geometry and vtoc */
vd_label_to_vtocgeom(&label, vtoc, geom);
/* Update logical partitions */
bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
for (i = 0; i < vtoc->v_nparts; i++) {
vd->slices[i].start = vtoc->v_part[i].p_start;
vd->slices[i].nblocks = vtoc->v_part[i].p_size;
}
}
return (status);
}
/*
* Handle ioctls to a disk image.
*
* Return Values
* 0 - Indicates that there are no errors
* != 0 - Disk operation returned an error
*/
static int
vd_do_dskimg_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
{
struct dk_label label;
struct dk_geom *geom;
struct extvtoc *vtoc;
dk_efi_t *efi;
int rc;
ASSERT(VD_DSKIMG(vd));
switch (cmd) {
case DKIOCGGEOM:
ASSERT(ioctl_arg != NULL);
geom = (struct dk_geom *)ioctl_arg;
rc = vd_dskimg_validate_geometry(vd);
if (rc != 0 && rc != EINVAL)
return (rc);
bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
return (0);
case DKIOCGEXTVTOC:
ASSERT(ioctl_arg != NULL);
vtoc = (struct extvtoc *)ioctl_arg;
rc = vd_dskimg_validate_geometry(vd);
if (rc != 0 && rc != EINVAL)
return (rc);
bcopy(&vd->vtoc, vtoc, sizeof (struct extvtoc));
return (0);
case DKIOCSGEOM:
ASSERT(ioctl_arg != NULL);
geom = (struct dk_geom *)ioctl_arg;
if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
return (EINVAL);
/*
* The current device geometry is not updated, just the driver
* "notion" of it. The device geometry will be effectively
* updated when a label is written to the device during a next
* DKIOCSEXTVTOC.
*/
bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
return (0);
case DKIOCSEXTVTOC:
ASSERT(ioctl_arg != NULL);
ASSERT(vd->dk_geom.dkg_nhead != 0 &&
vd->dk_geom.dkg_nsect != 0);
vtoc = (struct extvtoc *)ioctl_arg;
if (vtoc->v_sanity != VTOC_SANE ||
vtoc->v_sectorsz != DEV_BSIZE ||
vtoc->v_nparts != V_NUMPAR)
return (EINVAL);
vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
/* write label to the disk image */
if ((rc = vd_dskimg_set_vtoc(vd, &label)) != 0)
return (rc);
break;
case DKIOCFLUSHWRITECACHE:
return (vd_flush_write(vd));
case DKIOCGETEFI:
ASSERT(ioctl_arg != NULL);
efi = (dk_efi_t *)ioctl_arg;
if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
(caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
return (EIO);
return (0);
case DKIOCSETEFI:
ASSERT(ioctl_arg != NULL);
efi = (dk_efi_t *)ioctl_arg;
if (vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
(caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
return (EIO);
break;
default:
return (ENOTSUP);
}
ASSERT(cmd == DKIOCSEXTVTOC || cmd == DKIOCSETEFI);
/* label has changed, revalidate the geometry */
(void) vd_dskimg_validate_geometry(vd);
/*
* The disk geometry may have changed, so we need to write
* the devid (if there is one) so that it is stored at the
* right location.
*/
if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
PR0("Fail to write devid");
}
return (0);
}
static int
vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
{
int rval = 0, status;
struct vtoc vtoc;
/*
* Call the appropriate function to execute the ioctl depending
* on the type of vdisk.
*/
if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
/* slice, file or volume exported as a single slice disk */
status = vd_do_slice_ioctl(vd, cmd, arg);
} else if (VD_DSKIMG(vd)) {
/* file or volume exported as a full disk */
status = vd_do_dskimg_ioctl(vd, cmd, arg);
} else {
/* disk device exported as a full disk */
status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
vd->open_flags | FKIOCTL, kcred, &rval);
/*
* By default VTOC ioctls are done using ioctls for the
* extended VTOC. Some drivers (in particular non-Sun drivers)
* may not support these ioctls. In that case, we fallback to
* the regular VTOC ioctls.
*/
if (status == ENOTTY) {
switch (cmd) {
case DKIOCGEXTVTOC:
cmd = DKIOCGVTOC;
status = ldi_ioctl(vd->ldi_handle[0], cmd,
(intptr_t)&vtoc, vd->open_flags | FKIOCTL,
kcred, &rval);
vtoctoextvtoc(vtoc,
(*(struct extvtoc *)(void *)arg));
break;
case DKIOCSEXTVTOC:
cmd = DKIOCSVTOC;
extvtoctovtoc((*(struct extvtoc *)(void *)arg),
vtoc);
status = ldi_ioctl(vd->ldi_handle[0], cmd,
(intptr_t)&vtoc, vd->open_flags | FKIOCTL,
kcred, &rval);
break;
}
}
}
#ifdef DEBUG
if (rval != 0) {
PR0("ioctl %x set rval = %d, which is not being returned"
" to caller", cmd, rval);
}
#endif /* DEBUG */
return (status);
}
/*
* Description:
* This is the function that processes the ioctl requests (farming it
* out to functions that handle slices, files or whole disks)
*
* Return Values
* 0 - ioctl operation completed successfully
* != 0 - The LDC error value encountered
* (propagated back up the call stack as a task error)
*
* Side Effect
* sets request->status to the return value of the ioctl function.
*/
static int
vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
{
int status = 0;
size_t nbytes = request->nbytes; /* modifiable copy */
ASSERT(request->slice < vd->nslices);
PR0("Performing %s", ioctl->operation_name);
/* Get data from client and convert, if necessary */
if (ioctl->copyin != NULL) {
ASSERT(nbytes != 0 && buf != NULL);
PR1("Getting \"arg\" data from client");
if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
request->cookie, request->ncookies,
LDC_COPY_IN)) != 0) {
PR0("ldc_mem_copy() returned errno %d "
"copying from client", status);
return (status);
}
/* Convert client's data, if necessary */
if (ioctl->copyin == VD_IDENTITY_IN) {
/* use client buffer */
ioctl->arg = buf;
} else {
/* convert client vdisk operation data to ioctl data */
status = (ioctl->copyin)(buf, nbytes,
(void *)ioctl->arg);
if (status != 0) {
request->status = status;
return (0);
}
}
}
if (ioctl->operation == VD_OP_SCSICMD) {
struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
/* check write permission */
if (!(vd->open_flags & FWRITE) &&
!(uscsi->uscsi_flags & USCSI_READ)) {
PR0("uscsi fails because backend is opened read-only");
request->status = EROFS;
return (0);
}
}
/*
* Send the ioctl to the disk backend.
*/
request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
if (request->status != 0) {
PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
if (ioctl->operation == VD_OP_SCSICMD &&
((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
/*
* USCSICMD has reported an error and the uscsi_status
* field is not zero. This means that the SCSI command
* has completed but it has an error. So we should
* mark the VD operation has succesfully completed
* and clients can check the SCSI status field for
* SCSI errors.
*/
request->status = 0;
else
return (0);
}
/* Convert data and send to client, if necessary */
if (ioctl->copyout != NULL) {
ASSERT(nbytes != 0 && buf != NULL);
PR1("Sending \"arg\" data to client");
/* Convert ioctl data to vdisk operation data, if necessary */
if (ioctl->copyout != VD_IDENTITY_OUT)
(ioctl->copyout)((void *)ioctl->arg, buf);
if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
request->cookie, request->ncookies,
LDC_COPY_OUT)) != 0) {
PR0("ldc_mem_copy() returned errno %d "
"copying to client", status);
return (status);
}
}
return (status);
}
#define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
/*
* Description:
* This generic function is called by the task queue to complete
* the processing of the tasks. The specific completion function
* is passed in as a field in the task pointer.
*
* Parameters:
* arg - opaque pointer to structure containing task to be completed
*
* Return Values
* None
*/
static void
vd_complete(void *arg)
{
vd_task_t *task = (vd_task_t *)arg;
ASSERT(task != NULL);
ASSERT(task->status == EINPROGRESS);
ASSERT(task->completef != NULL);
task->status = task->completef(task);
if (task->status)
PR0("%s: Error %d completing task", __func__, task->status);
/* Now notify the vDisk client */
vd_complete_notify(task);
}
static int
vd_ioctl(vd_task_t *task)
{
int i, status;
void *buf = NULL;
struct dk_geom dk_geom = {0};
struct extvtoc vtoc = {0};
struct dk_efi dk_efi = {0};
struct uscsi_cmd uscsi = {0};
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
vd_ioctl_t ioctl[] = {
/* Command (no-copy) operations */
{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
NULL, NULL, NULL, B_TRUE},
/* "Get" (copy-out) operations */
{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
RNDSIZE(vd_geom_t),
DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
&dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
DKIOCGEXTVTOC, STRINGIZE(DKIOCGEXTVTOC),
&vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
&dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
/* "Set" (copy-in) operations */
{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
RNDSIZE(vd_geom_t),
DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
&dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
DKIOCSEXTVTOC, STRINGIZE(DKIOCSEXTVTOC),
&vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
&dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
USCSICMD, STRINGIZE(USCSICMD),
&uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
};
size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
ASSERT(vd != NULL);
ASSERT(request != NULL);
ASSERT(request->slice < vd->nslices);
/*
* Determine ioctl corresponding to caller's "operation" and
* validate caller's "nbytes"
*/
for (i = 0; i < nioctls; i++) {
if (request->operation == ioctl[i].operation) {
/* LDC memory operations require 8-byte multiples */
ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
if (request->operation == VD_OP_GET_EFI ||
request->operation == VD_OP_SET_EFI ||
request->operation == VD_OP_SCSICMD) {
if (request->nbytes >= ioctl[i].nbytes)
break;
PR0("%s: Expected at least nbytes = %lu, "
"got %lu", ioctl[i].operation_name,
ioctl[i].nbytes, request->nbytes);
return (EINVAL);
}
if (request->nbytes != ioctl[i].nbytes) {
PR0("%s: Expected nbytes = %lu, got %lu",
ioctl[i].operation_name, ioctl[i].nbytes,
request->nbytes);
return (EINVAL);
}
break;
}
}
ASSERT(i < nioctls); /* because "operation" already validated */
if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
PR0("%s fails because backend is opened read-only",
ioctl[i].operation_name);
request->status = EROFS;
return (0);
}
if (request->nbytes)
buf = kmem_zalloc(request->nbytes, KM_SLEEP);
status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
if (request->nbytes)
kmem_free(buf, request->nbytes);
return (status);
}
static int
vd_get_devid(vd_task_t *task)
{
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
vd_devid_t *vd_devid;
impl_devid_t *devid;
int status, bufid_len, devid_len, len, sz;
int bufbytes;
PR1("Get Device ID, nbytes=%ld", request->nbytes);
if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
/*
* We don't support devid for single-slice disks because we
* have no space to store a fabricated devid and for physical
* disk slices, we can't use the devid of the disk otherwise
* exporting multiple slices from the same disk will produce
* the same devids.
*/
PR2("No Device ID for slices");
request->status = ENOTSUP;
return (0);
}
if (VD_DSKIMG(vd)) {
if (vd->dskimg_devid == NULL) {
PR2("No Device ID");
request->status = ENOENT;
return (0);
} else {
sz = ddi_devid_sizeof(vd->dskimg_devid);
devid = kmem_alloc(sz, KM_SLEEP);
bcopy(vd->dskimg_devid, devid, sz);
}
} else {
if (ddi_lyr_get_devid(vd->dev[request->slice],
(ddi_devid_t *)&devid) != DDI_SUCCESS) {
PR2("No Device ID");
request->status = ENOENT;
return (0);
}
}
bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
devid_len = DEVID_GETLEN(devid);
/*
* Save the buffer size here for use in deallocation.
* The actual number of bytes copied is returned in
* the 'nbytes' field of the request structure.
*/
bufbytes = request->nbytes;
vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
vd_devid->length = devid_len;
vd_devid->type = DEVID_GETTYPE(devid);
len = (devid_len > bufid_len)? bufid_len : devid_len;
bcopy(devid->did_id, vd_devid->id, len);
request->status = 0;
/* LDC memory operations require 8-byte multiples */
ASSERT(request->nbytes % sizeof (uint64_t) == 0);
if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
&request->nbytes, request->cookie, request->ncookies,
LDC_COPY_OUT)) != 0) {
PR0("ldc_mem_copy() returned errno %d copying to client",
status);
}
PR1("post mem_copy: nbytes=%ld", request->nbytes);
kmem_free(vd_devid, bufbytes);
ddi_devid_free((ddi_devid_t)devid);
return (status);
}
static int
vd_scsi_reset(vd_t *vd)
{
int rval, status;
struct uscsi_cmd uscsi = { 0 };
uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
(vd->open_flags | FKIOCTL), kcred, &rval);
return (status);
}
static int
vd_reset(vd_task_t *task)
{
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
ASSERT(request->operation == VD_OP_RESET);
ASSERT(vd->scsi);
PR0("Performing VD_OP_RESET");
if (request->nbytes != 0) {
PR0("VD_OP_RESET: Expected nbytes = 0, got %lu",
request->nbytes);
return (EINVAL);
}
request->status = vd_scsi_reset(vd);
return (0);
}
static int
vd_get_capacity(vd_task_t *task)
{
int rv;
size_t nbytes;
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
vd_capacity_t vd_cap = { 0 };
ASSERT(request->operation == VD_OP_GET_CAPACITY);
PR0("Performing VD_OP_GET_CAPACITY");
nbytes = request->nbytes;
if (nbytes != RNDSIZE(vd_capacity_t)) {
PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu",
RNDSIZE(vd_capacity_t), nbytes);
return (EINVAL);
}
/*
* Check the backend size in case it has changed. If the check fails
* then we will return the last known size.
*/
(void) vd_backend_check_size(vd);
ASSERT(vd->vdisk_size != 0);
request->status = 0;
vd_cap.vdisk_block_size = vd->vdisk_bsize;
vd_cap.vdisk_size = vd->vdisk_size;
if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
PR0("ldc_mem_copy() returned errno %d copying to client", rv);
return (rv);
}
return (0);
}
static int
vd_get_access(vd_task_t *task)
{
uint64_t access;
int rv, rval = 0;
size_t nbytes;
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
ASSERT(request->operation == VD_OP_GET_ACCESS);
ASSERT(vd->scsi);
PR0("Performing VD_OP_GET_ACCESS");
nbytes = request->nbytes;
if (nbytes != sizeof (uint64_t)) {
PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu",
sizeof (uint64_t), nbytes);
return (EINVAL);
}
request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
if (request->status != 0)
return (0);
access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
PR0("ldc_mem_copy() returned errno %d copying to client", rv);
return (rv);
}
return (0);
}
static int
vd_set_access(vd_task_t *task)
{
uint64_t flags;
int rv, rval;
size_t nbytes;
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
ASSERT(request->operation == VD_OP_SET_ACCESS);
ASSERT(vd->scsi);
nbytes = request->nbytes;
if (nbytes != sizeof (uint64_t)) {
PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu",
sizeof (uint64_t), nbytes);
return (EINVAL);
}
if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
PR0("ldc_mem_copy() returned errno %d copying from client", rv);
return (rv);
}
if (flags == VD_ACCESS_SET_CLEAR) {
PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
request->status = ldi_ioctl(vd->ldi_handle[request->slice],
MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
&rval);
if (request->status == 0)
vd->ownership = B_FALSE;
return (0);
}
/*
* As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
* when the EXCLUSIVE flag is set.
*/
if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
request->status = EINVAL;
return (0);
}
switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
/*
* Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
* acquire exclusive access rights, preserve them and we
* can use preemption. So we can use the MHIOCTKNOWN ioctl.
*/
PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
request->status = ldi_ioctl(vd->ldi_handle[request->slice],
MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
break;
case VD_ACCESS_SET_PRESERVE:
/*
* Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
* access rights and preserve them, but not preempt any other
* host. So we need to use the MHIOCTKOWN ioctl to enable the
* "preserve" feature but we can not called it directly
* because it uses preemption. So before that, we use the
* MHIOCQRESERVE ioctl to ensure we can get exclusive rights
* without preempting anyone.
*/
PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
request->status = ldi_ioctl(vd->ldi_handle[request->slice],
MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
&rval);
if (request->status != 0)
break;
request->status = ldi_ioctl(vd->ldi_handle[request->slice],
MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
break;
case VD_ACCESS_SET_PREEMPT:
/*
* Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
* access rights and we can use preemption. So we try to do
* a SCSI reservation, if it fails we reset the disk to clear
* any reservation and we try to reserve again.
*/
PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
request->status = ldi_ioctl(vd->ldi_handle[request->slice],
MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
&rval);
if (request->status == 0)
break;
/* reset the disk */
(void) vd_scsi_reset(vd);
/* try again even if the reset has failed */
request->status = ldi_ioctl(vd->ldi_handle[request->slice],
MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
&rval);
break;
case 0:
/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
request->status = ldi_ioctl(vd->ldi_handle[request->slice],
MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
&rval);
break;
}
if (request->status == 0)
vd->ownership = B_TRUE;
else
PR0("VD_OP_SET_ACCESS: error %d", request->status);
return (0);
}
static void
vd_reset_access(vd_t *vd)
{
int status, rval;
if (vd->file || vd->volume || !vd->ownership)
return;
PR0("Releasing disk ownership");
status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
(vd->open_flags | FKIOCTL), kcred, &rval);
/*
* An EACCES failure means that there is a reservation conflict,
* so we are not the owner of the disk anymore.
*/
if (status == 0 || status == EACCES) {
vd->ownership = B_FALSE;
return;
}
PR0("Fail to release ownership, error %d", status);
/*
* We have failed to release the ownership, try to reset the disk
* to release reservations.
*/
PR0("Resetting disk");
status = vd_scsi_reset(vd);
if (status != 0)
PR0("Fail to reset disk, error %d", status);
/* whatever the result of the reset is, we try the release again */
status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
(vd->open_flags | FKIOCTL), kcred, &rval);
if (status == 0 || status == EACCES) {
vd->ownership = B_FALSE;
return;
}
PR0("Fail to release ownership, error %d", status);
/*
* At this point we have done our best to try to reset the
* access rights to the disk and we don't know if we still
* own a reservation and if any mechanism to preserve the
* ownership is still in place. The ultimate solution would
* be to reset the system but this is usually not what we
* want to happen.
*/
if (vd_reset_access_failure == A_REBOOT) {
cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
", rebooting the system", vd->device_path);
(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
} else if (vd_reset_access_failure == A_DUMP) {
panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
}
cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
}
/*
* Define the supported operations once the functions for performing them have
* been defined
*/
static const vds_operation_t vds_operation[] = {
#define X(_s) #_s, _s
{X(VD_OP_BREAD), vd_start_bio, vd_complete_bio},
{X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio},
{X(VD_OP_FLUSH), vd_ioctl, NULL},
{X(VD_OP_GET_WCE), vd_ioctl, NULL},
{X(VD_OP_SET_WCE), vd_ioctl, NULL},
{X(VD_OP_GET_VTOC), vd_ioctl, NULL},
{X(VD_OP_SET_VTOC), vd_ioctl, NULL},
{X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL},
{X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL},
{X(VD_OP_GET_EFI), vd_ioctl, NULL},
{X(VD_OP_SET_EFI), vd_ioctl, NULL},
{X(VD_OP_GET_DEVID), vd_get_devid, NULL},
{X(VD_OP_SCSICMD), vd_ioctl, NULL},
{X(VD_OP_RESET), vd_reset, NULL},
{X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL},
{X(VD_OP_SET_ACCESS), vd_set_access, NULL},
{X(VD_OP_GET_ACCESS), vd_get_access, NULL},
#undef X
};
static const size_t vds_noperations =
(sizeof (vds_operation))/(sizeof (vds_operation[0]));
/*
* Process a task specifying a client I/O request
*
* Parameters:
* task - structure containing the request sent from client
*
* Return Value
* 0 - success
* ENOTSUP - Unknown/Unsupported VD_OP_XXX operation
* EINVAL - Invalid disk slice
* != 0 - some other non-zero return value from start function
*/
static int
vd_do_process_task(vd_task_t *task)
{
int i;
vd_t *vd = task->vd;
vd_dring_payload_t *request = task->request;
ASSERT(vd != NULL);
ASSERT(request != NULL);
/* Find the requested operation */
for (i = 0; i < vds_noperations; i++) {
if (request->operation == vds_operation[i].operation) {
/* all operations should have a start func */
ASSERT(vds_operation[i].start != NULL);
task->completef = vds_operation[i].complete;
break;
}
}
/*
* We need to check that the requested operation is permitted
* for the particular client that sent it or that the loop above
* did not complete without finding the operation type (indicating
* that the requested operation is unknown/unimplemented)
*/
if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
(i == vds_noperations)) {
PR0("Unsupported operation %u", request->operation);
request->status = ENOTSUP;
return (0);
}
/* Range-check slice */
if (request->slice >= vd->nslices &&
((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
request->slice != VD_SLICE_NONE)) {
PR0("Invalid \"slice\" %u (max %u) for virtual disk",
request->slice, (vd->nslices - 1));
request->status = EINVAL;
return (0);
}
/*
* Call the function pointer that starts the operation.
*/
return (vds_operation[i].start(task));
}
/*
* Description:
* This function is called by both the in-band and descriptor ring
* message processing functions paths to actually execute the task
* requested by the vDisk client. It in turn calls its worker
* function, vd_do_process_task(), to carry our the request.
*
* Any transport errors (e.g. LDC errors, vDisk protocol errors) are
* saved in the 'status' field of the task and are propagated back
* up the call stack to trigger a NACK
*
* Any request errors (e.g. ENOTTY from an ioctl) are saved in
* the 'status' field of the request and result in an ACK being sent
* by the completion handler.
*
* Parameters:
* task - structure containing the request sent from client
*
* Return Value
* 0 - successful synchronous request.
* != 0 - transport error (e.g. LDC errors, vDisk protocol)
* EINPROGRESS - task will be finished in a completion handler
*/
static int
vd_process_task(vd_task_t *task)
{
vd_t *vd = task->vd;
int status;
DTRACE_PROBE1(task__start, vd_task_t *, task);
task->status = vd_do_process_task(task);
/*
* If the task processing function returned EINPROGRESS indicating
* that the task needs completing then schedule a taskq entry to
* finish it now.
*
* Otherwise the task processing function returned either zero
* indicating that the task was finished in the start function (and we
* don't need to wait in a completion function) or the start function
* returned an error - in both cases all that needs to happen is the
* notification to the vDisk client higher up the call stack.
* If the task was using a Descriptor Ring, we need to mark it as done
* at this stage.
*/
if (task->status == EINPROGRESS) {
/* Queue a task to complete the operation */
(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
task, DDI_SLEEP);
return (EINPROGRESS);
}
if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
/* Update the dring element if it's a dring client */
status = vd_mark_elem_done(vd, task->index,
task->request->status, task->request->nbytes);
if (status == ECONNRESET)
vd_mark_in_reset(vd);
else if (status == EACCES)
vd_need_reset(vd, B_TRUE);
}
return (task->status);
}
/*
* Return true if the "type", "subtype", and "env" fields of the "tag" first
* argument match the corresponding remaining arguments; otherwise, return false
*/
boolean_t
vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
{
return ((tag->vio_msgtype == type) &&
(tag->vio_subtype == subtype) &&
(tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
}
/*
* Check whether the major/minor version specified in "ver_msg" is supported
* by this server.
*/
static boolean_t
vds_supported_version(vio_ver_msg_t *ver_msg)
{
for (int i = 0; i < vds_num_versions; i++) {
ASSERT(vds_version[i].major > 0);
ASSERT((i == 0) ||
(vds_version[i].major < vds_version[i-1].major));
/*
* If the major versions match, adjust the minor version, if
* necessary, down to the highest value supported by this
* server and return true so this message will get "ack"ed;
* the client should also support all minor versions lower
* than the value it sent
*/
if (ver_msg->ver_major == vds_version[i].major) {
if (ver_msg->ver_minor > vds_version[i].minor) {
PR0("Adjusting minor version from %u to %u",
ver_msg->ver_minor, vds_version[i].minor);
ver_msg->ver_minor = vds_version[i].minor;
}
return (B_TRUE);
}
/*
* If the message contains a higher major version number, set
* the message's major/minor versions to the current values
* and return false, so this message will get "nack"ed with
* these values, and the client will potentially try again
* with the same or a lower version
*/
if (ver_msg->ver_major > vds_version[i].major) {
ver_msg->ver_major = vds_version[i].major;
ver_msg->ver_minor = vds_version[i].minor;
return (B_FALSE);
}
/*
* Otherwise, the message's major version is less than the
* current major version, so continue the loop to the next
* (lower) supported version
*/
}
/*
* No common version was found; "ground" the version pair in the
* message to terminate negotiation
*/
ver_msg->ver_major = 0;
ver_msg->ver_minor = 0;
return (B_FALSE);
}
/*
* Process a version message from a client. vds expects to receive version
* messages from clients seeking service, but never issues version messages
* itself; therefore, vds can ACK or NACK client version messages, but does
* not expect to receive version-message ACKs or NACKs (and will treat such
* messages as invalid).
*/
static int
vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg;
ASSERT(msglen >= sizeof (msg->tag));
if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
VIO_VER_INFO)) {
return (ENOMSG); /* not a version message */
}
if (msglen != sizeof (*ver_msg)) {
PR0("Expected %lu-byte version message; "
"received %lu bytes", sizeof (*ver_msg), msglen);
return (EBADMSG);
}
if (ver_msg->dev_class != VDEV_DISK) {
PR0("Expected device class %u (disk); received %u",
VDEV_DISK, ver_msg->dev_class);
return (EBADMSG);
}
/*
* We're talking to the expected kind of client; set our device class
* for "ack/nack" back to the client
*/
ver_msg->dev_class = VDEV_DISK_SERVER;
/*
* Check whether the (valid) version message specifies a version
* supported by this server. If the version is not supported, return
* EBADMSG so the message will get "nack"ed; vds_supported_version()
* will have updated the message with a supported version for the
* client to consider
*/
if (!vds_supported_version(ver_msg))
return (EBADMSG);
/*
* A version has been agreed upon; use the client's SID for
* communication on this channel now
*/
ASSERT(!(vd->initialized & VD_SID));
vd->sid = ver_msg->tag.vio_sid;
vd->initialized |= VD_SID;
/*
* Store the negotiated major and minor version values in the "vd" data
* structure so that we can check if certain operations are supported
* by the client.
*/
vd->version.major = ver_msg->ver_major;
vd->version.minor = ver_msg->ver_minor;
PR0("Using major version %u, minor version %u",
ver_msg->ver_major, ver_msg->ver_minor);
return (0);
}
static void
vd_set_exported_operations(vd_t *vd)
{
vd->operations = 0; /* clear field */
/*
* We need to check from the highest version supported to the
* lowest because versions with a higher minor number implicitly
* support versions with a lower minor number.
*/
if (vio_ver_is_supported(vd->version, 1, 1)) {
ASSERT(vd->open_flags & FREAD);
vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
if (vd->open_flags & FWRITE)
vd->operations |= VD_OP_MASK_WRITE;
if (vd->scsi)
vd->operations |= VD_OP_MASK_SCSI;
if (VD_DSKIMG(vd) && vd_dskimg_is_iso_image(vd)) {
/*
* can't write to ISO images, make sure that write
* support is not set in case administrator did not
* use "options=ro" when doing an ldm add-vdsdev
*/
vd->operations &= ~VD_OP_MASK_WRITE;
}
} else if (vio_ver_is_supported(vd->version, 1, 0)) {
vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
}
/* we should have already agreed on a version */
ASSERT(vd->operations != 0);
}
static int
vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg;
int status, retry = 0;
ASSERT(msglen >= sizeof (msg->tag));
if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
VIO_ATTR_INFO)) {
PR0("Message is not an attribute message");
return (ENOMSG);
}
if (msglen != sizeof (*attr_msg)) {
PR0("Expected %lu-byte attribute message; "
"received %lu bytes", sizeof (*attr_msg), msglen);
return (EBADMSG);
}
if (attr_msg->max_xfer_sz == 0) {
PR0("Received maximum transfer size of 0 from client");
return (EBADMSG);
}
if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
(attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
PR0("Client requested unsupported transfer mode");
return (EBADMSG);
}
/*
* check if the underlying disk is ready, if not try accessing
* the device again. Open the vdisk device and extract info
* about it, as this is needed to respond to the attr info msg
*/
if ((vd->initialized & VD_DISK_READY) == 0) {
PR0("Retry setting up disk (%s)", vd->device_path);
do {
status = vd_setup_vd(vd);
if (status != EAGAIN || ++retry > vds_dev_retries)
break;
/* incremental delay */
delay(drv_usectohz(vds_dev_delay));
/* if vdisk is no longer enabled - return error */
if (!vd_enabled(vd))
return (ENXIO);
} while (status == EAGAIN);
if (status)
return (ENXIO);
vd->initialized |= VD_DISK_READY;
ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
(vd->volume ? "yes" : "no"),
(vd->file ? "yes" : "no"),
vd->nslices);
}
/* Success: valid message and transfer mode */
vd->xfer_mode = attr_msg->xfer_mode;
if (vd->xfer_mode == VIO_DESC_MODE) {
/*
* The vd_dring_inband_msg_t contains one cookie; need room
* for up to n-1 more cookies, where "n" is the number of full
* pages plus possibly one partial page required to cover
* "max_xfer_sz". Add room for one more cookie if
* "max_xfer_sz" isn't an integral multiple of the page size.
* Must first get the maximum transfer size in bytes.
*/
size_t max_xfer_bytes = attr_msg->vdisk_block_size ?
attr_msg->vdisk_block_size * attr_msg->max_xfer_sz :
attr_msg->max_xfer_sz;
size_t max_inband_msglen =
sizeof (vd_dring_inband_msg_t) +
((max_xfer_bytes/PAGESIZE +
((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
(sizeof (ldc_mem_cookie_t)));
/*
* Set the maximum expected message length to
* accommodate in-band-descriptor messages with all
* their cookies
*/
vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
/*
* Initialize the data structure for processing in-band I/O
* request descriptors
*/
vd->inband_task.vd = vd;
vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
vd->inband_task.index = 0;
vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */
}
/* Return the device's block size and max transfer size to the client */
attr_msg->vdisk_block_size = vd->vdisk_bsize;
attr_msg->max_xfer_sz = vd->max_xfer_sz;
attr_msg->vdisk_size = vd->vdisk_size;
attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
VD_DISK_TYPE_DISK;
attr_msg->vdisk_media = vd->vdisk_media;
/* Discover and save the list of supported VD_OP_XXX operations */
vd_set_exported_operations(vd);
attr_msg->operations = vd->operations;
PR0("%s", VD_CLIENT(vd));
ASSERT(vd->dring_task == NULL);
return (0);
}
static int
vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
int status;
size_t expected;
ldc_mem_info_t dring_minfo;
uint8_t mtype;
vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg;
ASSERT(msglen >= sizeof (msg->tag));
if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
VIO_DRING_REG)) {
PR0("Message is not a register-dring message");
return (ENOMSG);
}
if (msglen < sizeof (*reg_msg)) {
PR0("Expected at least %lu-byte register-dring message; "
"received %lu bytes", sizeof (*reg_msg), msglen);
return (EBADMSG);
}
expected = sizeof (*reg_msg) +
(reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
if (msglen != expected) {
PR0("Expected %lu-byte register-dring message; "
"received %lu bytes", expected, msglen);
return (EBADMSG);
}
if (vd->initialized & VD_DRING) {
PR0("A dring was previously registered; only support one");
return (EBADMSG);
}
if (reg_msg->num_descriptors > INT32_MAX) {
PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
return (EBADMSG);
}
if (reg_msg->ncookies != 1) {
/*
* In addition to fixing the assertion in the success case
* below, supporting drings which require more than one
* "cookie" requires increasing the value of vd->max_msglen
* somewhere in the code path prior to receiving the message
* which results in calling this function. Note that without
* making this change, the larger message size required to
* accommodate multiple cookies cannot be successfully
* received, so this function will not even get called.
* Gracefully accommodating more dring cookies might
* reasonably demand exchanging an additional attribute or
* making a minor protocol adjustment
*/
PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
return (EBADMSG);
}
if (vd_direct_mapped_drings)
mtype = LDC_DIRECT_MAP;
else
mtype = LDC_SHADOW_MAP;
status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
reg_msg->ncookies, reg_msg->num_descriptors,
reg_msg->descriptor_size, mtype, &vd->dring_handle);
if (status != 0) {
PR0("ldc_mem_dring_map() returned errno %d", status);
return (status);
}
/*
* To remove the need for this assertion, must call
* ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
* successful call to ldc_mem_dring_map()
*/
ASSERT(reg_msg->ncookies == 1);
if ((status =
ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
PR0("ldc_mem_dring_info() returned errno %d", status);
if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
PR0("ldc_mem_dring_unmap() returned errno %d", status);
return (status);
}
if (dring_minfo.vaddr == NULL) {
PR0("Descriptor ring virtual address is NULL");
return (ENXIO);
}
/* Initialize for valid message and mapped dring */
vd->initialized |= VD_DRING;
vd->dring_ident = 1; /* "There Can Be Only One" */
vd->dring = dring_minfo.vaddr;
vd->descriptor_size = reg_msg->descriptor_size;
vd->dring_len = reg_msg->num_descriptors;
vd->dring_mtype = dring_minfo.mtype;
reg_msg->dring_ident = vd->dring_ident;
PR1("descriptor size = %u, dring length = %u",
vd->descriptor_size, vd->dring_len);
/*
* Allocate and initialize a "shadow" array of data structures for
* tasks to process I/O requests in dring elements
*/
vd->dring_task =
kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
for (int i = 0; i < vd->dring_len; i++) {
vd->dring_task[i].vd = vd;
vd->dring_task[i].index = i;
status = ldc_mem_alloc_handle(vd->ldc_handle,
&(vd->dring_task[i].mhdl));
if (status) {
PR0("ldc_mem_alloc_handle() returned err %d ", status);
return (ENXIO);
}
/*
* The descriptor payload varies in length. Calculate its
* size by subtracting the header size from the total
* descriptor size.
*/
vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
}
if (vd->file || vd->zvol) {
vd->write_queue =
kmem_zalloc(sizeof (buf_t *) * vd->dring_len, KM_SLEEP);
}
return (0);
}
static int
vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg;
ASSERT(msglen >= sizeof (msg->tag));
if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
VIO_DRING_UNREG)) {
PR0("Message is not an unregister-dring message");
return (ENOMSG);
}
if (msglen != sizeof (*unreg_msg)) {
PR0("Expected %lu-byte unregister-dring message; "
"received %lu bytes", sizeof (*unreg_msg), msglen);
return (EBADMSG);
}
if (unreg_msg->dring_ident != vd->dring_ident) {
PR0("Expected dring ident %lu; received %lu",
vd->dring_ident, unreg_msg->dring_ident);
return (EBADMSG);
}
return (0);
}
static int
process_rdx_msg(vio_msg_t *msg, size_t msglen)
{
ASSERT(msglen >= sizeof (msg->tag));
if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
PR0("Message is not an RDX message");
return (ENOMSG);
}
if (msglen != sizeof (vio_rdx_msg_t)) {
PR0("Expected %lu-byte RDX message; received %lu bytes",
sizeof (vio_rdx_msg_t), msglen);
return (EBADMSG);
}
PR0("Valid RDX message");
return (0);
}
static int
vd_check_seq_num(vd_t *vd, uint64_t seq_num)
{
if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
PR0("Received seq_num %lu; expected %lu",
seq_num, (vd->seq_num + 1));
PR0("initiating soft reset");
vd_need_reset(vd, B_FALSE);
return (1);
}
vd->seq_num = seq_num;
vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */
return (0);
}
/*
* Return the expected size of an inband-descriptor message with all the
* cookies it claims to include
*/
static size_t
expected_inband_size(vd_dring_inband_msg_t *msg)
{
return ((sizeof (*msg)) +
(msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
}
/*
* Process an in-band descriptor message: used with clients like OBP, with
* which vds exchanges descriptors within VIO message payloads, rather than
* operating on them within a descriptor ring
*/
static int
vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
size_t expected;
vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg;
ASSERT(msglen >= sizeof (msg->tag));
if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
VIO_DESC_DATA)) {
PR1("Message is not an in-band-descriptor message");
return (ENOMSG);
}
if (msglen < sizeof (*desc_msg)) {
PR0("Expected at least %lu-byte descriptor message; "
"received %lu bytes", sizeof (*desc_msg), msglen);
return (EBADMSG);
}
if (msglen != (expected = expected_inband_size(desc_msg))) {
PR0("Expected %lu-byte descriptor message; "
"received %lu bytes", expected, msglen);
return (EBADMSG);
}
if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
return (EBADMSG);
/*
* Valid message: Set up the in-band descriptor task and process the
* request. Arrange to acknowledge the client's message, unless an
* error processing the descriptor task results in setting
* VIO_SUBTYPE_NACK
*/
PR1("Valid in-band-descriptor message");
msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
ASSERT(vd->inband_task.msg != NULL);
bcopy(msg, vd->inband_task.msg, msglen);
vd->inband_task.msglen = msglen;
/*
* The task request is now the payload of the message
* that was just copied into the body of the task.
*/
desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
vd->inband_task.request = &desc_msg->payload;
return (vd_process_task(&vd->inband_task));
}
static int
vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
vio_msg_t *msg, size_t msglen)
{
int status;
boolean_t ready;
on_trap_data_t otd;
vd_dring_entry_t *elem = VD_DRING_ELEM(idx);
/* Accept the updated dring element */
if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
vd->dring_handle, idx, idx)) != 0) {
return (status);
}
ready = (elem->hdr.dstate == VIO_DESC_READY);
if (ready) {
elem->hdr.dstate = VIO_DESC_ACCEPTED;
bcopy(&elem->payload, vd->dring_task[idx].request,
(vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
} else {
PR0("descriptor %u not ready", idx);
VD_DUMP_DRING_ELEM(elem);
}
if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
vd->dring_handle, idx, idx)) != 0) {
PR0("VIO_DRING_RELEASE() returned errno %d", status);
return (status);
}
if (!ready)
return (EBUSY);
/* Initialize a task and process the accepted element */
PR1("Processing dring element %u", idx);
vd->dring_task[idx].type = type;
/* duplicate msg buf for cookies etc. */
bcopy(msg, vd->dring_task[idx].msg, msglen);
vd->dring_task[idx].msglen = msglen;
return (vd_process_task(&vd->dring_task[idx]));
}
static int
vd_process_element_range(vd_t *vd, int start, int end,
vio_msg_t *msg, size_t msglen)
{
int i, n, nelem, status = 0;
boolean_t inprogress = B_FALSE;
vd_task_type_t type;
ASSERT(start >= 0);
ASSERT(end >= 0);
/*
* Arrange to acknowledge the client's message, unless an error
* processing one of the dring elements results in setting
* VIO_SUBTYPE_NACK
*/
msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
/*
* Process the dring elements in the range
*/
nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
((vio_dring_msg_t *)msg)->end_idx = i;
type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
status = vd_process_element(vd, type, i, msg, msglen);
if (status == EINPROGRESS)
inprogress = B_TRUE;
else if (status != 0)
break;
}
/*
* If some, but not all, operations of a multi-element range are in
* progress, wait for other operations to complete before returning
* (which will result in "ack" or "nack" of the message). Note that
* all outstanding operations will need to complete, not just the ones
* corresponding to the current range of dring elements; howevever, as
* this situation is an error case, performance is less critical.
*/
if ((nelem > 1) && (status != EINPROGRESS) && inprogress) {
if (vd->ioq != NULL)
ddi_taskq_wait(vd->ioq);
ddi_taskq_wait(vd->completionq);
}
return (status);
}
static int
vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg;
ASSERT(msglen >= sizeof (msg->tag));
if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
VIO_DRING_DATA)) {
PR1("Message is not a dring-data message");
return (ENOMSG);
}
if (msglen != sizeof (*dring_msg)) {
PR0("Expected %lu-byte dring message; received %lu bytes",
sizeof (*dring_msg), msglen);
return (EBADMSG);
}
if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
return (EBADMSG);
if (dring_msg->dring_ident != vd->dring_ident) {
PR0("Expected dring ident %lu; received ident %lu",
vd->dring_ident, dring_msg->dring_ident);
return (EBADMSG);
}
if (dring_msg->start_idx >= vd->dring_len) {
PR0("\"start_idx\" = %u; must be less than %u",
dring_msg->start_idx, vd->dring_len);
return (EBADMSG);
}
if ((dring_msg->end_idx < 0) ||
(dring_msg->end_idx >= vd->dring_len)) {
PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
dring_msg->end_idx, vd->dring_len);
return (EBADMSG);
}
/* Valid message; process range of updated dring elements */
PR1("Processing descriptor range, start = %u, end = %u",
dring_msg->start_idx, dring_msg->end_idx);
return (vd_process_element_range(vd, dring_msg->start_idx,
dring_msg->end_idx, msg, msglen));
}
static int
recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
{
int retry, status;
size_t size = *nbytes;
for (retry = 0, status = ETIMEDOUT;
retry < vds_ldc_retries && status == ETIMEDOUT;
retry++) {
PR1("ldc_read() attempt %d", (retry + 1));
*nbytes = size;
status = ldc_read(ldc_handle, msg, nbytes);
}
if (status) {
PR0("ldc_read() returned errno %d", status);
if (status != ECONNRESET)
return (ENOMSG);
return (status);
} else if (*nbytes == 0) {
PR1("ldc_read() returned 0 and no message read");
return (ENOMSG);
}
PR1("RCVD %lu-byte message", *nbytes);
return (0);
}
static int
vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
int status;
PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
msg->tag.vio_subtype, msg->tag.vio_subtype_env);
#ifdef DEBUG
vd_decode_tag(msg);
#endif
/*
* Validate session ID up front, since it applies to all messages
* once set
*/
if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
PR0("Expected SID %u, received %u", vd->sid,
msg->tag.vio_sid);
return (EBADMSG);
}
PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
/*
* Process the received message based on connection state
*/
switch (vd->state) {
case VD_STATE_INIT: /* expect version message */
if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
return (status);
/* Version negotiated, move to that state */
vd->state = VD_STATE_VER;
return (0);
case VD_STATE_VER: /* expect attribute message */
if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
return (status);
/* Attributes exchanged, move to that state */
vd->state = VD_STATE_ATTR;
return (0);
case VD_STATE_ATTR:
switch (vd->xfer_mode) {
case VIO_DESC_MODE: /* expect RDX message */
if ((status = process_rdx_msg(msg, msglen)) != 0)
return (status);
/* Ready to receive in-band descriptors */
vd->state = VD_STATE_DATA;
return (0);
case VIO_DRING_MODE_V1_0: /* expect register-dring message */
if ((status =
vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
return (status);
/* One dring negotiated, move to that state */
vd->state = VD_STATE_DRING;
return (0);
default:
ASSERT("Unsupported transfer mode");
PR0("Unsupported transfer mode");
return (ENOTSUP);
}
case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */
if ((status = process_rdx_msg(msg, msglen)) == 0) {
/* Ready to receive data */
vd->state = VD_STATE_DATA;
return (0);
} else if (status != ENOMSG) {
return (status);
}
/*
* If another register-dring message is received, stay in
* dring state in case the client sends RDX; although the
* protocol allows multiple drings, this server does not
* support using more than one
*/
if ((status =
vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
return (status);
/*
* Acknowledge an unregister-dring message, but reset the
* connection anyway: Although the protocol allows
* unregistering drings, this server cannot serve a vdisk
* without its only dring
*/
status = vd_process_dring_unreg_msg(vd, msg, msglen);
return ((status == 0) ? ENOTSUP : status);
case VD_STATE_DATA:
switch (vd->xfer_mode) {
case VIO_DESC_MODE: /* expect in-band-descriptor message */
return (vd_process_desc_msg(vd, msg, msglen));
case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
/*
* Typically expect dring-data messages, so handle
* them first
*/
if ((status = vd_process_dring_msg(vd, msg,
msglen)) != ENOMSG)
return (status);
/*
* Acknowledge an unregister-dring message, but reset
* the connection anyway: Although the protocol
* allows unregistering drings, this server cannot
* serve a vdisk without its only dring
*/
status = vd_process_dring_unreg_msg(vd, msg, msglen);
return ((status == 0) ? ENOTSUP : status);
default:
ASSERT("Unsupported transfer mode");
PR0("Unsupported transfer mode");
return (ENOTSUP);
}
default:
ASSERT("Invalid client connection state");
PR0("Invalid client connection state");
return (ENOTSUP);
}
}
static int
vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
{
int status;
boolean_t reset_ldc = B_FALSE;
vd_task_t task;
/*
* Check that the message is at least big enough for a "tag", so that
* message processing can proceed based on tag-specified message type
*/
if (msglen < sizeof (vio_msg_tag_t)) {
PR0("Received short (%lu-byte) message", msglen);
/* Can't "nack" short message, so drop the big hammer */
PR0("initiating full reset");
vd_need_reset(vd, B_TRUE);
return (EBADMSG);
}
/*
* Process the message
*/
switch (status = vd_do_process_msg(vd, msg, msglen)) {
case 0:
/* "ack" valid, successfully-processed messages */
msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
break;
case EINPROGRESS:
/* The completion handler will "ack" or "nack" the message */
return (EINPROGRESS);
case ENOMSG:
PR0("Received unexpected message");
_NOTE(FALLTHROUGH);
case EBADMSG:
case ENOTSUP:
/* "transport" error will cause NACK of invalid messages */
msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
break;
default:
/* "transport" error will cause NACK of invalid messages */
msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
/* An LDC error probably occurred, so try resetting it */
reset_ldc = B_TRUE;
break;
}
PR1("\tResulting in state %d (%s)", vd->state,
vd_decode_state(vd->state));
/* populate the task so we can dispatch it on the taskq */
task.vd = vd;
task.msg = msg;
task.msglen = msglen;
/*
* Queue a task to send the notification that the operation completed.
* We need to ensure that requests are responded to in the correct
* order and since the taskq is processed serially this ordering
* is maintained.
*/
(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
&task, DDI_SLEEP);
/*
* To ensure handshake negotiations do not happen out of order, such
* requests that come through this path should not be done in parallel
* so we need to wait here until the response is sent to the client.
*/
ddi_taskq_wait(vd->completionq);
/* Arrange to reset the connection for nack'ed or failed messages */
if ((status != 0) || reset_ldc) {
PR0("initiating %s reset",
(reset_ldc) ? "full" : "soft");
vd_need_reset(vd, reset_ldc);
}
return (status);
}
static boolean_t
vd_enabled(vd_t *vd)
{
boolean_t enabled;
mutex_enter(&vd->lock);
enabled = vd->enabled;
mutex_exit(&vd->lock);
return (enabled);
}
static void
vd_recv_msg(void *arg)
{
vd_t *vd = (vd_t *)arg;
int rv = 0, status = 0;
ASSERT(vd != NULL);
PR2("New task to receive incoming message(s)");
while (vd_enabled(vd) && status == 0) {
size_t msglen, msgsize;
ldc_status_t lstatus;
/*
* Receive and process a message
*/
vd_reset_if_needed(vd); /* can change vd->max_msglen */
/*
* check if channel is UP - else break out of loop
*/
status = ldc_status(vd->ldc_handle, &lstatus);
if (lstatus != LDC_UP) {
PR0("channel not up (status=%d), exiting recv loop\n",
lstatus);
break;
}
ASSERT(vd->max_msglen != 0);
msgsize = vd->max_msglen; /* stable copy for alloc/free */
msglen = msgsize; /* actual len after recv_msg() */
status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
switch (status) {
case 0:
rv = vd_process_msg(vd, (void *)vd->vio_msgp, msglen);
/* check if max_msglen changed */
if (msgsize != vd->max_msglen) {
PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
msgsize, vd->max_msglen);
kmem_free(vd->vio_msgp, msgsize);
vd->vio_msgp =
kmem_alloc(vd->max_msglen, KM_SLEEP);
}
if (rv == EINPROGRESS)
continue;
break;
case ENOMSG:
break;
case ECONNRESET:
PR0("initiating soft reset (ECONNRESET)\n");
vd_need_reset(vd, B_FALSE);
status = 0;
break;
default:
/* Probably an LDC failure; arrange to reset it */
PR0("initiating full reset (status=0x%x)", status);
vd_need_reset(vd, B_TRUE);
break;
}
}
PR2("Task finished");
}
static uint_t
vd_handle_ldc_events(uint64_t event, caddr_t arg)
{
vd_t *vd = (vd_t *)(void *)arg;
int status;
ASSERT(vd != NULL);
if (!vd_enabled(vd))
return (LDC_SUCCESS);
if (event & LDC_EVT_DOWN) {
PR0("LDC_EVT_DOWN: LDC channel went down");
vd_need_reset(vd, B_TRUE);
status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
DDI_SLEEP);
if (status == DDI_FAILURE) {
PR0("cannot schedule task to recv msg\n");
vd_need_reset(vd, B_TRUE);
}
}
if (event & LDC_EVT_RESET) {
PR0("LDC_EVT_RESET: LDC channel was reset");
if (vd->state != VD_STATE_INIT) {
PR0("scheduling full reset");
vd_need_reset(vd, B_FALSE);
status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
vd, DDI_SLEEP);
if (status == DDI_FAILURE) {
PR0("cannot schedule task to recv msg\n");
vd_need_reset(vd, B_TRUE);
}
} else {
PR0("channel already reset, ignoring...\n");
PR0("doing ldc up...\n");
(void) ldc_up(vd->ldc_handle);
}
return (LDC_SUCCESS);
}
if (event & LDC_EVT_UP) {
PR0("EVT_UP: LDC is up\nResetting client connection state");
PR0("initiating soft reset");
vd_need_reset(vd, B_FALSE);
status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
vd, DDI_SLEEP);
if (status == DDI_FAILURE) {
PR0("cannot schedule task to recv msg\n");
vd_need_reset(vd, B_TRUE);
return (LDC_SUCCESS);
}
}
if (event & LDC_EVT_READ) {
int status;
PR1("New data available");
/* Queue a task to receive the new data */
status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
DDI_SLEEP);
if (status == DDI_FAILURE) {
PR0("cannot schedule task to recv msg\n");
vd_need_reset(vd, B_TRUE);
}
}
return (LDC_SUCCESS);
}
static uint_t
vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
{
_NOTE(ARGUNUSED(key, val))
(*((uint_t *)arg))++;
return (MH_WALK_TERMINATE);
}
static int
vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
uint_t vd_present = 0;
minor_t instance;
vds_t *vds;
switch (cmd) {
case DDI_DETACH:
/* the real work happens below */
break;
case DDI_SUSPEND:
PR0("No action required for DDI_SUSPEND");
return (DDI_SUCCESS);
default:
PR0("Unrecognized \"cmd\"");
return (DDI_FAILURE);
}
ASSERT(cmd == DDI_DETACH);
instance = ddi_get_instance(dip);
if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
PR0("Could not get state for instance %u", instance);
ddi_soft_state_free(vds_state, instance);
return (DDI_FAILURE);
}
/* Do no detach when serving any vdisks */
mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
if (vd_present) {
PR0("Not detaching because serving vdisks");
return (DDI_FAILURE);
}
PR0("Detaching");
if (vds->initialized & VDS_MDEG) {
(void) mdeg_unregister(vds->mdeg);
kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
vds->ispecp = NULL;
vds->mdeg = NULL;
}
vds_driver_types_free(vds);
if (vds->initialized & VDS_LDI)
(void) ldi_ident_release(vds->ldi_ident);
mod_hash_destroy_hash(vds->vd_table);
ddi_soft_state_free(vds_state, instance);
return (DDI_SUCCESS);
}
/*
* Description:
* This function checks to see if the disk image being used as a
* virtual disk is an ISO image. An ISO image is a special case
* which can be booted/installed from like a CD/DVD.
*
* Parameters:
* vd - disk on which the operation is performed.
*
* Return Code:
* B_TRUE - The disk image is an ISO 9660 compliant image
* B_FALSE - just a regular disk image
*/
static boolean_t
vd_dskimg_is_iso_image(vd_t *vd)
{
char iso_buf[ISO_SECTOR_SIZE];
int i, rv;
uint_t sec;
ASSERT(VD_DSKIMG(vd));
/*
* If we have already discovered and saved this info we can
* short-circuit the check and avoid reading the disk image.
*/
if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
return (B_TRUE);
/*
* We wish to read the sector that should contain the 2nd ISO volume
* descriptor. The second field in this descriptor is called the
* Standard Identifier and is set to CD001 for a CD-ROM compliant
* to the ISO 9660 standard.
*/
sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_bsize;
rv = vd_dskimg_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
sec, ISO_SECTOR_SIZE);
if (rv < 0)
return (B_FALSE);
for (i = 0; i < ISO_ID_STRLEN; i++) {
if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Description:
* This function checks to see if the virtual device is an ATAPI
* device. ATAPI devices use Group 1 Read/Write commands, so
* any USCSI calls vds makes need to take this into account.
*
* Parameters:
* vd - disk on which the operation is performed.
*
* Return Code:
* B_TRUE - The virtual disk is backed by an ATAPI device
* B_FALSE - not an ATAPI device (presumably SCSI)
*/
static boolean_t
vd_is_atapi_device(vd_t *vd)
{
boolean_t is_atapi = B_FALSE;
char *variantp;
int rv;
ASSERT(vd->ldi_handle[0] != NULL);
ASSERT(!vd->file);
rv = ldi_prop_lookup_string(vd->ldi_handle[0],
(LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
if (rv == DDI_PROP_SUCCESS) {
PR0("'variant' property exists for %s", vd->device_path);
if (strcmp(variantp, "atapi") == 0)
is_atapi = B_TRUE;
ddi_prop_free(variantp);
}
rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
if (rv) {
PR0("'atapi' property exists for %s", vd->device_path);
is_atapi = B_TRUE;
}
return (is_atapi);
}
static int
vd_setup_full_disk(vd_t *vd)
{
int status;
major_t major = getmajor(vd->dev[0]);
minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
/* set the disk size, block size and the media type of the disk */
status = vd_backend_check_size(vd);
if (status != 0) {
if (!vd->scsi) {
/* unexpected failure */
PRN("Check size failed for %s (errno %d)",
vd->device_path, status);
return (EIO);
}
/*
* The function can fail for SCSI disks which are present but
* reserved by another system. In that case, we don't know the
* size of the disk and the block size.
*/
vd->vdisk_size = VD_SIZE_UNKNOWN;
vd->vdisk_bsize = 0;
vd->backend_bsize = 0;
vd->vdisk_media = VD_MEDIA_FIXED;
}
/* Move dev number and LDI handle to entire-disk-slice array elements */
vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0];
vd->dev[0] = 0;
vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0];
vd->ldi_handle[0] = NULL;
/* Initialize device numbers for remaining slices and open them */
for (int slice = 0; slice < vd->nslices; slice++) {
/*
* Skip the entire-disk slice, as it's already open and its
* device known
*/
if (slice == VD_ENTIRE_DISK_SLICE)
continue;
ASSERT(vd->dev[slice] == 0);
ASSERT(vd->ldi_handle[slice] == NULL);
/*
* Construct the device number for the current slice
*/
vd->dev[slice] = makedevice(major, (minor + slice));
/*
* Open all slices of the disk to serve them to the client.
* Slices are opened exclusively to prevent other threads or
* processes in the service domain from performing I/O to
* slices being accessed by a client. Failure to open a slice
* results in vds not serving this disk, as the client could
* attempt (and should be able) to access any slice immediately.
* Any slices successfully opened before a failure will get
* closed by vds_destroy_vd() as a result of the error returned
* by this function.
*
* We need to do the open with FNDELAY so that opening an empty
* slice does not fail.
*/
PR0("Opening device major %u, minor %u = slice %u",
major, minor, slice);
/*
* Try to open the device. This can fail for example if we are
* opening an empty slice. So in case of a failure, we try the
* open again but this time with the FNDELAY flag.
*/
status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
vd->open_flags, kcred, &vd->ldi_handle[slice],
vd->vds->ldi_ident);
if (status != 0) {
status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
vd->open_flags | FNDELAY, kcred,
&vd->ldi_handle[slice], vd->vds->ldi_ident);
}
if (status != 0) {
PRN("ldi_open_by_dev() returned errno %d "
"for slice %u", status, slice);
/* vds_destroy_vd() will close any open slices */
vd->ldi_handle[slice] = NULL;
return (status);
}
}
return (0);
}
/*
* When a slice or a volume is exported as a single-slice disk, we want
* the disk backend (i.e. the slice or volume) to be entirely mapped as
* a slice without the addition of any metadata.
*
* So when exporting the disk as a VTOC disk, we fake a disk with the following
* layout:
* flabel +--- flabel_limit
* <-> V
* 0 1 C D E
* +-+---+--------------------------+--+
* virtual disk: |L|XXX| slice 0 |AA|
* +-+---+--------------------------+--+
* ^ : :
* | : :
* VTOC LABEL--+ : :
* +--------------------------+
* disk backend: | slice/volume/file |
* +--------------------------+
* 0 N
*
* N is the number of blocks in the slice/volume/file.
*
* We simulate a disk with N+M blocks, where M is the number of blocks
* simluated at the beginning and at the end of the disk (blocks 0-C
* and D-E).
*
* The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
* to D defines slice 0 and are mapped to the backend. Finally we emulate 2
* alternate cylinders at the end of the disk (blocks D-E). In summary we have:
*
* - block 0 (L) returns a fake VTOC label
* - blocks 1 to C-1 (X) are unused and return 0
* - blocks C to D-1 are mapped to the exported slice or volume
* - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
*
* Note: because we define a fake disk geometry, it is possible that the length
* of the backend is not a multiple of the size of cylinder, in that case the
* very end of the backend will not map to any block of the virtual disk.
*/
static int
vd_setup_partition_vtoc(vd_t *vd)
{
char *device_path = vd->device_path;
char unit;
size_t size, csize;
/* Initialize dk_geom structure for single-slice device */
if (vd->dk_geom.dkg_nsect == 0) {
PRN("%s geometry claims 0 sectors per track", device_path);
return (EIO);
}
if (vd->dk_geom.dkg_nhead == 0) {
PRN("%s geometry claims 0 heads", device_path);
return (EIO);
}
/* size of a cylinder in block */
csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
/*
* Add extra cylinders: we emulate the first cylinder (which contains
* the disk label).
*/
vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
/* we emulate 2 alternate cylinders */
vd->dk_geom.dkg_acyl = 2;
vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
/* Initialize vtoc structure for single-slice device */
bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
vd->vtoc.v_part[0].p_flag = 0;
/*
* Partition 0 starts on cylinder 1 and its size has to be
* a multiple of a number of cylinder.
*/
vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
if (vd_slice_single_slice) {
vd->vtoc.v_nparts = 1;
bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
MIN(sizeof (VD_ASCIILABEL),
sizeof (vd->vtoc.v_asciilabel)));
bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
} else {
/* adjust the number of slices */
vd->nslices = V_NUMPAR;
vd->vtoc.v_nparts = V_NUMPAR;
/* define slice 2 representing the entire disk */
vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
vd->dk_geom.dkg_ncyl * csize;
vd_get_readable_size(vd->vdisk_size * vd->vdisk_bsize,
&size, &unit);
/*
* Set some attributes of the geometry to what format(1m) uses
* so that writing a default label using format(1m) does not
* produce any error.
*/
vd->dk_geom.dkg_bcyl = 0;
vd->dk_geom.dkg_intrlv = 1;
vd->dk_geom.dkg_write_reinstruct = 0;
vd->dk_geom.dkg_read_reinstruct = 0;
/*
* We must have a correct label name otherwise format(1m) will
* not recognized the disk as labeled.
*/
(void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
"SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
size, unit,
vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
/* create a fake label from the vtoc and geometry */
vd->flabel_limit = (uint_t)csize;
vd->flabel_size = VD_LABEL_VTOC_SIZE(vd->vdisk_bsize);
vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
VD_LABEL_VTOC(vd));
}
/* adjust the vdisk_size, we emulate 3 cylinders */
vd->vdisk_size += csize * 3;
return (0);
}
/*
* When a slice, volume or file is exported as a single-slice disk, we want
* the disk backend (i.e. the slice, volume or file) to be entirely mapped
* as a slice without the addition of any metadata.
*
* So when exporting the disk as an EFI disk, we fake a disk with the following
* layout: (assuming the block size is 512 bytes)
*
* flabel +--- flabel_limit
* <------> v
* 0 1 2 L 34 34+N P
* +-+-+--+-------+--------------------------+-------+
* virtual disk: |X|T|EE|XXXXXXX| slice 0 |RRRRRRR|
* +-+-+--+-------+--------------------------+-------+
* ^ ^ : :
* | | : :
* GPT-+ +-GPE : :
* +--------------------------+
* disk backend: | slice/volume/file |
* +--------------------------+
* 0 N
*
* N is the number of blocks in the slice/volume/file.
*
* We simulate a disk with N+M blocks, where M is the number of blocks
* simluated at the beginning and at the end of the disk (blocks 0-34
* and 34+N-P).
*
* The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
* to 34+N defines slice 0 and are mapped to the exported backend, and we
* emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
* reserved partition.
*
* - block 0 (X) is unused and return 0
* - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
* - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
* - blocks L to 33 (X) are unused and return 0
* - blocks 34 to 34+N are mapped to the exported slice, volume or file
* - blocks 34+N+1 to P define a fake reserved partition and backup label, it
* returns 0
*
* Note: if the backend size is not a multiple of the vdisk block size then
* the very end of the backend will not map to any block of the virtual disk.
*/
static int
vd_setup_partition_efi(vd_t *vd)
{
efi_gpt_t *gpt;
efi_gpe_t *gpe;
struct uuid uuid = EFI_USR;
struct uuid efi_reserved = EFI_RESERVED;
uint32_t crc;
uint64_t s0_start, s0_end, first_u_lba;
size_t bsize;
ASSERT(vd->vdisk_bsize > 0);
bsize = vd->vdisk_bsize;
/*
* The minimum size for the label is 16K (EFI_MIN_ARRAY_SIZE)
* for GPEs plus one block for the GPT and one for PMBR.
*/
first_u_lba = (EFI_MIN_ARRAY_SIZE / bsize) + 2;
vd->flabel_limit = (uint_t)first_u_lba;
vd->flabel_size = VD_LABEL_EFI_SIZE(bsize);
vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
gpt = VD_LABEL_EFI_GPT(vd, bsize);
gpe = VD_LABEL_EFI_GPE(vd, bsize);
/*
* Adjust the vdisk_size, we emulate the first few blocks
* for the disk label.
*/
vd->vdisk_size += first_u_lba;
s0_start = first_u_lba;
s0_end = vd->vdisk_size - 1;
gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
gpt->efi_gpt_FirstUsableLBA = LE_64(first_u_lba);
gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
if (vd_slice_single_slice) {
gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
} else {
/* adjust the number of slices */
gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
vd->nslices = V_NUMPAR;
/* define a fake reserved partition */
UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
efi_reserved);
gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
LE_64(s0_end + 1);
gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
LE_64(s0_end + EFI_MIN_RESV_SIZE);
/* adjust the vdisk_size to include the reserved slice */
vd->vdisk_size += EFI_MIN_RESV_SIZE;
}
gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
/* adjust the vdisk size for the backup GPT and GPE */
vd->vdisk_size += (EFI_MIN_ARRAY_SIZE / bsize) + 1;
gpt->efi_gpt_AlternateLBA = LE_64(vd->vdisk_size - 1);
CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
return (0);
}
/*
* Setup for a virtual disk whose backend is a file (exported as a single slice
* or as a full disk). In that case, the backend is accessed using the vnode
* interface.
*/
static int
vd_setup_backend_vnode(vd_t *vd)
{
int rval, status;
dev_t dev;
char *file_path = vd->device_path;
ldi_handle_t lhandle;
struct dk_cinfo dk_cinfo;
ASSERT(!vd->volume);
if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
0, &vd->file_vnode, 0, 0)) != 0) {
if ((status == ENXIO || status == ENODEV || status == ENOENT ||
status == EROFS) && (!(vd->initialized & VD_SETUP_ERROR) &&
!(DEVI_IS_ATTACHING(vd->vds->dip)))) {
PRN("vn_open(%s) = errno %d", file_path, status);
}
return (status);
}
/*
* We set vd->file now so that vds_destroy_vd will take care of
* closing the file and releasing the vnode in case of an error.
*/
vd->file = B_TRUE;
vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
/*
* Get max_xfer_sz from the device where the file is.
*/
dev = vd->file_vnode->v_vfsp->vfs_dev;
PR0("underlying device of %s = (%d, %d)\n", file_path,
getmajor(dev), getminor(dev));
status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
vd->vds->ldi_ident);
if (status != 0) {
PR0("ldi_open() returned errno %d for underlying device",
status);
} else {
if ((status = ldi_ioctl(lhandle, DKIOCINFO,
(intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
&rval)) != 0) {
PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
"underlying device", status);
} else {
/*
* Store the device's max transfer size for
* return to the client
*/
vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
}
PR0("close the underlying device");
(void) ldi_close(lhandle, FREAD, kcred);
}
PR0("using file %s on device (%d, %d), max_xfer = %u blks",
file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
status = vd_setup_slice_image(vd);
else
status = vd_setup_disk_image(vd);
return (status);
}
static int
vd_setup_slice_image(vd_t *vd)
{
struct dk_label label;
int status;
if ((status = vd_backend_check_size(vd)) != 0) {
PRN("Check size failed for %s (errno %d)",
vd->device_path, status);
return (EIO);
}
vd->vdisk_media = VD_MEDIA_FIXED;
vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
vd_file_slice_label : vd_slice_label;
if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
vd->dskimg_size >= 2 * ONE_TERABYTE) {
status = vd_setup_partition_efi(vd);
} else {
/*
* We build a default label to get a geometry for
* the vdisk. Then the partition setup function will
* adjust the vtoc so that it defines a single-slice
* disk.
*/
vd_build_default_label(vd->dskimg_size, vd->vdisk_bsize,
&label);
vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
status = vd_setup_partition_vtoc(vd);
}
return (status);
}
static int
vd_setup_disk_image(vd_t *vd)
{
int status;
char *backend_path = vd->device_path;
if ((status = vd_backend_check_size(vd)) != 0) {
PRN("Check size failed for %s (errno %d)",
backend_path, status);
return (EIO);
}
/* size should be at least sizeof(dk_label) */
if (vd->dskimg_size < sizeof (struct dk_label)) {
PRN("Size of file has to be at least %ld bytes",
sizeof (struct dk_label));
return (EIO);
}
/*
* Find and validate the geometry of a disk image.
*/
status = vd_dskimg_validate_geometry(vd);
if (status != 0 && status != EINVAL && status != ENOTSUP) {
PRN("Failed to read label from %s", backend_path);
return (EIO);
}
if (vd_dskimg_is_iso_image(vd)) {
/*
* Indicate whether to call this a CD or DVD from the size
* of the ISO image (images for both drive types are stored
* in the ISO-9600 format). CDs can store up to just under 1Gb
*/
if ((vd->vdisk_size * vd->vdisk_bsize) > ONE_GIGABYTE)
vd->vdisk_media = VD_MEDIA_DVD;
else
vd->vdisk_media = VD_MEDIA_CD;
} else {
vd->vdisk_media = VD_MEDIA_FIXED;
}
/* Setup devid for the disk image */
if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
status = vd_dskimg_read_devid(vd, &vd->dskimg_devid);
if (status == 0) {
/* a valid devid was found */
return (0);
}
if (status != EINVAL) {
/*
* There was an error while trying to read the devid.
* So this disk image may have a devid but we are
* unable to read it.
*/
PR0("can not read devid for %s", backend_path);
vd->dskimg_devid = NULL;
return (0);
}
}
/*
* No valid device id was found so we create one. Note that a failure
* to create a device id is not fatal and does not prevent the disk
* image from being attached.
*/
PR1("creating devid for %s", backend_path);
if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
&vd->dskimg_devid) != DDI_SUCCESS) {
PR0("fail to create devid for %s", backend_path);
vd->dskimg_devid = NULL;
return (0);
}
/*
* Write devid to the disk image. The devid is stored into the disk
* image if we have a valid label; otherwise the devid will be stored
* when the user writes a valid label.
*/
if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
if (vd_dskimg_write_devid(vd, vd->dskimg_devid) != 0) {
PR0("fail to write devid for %s", backend_path);
ddi_devid_free(vd->dskimg_devid);
vd->dskimg_devid = NULL;
}
}
return (0);
}
/*
* Description:
* Open a device using its device path (supplied by ldm(1m))
*
* Parameters:
* vd - pointer to structure containing the vDisk info
* flags - open flags
*
* Return Value
* 0 - success
* != 0 - some other non-zero return value from ldi(9F) functions
*/
static int
vd_open_using_ldi_by_name(vd_t *vd, int flags)
{
int status;
char *device_path = vd->device_path;
/* Attempt to open device */
status = ldi_open_by_name(device_path, flags, kcred,
&vd->ldi_handle[0], vd->vds->ldi_ident);
/*
* The open can fail for example if we are opening an empty slice.
* In case of a failure, we try the open again but this time with
* the FNDELAY flag.
*/
if (status != 0)
status = ldi_open_by_name(device_path, flags | FNDELAY,
kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
if (status != 0) {
PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
vd->ldi_handle[0] = NULL;
return (status);
}
return (0);
}
/*
* Setup for a virtual disk which backend is a device (a physical disk,
* slice or volume device) exported as a full disk or as a slice. In these
* cases, the backend is accessed using the LDI interface.
*/
static int
vd_setup_backend_ldi(vd_t *vd)
{
int rval, status;
struct dk_cinfo dk_cinfo;
char *device_path = vd->device_path;
/* device has been opened by vd_identify_dev() */
ASSERT(vd->ldi_handle[0] != NULL);
ASSERT(vd->dev[0] != NULL);
vd->file = B_FALSE;
/* Verify backing device supports dk_cinfo */
if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
(intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
&rval)) != 0) {
PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
status, device_path);
return (status);
}
if (dk_cinfo.dki_partition >= V_NUMPAR) {
PRN("slice %u >= maximum slice %u for %s",
dk_cinfo.dki_partition, V_NUMPAR, device_path);
return (EIO);
}
/*
* The device has been opened read-only by vd_identify_dev(), re-open
* it read-write if the write flag is set and we don't have an optical
* device such as a CD-ROM, which, for now, we do not permit writes to
* and thus should not export write operations to the client.
*
* Future: if/when we implement support for guest domains writing to
* optical devices we will need to do further checking of the media type
* to distinguish between read-only and writable discs.
*/
if (dk_cinfo.dki_ctype == DKC_CDROM) {
vd->open_flags &= ~FWRITE;
} else if (vd->open_flags & FWRITE) {
(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
kcred);
status = vd_open_using_ldi_by_name(vd, vd->open_flags);
if (status != 0) {
PR0("Failed to open (%s) = errno %d",
device_path, status);
return (status);
}
}
/* Store the device's max transfer size for return to the client */
vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
/*
* We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
* that we can use the correct CDB group when sending USCSI commands.
*/
vd->is_atapi_dev = vd_is_atapi_device(vd);
/*
* Export a full disk.
*
* The exported device can be either a volume, a disk or a CD/DVD
* device. We export a device as a full disk if we have an entire
* disk slice (slice 2) and if this slice is exported as a full disk
* and not as a single slice disk. A CD or DVD device is exported
* as a full disk (even if it isn't s2). A volume is exported as a
* full disk as long as the "slice" option is not specified.
*/
if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
if (vd->volume) {
/* setup disk image */
return (vd_setup_disk_image(vd));
}
if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE ||
dk_cinfo.dki_ctype == DKC_CDROM) {
ASSERT(!vd->volume);
if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
vd->scsi = B_TRUE;
return (vd_setup_full_disk(vd));
}
}
/*
* Export a single slice disk.
*
* The exported device can be either a volume device or a disk slice. If
* it is a disk slice different from slice 2 then it is always exported
* as a single slice disk even if the "slice" option is not specified.
* If it is disk slice 2 or a volume device then it is exported as a
* single slice disk only if the "slice" option is specified.
*/
return (vd_setup_single_slice_disk(vd));
}
static int
vd_setup_single_slice_disk(vd_t *vd)
{
int status, rval;
struct dk_label label;
char *device_path = vd->device_path;
struct vtoc vtoc;
vd->vdisk_media = VD_MEDIA_FIXED;
if (vd->volume) {
ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
}
/*
* We export the slice as a single slice disk even if the "slice"
* option was not specified.
*/
vd->vdisk_type = VD_DISK_TYPE_SLICE;
vd->nslices = 1;
/* Get size of backing device */
if ((status = vd_backend_check_size(vd)) != 0) {
PRN("Check size failed for %s (errno %d)", device_path, status);
return (EIO);
}
/*
* When exporting a slice or a device as a single slice disk, we don't
* care about any partitioning exposed by the backend. The goal is just
* to export the backend as a flat storage. We provide a fake partition
* table (either a VTOC or EFI), which presents only one slice, to
* accommodate tools expecting a disk label. The selection of the label
* type (VTOC or EFI) depends on the value of the vd_slice_label
* variable.
*/
if (vd_slice_label == VD_DISK_LABEL_EFI ||
vd->vdisk_size >= ONE_TERABYTE / vd->vdisk_bsize) {
vd->vdisk_label = VD_DISK_LABEL_EFI;
} else {
status = ldi_ioctl(vd->ldi_handle[0], DKIOCGEXTVTOC,
(intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
kcred, &rval);
if (status == ENOTTY) {
/* try with the non-extended vtoc ioctl */
status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
(intptr_t)&vtoc, (vd->open_flags | FKIOCTL),
kcred, &rval);
vtoctoextvtoc(vtoc, vd->vtoc);
}
if (status == 0) {
status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
(intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
kcred, &rval);
if (status != 0) {
PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
"for %s", status, device_path);
return (status);
}
vd->vdisk_label = VD_DISK_LABEL_VTOC;
} else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
vd->vdisk_label = VD_DISK_LABEL_VTOC;
vd_build_default_label(vd->vdisk_size * vd->vdisk_bsize,
vd->vdisk_bsize, &label);
vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
} else {
vd->vdisk_label = VD_DISK_LABEL_EFI;
}
}
if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
/* export with a fake VTOC label */
status = vd_setup_partition_vtoc(vd);
} else {
/* export with a fake EFI label */
status = vd_setup_partition_efi(vd);
}
return (status);
}
/*
* This function is invoked when setting up the vdisk backend and to process
* the VD_OP_GET_CAPACITY operation. It checks the backend size and set the
* following attributes of the vd structure:
*
* - vdisk_bsize: block size for the virtual disk used by the VIO protocol. Its
* value is 512 bytes (DEV_BSIZE) when the backend is a file, a volume or a
* CD/DVD. When the backend is a disk or a disk slice then it has the value
* of the logical block size of that disk (as returned by the DKIOCGMEDIAINFO
* ioctl). This block size is expected to be a power of 2 and a multiple of
* 512.
*
* - vdisk_size: size of the virtual disk expressed as a number of vdisk_bsize
* blocks.
*
* vdisk_size and vdisk_bsize are sent to the vdisk client during the connection
* handshake and in the result of a VD_OP_GET_CAPACITY operation.
*
* - backend_bsize: block size of the backend device. backend_bsize has the same
* value as vdisk_bsize except when the backend is a CD/DVD. In that case,
* vdisk_bsize is set to 512 (DEV_BSIZE) while backend_bsize is set to the
* effective logical block size of the CD/DVD (usually 2048).
*
* - dskimg_size: size of the backend when the backend is a disk image. This
* attribute is set only when the backend is a file or a volume, otherwise it
* is unused.
*
* - vio_bshift: number of bit to shift to convert a VIO block number (which
* uses a block size of vdisk_bsize) to a buf(9s) block number (which uses a
* block size of 512 bytes) i.e. we have vdisk_bsize = 512 x 2 ^ vio_bshift
*
* - vdisk_media: media of the virtual disk. This function only sets this
* attribute for physical disk and CD/DVD. For other backend types, this
* attribute is set in the setup function of the backend.
*/
static int
vd_backend_check_size(vd_t *vd)
{
size_t backend_size, backend_bsize, vdisk_bsize;
size_t old_size, new_size;
struct dk_minfo minfo;
vattr_t vattr;
int rval, rv, media, nshift = 0;
uint32_t n;
if (vd->file) {
/* file (slice or full disk) */
vattr.va_mask = AT_SIZE;
rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
if (rv != 0) {
PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
return (rv);
}
backend_size = vattr.va_size;
backend_bsize = DEV_BSIZE;
vdisk_bsize = DEV_BSIZE;
} else if (vd->volume) {
/* volume (slice or full disk) */
rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
if (rv != DDI_SUCCESS) {
PR0("ldi_get_size() failed for %s", vd->device_path);
return (EIO);
}
backend_bsize = DEV_BSIZE;
vdisk_bsize = DEV_BSIZE;
} else {
/* physical disk or slice */
rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
(intptr_t)&minfo, (vd->open_flags | FKIOCTL),
kcred, &rval);
if (rv != 0) {
PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
vd->device_path, rv);
return (rv);
}
if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
if (rv != DDI_SUCCESS) {
PR0("ldi_get_size() failed for %s",
vd->device_path);
return (EIO);
}
} else {
ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
backend_size = minfo.dki_capacity * minfo.dki_lbsize;
}
backend_bsize = minfo.dki_lbsize;
media = DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
/*
* If the device is a CD or a DVD then we force the vdisk block
* size to 512 bytes (DEV_BSIZE). In that case, vdisk_bsize can
* be different from backend_size.
*/
if (media == VD_MEDIA_CD || media == VD_MEDIA_DVD)
vdisk_bsize = DEV_BSIZE;
else
vdisk_bsize = backend_bsize;
}
/* check vdisk block size */
if (vdisk_bsize == 0 || vdisk_bsize % DEV_BSIZE != 0)
return (EINVAL);
old_size = vd->vdisk_size;
new_size = backend_size / vdisk_bsize;
/* check if size has changed */
if (old_size != VD_SIZE_UNKNOWN && old_size == new_size &&
vd->vdisk_bsize == vdisk_bsize)
return (0);
/* cache info for blk conversion */
for (n = vdisk_bsize / DEV_BSIZE; n > 1; n >>= 1) {
if ((n & 0x1) != 0) {
/* blk_size is not a power of 2 */
return (EINVAL);
}
nshift++;
}
vd->vio_bshift = nshift;
vd->vdisk_size = new_size;
vd->vdisk_bsize = vdisk_bsize;
vd->backend_bsize = backend_bsize;
if (vd->file || vd->volume)
vd->dskimg_size = backend_size;
/*
* If we are exporting a single-slice disk and the size of the backend
* has changed then we regenerate the partition setup so that the
* partitioning matches with the new disk backend size.
*/
if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
/* slice or file or device exported as a slice */
if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
rv = vd_setup_partition_vtoc(vd);
if (rv != 0) {
PR0("vd_setup_partition_vtoc() failed for %s "
"(err = %d)", vd->device_path, rv);
return (rv);
}
} else {
rv = vd_setup_partition_efi(vd);
if (rv != 0) {
PR0("vd_setup_partition_efi() failed for %s "
"(err = %d)", vd->device_path, rv);
return (rv);
}
}
} else if (!vd->file && !vd->volume) {
/* physical disk */
ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
vd->vdisk_media = media;
}
return (0);
}
/*
* Description:
* Open a device using its device path and identify if this is
* a disk device or a volume device.
*
* Parameters:
* vd - pointer to structure containing the vDisk info
* dtype - return the driver type of the device
*
* Return Value
* 0 - success
* != 0 - some other non-zero return value from ldi(9F) functions
*/
static int
vd_identify_dev(vd_t *vd, int *dtype)
{
int status, i;
char *device_path = vd->device_path;
char *drv_name;
int drv_type;
vds_t *vds = vd->vds;
status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
if (status != 0) {
PR0("Failed to open (%s) = errno %d", device_path, status);
return (status);
}
/* Get device number of backing device */
if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
PRN("ldi_get_dev() returned errno %d for %s",
status, device_path);
return (status);
}
/*
* We start by looking if the driver is in the list from vds.conf
* so that we can override the built-in list using vds.conf.
*/
drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
drv_type = VD_DRIVER_UNKNOWN;
/* check vds.conf list */
for (i = 0; i < vds->num_drivers; i++) {
if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
/* ignore invalid entries */
continue;
}
if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
drv_type = vds->driver_types[i].type;
goto done;
}
}
/* check built-in list */
for (i = 0; i < VDS_NUM_DRIVERS; i++) {
if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
drv_type = vds_driver_types[i].type;
goto done;
}
}
done:
PR0("driver %s identified as %s", drv_name,
(drv_type == VD_DRIVER_DISK)? "DISK" :
(drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
if (strcmp(drv_name, "zfs") == 0)
vd->zvol = B_TRUE;
*dtype = drv_type;
return (0);
}
static int
vd_setup_vd(vd_t *vd)
{
int status, drv_type, pseudo;
dev_info_t *dip;
vnode_t *vnp;
char *path = vd->device_path;
char tq_name[TASKQ_NAMELEN];
/* make sure the vdisk backend is valid */
if ((status = lookupname(path, UIO_SYSSPACE,
FOLLOW, NULLVPP, &vnp)) != 0) {
PR0("Cannot lookup %s errno %d", path, status);
goto done;
}
switch (vnp->v_type) {
case VREG:
/*
* Backend is a file so it is exported as a full disk or as a
* single slice disk using the vnode interface.
*/
VN_RELE(vnp);
vd->volume = B_FALSE;
status = vd_setup_backend_vnode(vd);
break;
case VBLK:
case VCHR:
/*
* Backend is a device. In that case, it is exported using the
* LDI interface, and it is exported either as a single-slice
* disk or as a full disk depending on the "slice" option and
* on the type of device.
*
* - A volume device is exported as a single-slice disk if the
* "slice" is specified, otherwise it is exported as a full
* disk.
*
* - A disk slice (different from slice 2) is always exported
* as a single slice disk using the LDI interface.
*
* - The slice 2 of a disk is exported as a single slice disk
* if the "slice" option is specified, otherwise the entire
* disk will be exported.
*
* - The slice of a CD or DVD is exported as single slice disk
* if the "slice" option is specified, otherwise the entire
* disk will be exported.
*/
/* check if this is a pseudo device */
if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
dev_to_instance(vnp->v_rdev), 0)) == NULL) {
PRN("%s is no longer accessible", path);
VN_RELE(vnp);
status = EIO;
break;
}
pseudo = is_pseudo_device(dip);
ddi_release_devi(dip);
VN_RELE(vnp);
if ((status = vd_identify_dev(vd, &drv_type)) != 0) {
if (status != ENODEV && status != ENXIO &&
status != ENOENT && status != EROFS) {
PRN("%s identification failed with status %d",
path, status);
status = EIO;
}
break;
}
/*
* If the driver hasn't been identified then we consider that
* pseudo devices are volumes and other devices are disks.
*/
if (drv_type == VD_DRIVER_VOLUME ||
(drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
vd->volume = B_TRUE;
}
/*
* If this is a volume device then its usage depends if the
* "slice" option is set or not. If the "slice" option is set
* then the volume device will be exported as a single slice,
* otherwise it will be exported as a full disk.
*
* For backward compatibility, if vd_volume_force_slice is set
* then we always export volume devices as slices.
*/
if (vd->volume && vd_volume_force_slice) {
vd->vdisk_type = VD_DISK_TYPE_SLICE;
vd->nslices = 1;
}
status = vd_setup_backend_ldi(vd);
break;
default:
PRN("Unsupported vdisk backend %s", path);
VN_RELE(vnp);
status = EBADF;
}
done:
if (status != 0) {
/*
* If the error is retryable print an error message only
* during the first try.
*/
if (status == ENXIO || status == ENODEV ||
status == ENOENT || status == EROFS) {
if (!(vd->initialized & VD_SETUP_ERROR) &&
!(DEVI_IS_ATTACHING(vd->vds->dip))) {
PRN("%s is currently inaccessible (error %d)",
path, status);
}
status = EAGAIN;
} else {
PRN("%s can not be exported as a virtual disk "
"(error %d)", path, status);
}
vd->initialized |= VD_SETUP_ERROR;
} else if (vd->initialized & VD_SETUP_ERROR) {
/* print a message only if we previously had an error */
PRN("%s is now online", path);
vd->initialized &= ~VD_SETUP_ERROR;
}
/*
* For file or ZFS volume we also need an I/O queue.
*
* The I/O task queue is initialized here and not in vds_do_init_vd()
* (as the start and completion queues) because vd_setup_vd() will be
* call again if the backend is not available, and we need to know if
* the backend is a ZFS volume or a file.
*/
if ((vd->file || vd->zvol) && vd->ioq == NULL) {
(void) snprintf(tq_name, sizeof (tq_name), "vd_ioq%lu", vd->id);
if ((vd->ioq = ddi_taskq_create(vd->vds->dip, tq_name,
vd_ioq_nthreads, TASKQ_DEFAULTPRI, 0)) == NULL) {
PRN("Could not create io task queue");
return (EIO);
}
}
return (status);
}
static int
vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
uint64_t ldc_id, vd_t **vdp)
{
char tq_name[TASKQ_NAMELEN];
int status;
ddi_iblock_cookie_t iblock = NULL;
ldc_attr_t ldc_attr;
vd_t *vd;
ASSERT(vds != NULL);
ASSERT(device_path != NULL);
ASSERT(vdp != NULL);
PR0("Adding vdisk for %s", device_path);
if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
PRN("No memory for virtual disk");
return (EAGAIN);
}
*vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */
vd->id = id;
vd->vds = vds;
(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
/* Setup open flags */
vd->open_flags = FREAD;
if (!(options & VD_OPT_RDONLY))
vd->open_flags |= FWRITE;
if (options & VD_OPT_EXCLUSIVE)
vd->open_flags |= FEXCL;
/* Setup disk type */
if (options & VD_OPT_SLICE) {
vd->vdisk_type = VD_DISK_TYPE_SLICE;
vd->nslices = 1;
} else {
vd->vdisk_type = VD_DISK_TYPE_DISK;
vd->nslices = V_NUMPAR;
}
/* default disk label */
vd->vdisk_label = VD_DISK_LABEL_UNK;
/* Open vdisk and initialize parameters */
if ((status = vd_setup_vd(vd)) == 0) {
vd->initialized |= VD_DISK_READY;
ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
(vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
vd->nslices);
} else {
if (status != EAGAIN)
return (status);
}
/* Initialize locking */
if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
&iblock) != DDI_SUCCESS) {
PRN("Could not get iblock cookie.");
return (EIO);
}
mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
vd->initialized |= VD_LOCKING;
/* Create start and completion task queues for the vdisk */
(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
PR1("tq_name = %s", tq_name);
if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
TASKQ_DEFAULTPRI, 0)) == NULL) {
PRN("Could not create task queue");
return (EIO);
}
(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
PR1("tq_name = %s", tq_name);
if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
TASKQ_DEFAULTPRI, 0)) == NULL) {
PRN("Could not create task queue");
return (EIO);
}
/* Allocate the staging buffer */
vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */
vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
vd->enabled = 1; /* before callback can dispatch to startq */
/* Bring up LDC */
ldc_attr.devclass = LDC_DEV_BLK_SVC;
ldc_attr.instance = ddi_get_instance(vds->dip);
ldc_attr.mode = LDC_MODE_UNRELIABLE;
ldc_attr.mtu = VD_LDC_MTU;
if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
PRN("Could not initialize LDC channel %lx, "
"init failed with error %d", ldc_id, status);
return (status);
}
vd->initialized |= VD_LDC;
if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
(caddr_t)vd)) != 0) {
PRN("Could not initialize LDC channel %lu,"
"reg_callback failed with error %d", ldc_id, status);
return (status);
}
if ((status = ldc_open(vd->ldc_handle)) != 0) {
PRN("Could not initialize LDC channel %lu,"
"open failed with error %d", ldc_id, status);
return (status);
}
if ((status = ldc_up(vd->ldc_handle)) != 0) {
PR0("ldc_up() returned errno %d", status);
}
/* Allocate the inband task memory handle */
status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
if (status) {
PRN("Could not initialize LDC channel %lu,"
"alloc_handle failed with error %d", ldc_id, status);
return (ENXIO);
}
/* Add the successfully-initialized vdisk to the server's table */
if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
PRN("Error adding vdisk ID %lu to table", id);
return (EIO);
}
/* store initial state */
vd->state = VD_STATE_INIT;
return (0);
}
static void
vd_free_dring_task(vd_t *vdp)
{
if (vdp->dring_task != NULL) {
ASSERT(vdp->dring_len != 0);
/* Free all dring_task memory handles */
for (int i = 0; i < vdp->dring_len; i++) {
(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
kmem_free(vdp->dring_task[i].request,
(vdp->descriptor_size -
sizeof (vio_dring_entry_hdr_t)));
vdp->dring_task[i].request = NULL;
kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
vdp->dring_task[i].msg = NULL;
}
kmem_free(vdp->dring_task,
(sizeof (*vdp->dring_task)) * vdp->dring_len);
vdp->dring_task = NULL;
}
if (vdp->write_queue != NULL) {
kmem_free(vdp->write_queue, sizeof (buf_t *) * vdp->dring_len);
vdp->write_queue = NULL;
}
}
/*
* Destroy the state associated with a virtual disk
*/
static void
vds_destroy_vd(void *arg)
{
vd_t *vd = (vd_t *)arg;
int retry = 0, rv;
if (vd == NULL)
return;
PR0("Destroying vdisk state");
/* Disable queuing requests for the vdisk */
if (vd->initialized & VD_LOCKING) {
mutex_enter(&vd->lock);
vd->enabled = 0;
mutex_exit(&vd->lock);
}
/* Drain and destroy start queue (*before* destroying ioq) */
if (vd->startq != NULL)
ddi_taskq_destroy(vd->startq); /* waits for queued tasks */
/* Drain and destroy the I/O queue (*before* destroying completionq) */
if (vd->ioq != NULL)
ddi_taskq_destroy(vd->ioq);
/* Drain and destroy completion queue (*before* shutting down LDC) */
if (vd->completionq != NULL)
ddi_taskq_destroy(vd->completionq); /* waits for tasks */
vd_free_dring_task(vd);
/* Free the inband task memory handle */
(void) ldc_mem_free_handle(vd->inband_task.mhdl);
/* Shut down LDC */
if (vd->initialized & VD_LDC) {
/* unmap the dring */
if (vd->initialized & VD_DRING)
(void) ldc_mem_dring_unmap(vd->dring_handle);
/* close LDC channel - retry on EAGAIN */
while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
if (++retry > vds_ldc_retries) {
PR0("Timed out closing channel");
break;
}
drv_usecwait(vds_ldc_delay);
}
if (rv == 0) {
(void) ldc_unreg_callback(vd->ldc_handle);
(void) ldc_fini(vd->ldc_handle);
} else {
/*
* Closing the LDC channel has failed. Ideally we should
* fail here but there is no Zeus level infrastructure
* to handle this. The MD has already been changed and
* we have to do the close. So we try to do as much
* clean up as we can.
*/
(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
drv_usecwait(vds_ldc_delay);
}
}
/* Free the staging buffer for msgs */
if (vd->vio_msgp != NULL) {
kmem_free(vd->vio_msgp, vd->max_msglen);
vd->vio_msgp = NULL;
}
/* Free the inband message buffer */
if (vd->inband_task.msg != NULL) {
kmem_free(vd->inband_task.msg, vd->max_msglen);
vd->inband_task.msg = NULL;
}
if (vd->file) {
/* Close file */
(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
0, kcred, NULL);
VN_RELE(vd->file_vnode);
} else {
/* Close any open backing-device slices */
for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
if (vd->ldi_handle[slice] != NULL) {
PR0("Closing slice %u", slice);
(void) ldi_close(vd->ldi_handle[slice],
vd->open_flags, kcred);
}
}
}
/* Free disk image devid */
if (vd->dskimg_devid != NULL)
ddi_devid_free(vd->dskimg_devid);
/* Free any fake label */
if (vd->flabel) {
kmem_free(vd->flabel, vd->flabel_size);
vd->flabel = NULL;
vd->flabel_size = 0;
}
/* Free lock */
if (vd->initialized & VD_LOCKING)
mutex_destroy(&vd->lock);
/* Finally, free the vdisk structure itself */
kmem_free(vd, sizeof (*vd));
}
static int
vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
uint64_t ldc_id)
{
int status;
vd_t *vd = NULL;
if ((status = vds_do_init_vd(vds, id, device_path, options,
ldc_id, &vd)) != 0)
vds_destroy_vd(vd);
return (status);
}
static int
vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
uint64_t *ldc_id)
{
int num_channels;
/* Look for channel endpoint child(ren) of the vdisk MD node */
if ((num_channels = md_scan_dag(md, vd_node,
md_find_name(md, VD_CHANNEL_ENDPOINT),
md_find_name(md, "fwd"), channel)) <= 0) {
PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
return (-1);
}
/* Get the "id" value for the first channel endpoint node */
if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
PRN("No \"%s\" property found for \"%s\" of vdisk",
VD_ID_PROP, VD_CHANNEL_ENDPOINT);
return (-1);
}
if (num_channels > 1) {
PRN("Using ID of first of multiple channels for this vdisk");
}
return (0);
}
static int
vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
{
int num_nodes, status;
size_t size;
mde_cookie_t *channel;
if ((num_nodes = md_node_count(md)) <= 0) {
PRN("Invalid node count in Machine Description subtree");
return (-1);
}
size = num_nodes*(sizeof (*channel));
channel = kmem_zalloc(size, KM_SLEEP);
status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
kmem_free(channel, size);
return (status);
}
/*
* Function:
* vds_get_options
*
* Description:
* Parse the options of a vds node. Options are defined as an array
* of strings in the vds-block-device-opts property of the vds node
* in the machine description. Options are returned as a bitmask. The
* mapping between the bitmask options and the options strings from the
* machine description is defined in the vd_bdev_options[] array.
*
* The vds-block-device-opts property is optional. If a vds has no such
* property then no option is defined.
*
* Parameters:
* md - machine description.
* vd_node - vds node in the machine description for which
* options have to be parsed.
* options - the returned options.
*
* Return Code:
* none.
*/
static void
vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
{
char *optstr, *opt;
int len, n, i;
*options = 0;
if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
(uint8_t **)&optstr, &len) != 0) {
PR0("No options found");
return;
}
/* parse options */
opt = optstr;
n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
while (opt < optstr + len) {
for (i = 0; i < n; i++) {
if (strncmp(vd_bdev_options[i].vdo_name,
opt, VD_OPTION_NLEN) == 0) {
*options |= vd_bdev_options[i].vdo_value;
break;
}
}
if (i < n) {
PR0("option: %s", opt);
} else {
PRN("option %s is unknown or unsupported", opt);
}
opt += strlen(opt) + 1;
}
}
static void
vds_driver_types_free(vds_t *vds)
{
if (vds->driver_types != NULL) {
kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
vds->num_drivers);
vds->driver_types = NULL;
vds->num_drivers = 0;
}
}
/*
* Update the driver type list with information from vds.conf.
*/
static void
vds_driver_types_update(vds_t *vds)
{
char **list, *s;
uint_t i, num, count = 0, len;
if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
DDI_PROP_SUCCESS)
return;
/*
* We create a driver_types list with as many as entries as there
* is in the driver-type-list from vds.conf. However only valid
* entries will be populated (i.e. entries from driver-type-list
* with a valid syntax). Invalid entries will be left blank so
* they will have no driver name and the driver type will be
* VD_DRIVER_UNKNOWN (= 0).
*/
vds->num_drivers = num;
vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
KM_SLEEP);
for (i = 0; i < num; i++) {
s = strchr(list[i], ':');
if (s == NULL) {
PRN("vds.conf: driver-type-list, entry %d (%s): "
"a colon is expected in the entry",
i, list[i]);
continue;
}
len = (uintptr_t)s - (uintptr_t)list[i];
if (len == 0) {
PRN("vds.conf: driver-type-list, entry %d (%s): "
"the driver name is empty",
i, list[i]);
continue;
}
if (len >= VD_DRIVER_NAME_LEN) {
PRN("vds.conf: driver-type-list, entry %d (%s): "
"the driver name is too long",
i, list[i]);
continue;
}
if (strcmp(s + 1, "disk") == 0) {
vds->driver_types[i].type = VD_DRIVER_DISK;
} else if (strcmp(s + 1, "volume") == 0) {
vds->driver_types[i].type = VD_DRIVER_VOLUME;
} else {
PRN("vds.conf: driver-type-list, entry %d (%s): "
"the driver type is invalid",
i, list[i]);
continue;
}
(void) strncpy(vds->driver_types[i].name, list[i], len);
PR0("driver-type-list, entry %d (%s) added",
i, list[i]);
count++;
}
ddi_prop_free(list);
if (count == 0) {
/* nothing was added, clean up */
vds_driver_types_free(vds);
}
}
static void
vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
{
char *device_path = NULL;
uint64_t id = 0, ldc_id = 0, options = 0;
if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
return;
}
PR0("Adding vdisk ID %lu", id);
if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
&device_path) != 0) {
PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
return;
}
vds_get_options(md, vd_node, &options);
if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
PRN("Error getting LDC ID for vdisk %lu", id);
return;
}
if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
PRN("Failed to add vdisk ID %lu", id);
if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
PRN("No vDisk entry found for vdisk ID %lu", id);
return;
}
}
static void
vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
{
uint64_t id = 0;
if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
PRN("Unable to get \"%s\" property from vdisk's MD node",
VD_ID_PROP);
return;
}
PR0("Removing vdisk ID %lu", id);
if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
PRN("No vdisk entry found for vdisk ID %lu", id);
}
static void
vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
md_t *curr_md, mde_cookie_t curr_vd_node)
{
char *curr_dev, *prev_dev;
uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0;
uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0;
size_t len;
/* Validate that vdisk ID has not changed */
if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
PRN("Error getting previous vdisk \"%s\" property",
VD_ID_PROP);
return;
}
if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
return;
}
if (curr_id != prev_id) {
PRN("Not changing vdisk: ID changed from %lu to %lu",
prev_id, curr_id);
return;
}
/* Validate that LDC ID has not changed */
if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
PRN("Error getting LDC ID for vdisk %lu", prev_id);
return;
}
if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
PRN("Error getting LDC ID for vdisk %lu", curr_id);
return;
}
if (curr_ldc_id != prev_ldc_id) {
_NOTE(NOTREACHED); /* lint is confused */
PRN("Not changing vdisk: "
"LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
return;
}
/* Determine whether device path has changed */
if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
&prev_dev) != 0) {
PRN("Error getting previous vdisk \"%s\"",
VD_BLOCK_DEVICE_PROP);
return;
}
if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
&curr_dev) != 0) {
PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
return;
}
if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
(strncmp(curr_dev, prev_dev, len) == 0))
return; /* no relevant (supported) change */
/* Validate that options have not changed */
vds_get_options(prev_md, prev_vd_node, &prev_options);
vds_get_options(curr_md, curr_vd_node, &curr_options);
if (prev_options != curr_options) {
PRN("Not changing vdisk: options changed from %lx to %lx",
prev_options, curr_options);
return;
}
PR0("Changing vdisk ID %lu", prev_id);
/* Remove old state, which will close vdisk and reset */
if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
PRN("No entry found for vdisk ID %lu", prev_id);
/* Re-initialize vdisk with new state */
if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
curr_ldc_id) != 0) {
PRN("Failed to change vdisk ID %lu", curr_id);
return;
}
}
static int
vds_process_md(void *arg, mdeg_result_t *md)
{
int i;
vds_t *vds = arg;
if (md == NULL)
return (MDEG_FAILURE);
ASSERT(vds != NULL);
for (i = 0; i < md->removed.nelem; i++)
vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
for (i = 0; i < md->match_curr.nelem; i++)
vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
md->match_curr.mdp, md->match_curr.mdep[i]);
for (i = 0; i < md->added.nelem; i++)
vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
return (MDEG_SUCCESS);
}
static int
vds_do_attach(dev_info_t *dip)
{
int status, sz;
int cfg_handle;
minor_t instance = ddi_get_instance(dip);
vds_t *vds;
mdeg_prop_spec_t *pspecp;
mdeg_node_spec_t *ispecp;
/*
* The "cfg-handle" property of a vds node in an MD contains the MD's
* notion of "instance", or unique identifier, for that node; OBP
* stores the value of the "cfg-handle" MD property as the value of
* the "reg" property on the node in the device tree it builds from
* the MD and passes to Solaris. Thus, we look up the devinfo node's
* "reg" property value to uniquely identify this device instance when
* registering with the MD event-generation framework. If the "reg"
* property cannot be found, the device tree state is presumably so
* broken that there is no point in continuing.
*/
if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
VD_REG_PROP)) {
PRN("vds \"%s\" property does not exist", VD_REG_PROP);
return (DDI_FAILURE);
}
/* Get the MD instance for later MDEG registration */
cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
VD_REG_PROP, -1);
if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
PRN("Could not allocate state for instance %u", instance);
return (DDI_FAILURE);
}
if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
PRN("Could not get state for instance %u", instance);
ddi_soft_state_free(vds_state, instance);
return (DDI_FAILURE);
}
vds->dip = dip;
vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
vds_destroy_vd, sizeof (void *));
ASSERT(vds->vd_table != NULL);
if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
PRN("ldi_ident_from_dip() returned errno %d", status);
return (DDI_FAILURE);
}
vds->initialized |= VDS_LDI;
/* Register for MD updates */
sz = sizeof (vds_prop_template);
pspecp = kmem_alloc(sz, KM_SLEEP);
bcopy(vds_prop_template, pspecp, sz);
VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
/* initialize the complete prop spec structure */
ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
ispecp->namep = "virtual-device";
ispecp->specp = pspecp;
if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
&vds->mdeg) != MDEG_SUCCESS) {
PRN("Unable to register for MD updates");
kmem_free(ispecp, sizeof (mdeg_node_spec_t));
kmem_free(pspecp, sz);
return (DDI_FAILURE);
}
vds->ispecp = ispecp;
vds->initialized |= VDS_MDEG;
/* Prevent auto-detaching so driver is available whenever MD changes */
if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
DDI_PROP_SUCCESS) {
PRN("failed to set \"%s\" property for instance %u",
DDI_NO_AUTODETACH, instance);
}
/* read any user defined driver types from conf file and update list */
vds_driver_types_update(vds);
ddi_report_dev(dip);
return (DDI_SUCCESS);
}
static int
vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int status;
switch (cmd) {
case DDI_ATTACH:
PR0("Attaching");
if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
(void) vds_detach(dip, DDI_DETACH);
return (status);
case DDI_RESUME:
PR0("No action required for DDI_RESUME");
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
static struct dev_ops vds_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
ddi_no_info, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
vds_attach, /* devo_attach */
vds_detach, /* devo_detach */
nodev, /* devo_reset */
NULL, /* devo_cb_ops */
NULL, /* devo_bus_ops */
nulldev, /* devo_power */
ddi_quiesce_not_needed, /* devo_quiesce */
};
static struct modldrv modldrv = {
&mod_driverops,
"virtual disk server",
&vds_ops,
};
static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL
};
int
_init(void)
{
int status;
if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
return (status);
if ((status = mod_install(&modlinkage)) != 0) {
ddi_soft_state_fini(&vds_state);
return (status);
}
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{
int status;
if ((status = mod_remove(&modlinkage)) != 0)
return (status);
ddi_soft_state_fini(&vds_state);
return (0);
}