niagara2.c revision fe70c9cf90dfc23d18485fb7b4b20a1175d53a8b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/archsystm.h>
#include <sys/machparam.h>
#include <sys/machsystm.h>
#include <sys/cpu.h>
#include <sys/elf_SPARC.h>
#include <vm/hat_sfmmu.h>
#include <vm/page.h>
#include <vm/vm_dep.h>
#include <sys/cpuvar.h>
#include <sys/async.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/dditypes.h>
#include <sys/sunddi.h>
#include <sys/cpu_module.h>
#include <sys/prom_debug.h>
#include <sys/vmsystm.h>
#include <sys/prom_plat.h>
#include <sys/sysmacros.h>
#include <sys/intreg.h>
#include <sys/machtrap.h>
#include <sys/ontrap.h>
#include <sys/ivintr.h>
#include <sys/atomic.h>
#include <sys/panic.h>
#include <sys/dtrace.h>
#include <sys/simulate.h>
#include <sys/fault.h>
#include <sys/niagara2regs.h>
#include <sys/hsvc.h>
#include <sys/trapstat.h>
uint_t root_phys_addr_lo_mask = 0xffffffffU;
char cpu_module_name[] = "SUNW,UltraSPARC-T2";
/*
* Hypervisor services information for the NIAGARA2 CPU module
*/
static boolean_t niagara2_hsvc_available = B_TRUE;
static uint64_t niagara2_sup_minor; /* Supported minor number */
static hsvc_info_t niagara2_hsvc = {
HSVC_REV_1, NULL, HSVC_GROUP_NIAGARA2_CPU, NIAGARA2_HSVC_MAJOR,
NIAGARA2_HSVC_MINOR, cpu_module_name
};
#ifdef N2_1x_CPC_WORKAROUNDS
static uint64_t cpu_ver; /* Niagara2 CPU version reg */
uint64_t ni2_1x_perf_workarounds = 0;
/* Niagara2 CPU version register */
#define VER_MASK_MAJOR_SHIFT 28
#define VER_MASK_MAJOR_MASK 0xf
extern uint64_t va_to_pa(void *);
extern uint64_t ni2_getver(); /* HV code to get %hver */
extern uint64_t niagara2_getver(uint64_t ni2_getver_ra, uint64_t *cpu_version);
#endif
void
cpu_setup(void)
{
extern int mmu_exported_pagesize_mask;
extern int cpc_has_overflow_intr;
int status;
#ifdef N2_1x_CPC_WORKAROUNDS
/*
* Get CPU version for Niagara2 part.
*/
if (niagara2_getver(va_to_pa((void *)ni2_getver), &cpu_ver) == H_EOK &&
((cpu_ver >> VER_MASK_MAJOR_SHIFT) & VER_MASK_MAJOR_MASK) <= 1)
ni2_1x_perf_workarounds = 1;
#endif
/*
* Negotiate the API version for Niagara2 specific hypervisor
* services.
*/
status = hsvc_register(&niagara2_hsvc, &niagara2_sup_minor);
if (status != 0) {
cmn_err(CE_WARN, "%s: cannot negotiate hypervisor services "
"group: 0x%lx major: 0x%lx minor: 0x%lx errno: %d",
niagara2_hsvc.hsvc_modname, niagara2_hsvc.hsvc_group,
niagara2_hsvc.hsvc_major, niagara2_hsvc.hsvc_minor, status);
niagara2_hsvc_available = B_FALSE;
}
/*
* The setup common to all CPU modules is done in cpu_setup_common
* routine.
*/
cpu_setup_common(NULL);
cache |= (CACHE_PTAG | CACHE_IOCOHERENT);
if ((mmu_exported_pagesize_mask &
DEFAULT_SUN4V_MMU_PAGESIZE_MASK) !=
DEFAULT_SUN4V_MMU_PAGESIZE_MASK)
cmn_err(CE_PANIC, "machine description"
" does not have required sun4v page sizes"
" 8K, 64K and 4M: MD mask is 0x%x",
mmu_exported_pagesize_mask);
cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2 | AV_SPARC_ASI_BLK_INIT;
/*
* Niagara2 supports a 48-bit subset of the full 64-bit virtual
* address space. Virtual addresses between 0x0000800000000000
* and 0xffff.7fff.ffff.ffff inclusive lie within a "VA Hole"
* and must never be mapped. In addition, software must not use
* pages within 4GB of the VA hole as instruction pages to
* avoid problems with prefetching into the VA hole.
*/
hole_start = (caddr_t)((1ull << (va_bits - 1)) - (1ull << 32));
hole_end = (caddr_t)((0ull - (1ull << (va_bits - 1))) + (1ull << 32));
/*
* Niagara2 has a performance counter overflow interrupt
*/
cpc_has_overflow_intr = 1;
/*
* Enable 4M pages for OOB.
*/
max_uheap_lpsize = MMU_PAGESIZE4M;
max_ustack_lpsize = MMU_PAGESIZE4M;
max_privmap_lpsize = MMU_PAGESIZE4M;
}
/*
* Set the magic constants of the implementation.
*/
void
cpu_fiximp(struct cpu_node *cpunode)
{
/*
* The Cache node is optional in MD. Therefore in case "Cache"
* node does not exists in MD, set the default L2 cache associativity,
* size, linesize.
*/
if (cpunode->ecache_size == 0)
cpunode->ecache_size = L2CACHE_SIZE;
if (cpunode->ecache_linesize == 0)
cpunode->ecache_linesize = L2CACHE_LINESIZE;
if (cpunode->ecache_associativity == 0)
cpunode->ecache_associativity = L2CACHE_ASSOCIATIVITY;
}
static int niagara2_cpucnt;
void
cpu_init_private(struct cpu *cp)
{
extern int niagara_kstat_init(void);
/*
* The cpu_ipipe and cpu_fpu fields are initialized based on
* the execution unit sharing information from the MD. They default
* to the virtual CPU id in the absence of such information.
*/
cp->cpu_m.cpu_ipipe = cpunodes[cp->cpu_id].exec_unit_mapping;
if (cp->cpu_m.cpu_ipipe == NO_EU_MAPPING_FOUND)
cp->cpu_m.cpu_ipipe = (id_t)(cp->cpu_id);
cp->cpu_m.cpu_fpu = cpunodes[cp->cpu_id].fpu_mapping;
if (cp->cpu_m.cpu_fpu == NO_EU_MAPPING_FOUND)
cp->cpu_m.cpu_fpu = (id_t)(cp->cpu_id);
/*
* Niagara 2 defines the core to be at the FPU level
*/
cp->cpu_m.cpu_core = cp->cpu_m.cpu_fpu;
ASSERT(MUTEX_HELD(&cpu_lock));
if ((niagara2_cpucnt++ == 0) && (niagara2_hsvc_available == B_TRUE))
(void) niagara_kstat_init();
}
/*ARGSUSED*/
void
cpu_uninit_private(struct cpu *cp)
{
extern int niagara_kstat_fini(void);
ASSERT(MUTEX_HELD(&cpu_lock));
if ((--niagara2_cpucnt == 0) && (niagara2_hsvc_available == B_TRUE))
(void) niagara_kstat_fini();
}
/*
* On Niagara2, any flush will cause all preceding stores to be
* synchronized wrt the i$, regardless of address or ASI. In fact,
* the address is ignored, so we always flush address 0.
*/
/*ARGSUSED*/
void
dtrace_flush_sec(uintptr_t addr)
{
doflush(0);
}
/*
* Trapstat support for Niagara2 processor
* The Niagara2 provides HWTW support for TSB lookup and with HWTW
* enabled no TSB hit information will be available. Therefore setting
* the time spent in TLB miss handler for TSB hits to 0.
*/
int
cpu_trapstat_conf(int cmd)
{
int status = 0;
switch (cmd) {
case CPU_TSTATCONF_INIT:
case CPU_TSTATCONF_FINI:
case CPU_TSTATCONF_ENABLE:
case CPU_TSTATCONF_DISABLE:
break;
default:
status = EINVAL;
break;
}
return (status);
}
void
cpu_trapstat_data(void *buf, uint_t tstat_pgszs)
{
tstat_pgszdata_t *tstatp = (tstat_pgszdata_t *)buf;
int i;
for (i = 0; i < tstat_pgszs; i++, tstatp++) {
tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_count = 0;
tstatp->tpgsz_kernel.tmode_itlb.ttlb_tlb.tmiss_time = 0;
tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_count = 0;
tstatp->tpgsz_user.tmode_itlb.ttlb_tlb.tmiss_time = 0;
tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
tstatp->tpgsz_kernel.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_count = 0;
tstatp->tpgsz_user.tmode_dtlb.ttlb_tlb.tmiss_time = 0;
}
}
/* NI2 L2$ index is pa[32:28]^pa[17:13].pa[19:18]^pa[12:11].pa[10:6] */
uint_t
page_pfn_2_color_cpu(pfn_t pfn, uchar_t szc)
{
uint_t color;
ASSERT(szc <= TTE256M);
pfn = PFN_BASE(pfn, szc);
color = ((pfn >> 15) ^ pfn) & 0x1f;
if (szc >= TTE4M)
return (color);
color = (color << 2) | ((pfn >> 5) & 0x3);
return (szc <= TTE64K ? color : (color >> 1));
}
#if TTE256M != 5
#error TTE256M is not 5
#endif
uint_t
page_get_nsz_color_mask_cpu(uchar_t szc, uint_t mask)
{
static uint_t ni2_color_masks[5] = {0x63, 0x1e, 0x3e, 0x1f, 0x1f};
ASSERT(szc < TTE256M);
mask &= ni2_color_masks[szc];
return ((szc == TTE64K || szc == TTE512K) ? (mask >> 1) : mask);
}
uint_t
page_get_nsz_color_cpu(uchar_t szc, uint_t color)
{
ASSERT(szc < TTE256M);
return ((szc == TTE64K || szc == TTE512K) ? (color >> 1) : color);
}
uint_t
page_get_color_shift_cpu(uchar_t szc, uchar_t nszc)
{
ASSERT(nszc > szc);
ASSERT(nszc <= TTE256M);
if (szc <= TTE64K)
return ((nszc >= TTE4M) ? 2 : ((nszc >= TTE512K) ? 1 : 0));
if (szc == TTE512K)
return (1);
return (0);
}
/*ARGSUSED*/
pfn_t
page_next_pfn_for_color_cpu(pfn_t pfn, uchar_t szc, uint_t color,
uint_t ceq_mask, uint_t color_mask)
{
pfn_t pstep = PNUM_SIZE(szc);
pfn_t npfn, pfn_ceq_mask, pfn_color;
pfn_t tmpmask, mask = (pfn_t)-1;
ASSERT((color & ~ceq_mask) == 0);
if (((page_pfn_2_color_cpu(pfn, szc) ^ color) & ceq_mask) == 0) {
/* we start from the page with correct color */
if (szc >= TTE512K) {
if (szc >= TTE4M) {
/* page color is PA[32:28] */
pfn_ceq_mask = ceq_mask << 15;
} else {
/* page color is PA[32:28].PA[19:19] */
pfn_ceq_mask = ((ceq_mask & 1) << 6) |
((ceq_mask >> 1) << 15);
}
pfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
return (pfn);
} else {
/*
* We deal 64K or 8K page. Check if we could the
* satisfy the request without changing PA[32:28]
*/
pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
npfn = ADD_MASKED(pfn, pstep, pfn_ceq_mask, mask);
if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
return (npfn);
/*
* for next pfn we have to change bits PA[32:28]
* set PA[63:28] and PA[19:18] of the next pfn
*/
npfn = (pfn >> 15) << 15;
npfn |= (ceq_mask & color & 3) << 5;
pfn_ceq_mask = (szc == TTE8K) ? 0 :
(ceq_mask & 0x1c) << 13;
npfn = ADD_MASKED(npfn, (1 << 15), pfn_ceq_mask, mask);
/*
* set bits PA[17:13] to match the color
*/
ceq_mask >>= 2;
color = (color >> 2) & ceq_mask;
npfn |= ((npfn >> 15) ^ color) & ceq_mask;
return (npfn);
}
}
/*
* we start from the page with incorrect color - rare case
*/
if (szc >= TTE512K) {
if (szc >= TTE4M) {
/* page color is in bits PA[32:28] */
npfn = ((pfn >> 20) << 20) | (color << 15);
pfn_ceq_mask = (ceq_mask << 15) | 0x7fff;
} else {
/* try get the right color by changing bit PA[19:19] */
npfn = pfn + pstep;
if (((page_pfn_2_color_cpu(npfn, szc) ^ color) &
ceq_mask) == 0)
return (npfn);
/* page color is PA[32:28].PA[19:19] */
pfn_ceq_mask = ((ceq_mask & 1) << 6) |
((ceq_mask >> 1) << 15) | (0xff << 7);
pfn_color = ((color & 1) << 6) | ((color >> 1) << 15);
npfn = ((pfn >> 20) << 20) | pfn_color;
}
while (npfn <= pfn) {
npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask, mask);
}
return (npfn);
}
/*
* We deal 64K or 8K page of incorrect color.
* Try correcting color without changing PA[32:28]
*/
pfn_ceq_mask = ((ceq_mask & 3) << 5) | (ceq_mask >> 2);
pfn_color = ((color & 3) << 5) | (color >> 2);
npfn = (pfn & ~(pfn_t)0x7f);
npfn |= (((pfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
if (((page_pfn_2_color_cpu(npfn, szc) ^ color) & ceq_mask) == 0) {
/* the color is fixed - find the next page */
while (npfn <= pfn) {
npfn = ADD_MASKED(npfn, pstep, pfn_ceq_mask, mask);
}
if ((((npfn ^ pfn) >> 15) & 0x1f) == 0)
return (npfn);
}
/* to fix the color need to touch PA[32:28] */
npfn = (szc == TTE8K) ? ((pfn >> 15) << 15) :
(((pfn >> 18) << 18) | ((color & 0x1c) << 13));
tmpmask = (szc == TTE8K) ? 0 : (ceq_mask & 0x1c) << 13;
while (npfn <= pfn) {
npfn = ADD_MASKED(npfn, (1 << 15), tmpmask, mask);
}
/* set bits PA[19:13] to match the color */
npfn |= (((npfn >> 15) & 0x1f) ^ pfn_color) & pfn_ceq_mask;
npfn = (szc == TTE64K) ? (npfn & ~(pfn_t)0x7) : npfn;
ASSERT(((page_pfn_2_color_cpu(npfn, szc) ^ color) & ceq_mask) == 0);
return (npfn);
}
/*
* init page coloring
*/
void
page_coloring_init_cpu()
{
int i;
hw_page_array[0].hp_colors = 1 << 7;
hw_page_array[1].hp_colors = 1 << 7;
hw_page_array[2].hp_colors = 1 << 6;
for (i = 3; i < mmu_page_sizes; i++) {
hw_page_array[i].hp_colors = 1 << 5;
}
}
/*
* group colorequiv colors on N2 by low order bits of the color first
*/
void
page_set_colorequiv_arr_cpu(void)
{
static uint_t nequiv_shades_log2[MMU_PAGE_SIZES] = {2, 5, 0, 0, 0, 0};
if (colorequiv > 1) {
int i;
uint_t sv_a = lowbit(colorequiv) - 1;
if (sv_a > 15)
sv_a = 15;
for (i = 0; i < MMU_PAGE_SIZES; i++) {
uint_t colors;
uint_t a = sv_a;
if ((colors = hw_page_array[i].hp_colors) <= 1)
continue;
while ((colors >> a) == 0)
a--;
if (a > (colorequivszc[i] & 0xf) +
(colorequivszc[i] >> 4)) {
if (a <= nequiv_shades_log2[i]) {
colorequivszc[i] = a;
} else {
colorequivszc[i] =
((a - nequiv_shades_log2[i]) << 4) |
nequiv_shades_log2[i];
}
}
}
}
}