/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <vm/hat.h>
#include <vm/hat_sfmmu.h>
#include <vm/page.h>
#include <sys/pte.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/sysmacros.h>
#include <sys/machparam.h>
#include <sys/vtrace.h>
#include <sys/kmem.h>
#include <sys/mmu.h>
#include <sys/cmn_err.h>
#include <sys/cpu.h>
#include <sys/cpuvar.h>
#include <sys/debug.h>
#include <sys/lgrp.h>
#include <sys/archsystm.h>
#include <sys/machsystm.h>
#include <sys/vmsystm.h>
#include <sys/bitmap.h>
#include <vm/rm.h>
#include <sys/t_lock.h>
#include <sys/vm_machparam.h>
#include <sys/promif.h>
#include <sys/prom_isa.h>
#include <sys/prom_plat.h>
#include <sys/prom_debug.h>
#include <sys/privregs.h>
#include <sys/bootconf.h>
#include <sys/memlist.h>
#include <sys/memlist_plat.h>
#include <sys/cpu_module.h>
#include <sys/reboot.h>
#include <sys/kdi.h>
#include <sys/fpu/fpusystm.h>
/*
* External routines and data structures
*/
extern void sfmmu_cache_flushcolor(int, pfn_t);
/*
* Static routines
*/
static void sfmmu_set_tlb(void);
/*
* Global Data:
*/
caddr_t textva, datava;
tte_t ktext_tte, kdata_tte; /* ttes for kernel text and data */
int enable_bigktsb = 1;
tte_t bigktsb_ttes[MAX_BIGKTSB_TTES];
int bigktsb_nttes = 0;
/*
* Controls the logic which enables the use of the
* QUAD_LDD_PHYS ASI for TSB accesses.
*/
int ktsb_phys = 0;
/*
* This routine remaps the kernel using large ttes
* All entries except locked ones will be removed from the tlb.
* It assumes that both the text and data segments reside in a separate
* 4mb virtual and physical contigous memory chunk. This routine
* is only executed by the first cpu. The remaining cpus execute
* sfmmu_mp_startup() instead.
* XXX It assumes that the start of the text segment is KERNELBASE. It should
* actually be based on start.
*/
void
sfmmu_remap_kernel(void)
{
pfn_t pfn;
uint_t attr;
int flags;
extern char end[];
extern struct as kas;
textva = (caddr_t)(KERNELBASE & MMU_PAGEMASK4M);
pfn = va_to_pfn(textva);
if (pfn == PFN_INVALID)
prom_panic("can't find kernel text pfn");
pfn &= TTE_PFNMASK(TTE4M);
attr = PROC_TEXT | HAT_NOSYNC;
flags = HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD;
sfmmu_memtte(&ktext_tte, pfn, attr, TTE4M);
/*
* We set the lock bit in the tte to lock the translation in
* the tlb. Note we cannot lock Panther 32M/256M pages into the tlb.
* This note is here to make sure that no one tries to remap the
* kernel using 32M or 256M tte's on Panther cpus.
*/
TTE_SET_LOCKED(&ktext_tte);
sfmmu_tteload(kas.a_hat, &ktext_tte, textva, NULL, flags);
datava = (caddr_t)((uintptr_t)end & MMU_PAGEMASK4M);
pfn = va_to_pfn(datava);
if (pfn == PFN_INVALID)
prom_panic("can't find kernel data pfn");
pfn &= TTE_PFNMASK(TTE4M);
attr = PROC_DATA | HAT_NOSYNC;
sfmmu_memtte(&kdata_tte, pfn, attr, TTE4M);
/*
* We set the lock bit in the tte to lock the translation in
* the tlb. We also set the mod bit to avoid taking dirty bit
* traps on kernel data.
*/
TTE_SET_LOCKED(&kdata_tte);
TTE_SET_LOFLAGS(&kdata_tte, 0, TTE_HWWR_INT);
sfmmu_tteload(kas.a_hat, &kdata_tte, datava,
(struct page *)NULL, flags);
/*
* create bigktsb ttes if necessary.
*/
if (enable_bigktsb) {
int i = 0;
caddr_t va = ktsb_base;
size_t tsbsz = ktsb_sz;
tte_t tte;
ASSERT(va >= datava + MMU_PAGESIZE4M);
ASSERT(tsbsz >= MMU_PAGESIZE4M);
ASSERT(IS_P2ALIGNED(tsbsz, tsbsz));
ASSERT(IS_P2ALIGNED(va, tsbsz));
attr = PROC_DATA | HAT_NOSYNC;
while (tsbsz != 0) {
ASSERT(i < MAX_BIGKTSB_TTES);
pfn = va_to_pfn(va);
ASSERT(pfn != PFN_INVALID);
ASSERT((pfn & ~TTE_PFNMASK(TTE4M)) == 0);
sfmmu_memtte(&tte, pfn, attr, TTE4M);
ASSERT(TTE_IS_MOD(&tte));
/*
* No need to lock if we use physical addresses.
* Since we invalidate the kernel TSB using virtual
* addresses, it's an optimization to load them now
* so that we won't have to load them later.
*/
if (!ktsb_phys) {
TTE_SET_LOCKED(&tte);
}
sfmmu_tteload(kas.a_hat, &tte, va, NULL, flags);
bigktsb_ttes[i] = tte;
va += MMU_PAGESIZE4M;
tsbsz -= MMU_PAGESIZE4M;
i++;
}
bigktsb_nttes = i;
}
sfmmu_set_tlb();
}
#ifndef UTSB_PHYS
/*
* Unmap all references to user TSBs from the TLB of the current processor.
*/
static void
sfmmu_clear_user_tsbs()
{
caddr_t va;
caddr_t end_va;
/* Demap all pages in the VA range for the first user TSB */
va = utsb_vabase;
end_va = va + tsb_slab_size;
while (va < end_va) {
vtag_flushpage(va, (uint64_t)ksfmmup);
va += MMU_PAGESIZE;
}
/* Demap all pages in the VA range for the second user TSB */
va = utsb4m_vabase;
end_va = va + tsb_slab_size;
while (va < end_va) {
vtag_flushpage(va, (uint64_t)ksfmmup);
va += MMU_PAGESIZE;
}
}
#endif /* UTSB_PHYS */
/*
* Setup the kernel's locked tte's
*/
void
sfmmu_set_tlb(void)
{
uint_t index;
struct cpu_node *cpunode;
cpunode = &cpunodes[getprocessorid()];
index = cpunode->itlb_size;
/*
* NOTE: the prom will do an explicit unmap of the VAs from the TLBs
* in the following functions before loading the new value into the
* TLB. Thus if there was an entry already in the TLB at a different
* location, it will get unmapped before we load the entry at the
* specified location.
*/
(void) prom_itlb_load(index - 1, *(uint64_t *)&ktext_tte, textva);
index = cpunode->dtlb_size;
(void) prom_dtlb_load(index - 1, *(uint64_t *)&kdata_tte, datava);
(void) prom_dtlb_load(index - 2, *(uint64_t *)&ktext_tte, textva);
index -= 3;
#ifndef UTSB_PHYS
utsb_dtlb_ttenum = index--;
utsb4m_dtlb_ttenum = index--;
sfmmu_clear_user_tsbs();
#endif /* UTSB_PHYS */
if (!ktsb_phys && enable_bigktsb) {
int i;
caddr_t va = ktsb_base;
uint64_t tte;
ASSERT(bigktsb_nttes <= MAX_BIGKTSB_TTES);
for (i = 0; i < bigktsb_nttes; i++) {
tte = *(uint64_t *)&bigktsb_ttes[i];
(void) prom_dtlb_load(index, tte, va);
va += MMU_PAGESIZE4M;
index--;
}
}
dtlb_resv_ttenum = index + 1;
}
/*
* This routine is executed by all other cpus except the first one
* at initialization time. It is responsible for taking over the
* mmu from the prom. We follow these steps.
* Lock the kernel's ttes in the TLB
* Initialize the tsb hardware registers
* Take over the trap table
* Flush the prom's locked entries from the TLB
*/
void
sfmmu_mp_startup(void)
{
sfmmu_set_tlb();
setwstate(WSTATE_KERN);
prom_set_traptable(&trap_table);
install_va_to_tte();
}
void
kdi_tlb_page_lock(caddr_t va, int do_dtlb)
{
tte_t tte;
pfn_t pfn = va_to_pfn(va);
tte.tte_inthi = TTE_VALID_INT | TTE_SZ_INT(TTE8K) | TTE_PFN_INTHI(pfn);
tte.tte_intlo = TTE_PFN_INTLO(pfn) | TTE_LCK_INT | TTE_CP_INT |
TTE_PRIV_INT | TTE_HWWR_INT;
vtag_flushpage(va, (uint64_t)ksfmmup);
sfmmu_itlb_ld_kva(va, &tte);
if (do_dtlb)
sfmmu_dtlb_ld_kva(va, &tte);
}
/*ARGSUSED*/
void
kdi_tlb_page_unlock(caddr_t va, int do_dtlb)
{
vtag_flushpage(va, (uint64_t)ksfmmup);
}
/* clear user TSB information (applicable to hardware TSB walkers) */
void
sfmmu_clear_utsbinfo()
{
}
/*ARGSUSED*/
void
sfmmu_setup_tsbinfo(sfmmu_t *sfmmup)
{
}
/*
* Invalidate a TSB. If floating point is enabled we use
* a fast block-store routine, otherwise we use the old method
* of walking the TSB setting each tag to TSBTAG_INVALID.
*/
void
sfmmu_inv_tsb(caddr_t tsb_base, uint_t tsb_bytes)
{
extern void sfmmu_inv_tsb_fast(caddr_t, uint_t);
struct tsbe *tsbaddr;
/* CONSTCOND */
if (fpu_exists) {
sfmmu_inv_tsb_fast(tsb_base, tsb_bytes);
return;
}
for (tsbaddr = (struct tsbe *)tsb_base;
(uintptr_t)tsbaddr < (uintptr_t)(tsb_base + tsb_bytes);
tsbaddr++) {
tsbaddr->tte_tag.tag_inthi = TSBTAG_INVALID;
}
if (ktsb_phys && tsb_base == ktsb_base)
dcache_flushall();
}
/*
* Completely flush the D-cache on all cpus.
*/
void
sfmmu_cache_flushall()
{
int i;
for (i = 0; i < CACHE_NUM_COLOR; i++)
sfmmu_cache_flushcolor(i, 0);
}