/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* PIM-DR layer of DR driver. Provides interface between user
* level applications and the PSM-DR layer.
*/
#include <sys/note.h>
#include <sys/debug.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/dditypes.h>
#include <sys/devops.h>
#include <sys/modctl.h>
#include <sys/poll.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/processor.h>
#include <sys/cpuvar.h>
#include <sys/mem_config.h>
#include <sys/autoconf.h>
#include <sys/cmn_err.h>
#include <sys/ddi_impldefs.h>
#include <sys/promif.h>
#include <sys/machsystm.h>
#include <sys/dr.h>
#include <sys/drmach.h>
#include <sys/dr_util.h>
extern int nulldev();
extern int nodev();
extern struct memlist *phys_install;
#ifdef DEBUG
uint_t dr_debug = 0; /* dr.h for bit values */
#endif /* DEBUG */
/*
* NOTE: state_str, nt_str and SBD_CMD_STR are only used in a debug
* kernel. They are, however, referenced during both debug and non-debug
* compiles.
*/
static char *state_str[] = {
"EMPTY", "OCCUPIED", "CONNECTED", "UNCONFIGURED",
"PARTIAL", "CONFIGURED", "RELEASE", "UNREFERENCED",
"FATAL"
};
#define SBD_CMD_STR(c) \
(((c) == SBD_CMD_ASSIGN) ? "ASSIGN" : \
((c) == SBD_CMD_UNASSIGN) ? "UNASSIGN" : \
((c) == SBD_CMD_POWERON) ? "POWERON" : \
((c) == SBD_CMD_POWEROFF) ? "POWEROFF" : \
((c) == SBD_CMD_TEST) ? "TEST" : \
((c) == SBD_CMD_CONNECT) ? "CONNECT" : \
((c) == SBD_CMD_DISCONNECT) ? "DISCONNECT" : \
((c) == SBD_CMD_CONFIGURE) ? "CONFIGURE" : \
((c) == SBD_CMD_UNCONFIGURE) ? "UNCONFIGURE" : \
((c) == SBD_CMD_GETNCM) ? "GETNCM" : \
((c) == SBD_CMD_PASSTHRU) ? "PASSTHRU" : \
((c) == SBD_CMD_STATUS) ? "STATUS" : "unknown")
#define DR_GET_BOARD_DEVUNIT(sb, ut, un) (&((sb)->b_dev[NIX(ut)][un]))
#define DR_MAKE_MINOR(i, b) (((i) << 16) | (b))
#define DR_MINOR2INST(m) (((m) >> 16) & 0xffff)
#define DR_MINOR2BNUM(m) ((m) & 0xffff)
/* for the DR*INTERNAL_ERROR macros. see sys/dr.h. */
static char *dr_ie_fmt = "dr.c %d";
/* struct for drmach device name to sbd_comp_type_t mapping */
typedef struct {
char *s_devtype;
sbd_comp_type_t s_nodetype;
} dr_devname_t;
/* struct to map starfire device attributes - name:sbd_comp_type_t */
static dr_devname_t dr_devattr[] = {
{ DRMACH_DEVTYPE_MEM, SBD_COMP_MEM },
{ DRMACH_DEVTYPE_CPU, SBD_COMP_CPU },
{ DRMACH_DEVTYPE_PCI, SBD_COMP_IO },
#if defined(DRMACH_DEVTYPE_SBUS)
{ DRMACH_DEVTYPE_SBUS, SBD_COMP_IO },
#endif
#if defined(DRMACH_DEVTYPE_WCI)
{ DRMACH_DEVTYPE_WCI, SBD_COMP_IO },
#endif
/* last s_devtype must be NULL, s_nodetype must be SBD_COMP_UNKNOWN */
{ NULL, SBD_COMP_UNKNOWN }
};
/*
* Per instance soft-state structure.
*/
typedef struct dr_softstate {
dev_info_t *dip;
dr_board_t *boards;
kmutex_t i_lock;
int dr_initialized;
} dr_softstate_t;
/*
* dr Global data elements
*/
struct dr_global {
dr_softstate_t *softsp; /* pointer to initialize soft state */
kmutex_t lock;
} dr_g;
dr_unsafe_devs_t dr_unsafe_devs;
/*
* Table of known passthru commands.
*/
struct {
char *pt_name;
int (*pt_func)(dr_handle_t *);
} pt_arr[] = {
"quiesce", dr_pt_test_suspend,
};
int dr_modunload_okay = 0; /* set to non-zero to allow unload */
static int dr_dev_type_to_nt(char *);
/*
* State transition table. States valid transitions for "board" state.
* Recall that non-zero return value terminates operation, however
* the herrno value is what really indicates an error , if any.
*/
static int
_cmd2index(int c)
{
/*
* Translate DR CMD to index into dr_state_transition.
*/
switch (c) {
case SBD_CMD_CONNECT: return (0);
case SBD_CMD_DISCONNECT: return (1);
case SBD_CMD_CONFIGURE: return (2);
case SBD_CMD_UNCONFIGURE: return (3);
case SBD_CMD_ASSIGN: return (4);
case SBD_CMD_UNASSIGN: return (5);
case SBD_CMD_POWERON: return (6);
case SBD_CMD_POWEROFF: return (7);
case SBD_CMD_TEST: return (8);
default: return (-1);
}
}
#define CMD2INDEX(c) _cmd2index(c)
static struct dr_state_trans {
int x_cmd;
struct {
int x_rv; /* return value of pre_op */
int x_err; /* error, if any */
} x_op[DR_STATE_MAX];
} dr_state_transition[] = {
{ SBD_CMD_CONNECT,
{
{ 0, 0 }, /* empty */
{ 0, 0 }, /* occupied */
{ -1, ESBD_STATE }, /* connected */
{ -1, ESBD_STATE }, /* unconfigured */
{ -1, ESBD_STATE }, /* partial */
{ -1, ESBD_STATE }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_DISCONNECT,
{
{ -1, ESBD_STATE }, /* empty */
{ 0, 0 }, /* occupied */
{ 0, 0 }, /* connected */
{ 0, 0 }, /* unconfigured */
{ -1, ESBD_STATE }, /* partial */
{ -1, ESBD_STATE }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_CONFIGURE,
{
{ -1, ESBD_STATE }, /* empty */
{ -1, ESBD_STATE }, /* occupied */
{ 0, 0 }, /* connected */
{ 0, 0 }, /* unconfigured */
{ 0, 0 }, /* partial */
{ 0, 0 }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_UNCONFIGURE,
{
{ -1, ESBD_STATE }, /* empty */
{ -1, ESBD_STATE }, /* occupied */
{ -1, ESBD_STATE }, /* connected */
{ -1, ESBD_STATE }, /* unconfigured */
{ 0, 0 }, /* partial */
{ 0, 0 }, /* configured */
{ 0, 0 }, /* release */
{ 0, 0 }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_ASSIGN,
{
{ 0, 0 }, /* empty */
{ 0, 0 }, /* occupied */
{ -1, ESBD_STATE }, /* connected */
{ -1, ESBD_STATE }, /* unconfigured */
{ -1, ESBD_STATE }, /* partial */
{ -1, ESBD_STATE }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_UNASSIGN,
{
{ 0, 0 }, /* empty */
{ 0, 0 }, /* occupied */
{ -1, ESBD_STATE }, /* connected */
{ -1, ESBD_STATE }, /* unconfigured */
{ -1, ESBD_STATE }, /* partial */
{ -1, ESBD_STATE }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_POWERON,
{
{ 0, 0 }, /* empty */
{ 0, 0 }, /* occupied */
{ -1, ESBD_STATE }, /* connected */
{ -1, ESBD_STATE }, /* unconfigured */
{ -1, ESBD_STATE }, /* partial */
{ -1, ESBD_STATE }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_POWEROFF,
{
{ 0, 0 }, /* empty */
{ 0, 0 }, /* occupied */
{ -1, ESBD_STATE }, /* connected */
{ -1, ESBD_STATE }, /* unconfigured */
{ -1, ESBD_STATE }, /* partial */
{ -1, ESBD_STATE }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
{ SBD_CMD_TEST,
{
{ 0, 0 }, /* empty */
{ 0, 0 }, /* occupied */
{ -1, ESBD_STATE }, /* connected */
{ -1, ESBD_STATE }, /* unconfigured */
{ -1, ESBD_STATE }, /* partial */
{ -1, ESBD_STATE }, /* configured */
{ -1, ESBD_STATE }, /* release */
{ -1, ESBD_STATE }, /* unreferenced */
{ -1, ESBD_FATAL_STATE }, /* fatal */
}
},
};
/*
* Global R/W lock to synchronize access across
* multiple boards. Users wanting multi-board access
* must grab WRITE lock, others must grab READ lock.
*/
krwlock_t dr_grwlock;
/*
* Head of the boardlist used as a reference point for
* locating board structs.
* TODO: eliminate dr_boardlist
*/
dr_board_t *dr_boardlist;
/*
* DR support functions.
*/
static dr_devset_t dr_dev2devset(sbd_comp_id_t *cid);
static int dr_check_transition(dr_board_t *bp,
dr_devset_t *devsetp,
struct dr_state_trans *transp,
int cmd);
static int dr_check_unit_attached(dr_common_unit_t *dp);
static sbd_error_t *dr_init_devlists(dr_board_t *bp);
static void dr_board_discovery(dr_board_t *bp);
static int dr_board_init(dr_board_t *bp, dev_info_t *dip,
int bd);
static void dr_board_destroy(dr_board_t *bp);
static void dr_board_transition(dr_board_t *bp, dr_state_t st);
/*
* DR driver (DDI) entry points.
*/
static int dr_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,
void *arg, void **result);
static int dr_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int dr_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int dr_probe(dev_info_t *dip);
static int dr_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *cred_p, int *rval_p);
static int dr_close(dev_t dev, int flag, int otyp, cred_t *cred_p);
static int dr_open(dev_t *dev, int flag, int otyp, cred_t *cred_p);
/*
* DR command processing operations.
*/
static int dr_copyin_iocmd(dr_handle_t *hp);
static int dr_copyout_iocmd(dr_handle_t *hp);
static int dr_copyout_errs(dr_handle_t *hp);
static int dr_pre_op(dr_handle_t *hp);
static int dr_post_op(dr_handle_t *hp);
static int dr_exec_op(dr_handle_t *hp);
static void dr_assign_board(dr_handle_t *hp);
static void dr_unassign_board(dr_handle_t *hp);
static void dr_connect(dr_handle_t *hp);
static int dr_disconnect(dr_handle_t *hp);
static void dr_dev_configure(dr_handle_t *hp);
static void dr_dev_release(dr_handle_t *hp);
static int dr_dev_unconfigure(dr_handle_t *hp);
static void dr_dev_cancel(dr_handle_t *hp);
static int dr_dev_status(dr_handle_t *hp);
static int dr_get_ncm(dr_handle_t *hp);
static int dr_pt_ioctl(dr_handle_t *hp);
static void dr_poweron_board(dr_handle_t *hp);
static void dr_poweroff_board(dr_handle_t *hp);
static void dr_test_board(dr_handle_t *hp);
/*
* Autoconfiguration data structures
*/
struct cb_ops dr_cb_ops = {
dr_open, /* open */
dr_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
dr_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* chpoll */
ddi_prop_op, /* cb_prop_op */
NULL, /* struct streamtab */
D_NEW | D_MP | D_MTSAFE, /* compatibility flags */
CB_REV, /* Rev */
nodev, /* cb_aread */
nodev /* cb_awrite */
};
struct dev_ops dr_dev_ops = {
DEVO_REV, /* build version */
0, /* dev ref count */
dr_getinfo, /* getinfo */
nulldev, /* identify */
dr_probe, /* probe */
dr_attach, /* attach */
dr_detach, /* detach */
nodev, /* reset */
&dr_cb_ops, /* cb_ops */
(struct bus_ops *)NULL, /* bus ops */
NULL, /* power */
ddi_quiesce_not_needed, /* quiesce */
};
extern struct mod_ops mod_driverops;
static struct modldrv modldrv = {
&mod_driverops,
"Dynamic Reconfiguration",
&dr_dev_ops
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
/*
* Driver entry points.
*/
int
_init(void)
{
int err;
/*
* If you need to support multiple nodes (instances), then
* whatever the maximum number of supported nodes is would
* need to passed as the third parameter to ddi_soft_state_init().
* Alternative would be to dynamically fini and re-init the
* soft state structure each time a node is attached.
*/
err = ddi_soft_state_init((void **)&dr_g.softsp,
sizeof (dr_softstate_t), 1);
if (err)
return (err);
mutex_init(&dr_g.lock, NULL, MUTEX_DRIVER, NULL);
rw_init(&dr_grwlock, NULL, RW_DEFAULT, NULL);
return (mod_install(&modlinkage));
}
int
_fini(void)
{
int err;
if ((err = mod_remove(&modlinkage)) != 0)
return (err);
mutex_destroy(&dr_g.lock);
rw_destroy(&dr_grwlock);
ddi_soft_state_fini((void **)&dr_g.softsp);
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*ARGSUSED1*/
static int
dr_open(dev_t *dev, int flag, int otyp, cred_t *cred_p)
{
int instance;
dr_softstate_t *softsp;
dr_board_t *bp;
/*
* Don't open unless we've attached.
*/
instance = DR_MINOR2INST(getminor(*dev));
softsp = ddi_get_soft_state(dr_g.softsp, instance);
if (softsp == NULL)
return (ENXIO);
mutex_enter(&softsp->i_lock);
if (!softsp->dr_initialized) {
int bd;
int rv = 0;
bp = softsp->boards;
/* initialize each array element */
for (bd = 0; bd < MAX_BOARDS; bd++, bp++) {
rv = dr_board_init(bp, softsp->dip, bd);
if (rv)
break;
}
if (rv == 0) {
softsp->dr_initialized = 1;
} else {
/* destroy elements initialized thus far */
while (--bp >= softsp->boards)
dr_board_destroy(bp);
/* TODO: should this be another errno val ? */
mutex_exit(&softsp->i_lock);
return (ENXIO);
}
}
mutex_exit(&softsp->i_lock);
bp = &softsp->boards[DR_MINOR2BNUM(getminor(*dev))];
/*
* prevent opening of a dyn-ap for a board
* that does not exist
*/
if (!bp->b_assigned) {
if (drmach_board_lookup(bp->b_num, &bp->b_id) != 0)
return (ENODEV);
}
return (0);
}
/*ARGSUSED*/
static int
dr_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
{
return (0);
}
/*
* Enable/disable DR features.
*/
int dr_enable = 1;
/*ARGSUSED3*/
static int
dr_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *cred_p, int *rval_p)
{
int rv = 0;
int instance;
int bd;
dr_handle_t *hp;
dr_softstate_t *softsp;
static fn_t f = "dr_ioctl";
PR_ALL("%s...\n", f);
instance = DR_MINOR2INST(getminor(dev));
softsp = ddi_get_soft_state(dr_g.softsp, instance);
if (softsp == NULL) {
cmn_err(CE_WARN, "dr%d: module not yet attached", instance);
return (ENXIO);
}
if (!dr_enable) {
switch (cmd) {
case SBD_CMD_STATUS:
case SBD_CMD_GETNCM:
case SBD_CMD_PASSTHRU:
break;
default:
return (ENOTSUP);
}
}
bd = DR_MINOR2BNUM(getminor(dev));
if (bd >= MAX_BOARDS)
return (ENXIO);
/* get and initialize storage for new handle */
hp = GETSTRUCT(dr_handle_t, 1);
hp->h_bd = &softsp->boards[bd];
hp->h_err = NULL;
hp->h_dev = getminor(dev);
hp->h_cmd = cmd;
hp->h_mode = mode;
hp->h_iap = (sbd_ioctl_arg_t *)arg;
/* copy sbd command into handle */
rv = dr_copyin_iocmd(hp);
if (rv) {
FREESTRUCT(hp, dr_handle_t, 1);
return (EINVAL);
}
/* translate canonical name to component type */
if (hp->h_sbdcmd.cmd_cm.c_id.c_name[0] != '\0') {
hp->h_sbdcmd.cmd_cm.c_id.c_type =
dr_dev_type_to_nt(hp->h_sbdcmd.cmd_cm.c_id.c_name);
PR_ALL("%s: c_name = %s, c_type = %d\n",
f,
hp->h_sbdcmd.cmd_cm.c_id.c_name,
hp->h_sbdcmd.cmd_cm.c_id.c_type);
} else {
/*EMPTY*/
PR_ALL("%s: c_name is NULL\n", f);
}
/* determine scope of operation */
hp->h_devset = dr_dev2devset(&hp->h_sbdcmd.cmd_cm.c_id);
switch (hp->h_cmd) {
case SBD_CMD_STATUS:
case SBD_CMD_GETNCM:
/* no locks needed for these commands */
break;
default:
rw_enter(&dr_grwlock, RW_WRITER);
mutex_enter(&hp->h_bd->b_lock);
/*
* If we're dealing with memory at all, then we have
* to keep the "exclusive" global lock held. This is
* necessary since we will probably need to look at
* multiple board structs. Otherwise, we only have
* to deal with the board in question and so can drop
* the global lock to "shared".
*/
rv = DEVSET_IN_SET(hp->h_devset, SBD_COMP_MEM, DEVSET_ANYUNIT);
if (rv == 0)
rw_downgrade(&dr_grwlock);
break;
}
rv = 0;
if (rv == 0)
rv = dr_pre_op(hp);
if (rv == 0)
rv = dr_exec_op(hp);
if (rv == 0)
rv = dr_post_op(hp);
if (rv == -1)
rv = EIO;
if (hp->h_err != NULL)
if (!(rv = dr_copyout_errs(hp)))
rv = EIO;
/* undo locking, if any, done before dr_pre_op */
switch (hp->h_cmd) {
case SBD_CMD_STATUS:
case SBD_CMD_GETNCM:
break;
case SBD_CMD_ASSIGN:
case SBD_CMD_UNASSIGN:
case SBD_CMD_POWERON:
case SBD_CMD_POWEROFF:
case SBD_CMD_CONNECT:
case SBD_CMD_CONFIGURE:
case SBD_CMD_UNCONFIGURE:
case SBD_CMD_DISCONNECT:
/* Board changed state. Log a sysevent. */
if (rv == 0)
(void) drmach_log_sysevent(hp->h_bd->b_num, "",
SE_SLEEP, 1);
/* Fall through */
default:
mutex_exit(&hp->h_bd->b_lock);
rw_exit(&dr_grwlock);
}
if (hp->h_opts.size != 0)
FREESTRUCT(hp->h_opts.copts, char, hp->h_opts.size);
FREESTRUCT(hp, dr_handle_t, 1);
return (rv);
}
/*ARGSUSED*/
static int
dr_probe(dev_info_t *dip)
{
return (DDI_PROBE_SUCCESS);
}
static int
dr_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int rv, rv2;
int bd;
int instance;
sbd_error_t *err;
dr_softstate_t *softsp;
instance = ddi_get_instance(dip);
switch (cmd) {
case DDI_ATTACH:
rw_enter(&dr_grwlock, RW_WRITER);
rv = ddi_soft_state_zalloc(dr_g.softsp, instance);
if (rv != DDI_SUCCESS) {
cmn_err(CE_WARN, "dr%d: failed to alloc soft-state",
instance);
return (DDI_FAILURE);
}
/* initialize softstate structure */
softsp = ddi_get_soft_state(dr_g.softsp, instance);
softsp->dip = dip;
mutex_init(&softsp->i_lock, NULL, MUTEX_DRIVER, NULL);
/* allocate board array (aka boardlist) */
softsp->boards = GETSTRUCT(dr_board_t, MAX_BOARDS);
/* TODO: eliminate dr_boardlist */
dr_boardlist = softsp->boards;
/* initialize each array element */
rv = DDI_SUCCESS;
for (bd = 0; bd < MAX_BOARDS; bd++) {
dr_board_t *bp = &softsp->boards[bd];
char *p, *name;
int l, minor_num;
/*
* initialized board attachment point path
* (relative to pseudo) in a form immediately
* reusable as an cfgadm command argument.
* TODO: clean this up
*/
p = bp->b_path;
l = sizeof (bp->b_path);
(void) snprintf(p, l, "dr@%d:", instance);
while (*p != '\0') {
l--;
p++;
}
name = p;
err = drmach_board_name(bd, p, l);
if (err) {
sbd_err_clear(&err);
rv = DDI_FAILURE;
break;
}
minor_num = DR_MAKE_MINOR(instance, bd);
rv = ddi_create_minor_node(dip, name, S_IFCHR,
minor_num, DDI_NT_SBD_ATTACHMENT_POINT, NULL);
if (rv != DDI_SUCCESS)
rv = DDI_FAILURE;
}
if (rv == DDI_SUCCESS) {
/*
* Announce the node's presence.
*/
ddi_report_dev(dip);
} else {
ddi_remove_minor_node(dip, NULL);
}
/*
* Init registered unsafe devs.
*/
dr_unsafe_devs.devnames = NULL;
rv2 = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
"unsupported-io-drivers", &dr_unsafe_devs.devnames,
&dr_unsafe_devs.ndevs);
if (rv2 != DDI_PROP_SUCCESS)
dr_unsafe_devs.ndevs = 0;
rw_exit(&dr_grwlock);
return (rv);
default:
return (DDI_FAILURE);
}
/*NOTREACHED*/
}
static int
dr_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
int instance;
dr_softstate_t *softsp;
switch (cmd) {
case DDI_DETACH:
if (!dr_modunload_okay)
return (DDI_FAILURE);
rw_enter(&dr_grwlock, RW_WRITER);
instance = ddi_get_instance(dip);
softsp = ddi_get_soft_state(dr_g.softsp, instance);
/* TODO: eliminate dr_boardlist */
ASSERT(softsp->boards == dr_boardlist);
/* remove all minor nodes */
ddi_remove_minor_node(dip, NULL);
if (softsp->dr_initialized) {
int bd;
for (bd = 0; bd < MAX_BOARDS; bd++)
dr_board_destroy(&softsp->boards[bd]);
}
FREESTRUCT(softsp->boards, dr_board_t, MAX_BOARDS);
mutex_destroy(&softsp->i_lock);
ddi_soft_state_free(dr_g.softsp, instance);
rw_exit(&dr_grwlock);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
/*NOTREACHED*/
}
static int
dr_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
{
_NOTE(ARGUNUSED(dip))
dev_t dev = (dev_t)arg;
int instance, error;
dr_softstate_t *softsp;
*result = NULL;
error = DDI_SUCCESS;
instance = DR_MINOR2INST(getminor(dev));
switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:
softsp = ddi_get_soft_state(dr_g.softsp, instance);
if (softsp == NULL)
return (DDI_FAILURE);
*result = (void *)softsp->dip;
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)(uintptr_t)instance;
break;
default:
error = DDI_FAILURE;
break;
}
return (error);
}
/*
* DR operations.
*/
static int
dr_copyin_iocmd(dr_handle_t *hp)
{
static fn_t f = "dr_copyin_iocmd";
sbd_cmd_t *scp = &hp->h_sbdcmd;
if (hp->h_iap == NULL)
return (EINVAL);
bzero((caddr_t)scp, sizeof (sbd_cmd_t));
#ifdef _MULTI_DATAMODEL
if (ddi_model_convert_from(hp->h_mode & FMODELS) == DDI_MODEL_ILP32) {
sbd_cmd32_t scmd32;
bzero((caddr_t)&scmd32, sizeof (sbd_cmd32_t));
if (ddi_copyin((void *)hp->h_iap, (void *)&scmd32,
sizeof (sbd_cmd32_t), hp->h_mode)) {
cmn_err(CE_WARN,
"%s: (32bit) failed to copyin "
"sbdcmd-struct", f);
return (EFAULT);
}
scp->cmd_cm.c_id.c_type = scmd32.cmd_cm.c_id.c_type;
scp->cmd_cm.c_id.c_unit = scmd32.cmd_cm.c_id.c_unit;
bcopy(&scmd32.cmd_cm.c_id.c_name[0],
&scp->cmd_cm.c_id.c_name[0], OBP_MAXPROPNAME);
scp->cmd_cm.c_flags = scmd32.cmd_cm.c_flags;
scp->cmd_cm.c_len = scmd32.cmd_cm.c_len;
scp->cmd_cm.c_opts = (caddr_t)(uintptr_t)scmd32.cmd_cm.c_opts;
switch (hp->h_cmd) {
case SBD_CMD_STATUS:
scp->cmd_stat.s_nbytes = scmd32.cmd_stat.s_nbytes;
scp->cmd_stat.s_statp =
(caddr_t)(uintptr_t)scmd32.cmd_stat.s_statp;
break;
default:
break;
}
} else
#endif /* _MULTI_DATAMODEL */
if (ddi_copyin((void *)hp->h_iap, (void *)scp,
sizeof (sbd_cmd_t), hp->h_mode) != 0) {
cmn_err(CE_WARN,
"%s: failed to copyin sbdcmd-struct", f);
return (EFAULT);
}
if ((hp->h_opts.size = scp->cmd_cm.c_len) != 0) {
hp->h_opts.copts = GETSTRUCT(char, scp->cmd_cm.c_len + 1);
++hp->h_opts.size;
if (ddi_copyin((void *)scp->cmd_cm.c_opts,
(void *)hp->h_opts.copts,
scp->cmd_cm.c_len, hp->h_mode) != 0) {
cmn_err(CE_WARN, "%s: failed to copyin options", f);
return (EFAULT);
}
}
return (0);
}
static int
dr_copyout_iocmd(dr_handle_t *hp)
{
static fn_t f = "dr_copyout_iocmd";
sbd_cmd_t *scp = &hp->h_sbdcmd;
if (hp->h_iap == NULL)
return (EINVAL);
#ifdef _MULTI_DATAMODEL
if (ddi_model_convert_from(hp->h_mode & FMODELS) == DDI_MODEL_ILP32) {
sbd_cmd32_t scmd32;
scmd32.cmd_cm.c_id.c_type = scp->cmd_cm.c_id.c_type;
scmd32.cmd_cm.c_id.c_unit = scp->cmd_cm.c_id.c_unit;
bcopy(&scp->cmd_cm.c_id.c_name[0],
&scmd32.cmd_cm.c_id.c_name[0], OBP_MAXPROPNAME);
scmd32.cmd_cm.c_flags = scp->cmd_cm.c_flags;
scmd32.cmd_cm.c_len = scp->cmd_cm.c_len;
scmd32.cmd_cm.c_opts = (caddr32_t)(uintptr_t)scp->cmd_cm.c_opts;
switch (hp->h_cmd) {
case SBD_CMD_GETNCM:
scmd32.cmd_getncm.g_ncm = scp->cmd_getncm.g_ncm;
break;
default:
break;
}
if (ddi_copyout((void *)&scmd32, (void *)hp->h_iap,
sizeof (sbd_cmd32_t), hp->h_mode)) {
cmn_err(CE_WARN,
"%s: (32bit) failed to copyout "
"sbdcmd-struct", f);
return (EFAULT);
}
} else
#endif /* _MULTI_DATAMODEL */
if (ddi_copyout((void *)scp, (void *)hp->h_iap,
sizeof (sbd_cmd_t), hp->h_mode) != 0) {
cmn_err(CE_WARN,
"%s: failed to copyout sbdcmd-struct", f);
return (EFAULT);
}
return (0);
}
static int
dr_copyout_errs(dr_handle_t *hp)
{
static fn_t f = "dr_copyout_errs";
if (hp->h_err == NULL)
return (0);
if (hp->h_err->e_code) {
PR_ALL("%s: error %d %s",
f, hp->h_err->e_code, hp->h_err->e_rsc);
}
#ifdef _MULTI_DATAMODEL
if (ddi_model_convert_from(hp->h_mode & FMODELS) == DDI_MODEL_ILP32) {
sbd_error32_t *serr32p;
serr32p = GETSTRUCT(sbd_error32_t, 1);
serr32p->e_code = hp->h_err->e_code;
bcopy(&hp->h_err->e_rsc[0], &serr32p->e_rsc[0],
MAXPATHLEN);
if (ddi_copyout((void *)serr32p,
(void *)&((sbd_ioctl_arg32_t *)hp->h_iap)->i_err,
sizeof (sbd_error32_t), hp->h_mode)) {
cmn_err(CE_WARN,
"%s: (32bit) failed to copyout", f);
return (EFAULT);
}
FREESTRUCT(serr32p, sbd_error32_t, 1);
} else
#endif /* _MULTI_DATAMODEL */
if (ddi_copyout((void *)hp->h_err,
(void *)&hp->h_iap->i_err,
sizeof (sbd_error_t), hp->h_mode)) {
cmn_err(CE_WARN,
"%s: failed to copyout", f);
return (EFAULT);
}
sbd_err_clear(&hp->h_err);
return (0);
}
/*
* pre-op entry point must sbd_err_set_c(), if needed.
* Return value of non-zero indicates failure.
*/
static int
dr_pre_op(dr_handle_t *hp)
{
int rv = 0, t;
int cmd, serr = 0;
dr_devset_t devset;
dr_board_t *bp = hp->h_bd;
dr_handle_t *shp = hp;
static fn_t f = "dr_pre_op";
cmd = hp->h_cmd;
devset = shp->h_devset;
PR_ALL("%s (cmd = %s)...\n", f, SBD_CMD_STR(cmd));
hp->h_err = drmach_pre_op(cmd, bp->b_id, &hp->h_opts);
if (hp->h_err != NULL) {
PR_ALL("drmach_pre_op failed for cmd %s(%d)\n",
SBD_CMD_STR(cmd), cmd);
return (-1);
}
/*
* Check for valid state transitions.
*/
if ((t = CMD2INDEX(cmd)) != -1) {
struct dr_state_trans *transp;
int state_err;
transp = &dr_state_transition[t];
ASSERT(transp->x_cmd == cmd);
state_err = dr_check_transition(bp, &devset, transp, cmd);
if (state_err < 0) {
/*
* Invalidate device.
*/
dr_op_err(CE_IGNORE, hp, ESBD_INVAL, NULL);
serr = -1;
PR_ALL("%s: invalid devset (0x%x)\n",
f, (uint_t)devset);
} else if (state_err != 0) {
/*
* State transition is not a valid one.
*/
dr_op_err(CE_IGNORE, hp,
transp->x_op[state_err].x_err, NULL);
serr = transp->x_op[state_err].x_rv;
PR_ALL("%s: invalid state %s(%d) for cmd %s(%d)\n",
f, state_str[state_err], state_err,
SBD_CMD_STR(cmd), cmd);
} else {
shp->h_devset = devset;
}
}
if (serr) {
rv = -1;
}
return (rv);
}
static int
dr_post_op(dr_handle_t *hp)
{
int rv = 0;
int cmd;
dr_board_t *bp = hp->h_bd;
static fn_t f = "dr_post_op";
cmd = hp->h_cmd;
PR_ALL("%s (cmd = %s)...\n", f, SBD_CMD_STR(cmd));
/* errors should have been caught by now */
ASSERT(hp->h_err == NULL);
hp->h_err = drmach_post_op(cmd, bp->b_id, &hp->h_opts);
if (hp->h_err != NULL) {
PR_ALL("drmach_post_op failed for cmd %s(%d)\n",
SBD_CMD_STR(cmd), cmd);
return (-1);
}
switch (cmd) {
case SBD_CMD_CONFIGURE:
case SBD_CMD_UNCONFIGURE:
case SBD_CMD_CONNECT:
case SBD_CMD_DISCONNECT:
case SBD_CMD_GETNCM:
case SBD_CMD_STATUS:
break;
default:
break;
}
return (rv);
}
static int
dr_exec_op(dr_handle_t *hp)
{
int rv = 0;
static fn_t f = "dr_exec_op";
/* errors should have been caught by now */
ASSERT(hp->h_err == NULL);
switch (hp->h_cmd) {
case SBD_CMD_ASSIGN:
dr_assign_board(hp);
break;
case SBD_CMD_UNASSIGN:
dr_unassign_board(hp);
break;
case SBD_CMD_POWEROFF:
dr_poweroff_board(hp);
break;
case SBD_CMD_POWERON:
dr_poweron_board(hp);
break;
case SBD_CMD_TEST:
dr_test_board(hp);
break;
case SBD_CMD_CONNECT:
dr_connect(hp);
break;
case SBD_CMD_CONFIGURE:
dr_dev_configure(hp);
break;
case SBD_CMD_UNCONFIGURE:
dr_dev_release(hp);
if (hp->h_err == NULL)
rv = dr_dev_unconfigure(hp);
else
dr_dev_cancel(hp);
break;
case SBD_CMD_DISCONNECT:
rv = dr_disconnect(hp);
break;
case SBD_CMD_STATUS:
rv = dr_dev_status(hp);
break;
case SBD_CMD_GETNCM:
hp->h_sbdcmd.cmd_getncm.g_ncm = dr_get_ncm(hp);
rv = dr_copyout_iocmd(hp);
break;
case SBD_CMD_PASSTHRU:
rv = dr_pt_ioctl(hp);
break;
default:
cmn_err(CE_WARN,
"%s: unknown command (%d)",
f, hp->h_cmd);
break;
}
if (hp->h_err != NULL) {
rv = -1;
}
return (rv);
}
static void
dr_assign_board(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
hp->h_err = drmach_board_assign(bp->b_num, &bp->b_id);
if (hp->h_err == NULL) {
bp->b_assigned = 1;
}
}
static void
dr_unassign_board(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
/*
* Block out status during unassign.
* Not doing cv_wait_sig here as starfire SSP software
* ignores unassign failure and removes board from
* domain mask causing system panic.
* TODO: Change cv_wait to cv_wait_sig when SSP software
* handles unassign failure.
*/
dr_lock_status(bp);
hp->h_err = drmach_board_unassign(bp->b_id);
if (hp->h_err == NULL) {
/*
* clear drmachid_t handle; not valid after board unassign
*/
bp->b_id = 0;
bp->b_assigned = 0;
}
dr_unlock_status(bp);
}
static void
dr_poweron_board(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
hp->h_err = drmach_board_poweron(bp->b_id);
}
static void
dr_poweroff_board(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
hp->h_err = drmach_board_poweroff(bp->b_id);
}
static void
dr_test_board(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
hp->h_err = drmach_board_test(bp->b_id, &hp->h_opts,
dr_cmd_flags(hp) & SBD_FLAG_FORCE);
}
/*
* Create and populate the component nodes for a board. Assumes that the
* devlists for the board have been initialized.
*/
static void
dr_make_comp_nodes(dr_board_t *bp) {
int i;
/*
* Make nodes for the individual components on the board.
* First we need to initialize memory unit data structures of board
* structure.
*/
for (i = 0; i < MAX_MEM_UNITS_PER_BOARD; i++) {
dr_mem_unit_t *mp;
mp = dr_get_mem_unit(bp, i);
dr_init_mem_unit(mp);
}
/*
* Initialize cpu unit data structures.
*/
for (i = 0; i < MAX_CPU_UNITS_PER_BOARD; i++) {
dr_cpu_unit_t *cp;
cp = dr_get_cpu_unit(bp, i);
dr_init_cpu_unit(cp);
}
/*
* Initialize io unit data structures.
*/
for (i = 0; i < MAX_IO_UNITS_PER_BOARD; i++) {
dr_io_unit_t *ip;
ip = dr_get_io_unit(bp, i);
dr_init_io_unit(ip);
}
dr_board_transition(bp, DR_STATE_CONNECTED);
bp->b_rstate = SBD_STAT_CONNECTED;
bp->b_ostate = SBD_STAT_UNCONFIGURED;
bp->b_cond = SBD_COND_OK;
(void) drv_getparm(TIME, (void *)&bp->b_time);
}
/*
* Only do work if called to operate on an entire board
* which doesn't already have components present.
*/
static void
dr_connect(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
static fn_t f = "dr_connect";
PR_ALL("%s...\n", f);
if (DR_DEVS_PRESENT(bp)) {
/*
* Board already has devices present.
*/
PR_ALL("%s: devices already present (0x%lx)\n",
f, DR_DEVS_PRESENT(bp));
return;
}
hp->h_err = drmach_board_connect(bp->b_id, &hp->h_opts);
if (hp->h_err)
return;
hp->h_err = dr_init_devlists(bp);
if (hp->h_err)
return;
else if (bp->b_ndev == 0) {
dr_op_err(CE_WARN, hp, ESBD_EMPTY_BD, bp->b_path);
return;
} else {
dr_make_comp_nodes(bp);
return;
}
/*NOTREACHED*/
}
static int
dr_disconnect(dr_handle_t *hp)
{
int i;
dr_devset_t devset;
dr_board_t *bp = hp->h_bd;
static fn_t f = "dr_disconnect";
PR_ALL("%s...\n", f);
/*
* Only devices which are present, but
* unattached can be disconnected.
*/
devset = hp->h_devset & DR_DEVS_PRESENT(bp) &
DR_DEVS_UNATTACHED(bp);
if ((devset == 0) && DR_DEVS_PRESENT(bp)) {
dr_op_err(CE_IGNORE, hp, ESBD_EMPTY_BD, bp->b_path);
return (0);
}
/*
* Block out status during disconnect.
*/
mutex_enter(&bp->b_slock);
while (bp->b_sflags & DR_BSLOCK) {
if (cv_wait_sig(&bp->b_scv, &bp->b_slock) == 0) {
mutex_exit(&bp->b_slock);
return (EINTR);
}
}
bp->b_sflags |= DR_BSLOCK;
mutex_exit(&bp->b_slock);
hp->h_err = drmach_board_disconnect(bp->b_id, &hp->h_opts);
DR_DEVS_DISCONNECT(bp, devset);
ASSERT((DR_DEVS_ATTACHED(bp) & devset) == 0);
/*
* Update per-device state transitions.
*/
for (i = 0; i < MAX_CPU_UNITS_PER_BOARD; i++) {
dr_cpu_unit_t *cp;
if (!DEVSET_IN_SET(devset, SBD_COMP_CPU, i))
continue;
cp = dr_get_cpu_unit(bp, i);
if (dr_disconnect_cpu(cp) == 0)
dr_device_transition(&cp->sbc_cm, DR_STATE_EMPTY);
else if (cp->sbc_cm.sbdev_error != NULL)
DRERR_SET_C(&hp->h_err, &cp->sbc_cm.sbdev_error);
ASSERT(cp->sbc_cm.sbdev_error == NULL);
}
for (i = 0; i < MAX_MEM_UNITS_PER_BOARD; i++) {
dr_mem_unit_t *mp;
if (!DEVSET_IN_SET(devset, SBD_COMP_MEM, i))
continue;
mp = dr_get_mem_unit(bp, i);
if (dr_disconnect_mem(mp) == 0)
dr_device_transition(&mp->sbm_cm, DR_STATE_EMPTY);
else if (mp->sbm_cm.sbdev_error != NULL)
DRERR_SET_C(&hp->h_err, &mp->sbm_cm.sbdev_error);
ASSERT(mp->sbm_cm.sbdev_error == NULL);
}
for (i = 0; i < MAX_IO_UNITS_PER_BOARD; i++) {
dr_io_unit_t *ip;
if (!DEVSET_IN_SET(devset, SBD_COMP_IO, i))
continue;
ip = dr_get_io_unit(bp, i);
if (dr_disconnect_io(ip) == 0)
dr_device_transition(&ip->sbi_cm, DR_STATE_EMPTY);
else if (ip->sbi_cm.sbdev_error != NULL)
DRERR_SET_C(&hp->h_err, &ip->sbi_cm.sbdev_error);
ASSERT(ip->sbi_cm.sbdev_error == NULL);
}
if (hp->h_err) {
/*
* For certain errors, drmach_board_disconnect will mark
* the board as unusable; in these cases the devtree must
* be purged so that status calls will succeed.
* XXX
* This implementation checks for discrete error codes -
* someday, the i/f to drmach_board_disconnect should be
* changed to avoid the e_code testing.
*/
if ((hp->h_err->e_code == ESTC_MBXRPLY) ||
(hp->h_err->e_code == ESTC_MBXRQST) ||
(hp->h_err->e_code == ESTC_SMS_ERR_UNRECOVERABLE) ||
(hp->h_err->e_code == ESTC_SMS_ERR_RECOVERABLE) ||
(hp->h_err->e_code == ESTC_DEPROBE) ||
(hp->h_err->e_code == EOPL_DEPROBE)) {
bp->b_ostate = SBD_STAT_UNCONFIGURED;
bp->b_busy = 0;
(void) drv_getparm(TIME, (void *)&bp->b_time);
if (drmach_board_deprobe(bp->b_id))
goto disconnect_done;
else
bp->b_ndev = 0;
}
/*
* If the disconnect failed in a recoverable way,
* more work is required.
* XXX
* This implementation checks for discrete error codes -
* someday, the i/f to drmach_board_disconnect should be
* changed to avoid the e_code testing.
*/
if ((hp->h_err->e_code == ESTC_MBXRQST) ||
(hp->h_err->e_code == ESTC_SMS_ERR_RECOVERABLE) ||
(hp->h_err->e_code == ESTC_DEPROBE) ||
(hp->h_err->e_code == EOPL_DEPROBE)) {
/*
* With this failure, the board has been deprobed
* by IKP, and reprobed. We've already gotten rid
* of the old devtree, now we need to reconstruct it
* based on the new IKP probe
*/
if (dr_init_devlists(bp) || (bp->b_ndev == 0))
goto disconnect_done;
dr_make_comp_nodes(bp);
}
}
/*
* Once all the components on a board have been disconnect
* the board's state can transition to disconnected and
* we can allow the deprobe to take place.
*/
if (hp->h_err == NULL && DR_DEVS_PRESENT(bp) == 0) {
dr_board_transition(bp, DR_STATE_OCCUPIED);
bp->b_rstate = SBD_STAT_DISCONNECTED;
bp->b_ostate = SBD_STAT_UNCONFIGURED;
bp->b_busy = 0;
(void) drv_getparm(TIME, (void *)&bp->b_time);
hp->h_err = drmach_board_deprobe(bp->b_id);
if (hp->h_err == NULL) {
bp->b_ndev = 0;
dr_board_transition(bp, DR_STATE_EMPTY);
bp->b_rstate = SBD_STAT_EMPTY;
(void) drv_getparm(TIME, (void *)&bp->b_time);
}
}
disconnect_done:
dr_unlock_status(bp);
return (0);
}
/*
* Check if a particular device is a valid target of the current
* operation. Return 1 if it is a valid target, and 0 otherwise.
*/
static int
dr_dev_is_target(dr_dev_unit_t *dp, int present_only, uint_t uset)
{
dr_common_unit_t *cp;
int is_present;
int is_attached;
cp = &dp->du_common;
/* check if the user requested this device */
if ((uset & (1 << cp->sbdev_unum)) == 0) {
return (0);
}
is_present = DR_DEV_IS_PRESENT(cp) ? 1 : 0;
is_attached = DR_DEV_IS_ATTACHED(cp) ? 1 : 0;
/*
* If the present_only flag is set, a valid target
* must be present but not attached. Otherwise, it
* must be both present and attached.
*/
if (is_present && (present_only ^ is_attached)) {
/* sanity check */
ASSERT(cp->sbdev_id != (drmachid_t)0);
return (1);
}
return (0);
}
static void
dr_dev_make_list(dr_handle_t *hp, sbd_comp_type_t type, int present_only,
dr_common_unit_t ***devlist, int *devnum)
{
dr_board_t *bp = hp->h_bd;
int unum;
int nunits;
uint_t uset;
int len;
dr_common_unit_t **list, **wp;
switch (type) {
case SBD_COMP_CPU:
nunits = MAX_CPU_UNITS_PER_BOARD;
break;
case SBD_COMP_MEM:
nunits = MAX_MEM_UNITS_PER_BOARD;
break;
case SBD_COMP_IO:
nunits = MAX_IO_UNITS_PER_BOARD;
break;
default:
/* catch this in debug kernels */
ASSERT(0);
break;
}
/* allocate list storage. */
len = sizeof (dr_common_unit_t *) * (nunits + 1);
list = kmem_zalloc(len, KM_SLEEP);
/* record length of storage in first element */
*list++ = (dr_common_unit_t *)(uintptr_t)len;
/* get bit array signifying which units are to be involved */
uset = DEVSET_GET_UNITSET(hp->h_devset, type);
/*
* Adjust the loop count for CPU devices since all cores
* in a CMP will be examined in a single iteration.
*/
if (type == SBD_COMP_CPU) {
nunits = MAX_CMP_UNITS_PER_BOARD;
}
/* populate list */
for (wp = list, unum = 0; unum < nunits; unum++) {
dr_dev_unit_t *dp;
int core;
int cunum;
dp = DR_GET_BOARD_DEVUNIT(bp, type, unum);
if (dr_dev_is_target(dp, present_only, uset)) {
*wp++ = &dp->du_common;
}
/* further processing is only required for CPUs */
if (type != SBD_COMP_CPU) {
continue;
}
/*
* Add any additional cores from the current CPU
* device. This is to ensure that all the cores
* are grouped together in the device list, and
* consequently sequenced together during the actual
* operation.
*/
for (core = 1; core < MAX_CORES_PER_CMP; core++) {
cunum = DR_CMP_CORE_UNUM(unum, core);
dp = DR_GET_BOARD_DEVUNIT(bp, type, cunum);
if (dr_dev_is_target(dp, present_only, uset)) {
*wp++ = &dp->du_common;
}
}
}
/* calculate number of units in list, return result and list pointer */
*devnum = wp - list;
*devlist = list;
}
static void
dr_dev_clean_up(dr_handle_t *hp, dr_common_unit_t **list, int devnum)
{
int len;
int n = 0;
dr_common_unit_t *cp, **rp = list;
/*
* move first encountered unit error to handle if handle
* does not yet have a recorded error.
*/
if (hp->h_err == NULL) {
while (n++ < devnum) {
cp = *rp++;
if (cp->sbdev_error != NULL) {
hp->h_err = cp->sbdev_error;
cp->sbdev_error = NULL;
break;
}
}
}
/* free remaining unit errors */
while (n++ < devnum) {
cp = *rp++;
if (cp->sbdev_error != NULL) {
sbd_err_clear(&cp->sbdev_error);
cp->sbdev_error = NULL;
}
}
/* free list */
list -= 1;
len = (int)(uintptr_t)list[0];
kmem_free(list, len);
}
static int
dr_dev_walk(dr_handle_t *hp, sbd_comp_type_t type, int present_only,
int (*pre_op)(dr_handle_t *, dr_common_unit_t **, int),
void (*op)(dr_handle_t *, dr_common_unit_t *),
int (*post_op)(dr_handle_t *, dr_common_unit_t **, int),
void (*board_op)(dr_handle_t *, dr_common_unit_t **, int))
{
int devnum, rv;
dr_common_unit_t **devlist;
dr_dev_make_list(hp, type, present_only, &devlist, &devnum);
rv = 0;
if (devnum > 0) {
rv = (*pre_op)(hp, devlist, devnum);
if (rv == 0) {
int n;
for (n = 0; n < devnum; n++)
(*op)(hp, devlist[n]);
rv = (*post_op)(hp, devlist, devnum);
(*board_op)(hp, devlist, devnum);
}
}
dr_dev_clean_up(hp, devlist, devnum);
return (rv);
}
/*ARGSUSED*/
static int
dr_dev_noop(dr_handle_t *hp, dr_common_unit_t **devlist, int devnum)
{
return (0);
}
static void
dr_attach_update_state(dr_handle_t *hp,
dr_common_unit_t **devlist, int devnum)
{
dr_board_t *bp = hp->h_bd;
int i;
dr_devset_t devs_unattached, devs_present;
static fn_t f = "dr_post_attach_devlist";
for (i = 0; i < devnum; i++) {
dr_common_unit_t *cp = devlist[i];
if (dr_check_unit_attached(cp) == -1) {
PR_ALL("%s: ERROR %s not attached\n",
f, cp->sbdev_path);
continue;
}
DR_DEV_SET_ATTACHED(cp);
dr_device_transition(cp, DR_STATE_CONFIGURED);
cp->sbdev_cond = SBD_COND_OK;
}
devs_present = DR_DEVS_PRESENT(bp);
devs_unattached = DR_DEVS_UNATTACHED(bp);
switch (bp->b_state) {
case DR_STATE_CONNECTED:
case DR_STATE_UNCONFIGURED:
ASSERT(devs_present);
if (devs_unattached == 0) {
/*
* All devices finally attached.
*/
dr_board_transition(bp, DR_STATE_CONFIGURED);
hp->h_bd->b_ostate = SBD_STAT_CONFIGURED;
hp->h_bd->b_rstate = SBD_STAT_CONNECTED;
hp->h_bd->b_cond = SBD_COND_OK;
hp->h_bd->b_busy = 0;
(void) drv_getparm(TIME, (void *)&hp->h_bd->b_time);
} else if (devs_present != devs_unattached) {
/*
* Only some devices are fully attached.
*/
dr_board_transition(bp, DR_STATE_PARTIAL);
hp->h_bd->b_rstate = SBD_STAT_CONNECTED;
hp->h_bd->b_ostate = SBD_STAT_CONFIGURED;
(void) drv_getparm(TIME, (void *)&hp->h_bd->b_time);
}
break;
case DR_STATE_PARTIAL:
ASSERT(devs_present);
/*
* All devices finally attached.
*/
if (devs_unattached == 0) {
dr_board_transition(bp, DR_STATE_CONFIGURED);
hp->h_bd->b_rstate = SBD_STAT_CONNECTED;
hp->h_bd->b_ostate = SBD_STAT_CONFIGURED;
hp->h_bd->b_cond = SBD_COND_OK;
hp->h_bd->b_busy = 0;
(void) drv_getparm(TIME, (void *)&hp->h_bd->b_time);
}
break;
default:
break;
}
}
static void
dr_dev_configure(dr_handle_t *hp)
{
int rv;
rv = dr_dev_walk(hp, SBD_COMP_CPU, 1,
dr_pre_attach_cpu,
dr_attach_cpu,
dr_post_attach_cpu,
dr_attach_update_state);
if (rv >= 0) {
rv = dr_dev_walk(hp, SBD_COMP_MEM, 1,
dr_pre_attach_mem,
dr_attach_mem,
dr_post_attach_mem,
dr_attach_update_state);
}
if (rv >= 0) {
(void) dr_dev_walk(hp, SBD_COMP_IO, 1,
dr_pre_attach_io,
dr_attach_io,
dr_post_attach_io,
dr_attach_update_state);
}
}
static void
dr_release_update_state(dr_handle_t *hp,
dr_common_unit_t **devlist, int devnum)
{
_NOTE(ARGUNUSED(devlist))
_NOTE(ARGUNUSED(devnum))
dr_board_t *bp = hp->h_bd;
/*
* If the entire board was released and all components
* unreferenced then transfer it to the UNREFERENCED state.
*/
if ((bp->b_state != DR_STATE_RELEASE) &&
(DR_DEVS_RELEASED(bp) == DR_DEVS_ATTACHED(bp))) {
dr_board_transition(bp, DR_STATE_RELEASE);
hp->h_bd->b_busy = 1;
}
}
/* called by dr_release_done [below] and dr_release_mem_done [dr_mem.c] */
int
dr_release_dev_done(dr_common_unit_t *cp)
{
if (cp->sbdev_state == DR_STATE_RELEASE) {
ASSERT(DR_DEV_IS_RELEASED(cp));
DR_DEV_SET_UNREFERENCED(cp);
dr_device_transition(cp, DR_STATE_UNREFERENCED);
return (0);
} else {
return (-1);
}
}
static void
dr_release_done(dr_handle_t *hp, dr_common_unit_t *cp)
{
_NOTE(ARGUNUSED(hp))
dr_board_t *bp;
static fn_t f = "dr_release_done";
PR_ALL("%s...\n", f);
/* get board pointer & sanity check */
bp = cp->sbdev_bp;
ASSERT(bp == hp->h_bd);
/*
* Transfer the device which just completed its release
* to the UNREFERENCED state.
*/
switch (cp->sbdev_type) {
case SBD_COMP_MEM:
dr_release_mem_done(cp);
break;
default:
DR_DEV_SET_RELEASED(cp);
dr_device_transition(cp, DR_STATE_RELEASE);
(void) dr_release_dev_done(cp);
break;
}
/*
* If we're not already in the RELEASE state for this
* board and we now have released all that were previously
* attached, then transfer the board to the RELEASE state.
*/
if ((bp->b_state == DR_STATE_RELEASE) &&
(DR_DEVS_RELEASED(bp) == DR_DEVS_UNREFERENCED(bp))) {
dr_board_transition(bp, DR_STATE_UNREFERENCED);
bp->b_busy = 1;
(void) drv_getparm(TIME, (void *)&bp->b_time);
}
}
static void
dr_dev_release_mem(dr_handle_t *hp, dr_common_unit_t *dv)
{
dr_release_mem(dv);
dr_release_done(hp, dv);
}
static void
dr_dev_release(dr_handle_t *hp)
{
int rv;
hp->h_bd->b_busy = 1;
rv = dr_dev_walk(hp, SBD_COMP_CPU, 0,
dr_pre_release_cpu,
dr_release_done,
dr_dev_noop,
dr_release_update_state);
if (rv >= 0) {
rv = dr_dev_walk(hp, SBD_COMP_MEM, 0,
dr_pre_release_mem,
dr_dev_release_mem,
dr_dev_noop,
dr_release_update_state);
}
if (rv >= 0) {
rv = dr_dev_walk(hp, SBD_COMP_IO, 0,
dr_pre_release_io,
dr_release_done,
dr_dev_noop,
dr_release_update_state);
}
if (rv < 0)
hp->h_bd->b_busy = 0;
/* else, b_busy will be cleared in dr_detach_update_state() */
}
static void
dr_detach_update_state(dr_handle_t *hp,
dr_common_unit_t **devlist, int devnum)
{
dr_board_t *bp = hp->h_bd;
int i;
dr_state_t bstate;
static fn_t f = "dr_detach_update_state";
for (i = 0; i < devnum; i++) {
dr_common_unit_t *cp = devlist[i];
if (dr_check_unit_attached(cp) >= 0) {
/*
* Device is still attached probably due
* to an error. Need to keep track of it.
*/
PR_ALL("%s: ERROR %s not detached\n",
f, cp->sbdev_path);
continue;
}
DR_DEV_CLR_ATTACHED(cp);
DR_DEV_CLR_RELEASED(cp);
DR_DEV_CLR_UNREFERENCED(cp);
dr_device_transition(cp, DR_STATE_UNCONFIGURED);
}
bstate = bp->b_state;
if (bstate != DR_STATE_UNCONFIGURED) {
if (DR_DEVS_PRESENT(bp) == DR_DEVS_UNATTACHED(bp)) {
/*
* All devices are finally detached.
*/
dr_board_transition(bp, DR_STATE_UNCONFIGURED);
hp->h_bd->b_ostate = SBD_STAT_UNCONFIGURED;
(void) drv_getparm(TIME, (void *)&hp->h_bd->b_time);
} else if ((bp->b_state != DR_STATE_PARTIAL) &&
(DR_DEVS_ATTACHED(bp) !=
DR_DEVS_PRESENT(bp))) {
/*
* Some devices remain attached.
*/
dr_board_transition(bp, DR_STATE_PARTIAL);
(void) drv_getparm(TIME, (void *)&hp->h_bd->b_time);
}
if ((hp->h_devset & DR_DEVS_UNATTACHED(bp)) == hp->h_devset)
hp->h_bd->b_busy = 0;
}
}
static int
dr_dev_unconfigure(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
/*
* Block out status during IO unconfig.
*/
mutex_enter(&bp->b_slock);
while (bp->b_sflags & DR_BSLOCK) {
if (cv_wait_sig(&bp->b_scv, &bp->b_slock) == 0) {
mutex_exit(&bp->b_slock);
return (EINTR);
}
}
bp->b_sflags |= DR_BSLOCK;
mutex_exit(&bp->b_slock);
(void) dr_dev_walk(hp, SBD_COMP_IO, 0,
dr_pre_detach_io,
dr_detach_io,
dr_post_detach_io,
dr_detach_update_state);
dr_unlock_status(bp);
(void) dr_dev_walk(hp, SBD_COMP_CPU, 0,
dr_pre_detach_cpu,
dr_detach_cpu,
dr_post_detach_cpu,
dr_detach_update_state);
(void) dr_dev_walk(hp, SBD_COMP_MEM, 0,
dr_pre_detach_mem,
dr_detach_mem,
dr_post_detach_mem,
dr_detach_update_state);
return (0);
}
static void
dr_dev_cancel(dr_handle_t *hp)
{
int i;
dr_devset_t devset;
dr_board_t *bp = hp->h_bd;
static fn_t f = "dr_dev_cancel";
PR_ALL("%s...\n", f);
/*
* Only devices which have been "released" are
* subject to cancellation.
*/
devset = hp->h_devset & DR_DEVS_RELEASED(bp);
/*
* Nothing to do for CPUs or IO other than change back
* their state.
*/
for (i = 0; i < MAX_CPU_UNITS_PER_BOARD; i++) {
dr_cpu_unit_t *cp;
dr_state_t nstate;
if (!DEVSET_IN_SET(devset, SBD_COMP_CPU, i))
continue;
cp = dr_get_cpu_unit(bp, i);
if (dr_cancel_cpu(cp) == 0)
nstate = DR_STATE_CONFIGURED;
else
nstate = DR_STATE_FATAL;
dr_device_transition(&cp->sbc_cm, nstate);
}
for (i = 0; i < MAX_IO_UNITS_PER_BOARD; i++) {
dr_io_unit_t *ip;
if (!DEVSET_IN_SET(devset, SBD_COMP_IO, i))
continue;
ip = dr_get_io_unit(bp, i);
dr_device_transition(&ip->sbi_cm, DR_STATE_CONFIGURED);
}
for (i = 0; i < MAX_MEM_UNITS_PER_BOARD; i++) {
dr_mem_unit_t *mp;
dr_state_t nstate;
if (!DEVSET_IN_SET(devset, SBD_COMP_MEM, i))
continue;
mp = dr_get_mem_unit(bp, i);
if (dr_cancel_mem(mp) == 0)
nstate = DR_STATE_CONFIGURED;
else
nstate = DR_STATE_FATAL;
dr_device_transition(&mp->sbm_cm, nstate);
}
PR_ALL("%s: unreleasing devset (0x%x)\n", f, (uint_t)devset);
DR_DEVS_CANCEL(bp, devset);
if (DR_DEVS_RELEASED(bp) == 0) {
dr_state_t new_state;
/*
* If the board no longer has any released devices
* than transfer it back to the CONFIG/PARTIAL state.
*/
if (DR_DEVS_ATTACHED(bp) == DR_DEVS_PRESENT(bp))
new_state = DR_STATE_CONFIGURED;
else
new_state = DR_STATE_PARTIAL;
if (bp->b_state != new_state) {
dr_board_transition(bp, new_state);
}
hp->h_bd->b_ostate = SBD_STAT_CONFIGURED;
hp->h_bd->b_busy = 0;
(void) drv_getparm(TIME, (void *)&hp->h_bd->b_time);
}
}
static int
dr_dev_status(dr_handle_t *hp)
{
int nstat, mode, ncm, sz, pbsz, pnstat;
dr_handle_t *shp;
dr_devset_t devset = 0;
sbd_stat_t *dstatp = NULL;
sbd_dev_stat_t *devstatp;
dr_board_t *bp;
drmach_status_t pstat;
int rv = 0;
#ifdef _MULTI_DATAMODEL
int sz32 = 0;
#endif /* _MULTI_DATAMODEL */
static fn_t f = "dr_status";
PR_ALL("%s...\n", f);
mode = hp->h_mode;
shp = hp;
devset = shp->h_devset;
bp = hp->h_bd;
/*
* Block out disconnect, unassign, IO unconfigure and
* devinfo branch creation during status.
*/
mutex_enter(&bp->b_slock);
while (bp->b_sflags & DR_BSLOCK) {
if (cv_wait_sig(&bp->b_scv, &bp->b_slock) == 0) {
mutex_exit(&bp->b_slock);
return (EINTR);
}
}
bp->b_sflags |= DR_BSLOCK;
mutex_exit(&bp->b_slock);
ncm = 1;
if (hp->h_sbdcmd.cmd_cm.c_id.c_type == SBD_COMP_NONE) {
if (dr_cmd_flags(hp) & SBD_FLAG_ALLCMP) {
/*
* Calculate the maximum number of components possible
* for a board. This number will be used to size the
* status scratch buffer used by board and component
* status functions.
* This buffer may differ in size from what is provided
* by the plugin, since the known component set on the
* board may change between the plugin's GETNCM call, and
* the status call. Sizing will be adjusted to the plugin's
* receptacle buffer at copyout time.
*/
ncm = MAX_CPU_UNITS_PER_BOARD +
MAX_MEM_UNITS_PER_BOARD +
MAX_IO_UNITS_PER_BOARD;
} else {
/*
* In the case of c_type == SBD_COMP_NONE, and
* SBD_FLAG_ALLCMP not specified, only the board
* info is to be returned, no components.
*/
ncm = 0;
devset = 0;
}
}
sz = sizeof (sbd_stat_t);
if (ncm > 1)
sz += sizeof (sbd_dev_stat_t) * (ncm - 1);
pbsz = (int)hp->h_sbdcmd.cmd_stat.s_nbytes;
pnstat = (pbsz - sizeof (sbd_stat_t))/sizeof (sbd_dev_stat_t);
/*
* s_nbytes describes the size of the preallocated user
* buffer into which the application is execting to
* receive the sbd_stat_t and sbd_dev_stat_t structures.
*/
#ifdef _MULTI_DATAMODEL
/*
* More buffer space is required for the 64bit to 32bit
* conversion of data structures.
*/
if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
sz32 = sizeof (sbd_stat32_t);
if (ncm > 1)
sz32 += sizeof (sbd_dev_stat32_t) * (ncm - 1);
pnstat = (pbsz - sizeof (sbd_stat32_t))/
sizeof (sbd_dev_stat32_t);
}
sz += sz32;
#endif
/*
* Since one sbd_dev_stat_t is included in the sbd_stat_t,
* increment the plugin's nstat count.
*/
++pnstat;
if (bp->b_id == 0) {
bzero(&pstat, sizeof (pstat));
} else {
sbd_error_t *err;
err = drmach_status(bp->b_id, &pstat);
if (err) {
DRERR_SET_C(&hp->h_err, &err);
rv = EIO;
goto status_done;
}
}
dstatp = (sbd_stat_t *)GETSTRUCT(char, sz);
devstatp = &dstatp->s_stat[0];
dstatp->s_board = bp->b_num;
/*
* Detect transitions between empty and disconnected.
*/
if (!pstat.empty && (bp->b_rstate == SBD_STAT_EMPTY))
bp->b_rstate = SBD_STAT_DISCONNECTED;
else if (pstat.empty && (bp->b_rstate == SBD_STAT_DISCONNECTED))
bp->b_rstate = SBD_STAT_EMPTY;
dstatp->s_rstate = bp->b_rstate;
dstatp->s_ostate = bp->b_ostate;
dstatp->s_cond = bp->b_cond = pstat.cond;
dstatp->s_busy = bp->b_busy | pstat.busy;
dstatp->s_time = bp->b_time;
dstatp->s_power = pstat.powered;
dstatp->s_assigned = bp->b_assigned = pstat.assigned;
dstatp->s_nstat = nstat = 0;
bcopy(&pstat.type[0], &dstatp->s_type[0], SBD_TYPE_LEN);
bcopy(&pstat.info[0], &dstatp->s_info[0], SBD_MAX_INFO);
devset &= DR_DEVS_PRESENT(bp);
if (devset == 0) {
/*
* No device chosen.
*/
PR_ALL("%s: no device present\n", f);
}
if (DEVSET_IN_SET(devset, SBD_COMP_CPU, DEVSET_ANYUNIT))
if ((nstat = dr_cpu_status(hp, devset, devstatp)) > 0) {
dstatp->s_nstat += nstat;
devstatp += nstat;
}
if (DEVSET_IN_SET(devset, SBD_COMP_MEM, DEVSET_ANYUNIT))
if ((nstat = dr_mem_status(hp, devset, devstatp)) > 0) {
dstatp->s_nstat += nstat;
devstatp += nstat;
}
if (DEVSET_IN_SET(devset, SBD_COMP_IO, DEVSET_ANYUNIT))
if ((nstat = dr_io_status(hp, devset, devstatp)) > 0) {
dstatp->s_nstat += nstat;
devstatp += nstat;
}
/*
* Due to a possible change in number of components between
* the time of plugin's GETNCM call and now, there may be
* more or less components than the plugin's buffer can
* hold. Adjust s_nstat accordingly.
*/
dstatp->s_nstat = dstatp->s_nstat > pnstat ? pnstat : dstatp->s_nstat;
#ifdef _MULTI_DATAMODEL
if (ddi_model_convert_from(mode & FMODELS) == DDI_MODEL_ILP32) {
int i, j;
sbd_stat32_t *dstat32p;
dstat32p = (sbd_stat32_t *)devstatp;
/* Alignment Paranoia */
if ((ulong_t)dstat32p & 0x1) {
PR_ALL("%s: alignment: sz=0x%lx dstat32p=0x%p\n",
f, sizeof (sbd_stat32_t), (void *)dstat32p);
DR_OP_INTERNAL_ERROR(hp);
rv = EINVAL;
goto status_done;
}
/* paranoia: detect buffer overrun */
if ((caddr_t)&dstat32p->s_stat[dstatp->s_nstat] >
((caddr_t)dstatp) + sz) {
DR_OP_INTERNAL_ERROR(hp);
rv = EINVAL;
goto status_done;
}
/* copy sbd_stat_t structure members */
#define _SBD_STAT(t, m) dstat32p->m = (t)dstatp->m
_SBD_STAT(int32_t, s_board);
_SBD_STAT(int32_t, s_rstate);
_SBD_STAT(int32_t, s_ostate);
_SBD_STAT(int32_t, s_cond);
_SBD_STAT(int32_t, s_busy);
_SBD_STAT(time32_t, s_time);
_SBD_STAT(uint32_t, s_power);
_SBD_STAT(uint32_t, s_assigned);
_SBD_STAT(int32_t, s_nstat);
bcopy(&dstatp->s_type[0], &dstat32p->s_type[0],
SBD_TYPE_LEN);
bcopy(&dstatp->s_info[0], &dstat32p->s_info[0],
SBD_MAX_INFO);
#undef _SBD_STAT
for (i = 0; i < dstatp->s_nstat; i++) {
sbd_dev_stat_t *dsp = &dstatp->s_stat[i];
sbd_dev_stat32_t *ds32p = &dstat32p->s_stat[i];
#define _SBD_DEV_STAT(t, m) ds32p->m = (t)dsp->m
/* copy sbd_cm_stat_t structure members */
_SBD_DEV_STAT(int32_t, ds_type);
_SBD_DEV_STAT(int32_t, ds_unit);
_SBD_DEV_STAT(int32_t, ds_ostate);
_SBD_DEV_STAT(int32_t, ds_cond);
_SBD_DEV_STAT(int32_t, ds_busy);
_SBD_DEV_STAT(int32_t, ds_suspend);
_SBD_DEV_STAT(time32_t, ds_time);
bcopy(&dsp->ds_name[0], &ds32p->ds_name[0],
OBP_MAXPROPNAME);
switch (dsp->ds_type) {
case SBD_COMP_CPU:
/* copy sbd_cpu_stat_t structure members */
_SBD_DEV_STAT(int32_t, d_cpu.cs_isbootproc);
_SBD_DEV_STAT(int32_t, d_cpu.cs_cpuid);
_SBD_DEV_STAT(int32_t, d_cpu.cs_speed);
_SBD_DEV_STAT(int32_t, d_cpu.cs_ecache);
break;
case SBD_COMP_MEM:
/* copy sbd_mem_stat_t structure members */
_SBD_DEV_STAT(int32_t, d_mem.ms_interleave);
_SBD_DEV_STAT(uint32_t, d_mem.ms_basepfn);
_SBD_DEV_STAT(uint32_t, d_mem.ms_totpages);
_SBD_DEV_STAT(uint32_t, d_mem.ms_detpages);
_SBD_DEV_STAT(int32_t, d_mem.ms_pageslost);
_SBD_DEV_STAT(uint32_t, d_mem.ms_managed_pages);
_SBD_DEV_STAT(uint32_t, d_mem.ms_noreloc_pages);
_SBD_DEV_STAT(uint32_t, d_mem.ms_noreloc_first);
_SBD_DEV_STAT(uint32_t, d_mem.ms_noreloc_last);
_SBD_DEV_STAT(int32_t, d_mem.ms_cage_enabled);
_SBD_DEV_STAT(int32_t, d_mem.ms_peer_is_target);
bcopy(&dsp->d_mem.ms_peer_ap_id[0],
&ds32p->d_mem.ms_peer_ap_id[0],
sizeof (ds32p->d_mem.ms_peer_ap_id));
break;
case SBD_COMP_IO:
/* copy sbd_io_stat_t structure members */
_SBD_DEV_STAT(int32_t, d_io.is_referenced);
_SBD_DEV_STAT(int32_t, d_io.is_unsafe_count);
for (j = 0; j < SBD_MAX_UNSAFE; j++)
_SBD_DEV_STAT(int32_t,
d_io.is_unsafe_list[j]);
bcopy(&dsp->d_io.is_pathname[0],
&ds32p->d_io.is_pathname[0], MAXPATHLEN);
break;
case SBD_COMP_CMP:
/* copy sbd_cmp_stat_t structure members */
bcopy(&dsp->d_cmp.ps_cpuid[0],
&ds32p->d_cmp.ps_cpuid[0],
sizeof (ds32p->d_cmp.ps_cpuid));
_SBD_DEV_STAT(int32_t, d_cmp.ps_ncores);
_SBD_DEV_STAT(int32_t, d_cmp.ps_speed);
_SBD_DEV_STAT(int32_t, d_cmp.ps_ecache);
break;
default:
cmn_err(CE_WARN, "%s: unknown dev type (%d)",
f, (int)dsp->ds_type);
rv = EFAULT;
goto status_done;
}
#undef _SBD_DEV_STAT
}
if (ddi_copyout((void *)dstat32p,
hp->h_sbdcmd.cmd_stat.s_statp, pbsz, mode) != 0) {
cmn_err(CE_WARN,
"%s: failed to copyout status "
"for board %d", f, bp->b_num);
rv = EFAULT;
goto status_done;
}
} else
#endif /* _MULTI_DATAMODEL */
if (ddi_copyout((void *)dstatp, hp->h_sbdcmd.cmd_stat.s_statp,
pbsz, mode) != 0) {
cmn_err(CE_WARN,
"%s: failed to copyout status for board %d",
f, bp->b_num);
rv = EFAULT;
goto status_done;
}
status_done:
if (dstatp != NULL)
FREESTRUCT(dstatp, char, sz);
dr_unlock_status(bp);
return (rv);
}
static int
dr_get_ncm(dr_handle_t *hp)
{
int i;
int ncm = 0;
dr_devset_t devset;
devset = DR_DEVS_PRESENT(hp->h_bd);
if (hp->h_sbdcmd.cmd_cm.c_id.c_type != SBD_COMP_NONE)
devset &= DEVSET(hp->h_sbdcmd.cmd_cm.c_id.c_type,
DEVSET_ANYUNIT);
/*
* Handle CPUs first to deal with possible CMP
* devices. If the CPU is a CMP, we need to only
* increment ncm once even if there are multiple
* cores for that CMP present in the devset.
*/
for (i = 0; i < MAX_CMP_UNITS_PER_BOARD; i++) {
if (devset & DEVSET(SBD_COMP_CMP, i)) {
ncm++;
}
}
/* eliminate the CPU information from the devset */
devset &= ~(DEVSET(SBD_COMP_CMP, DEVSET_ANYUNIT));
for (i = 0; i < (sizeof (dr_devset_t) * 8); i++) {
ncm += devset & 0x1;
devset >>= 1;
}
return (ncm);
}
/* used by dr_mem.c */
/* TODO: eliminate dr_boardlist */
dr_board_t *
dr_lookup_board(int board_num)
{
dr_board_t *bp;
ASSERT(board_num >= 0 && board_num < MAX_BOARDS);
bp = &dr_boardlist[board_num];
ASSERT(bp->b_num == board_num);
return (bp);
}
static dr_dev_unit_t *
dr_get_dev_unit(dr_board_t *bp, sbd_comp_type_t nt, int unit_num)
{
dr_dev_unit_t *dp;
dp = DR_GET_BOARD_DEVUNIT(bp, nt, unit_num);
ASSERT(dp->du_common.sbdev_bp == bp);
ASSERT(dp->du_common.sbdev_unum == unit_num);
ASSERT(dp->du_common.sbdev_type == nt);
return (dp);
}
dr_cpu_unit_t *
dr_get_cpu_unit(dr_board_t *bp, int unit_num)
{
dr_dev_unit_t *dp;
ASSERT(unit_num >= 0 && unit_num < MAX_CPU_UNITS_PER_BOARD);
dp = dr_get_dev_unit(bp, SBD_COMP_CPU, unit_num);
return (&dp->du_cpu);
}
dr_mem_unit_t *
dr_get_mem_unit(dr_board_t *bp, int unit_num)
{
dr_dev_unit_t *dp;
ASSERT(unit_num >= 0 && unit_num < MAX_MEM_UNITS_PER_BOARD);
dp = dr_get_dev_unit(bp, SBD_COMP_MEM, unit_num);
return (&dp->du_mem);
}
dr_io_unit_t *
dr_get_io_unit(dr_board_t *bp, int unit_num)
{
dr_dev_unit_t *dp;
ASSERT(unit_num >= 0 && unit_num < MAX_IO_UNITS_PER_BOARD);
dp = dr_get_dev_unit(bp, SBD_COMP_IO, unit_num);
return (&dp->du_io);
}
dr_common_unit_t *
dr_get_common_unit(dr_board_t *bp, sbd_comp_type_t nt, int unum)
{
dr_dev_unit_t *dp;
dp = dr_get_dev_unit(bp, nt, unum);
return (&dp->du_common);
}
static dr_devset_t
dr_dev2devset(sbd_comp_id_t *cid)
{
static fn_t f = "dr_dev2devset";
dr_devset_t devset;
int unit = cid->c_unit;
switch (cid->c_type) {
case SBD_COMP_NONE:
devset = DEVSET(SBD_COMP_CPU, DEVSET_ANYUNIT);
devset |= DEVSET(SBD_COMP_MEM, DEVSET_ANYUNIT);
devset |= DEVSET(SBD_COMP_IO, DEVSET_ANYUNIT);
PR_ALL("%s: COMP_NONE devset = 0x%lx\n", f, devset);
break;
case SBD_COMP_CPU:
if ((unit > MAX_CPU_UNITS_PER_BOARD) || (unit < 0)) {
cmn_err(CE_WARN,
"%s: invalid cpu unit# = %d",
f, unit);
devset = 0;
} else {
/*
* Generate a devset that includes all the
* cores of a CMP device. If this is not a
* CMP, the extra cores will be eliminated
* later since they are not present. This is
* also true for CMP devices that do not have
* all cores active.
*/
devset = DEVSET(SBD_COMP_CMP, unit);
}
PR_ALL("%s: CPU devset = 0x%lx\n", f, devset);
break;
case SBD_COMP_MEM:
if (unit == SBD_NULL_UNIT) {
unit = 0;
cid->c_unit = 0;
}
if ((unit > MAX_MEM_UNITS_PER_BOARD) || (unit < 0)) {
cmn_err(CE_WARN,
"%s: invalid mem unit# = %d",
f, unit);
devset = 0;
} else
devset = DEVSET(cid->c_type, unit);
PR_ALL("%s: MEM devset = 0x%lx\n", f, devset);
break;
case SBD_COMP_IO:
if ((unit > MAX_IO_UNITS_PER_BOARD) || (unit < 0)) {
cmn_err(CE_WARN,
"%s: invalid io unit# = %d",
f, unit);
devset = 0;
} else
devset = DEVSET(cid->c_type, unit);
PR_ALL("%s: IO devset = 0x%lx\n", f, devset);
break;
default:
case SBD_COMP_UNKNOWN:
devset = 0;
break;
}
return (devset);
}
/*
* Converts a dynamic attachment point name to a SBD_COMP_* type.
* Returns SDB_COMP_UNKNOWN if name is not recognized.
*/
static int
dr_dev_type_to_nt(char *type)
{
int i;
for (i = 0; dr_devattr[i].s_nodetype != SBD_COMP_UNKNOWN; i++)
if (strcmp(dr_devattr[i].s_devtype, type) == 0)
break;
return (dr_devattr[i].s_nodetype);
}
/*
* Converts a SBD_COMP_* type to a dynamic attachment point name.
* Return NULL if SBD_COMP_ type is not recognized.
*/
char *
dr_nt_to_dev_type(int nt)
{
int i;
for (i = 0; dr_devattr[i].s_nodetype != SBD_COMP_UNKNOWN; i++)
if (dr_devattr[i].s_nodetype == nt)
break;
return (dr_devattr[i].s_devtype);
}
/*
* State transition policy is that if there is some component for which
* the state transition is valid, then let it through. The exception is
* SBD_CMD_DISCONNECT. On disconnect, the state transition must be valid
* for ALL components.
* Returns the state that is in error, if any.
*/
static int
dr_check_transition(dr_board_t *bp, dr_devset_t *devsetp,
struct dr_state_trans *transp, int cmd)
{
int s, ut;
int state_err = 0;
dr_devset_t devset;
dr_common_unit_t *cp;
static fn_t f = "dr_check_transition";
devset = *devsetp;
if (DEVSET_IN_SET(devset, SBD_COMP_CPU, DEVSET_ANYUNIT)) {
for (ut = 0; ut < MAX_CPU_UNITS_PER_BOARD; ut++) {
if (DEVSET_IN_SET(devset, SBD_COMP_CPU, ut) == 0)
continue;
cp = dr_get_common_unit(bp, SBD_COMP_CPU, ut);
s = (int)cp->sbdev_state;
if (!DR_DEV_IS_PRESENT(cp)) {
DEVSET_DEL(devset, SBD_COMP_CPU, ut);
} else {
if (transp->x_op[s].x_rv) {
if (!state_err)
state_err = s;
DEVSET_DEL(devset, SBD_COMP_CPU, ut);
}
}
}
}
if (DEVSET_IN_SET(devset, SBD_COMP_MEM, DEVSET_ANYUNIT)) {
for (ut = 0; ut < MAX_MEM_UNITS_PER_BOARD; ut++) {
if (DEVSET_IN_SET(devset, SBD_COMP_MEM, ut) == 0)
continue;
cp = dr_get_common_unit(bp, SBD_COMP_MEM, ut);
s = (int)cp->sbdev_state;
if (!DR_DEV_IS_PRESENT(cp)) {
DEVSET_DEL(devset, SBD_COMP_MEM, ut);
} else {
if (transp->x_op[s].x_rv) {
if (!state_err)
state_err = s;
DEVSET_DEL(devset, SBD_COMP_MEM, ut);
}
}
}
}
if (DEVSET_IN_SET(devset, SBD_COMP_IO, DEVSET_ANYUNIT)) {
for (ut = 0; ut < MAX_IO_UNITS_PER_BOARD; ut++) {
if (DEVSET_IN_SET(devset, SBD_COMP_IO, ut) == 0)
continue;
cp = dr_get_common_unit(bp, SBD_COMP_IO, ut);
s = (int)cp->sbdev_state;
if (!DR_DEV_IS_PRESENT(cp)) {
DEVSET_DEL(devset, SBD_COMP_IO, ut);
} else {
if (transp->x_op[s].x_rv) {
if (!state_err)
state_err = s;
DEVSET_DEL(devset, SBD_COMP_IO, ut);
}
}
}
}
PR_ALL("%s: requested devset = 0x%x, final devset = 0x%x\n",
f, (uint_t)*devsetp, (uint_t)devset);
*devsetp = devset;
/*
* If there are some remaining components for which
* this state transition is valid, then allow them
* through, otherwise if none are left then return
* the state error. The exception is SBD_CMD_DISCONNECT.
* On disconnect, the state transition must be valid for ALL
* components.
*/
if (cmd == SBD_CMD_DISCONNECT)
return (state_err);
return (devset ? 0 : state_err);
}
void
dr_device_transition(dr_common_unit_t *cp, dr_state_t st)
{
PR_STATE("%s STATE %s(%d) -> %s(%d)\n",
cp->sbdev_path,
state_str[cp->sbdev_state], cp->sbdev_state,
state_str[st], st);
cp->sbdev_state = st;
if (st == DR_STATE_CONFIGURED) {
cp->sbdev_ostate = SBD_STAT_CONFIGURED;
if (cp->sbdev_bp->b_ostate != SBD_STAT_CONFIGURED) {
cp->sbdev_bp->b_ostate = SBD_STAT_CONFIGURED;
(void) drv_getparm(TIME,
(void *) &cp->sbdev_bp->b_time);
}
} else
cp->sbdev_ostate = SBD_STAT_UNCONFIGURED;
(void) drv_getparm(TIME, (void *) &cp->sbdev_time);
}
static void
dr_board_transition(dr_board_t *bp, dr_state_t st)
{
PR_STATE("BOARD %d STATE: %s(%d) -> %s(%d)\n",
bp->b_num,
state_str[bp->b_state], bp->b_state,
state_str[st], st);
bp->b_state = st;
}
void
dr_op_err(int ce, dr_handle_t *hp, int code, char *fmt, ...)
{
sbd_error_t *err;
va_list args;
va_start(args, fmt);
err = drerr_new_v(code, fmt, args);
va_end(args);
if (ce != CE_IGNORE)
sbd_err_log(err, ce);
DRERR_SET_C(&hp->h_err, &err);
}
void
dr_dev_err(int ce, dr_common_unit_t *cp, int code)
{
sbd_error_t *err;
err = drerr_new(0, code, cp->sbdev_path, NULL);
if (ce != CE_IGNORE)
sbd_err_log(err, ce);
DRERR_SET_C(&cp->sbdev_error, &err);
}
/*
* A callback routine. Called from the drmach layer as a result of
* call to drmach_board_find_devices from dr_init_devlists.
*/
static sbd_error_t *
dr_dev_found(void *data, const char *name, int unum, drmachid_t id)
{
dr_board_t *bp = data;
dr_dev_unit_t *dp;
int nt;
static fn_t f = "dr_dev_found";
PR_ALL("%s (board = %d, name = %s, unum = %d, id = %p)...\n",
f, bp->b_num, name, unum, id);
nt = dr_dev_type_to_nt((char *)name);
if (nt == SBD_COMP_UNKNOWN) {
/*
* this should not happen. When it does, it indicates
* a missmatch in devices supported by the drmach layer
* vs devices supported by this layer.
*/
return (DR_INTERNAL_ERROR());
}
dp = DR_GET_BOARD_DEVUNIT(bp, nt, unum);
/* sanity check */
ASSERT(dp->du_common.sbdev_bp == bp);
ASSERT(dp->du_common.sbdev_unum == unum);
ASSERT(dp->du_common.sbdev_type == nt);
/* render dynamic attachment point path of this unit */
(void) snprintf(dp->du_common.sbdev_path,
sizeof (dp->du_common.sbdev_path),
(nt == SBD_COMP_MEM ? "%s::%s" : "%s::%s%d"),
bp->b_path, name, DR_UNUM2SBD_UNUM(unum, nt));
dp->du_common.sbdev_id = id;
DR_DEV_SET_PRESENT(&dp->du_common);
bp->b_ndev++;
return (NULL);
}
static sbd_error_t *
dr_init_devlists(dr_board_t *bp)
{
int i;
sbd_error_t *err;
dr_dev_unit_t *dp;
static fn_t f = "dr_init_devlists";
PR_ALL("%s (%s)...\n", f, bp->b_path);
/* sanity check */
ASSERT(bp->b_ndev == 0);
DR_DEVS_DISCONNECT(bp, (uint_t)-1);
/*
* This routine builds the board's devlist and initializes
* the common portion of the unit data structures.
* Note: because the common portion is considered
* uninitialized, the dr_get_*_unit() routines can not
* be used.
*/
/*
* Clear out old entries, if any.
*/
for (i = 0; i < MAX_CPU_UNITS_PER_BOARD; i++) {
dp = DR_GET_BOARD_DEVUNIT(bp, SBD_COMP_CPU, i);
bzero(dp, sizeof (*dp));
dp->du_common.sbdev_bp = bp;
dp->du_common.sbdev_unum = i;
dp->du_common.sbdev_type = SBD_COMP_CPU;
}
for (i = 0; i < MAX_MEM_UNITS_PER_BOARD; i++) {
dp = DR_GET_BOARD_DEVUNIT(bp, SBD_COMP_MEM, i);
bzero(dp, sizeof (*dp));
dp->du_common.sbdev_bp = bp;
dp->du_common.sbdev_unum = i;
dp->du_common.sbdev_type = SBD_COMP_MEM;
}
for (i = 0; i < MAX_IO_UNITS_PER_BOARD; i++) {
dp = DR_GET_BOARD_DEVUNIT(bp, SBD_COMP_IO, i);
bzero(dp, sizeof (*dp));
dp->du_common.sbdev_bp = bp;
dp->du_common.sbdev_unum = i;
dp->du_common.sbdev_type = SBD_COMP_IO;
}
err = NULL;
if (bp->b_id) {
/* find devices on this board */
err = drmach_board_find_devices(
bp->b_id, bp, dr_dev_found);
}
return (err);
}
/*
* Return the unit number of the respective drmachid if
* it's found to be attached.
*/
static int
dr_check_unit_attached(dr_common_unit_t *cp)
{
int rv = 0;
processorid_t cpuid;
uint64_t basepa, endpa;
struct memlist *ml;
extern struct memlist *phys_install;
sbd_error_t *err;
int yes;
static fn_t f = "dr_check_unit_attached";
switch (cp->sbdev_type) {
case SBD_COMP_CPU:
err = drmach_cpu_get_id(cp->sbdev_id, &cpuid);
if (err) {
DRERR_SET_C(&cp->sbdev_error, &err);
rv = -1;
break;
}
mutex_enter(&cpu_lock);
if (cpu_get(cpuid) == NULL)
rv = -1;
mutex_exit(&cpu_lock);
break;
case SBD_COMP_MEM:
err = drmach_mem_get_base_physaddr(cp->sbdev_id, &basepa);
if (err) {
DRERR_SET_C(&cp->sbdev_error, &err);
rv = -1;
break;
}
/*
* basepa may not be on a alignment boundary, make it so.
*/
err = drmach_mem_get_slice_size(cp->sbdev_id, &endpa);
if (err) {
DRERR_SET_C(&cp->sbdev_error, &err);
rv = -1;
break;
}
basepa &= ~(endpa - 1);
endpa += basepa;
/*
* Check if base address is in phys_install.
*/
memlist_read_lock();
for (ml = phys_install; ml; ml = ml->ml_next)
if ((endpa <= ml->ml_address) ||
(basepa >= (ml->ml_address + ml->ml_size)))
continue;
else
break;
memlist_read_unlock();
if (ml == NULL)
rv = -1;
break;
case SBD_COMP_IO:
err = drmach_io_is_attached(cp->sbdev_id, &yes);
if (err) {
DRERR_SET_C(&cp->sbdev_error, &err);
rv = -1;
break;
} else if (!yes)
rv = -1;
break;
default:
PR_ALL("%s: unexpected nodetype(%d) for id 0x%p\n",
f, cp->sbdev_type, cp->sbdev_id);
rv = -1;
break;
}
return (rv);
}
/*
* See if drmach recognizes the passthru command. DRMACH expects the
* id to identify the thing to which the command is being applied. Using
* nonsense SBD terms, that information has been perversely encoded in the
* c_id member of the sbd_cmd_t structure. This logic reads those tea
* leaves, finds the associated drmach id, then calls drmach to process
* the passthru command.
*/
static int
dr_pt_try_drmach(dr_handle_t *hp)
{
dr_board_t *bp = hp->h_bd;
sbd_comp_id_t *comp_id = &hp->h_sbdcmd.cmd_cm.c_id;
drmachid_t id;
if (comp_id->c_type == SBD_COMP_NONE) {
id = bp->b_id;
} else {
sbd_comp_type_t nt;
nt = dr_dev_type_to_nt(comp_id->c_name);
if (nt == SBD_COMP_UNKNOWN) {
dr_op_err(CE_IGNORE, hp, ESBD_INVAL, comp_id->c_name);
id = 0;
} else {
/* pt command applied to dynamic attachment point */
dr_common_unit_t *cp;
cp = dr_get_common_unit(bp, nt, comp_id->c_unit);
id = cp->sbdev_id;
}
}
if (hp->h_err == NULL)
hp->h_err = drmach_passthru(id, &hp->h_opts);
return (hp->h_err == NULL ? 0 : -1);
}
static int
dr_pt_ioctl(dr_handle_t *hp)
{
int cmd, rv, len;
int32_t sz;
int found;
char *copts;
static fn_t f = "dr_pt_ioctl";
PR_ALL("%s...\n", f);
sz = hp->h_opts.size;
copts = hp->h_opts.copts;
if (sz == 0 || copts == (char *)NULL) {
cmn_err(CE_WARN, "%s: invalid passthru args", f);
return (EINVAL);
}
found = 0;
for (cmd = 0; cmd < (sizeof (pt_arr) / sizeof (pt_arr[0])); cmd++) {
len = strlen(pt_arr[cmd].pt_name);
found = (strncmp(pt_arr[cmd].pt_name, copts, len) == 0);
if (found)
break;
}
if (found)
rv = (*pt_arr[cmd].pt_func)(hp);
else
rv = dr_pt_try_drmach(hp);
return (rv);
}
/*
* Called at driver load time to determine the state and condition
* of an existing board in the system.
*/
static void
dr_board_discovery(dr_board_t *bp)
{
int i;
dr_devset_t devs_lost, devs_attached = 0;
dr_cpu_unit_t *cp;
dr_mem_unit_t *mp;
dr_io_unit_t *ip;
static fn_t f = "dr_board_discovery";
if (DR_DEVS_PRESENT(bp) == 0) {
PR_ALL("%s: board %d has no devices present\n",
f, bp->b_num);
return;
}
/*
* Check for existence of cpus.
*/
for (i = 0; i < MAX_CPU_UNITS_PER_BOARD; i++) {
cp = dr_get_cpu_unit(bp, i);
if (!DR_DEV_IS_PRESENT(&cp->sbc_cm))
continue;
if (dr_check_unit_attached(&cp->sbc_cm) >= 0) {
DR_DEV_SET_ATTACHED(&cp->sbc_cm);
DEVSET_ADD(devs_attached, SBD_COMP_CPU, i);
PR_ALL("%s: board %d, cpu-unit %d - attached\n",
f, bp->b_num, i);
}
dr_init_cpu_unit(cp);
}
/*
* Check for existence of memory.
*/
for (i = 0; i < MAX_MEM_UNITS_PER_BOARD; i++) {
mp = dr_get_mem_unit(bp, i);
if (!DR_DEV_IS_PRESENT(&mp->sbm_cm))
continue;
if (dr_check_unit_attached(&mp->sbm_cm) >= 0) {
DR_DEV_SET_ATTACHED(&mp->sbm_cm);
DEVSET_ADD(devs_attached, SBD_COMP_MEM, i);
PR_ALL("%s: board %d, mem-unit %d - attached\n",
f, bp->b_num, i);
}
dr_init_mem_unit(mp);
}
/*
* Check for i/o state.
*/
for (i = 0; i < MAX_IO_UNITS_PER_BOARD; i++) {
ip = dr_get_io_unit(bp, i);
if (!DR_DEV_IS_PRESENT(&ip->sbi_cm))
continue;
if (dr_check_unit_attached(&ip->sbi_cm) >= 0) {
/*
* Found it!
*/
DR_DEV_SET_ATTACHED(&ip->sbi_cm);
DEVSET_ADD(devs_attached, SBD_COMP_IO, i);
PR_ALL("%s: board %d, io-unit %d - attached\n",
f, bp->b_num, i);
}
dr_init_io_unit(ip);
}
DR_DEVS_CONFIGURE(bp, devs_attached);
if (devs_attached && ((devs_lost = DR_DEVS_UNATTACHED(bp)) != 0)) {
int ut;
/*
* It is not legal on board discovery to have a
* board that is only partially attached. A board
* is either all attached or all connected. If a
* board has at least one attached device, then
* the the remaining devices, if any, must have
* been lost or disconnected. These devices can
* only be recovered by a full attach from scratch.
* Note that devices previously in the unreferenced
* state are subsequently lost until the next full
* attach. This is necessary since the driver unload
* that must have occurred would have wiped out the
* information necessary to re-configure the device
* back online, e.g. memlist.
*/
PR_ALL("%s: some devices LOST (0x%lx)...\n", f, devs_lost);
for (ut = 0; ut < MAX_CPU_UNITS_PER_BOARD; ut++) {
if (!DEVSET_IN_SET(devs_lost, SBD_COMP_CPU, ut))
continue;
cp = dr_get_cpu_unit(bp, ut);
dr_device_transition(&cp->sbc_cm, DR_STATE_EMPTY);
}
for (ut = 0; ut < MAX_MEM_UNITS_PER_BOARD; ut++) {
if (!DEVSET_IN_SET(devs_lost, SBD_COMP_MEM, ut))
continue;
mp = dr_get_mem_unit(bp, ut);
dr_device_transition(&mp->sbm_cm, DR_STATE_EMPTY);
}
for (ut = 0; ut < MAX_IO_UNITS_PER_BOARD; ut++) {
if (!DEVSET_IN_SET(devs_lost, SBD_COMP_IO, ut))
continue;
ip = dr_get_io_unit(bp, ut);
dr_device_transition(&ip->sbi_cm, DR_STATE_EMPTY);
}
DR_DEVS_DISCONNECT(bp, devs_lost);
}
}
static int
dr_board_init(dr_board_t *bp, dev_info_t *dip, int bd)
{
sbd_error_t *err;
mutex_init(&bp->b_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&bp->b_slock, NULL, MUTEX_DRIVER, NULL);
cv_init(&bp->b_scv, NULL, CV_DRIVER, NULL);
bp->b_rstate = SBD_STAT_EMPTY;
bp->b_ostate = SBD_STAT_UNCONFIGURED;
bp->b_cond = SBD_COND_UNKNOWN;
(void) drv_getparm(TIME, (void *)&bp->b_time);
(void) drmach_board_lookup(bd, &bp->b_id);
bp->b_num = bd;
bp->b_dip = dip;
bp->b_dev[NIX(SBD_COMP_CPU)] = GETSTRUCT(dr_dev_unit_t,
MAX_CPU_UNITS_PER_BOARD);
bp->b_dev[NIX(SBD_COMP_MEM)] = GETSTRUCT(dr_dev_unit_t,
MAX_MEM_UNITS_PER_BOARD);
bp->b_dev[NIX(SBD_COMP_IO)] = GETSTRUCT(dr_dev_unit_t,
MAX_IO_UNITS_PER_BOARD);
/*
* Initialize the devlists
*/
err = dr_init_devlists(bp);
if (err) {
sbd_err_clear(&err);
dr_board_destroy(bp);
return (-1);
} else if (bp->b_ndev == 0) {
dr_board_transition(bp, DR_STATE_EMPTY);
} else {
/*
* Couldn't have made it down here without
* having found at least one device.
*/
ASSERT(DR_DEVS_PRESENT(bp) != 0);
/*
* Check the state of any possible devices on the
* board.
*/
dr_board_discovery(bp);
bp->b_assigned = 1;
if (DR_DEVS_UNATTACHED(bp) == 0) {
/*
* The board has no unattached devices, therefore
* by reason of insanity it must be configured!
*/
dr_board_transition(bp, DR_STATE_CONFIGURED);
bp->b_ostate = SBD_STAT_CONFIGURED;
bp->b_rstate = SBD_STAT_CONNECTED;
bp->b_cond = SBD_COND_OK;
(void) drv_getparm(TIME, (void *)&bp->b_time);
} else if (DR_DEVS_ATTACHED(bp)) {
dr_board_transition(bp, DR_STATE_PARTIAL);
bp->b_ostate = SBD_STAT_CONFIGURED;
bp->b_rstate = SBD_STAT_CONNECTED;
bp->b_cond = SBD_COND_OK;
(void) drv_getparm(TIME, (void *)&bp->b_time);
} else {
dr_board_transition(bp, DR_STATE_CONNECTED);
bp->b_rstate = SBD_STAT_CONNECTED;
(void) drv_getparm(TIME, (void *)&bp->b_time);
}
}
return (0);
}
static void
dr_board_destroy(dr_board_t *bp)
{
PR_ALL("dr_board_destroy: num %d, path %s\n",
bp->b_num, bp->b_path);
dr_board_transition(bp, DR_STATE_EMPTY);
bp->b_rstate = SBD_STAT_EMPTY;
(void) drv_getparm(TIME, (void *)&bp->b_time);
/*
* Free up MEM unit structs.
*/
FREESTRUCT(bp->b_dev[NIX(SBD_COMP_MEM)],
dr_dev_unit_t, MAX_MEM_UNITS_PER_BOARD);
bp->b_dev[NIX(SBD_COMP_MEM)] = NULL;
/*
* Free up CPU unit structs.
*/
FREESTRUCT(bp->b_dev[NIX(SBD_COMP_CPU)],
dr_dev_unit_t, MAX_CPU_UNITS_PER_BOARD);
bp->b_dev[NIX(SBD_COMP_CPU)] = NULL;
/*
* Free up IO unit structs.
*/
FREESTRUCT(bp->b_dev[NIX(SBD_COMP_IO)],
dr_dev_unit_t, MAX_IO_UNITS_PER_BOARD);
bp->b_dev[NIX(SBD_COMP_IO)] = NULL;
mutex_destroy(&bp->b_lock);
mutex_destroy(&bp->b_slock);
cv_destroy(&bp->b_scv);
}
void
dr_lock_status(dr_board_t *bp)
{
mutex_enter(&bp->b_slock);
while (bp->b_sflags & DR_BSLOCK)
cv_wait(&bp->b_scv, &bp->b_slock);
bp->b_sflags |= DR_BSLOCK;
mutex_exit(&bp->b_slock);
}
void
dr_unlock_status(dr_board_t *bp)
{
mutex_enter(&bp->b_slock);
bp->b_sflags &= ~DR_BSLOCK;
cv_signal(&bp->b_scv);
mutex_exit(&bp->b_slock);
}
/*
* Extract flags passed via ioctl.
*/
int
dr_cmd_flags(dr_handle_t *hp)
{
return (hp->h_sbdcmd.cmd_cm.c_flags);
}