su_driver.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
/* All Rights Reserved */
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Serial I/O driver for 82510/8250/16450/16550AF chips.
* Modified as sparc keyboard/mouse driver.
*/
#define SU_REGISTER_FILE_NO 0
#define SU_REGOFFSET 0
#define SU_REGISTER_LEN 8
#include <sys/param.h>
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/stream.h>
#include <sys/termio.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/cmn_err.h>
#include <sys/stropts.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/strtty.h>
#include <sys/debug.h>
#include <sys/kbio.h>
#include <sys/cred.h>
#include <sys/modctl.h>
#include <sys/stat.h>
#include <sys/consdev.h>
#include <sys/mkdev.h>
#include <sys/kmem.h>
#include <sys/cred.h>
#ifdef DEBUG
#include <sys/promif.h>
#endif
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sudev.h>
#include <sys/note.h>
#include <sys/timex.h>
#include <sys/policy.h>
#define async_stopc async_ttycommon.t_stopc
#define async_startc async_ttycommon.t_startc
#define ASY_INIT 1
#define ASY_NOINIT 0
#ifdef DEBUG
#define ASY_DEBUG_INIT 0x001
#define ASY_DEBUG_INPUT 0x002
#define ASY_DEBUG_EOT 0x004
#define ASY_DEBUG_CLOSE 0x008
#define ASY_DEBUG_HFLOW 0x010
#define ASY_DEBUG_PROCS 0x020
#define ASY_DEBUG_STATE 0x040
#define ASY_DEBUG_INTR 0x080
static int asydebug = 0;
#endif
static int su_log = 0;
int su_drain_check = 15000000; /* tunable: exit drain check time */
static struct ppsclockev asy_ppsev;
static int max_asy_instance = -1;
static void *su_asycom; /* soft state asycom pointer */
static void *su_asyncline; /* soft state asyncline pointer */
static boolean_t abort_charseq_recognize(uchar_t ch);
static uint_t asysoftintr(caddr_t intarg);
static uint_t asyintr(caddr_t argasy);
/* The async interrupt entry points */
static void async_txint(struct asycom *asy, uchar_t lsr);
static void async_rxint(struct asycom *asy, uchar_t lsr);
static void async_msint(struct asycom *asy);
static int async_softint(struct asycom *asy);
static void async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp,
boolean_t iswput);
static void async_reioctl(void *);
static void async_iocdata(queue_t *q, mblk_t *mp);
static void async_restart(void *);
static void async_start(struct asyncline *async);
static void async_nstart(struct asyncline *async, int mode);
static void async_resume(struct asyncline *async);
static int asy_program(struct asycom *asy, int mode);
static int asymctl(struct asycom *, int, int);
static int asytodm(int, int);
static int dmtoasy(int);
static void asycheckflowcontrol_hw(struct asycom *asy);
static boolean_t asycheckflowcontrol_sw(struct asycom *asy);
static void asy_ppsevent(struct asycom *asy, int msr);
extern kcondvar_t lbolt_cv;
extern int ddi_create_internal_pathname(dev_info_t *dip, char *name,
int spec_type, minor_t minor_num);
/*
* Baud rate table. Indexed by #defines found in sys/termios.h
*/
ushort_t asyspdtab[] = {
0, /* 0 baud rate */
0x900, /* 50 baud rate */
0x600, /* 75 baud rate */
0x417, /* 110 baud rate (%0.026) */
0x359, /* 134 baud rate (%0.058) */
0x300, /* 150 baud rate */
0x240, /* 200 baud rate */
0x180, /* 300 baud rate */
0x0c0, /* 600 baud rate */
0x060, /* 1200 baud rate */
0x040, /* 1800 baud rate */
0x030, /* 2400 baud rate */
0x018, /* 4800 baud rate */
0x00c, /* 9600 baud rate */
0x006, /* 19200 baud rate */
0x003, /* 38400 baud rate */
0x002, /* 57600 baud rate */
0, /* 76800 baud rate - not supported */
0x001, /* 115200 baud rate */
0, /* 153600 baud rate - not supported */
0x8002, /* 230400 baud rate - supported on specific platforms */
0, /* 307200 baud rate - not supported */
0x8001 /* 460800 baud rate - supported on specific platforms */
};
/*
* Number of speeds supported is the number of entries in
* the above table.
*/
#define N_SU_SPEEDS (sizeof (asyspdtab)/sizeof (ushort_t))
/*
* Human-readable baud rate table.
* Indexed by #defines found in sys/termios.h
*/
int baudtable[] = {
0, /* 0 baud rate */
50, /* 50 baud rate */
75, /* 75 baud rate */
110, /* 110 baud rate */
134, /* 134 baud rate */
150, /* 150 baud rate */
200, /* 200 baud rate */
300, /* 300 baud rate */
600, /* 600 baud rate */
1200, /* 1200 baud rate */
1800, /* 1800 baud rate */
2400, /* 2400 baud rate */
4800, /* 4800 baud rate */
9600, /* 9600 baud rate */
19200, /* 19200 baud rate */
38400, /* 38400 baud rate */
57600, /* 57600 baud rate */
76800, /* 76800 baud rate */
115200, /* 115200 baud rate */
153600, /* 153600 baud rate */
230400, /* 230400 baud rate */
307200, /* 307200 baud rate */
460800 /* 460800 baud rate */
};
static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
static int asyclose(queue_t *q, int flag);
static void asywput(queue_t *q, mblk_t *mp);
static void asyrsrv(queue_t *q);
struct module_info asy_info = {
0,
"su",
0,
INFPSZ,
32*4096,
4096
};
static struct qinit asy_rint = {
putq,
(int (*)())asyrsrv,
asyopen,
asyclose,
NULL,
&asy_info,
NULL
};
static struct qinit asy_wint = {
(int (*)())asywput,
NULL,
NULL,
NULL,
NULL,
&asy_info,
NULL
};
struct streamtab asy_str_info = {
&asy_rint,
&asy_wint,
NULL,
NULL
};
static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
void **result);
static int asyprobe(dev_info_t *);
static int asyattach(dev_info_t *, ddi_attach_cmd_t);
static int asydetach(dev_info_t *, ddi_detach_cmd_t);
static struct cb_ops cb_asy_ops = {
nodev, /* cb_open */
nodev, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
&asy_str_info, /* cb_stream */
D_MP /* cb_flag */
};
struct dev_ops asy_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
asyinfo, /* devo_getinfo */
nulldev, /* devo_identify */
asyprobe, /* devo_probe */
asyattach, /* devo_attach */
asydetach, /* devo_detach */
nodev, /* devo_reset */
&cb_asy_ops, /* devo_cb_ops */
};
/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"su driver %I%",
&asy_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL
};
int
_init(void)
{
int status;
status = ddi_soft_state_init(&su_asycom, sizeof (struct asycom),
SU_INITIAL_SOFT_ITEMS);
if (status != 0)
return (status);
status = ddi_soft_state_init(&su_asyncline, sizeof (struct asyncline),
SU_INITIAL_SOFT_ITEMS);
if (status != 0) {
ddi_soft_state_fini(&su_asycom);
return (status);
}
if ((status = mod_install(&modlinkage)) != 0) {
ddi_soft_state_fini(&su_asycom);
ddi_soft_state_fini(&su_asyncline);
}
return (status);
}
int
_fini(void)
{
int i;
i = mod_remove(&modlinkage);
if (i == 0) {
ddi_soft_state_fini(&su_asycom);
ddi_soft_state_fini(&su_asyncline);
}
return (i);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
static int
asyprobe(dev_info_t *devi)
{
int instance;
ddi_acc_handle_t handle;
uchar_t *addr;
ddi_device_acc_attr_t attr;
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO, (caddr_t *)&addr,
SU_REGOFFSET, SU_REGISTER_LEN, &attr, &handle) != DDI_SUCCESS) {
cmn_err(CE_WARN, "asyprobe regs map setup failed");
return (DDI_PROBE_FAILURE);
}
#ifdef DEBUG
if (asydebug)
printf("Probe address mapped %p\n", (void *)addr);
#endif
/*
* Probe for the device:
* Ser. int. uses bits 0,1,2; FIFO uses 3,6,7; 4,5 wired low.
* If bit 4 or 5 appears on inb() ISR, board is not there.
*/
if (ddi_get8(handle, addr+ISR) & 0x30)
return (DDI_PROBE_FAILURE);
instance = ddi_get_instance(devi);
if (max_asy_instance < instance)
max_asy_instance = instance;
ddi_regs_map_free(&handle);
return (DDI_PROBE_SUCCESS); /* hw is present */
}
static int
asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{
register int instance;
struct asycom *asy;
struct asyncline *async;
char name[16];
instance = ddi_get_instance(devi); /* find out which unit */
asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
/* grab both mutex locks */
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
if (asy->suspended) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return (DDI_SUCCESS);
}
asy->suspended = B_TRUE;
/* Disable further interrupts */
OUTB(ICR, 0);
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
#ifdef DEBUG
if (asydebug & ASY_DEBUG_INIT)
cmn_err(CE_NOTE, "su%d: ASY%s shutdown.", instance,
asy->asy_hwtype == ASY82510 ? "82510" :
asy->asy_hwtype == ASY16550AF ? "16550AF" :
"8250");
#endif
/*
* Before removing interrupts it is always better to disable
* interrupts if the chip gives a provision to disable the
* serial port interrupts.
*/
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
OUTB(ICR, 0); /* disables interrupt */
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
/* remove minor device node(s) for this device */
(void) sprintf(name, "%c", (instance+'a')); /* serial-port */
ddi_remove_minor_node(devi, name);
(void) sprintf(name, "%c,cu", (instance+'a')); /* serial-port:dailout */
ddi_remove_minor_node(devi, name);
mutex_destroy(asy->asy_excl);
mutex_destroy(asy->asy_excl_hi);
kmem_free(asy->asy_excl, sizeof (kmutex_t));
kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
cv_destroy(&async->async_flags_cv);
kstat_delete(asy->sukstat);
ddi_remove_intr(devi, 0, asy->asy_iblock);
ddi_regs_map_free(&asy->asy_handle);
ddi_remove_softintr(asy->asy_softintr_id);
mutex_destroy(asy->asy_soft_lock);
kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
ddi_soft_state_free(su_asycom, instance);
ddi_soft_state_free(su_asyncline, instance);
return (DDI_SUCCESS);
}
static int
asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{
register int instance;
struct asycom *asy;
struct asyncline *async;
char name[40];
ddi_device_acc_attr_t attr;
enum states { EMPTY, SOFTSTATE, REGSMAP, MUTEXES, ADDINTR,
SOFTINTR, ASYINIT, KSTAT, MINORNODE };
enum states state = EMPTY;
instance = ddi_get_instance(devi); /* find out which unit */
/* cannot attach a device that has not been probed first */
if (instance > max_asy_instance)
return (DDI_FAILURE);
if (cmd != DDI_RESUME) {
/* Allocate soft state space */
if (ddi_soft_state_zalloc(su_asycom, instance) != DDI_SUCCESS) {
cmn_err(CE_WARN, "su%d: cannot allocate soft state",
instance);
goto error;
}
}
state = SOFTSTATE;
asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
if (asy == NULL) {
cmn_err(CE_WARN, "su%d: cannot get soft state", instance);
goto error;
}
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME: {
struct asyncline *async;
/* grab both mutex locks */
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
if (!asy->suspended) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return (DDI_SUCCESS);
}
/* re-setup all the registers and enable interrupts if needed */
async = (struct asyncline *)asy->asy_priv;
if ((async) && (async->async_flags & ASYNC_ISOPEN))
(void) asy_program(asy, ASY_INIT);
asy->suspended = B_FALSE;
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return (DDI_SUCCESS);
}
default:
goto error;
}
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
if (ddi_regs_map_setup(devi, SU_REGISTER_FILE_NO,
(caddr_t *)&asy->asy_ioaddr, SU_REGOFFSET, SU_REGISTER_LEN,
&attr, &asy->asy_handle) != DDI_SUCCESS) {
cmn_err(CE_WARN, "asyprobe regs map setup failed");
goto error;
}
state = REGSMAP;
#ifdef DEBUG
if (asydebug)
printf("su attach mapped %p\n", (void *)asy->asy_ioaddr);
#endif
/*
* Initialize the port with default settings.
*/
asy->asy_fifo_buf = 1;
asy->asy_use_fifo = FIFO_OFF;
/*
* Check for baudrate generator's "baud-divisor-factor" property setup
* by OBP, since different UART chips might have different baudrate
* generator divisor. e.g., in case of NSPG's Sputnik platform, the
* baud-divisor-factor is 13, it uses dedicated 16552 "DUART" chip
* instead of SuperIO. Since the baud-divisor-factor must be a positive
* integer, the divisors will always be at least as large as the values
* in asyspdtab[]. Make the default factor 1.
*/
asy->asy_baud_divisor_factor = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
DDI_PROP_DONTPASS, "baud-divisor-factor", 1);
/* set speed cap */
asy->asy_speed_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
DDI_PROP_DONTPASS, "serial-speed-cap", 115200);
/* check for ASY82510 chip */
OUTB(ISR, 0x20);
if (INB(ISR) & 0x20) { /* 82510 chip is present */
/*
* Since most of the general operation of the 82510 chip
* can be done from BANK 0 (8250A/16450 compatable mode)
* we will default to BANK 0.
*/
asy->asy_hwtype = ASY82510;
OUTB(DAT+7, 0x04); /* clear status */
OUTB(ISR, 0x40); /* set to bank 2 */
OUTB(MCR, 0x08); /* IMD */
OUTB(DAT, 0x21); /* FMD */
OUTB(ISR, 0x00); /* set to bank 0 */
asy->asy_trig_level = 0;
} else { /* Set the UART in FIFO mode if it has FIFO buffers */
asy->asy_hwtype = ASY16550AF;
OUTB(FIFOR, 0x00); /* clear fifo register */
asy->asy_trig_level = 0x00; /* sets the fifo Threshold to 1 */
/* set/Enable FIFO */
OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH | FIFORXFLSH |
(asy->asy_trig_level & 0xff));
if ((INB(ISR) & 0xc0) == 0xc0)
asy->asy_use_fifo = FIFO_ON;
else {
asy->asy_hwtype = ASY8250;
OUTB(FIFOR, 0x00); /* NO FIFOs */
asy->asy_trig_level = 0;
}
}
OUTB(ICR, 0); /* disable all interrupts */
OUTB(LCR, DLAB); /* select baud rate generator */
/* Set the baud rate to 9600 */
OUTB(DAT+DLL, (ASY9600*asy->asy_baud_divisor_factor) & 0xff);
OUTB(DAT+DLH, ((ASY9600*asy->asy_baud_divisor_factor) >> 8) & 0xff);
OUTB(LCR, STOP1|BITS8);
OUTB(MCR, (DTR | RTS| OUT2));
/*
* Set up the other components of the asycom structure for this port.
*/
asy->asy_excl = (kmutex_t *)
kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
asy->asy_excl_hi = (kmutex_t *)
kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
asy->asy_soft_lock = (kmutex_t *)
kmem_zalloc(sizeof (kmutex_t), KM_SLEEP);
asy->asy_unit = instance;
asy->asy_dip = devi;
if (ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) != DDI_SUCCESS) {
cmn_err(CE_NOTE,
"Get iblock_cookie failed-Device interrupt%x\n", instance);
goto error;
}
if (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_HIGH,
&asy->asy_soft_iblock) != DDI_SUCCESS) {
cmn_err(CE_NOTE, "Get iblock_cookie failed -soft interrupt%x\n",
instance);
goto error;
}
mutex_init(asy->asy_soft_lock, NULL, MUTEX_DRIVER,
(void *)asy->asy_soft_iblock);
mutex_init(asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
mutex_init(asy->asy_excl_hi, NULL, MUTEX_DRIVER,
(void *)asy->asy_iblock);
state = MUTEXES;
/*
* Install interrupt handlers for this device.
*/
if (ddi_add_intr(devi, 0, &(asy->asy_iblock), 0, asyintr,
(caddr_t)asy) != DDI_SUCCESS) {
cmn_err(CE_CONT,
"Cannot set device interrupt for su driver\n");
goto error;
}
state = ADDINTR;
if (ddi_add_softintr(devi, DDI_SOFTINT_HIGH, &(asy->asy_softintr_id),
&asy->asy_soft_iblock, 0, asysoftintr, (caddr_t)asy)
!= DDI_SUCCESS) {
cmn_err(CE_CONT, "Cannot set soft interrupt for su driver\n");
goto error;
}
state = SOFTINTR;
/* initialize the asyncline structure */
if (ddi_soft_state_zalloc(su_asyncline, instance) != DDI_SUCCESS) {
cmn_err(CE_CONT, "su%d: cannot allocate soft state", instance);
goto error;
}
state = ASYINIT;
async = (struct asyncline *)ddi_get_soft_state(su_asyncline, instance);
mutex_enter(asy->asy_excl);
async->async_common = asy;
cv_init(&async->async_flags_cv, NULL, CV_DEFAULT, NULL);
mutex_exit(asy->asy_excl);
if ((asy->sukstat = kstat_create("su", instance, "serialstat",
"misc", KSTAT_TYPE_NAMED, 2, KSTAT_FLAG_VIRTUAL)) != NULL) {
asy->sukstat->ks_data = &asy->kstats;
kstat_named_init(&asy->kstats.ringover, "ring buffer overflow",
KSTAT_DATA_UINT64);
kstat_named_init(&asy->kstats.siloover, "silo overflow",
KSTAT_DATA_UINT64);
kstat_install(asy->sukstat);
}
state = KSTAT;
if (strcmp(ddi_node_name(devi), "rsc-console") == 0) {
/*
* If the device is configured as the 'rsc-console'
* create the minor device for this node.
*/
if (ddi_create_minor_node(devi, "ssp", S_IFCHR,
asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
== DDI_FAILURE) {
cmn_err(CE_WARN,
"%s%d: Failed to create node rsc-console",
ddi_get_name(devi), ddi_get_instance(devi));
goto error;
}
asy->asy_lom_console = 0;
asy->asy_rsc_console = 1;
asy->asy_rsc_control = 0;
asy->asy_device_type = ASY_SERIAL;
asy->asy_flags |= ASY_IGNORE_CD;
} else if (strcmp(ddi_node_name(devi), "lom-console") == 0) {
/*
* If the device is configured as the 'lom-console'
* create the minor device for this node.
* Do not create a dialout device.
* Use the same minor numbers as would be used for standard
* serial instances.
*/
if (ddi_create_minor_node(devi, "lom-console", S_IFCHR,
instance, DDI_NT_SERIAL_LOMCON, NULL) == DDI_FAILURE) {
cmn_err(CE_WARN,
"%s%d: Failed to create node lom-console",
ddi_get_name(devi), ddi_get_instance(devi));
goto error;
}
asy->asy_lom_console = 1;
asy->asy_rsc_console = 0;
asy->asy_rsc_control = 0;
asy->asy_device_type = ASY_SERIAL;
asy->asy_flags |= ASY_IGNORE_CD;
} else if (strcmp(ddi_node_name(devi), "rsc-control") == 0) {
/*
* If the device is configured as the 'rsc-control'
* create the minor device for this node.
*/
if (ddi_create_minor_node(devi, "sspctl", S_IFCHR,
asy->asy_unit | RSC_DEVICE, DDI_PSEUDO, NULL)
== DDI_FAILURE) {
cmn_err(CE_WARN, "%s%d: Failed to create rsc-control",
ddi_get_name(devi), ddi_get_instance(devi));
goto error;
}
asy->asy_lom_console = 0;
asy->asy_rsc_console = 0;
asy->asy_rsc_control = 1;
asy->asy_device_type = ASY_SERIAL;
asy->asy_flags |= ASY_IGNORE_CD;
} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
"keyboard", 0)) {
/*
* If the device is a keyboard, then create an internal
* pathname so that the dacf code will link the node into
* the keyboard console stream. See dacf.conf.
*/
if (ddi_create_internal_pathname(devi, "keyboard",
S_IFCHR, instance) == DDI_FAILURE) {
goto error;
}
asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */
asy->asy_device_type = ASY_KEYBOARD; /* Device type */
} else if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
"mouse", 0)) {
/*
* If the device is a mouse, then create an internal
* pathname so that the dacf code will link the node into
* the mouse stream. See dacf.conf.
*/
if (ddi_create_internal_pathname(devi, "mouse", S_IFCHR,
instance) == DDI_FAILURE) {
goto error;
}
asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */
asy->asy_device_type = ASY_MOUSE;
} else {
/*
* If not used for keyboard/mouse, create minor devices nodes
* for this device
*/
/* serial-port */
(void) sprintf(name, "%c", (instance+'a'));
if (ddi_create_minor_node(devi, name, S_IFCHR, instance,
DDI_NT_SERIAL_MB, NULL) == DDI_FAILURE) {
goto error;
}
state = MINORNODE;
/* serial-port:dailout */
(void) sprintf(name, "%c,cu", (instance+'a'));
if (ddi_create_minor_node(devi, name, S_IFCHR, instance|OUTLINE,
DDI_NT_SERIAL_MB_DO, NULL) == DDI_FAILURE) {
goto error;
}
/* Property for ignoring DCD */
if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
"ignore-cd", 0)) {
asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */
} else {
asy->asy_flags &= ~ASY_IGNORE_CD;
/*
* if ignore-cd is not available it could be
* some old legacy platform, try to see
* whether the old legacy property exists
*/
(void) sprintf(name,
"port-%c-ignore-cd", (instance+ 'a'));
if (ddi_getprop(DDI_DEV_T_ANY, devi,
DDI_PROP_DONTPASS, name, 0))
asy->asy_flags |= ASY_IGNORE_CD;
}
asy->asy_device_type = ASY_SERIAL;
}
ddi_report_dev(devi);
return (DDI_SUCCESS);
error:
if (state == MINORNODE) {
(void) sprintf(name, "%c", (instance+'a'));
ddi_remove_minor_node(devi, name);
}
if (state >= KSTAT)
kstat_delete(asy->sukstat);
if (state >= ASYINIT) {
cv_destroy(&async->async_flags_cv);
ddi_soft_state_free(su_asyncline, instance);
}
if (state >= SOFTINTR)
ddi_remove_softintr(asy->asy_softintr_id);
if (state >= ADDINTR)
ddi_remove_intr(devi, 0, asy->asy_iblock);
if (state >= MUTEXES) {
mutex_destroy(asy->asy_excl_hi);
mutex_destroy(asy->asy_excl);
mutex_destroy(asy->asy_soft_lock);
kmem_free(asy->asy_excl_hi, sizeof (kmutex_t));
kmem_free(asy->asy_excl, sizeof (kmutex_t));
kmem_free(asy->asy_soft_lock, sizeof (kmutex_t));
}
if (state >= REGSMAP)
ddi_regs_map_free(&asy->asy_handle);
if (state >= SOFTSTATE)
ddi_soft_state_free(su_asycom, instance);
/* no action for EMPTY state */
return (DDI_FAILURE);
}
static int
asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
void **result)
{
_NOTE(ARGUNUSED(dip))
register dev_t dev = (dev_t)arg;
register int instance, error;
struct asycom *asy;
if ((instance = UNIT(dev)) > max_asy_instance)
return (DDI_FAILURE);
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
asy = (struct asycom *)ddi_get_soft_state(su_asycom, instance);
if (asy->asy_dip == NULL)
error = DDI_FAILURE;
else {
*result = (void *) asy->asy_dip;
error = DDI_SUCCESS;
}
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)instance;
error = DDI_SUCCESS;
break;
default:
error = DDI_FAILURE;
}
return (error);
}
static int
asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
{
_NOTE(ARGUNUSED(sflag))
struct asycom *asy;
struct asyncline *async;
int mcr;
int unit;
int len;
struct termios *termiosp;
#ifdef DEBUG
if (asydebug & ASY_DEBUG_CLOSE)
printf("open\n");
#endif
unit = UNIT(*dev);
if (unit > max_asy_instance)
return (ENXIO); /* unit not configured */
async = (struct asyncline *)ddi_get_soft_state(su_asyncline, unit);
if (async == NULL)
return (ENXIO);
asy = async->async_common;
if (asy == NULL)
return (ENXIO); /* device not found by autoconfig */
mutex_enter(asy->asy_excl);
asy->asy_priv = (caddr_t)async;
again:
mutex_enter(asy->asy_excl_hi);
/*
* Block waiting for carrier to come up, unless this is a no-delay open.
*/
if (!(async->async_flags & ASYNC_ISOPEN)) {
/*
* If this port is for a RSC console or control
* use the following termio info
*/
if (asy->asy_rsc_console || asy->asy_rsc_control) {
async->async_ttycommon.t_cflag = CIBAUDEXT | CBAUDEXT |
(B115200 & CBAUD);
async->async_ttycommon.t_cflag |= ((B115200 << IBSHIFT)
& CIBAUD);
async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
} else if (asy->asy_lom_console) {
async->async_ttycommon.t_cflag = B9600 & CBAUD;
async->async_ttycommon.t_cflag |= ((B9600 << IBSHIFT)
& CIBAUD);
async->async_ttycommon.t_cflag |= CS8 | CREAD | CLOCAL;
} else {
/*
* Set the default termios settings (cflag).
* Others are set in ldterm. Release the spin
* mutex as we can block here, reaquire before
* calling asy_program.
*/
mutex_exit(asy->asy_excl_hi);
if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
0, "ttymodes", (caddr_t)&termiosp, &len)
== DDI_PROP_SUCCESS &&
len == sizeof (struct termios)) {
async->async_ttycommon.t_cflag =
termiosp->c_cflag;
kmem_free(termiosp, len);
} else {
cmn_err(CE_WARN,
"su: couldn't get ttymodes property!");
}
mutex_enter(asy->asy_excl_hi);
}
async->async_ttycommon.t_iflag = 0;
async->async_ttycommon.t_iocpending = NULL;
async->async_ttycommon.t_size.ws_row = 0;
async->async_ttycommon.t_size.ws_col = 0;
async->async_ttycommon.t_size.ws_xpixel = 0;
async->async_ttycommon.t_size.ws_ypixel = 0;
async->async_dev = *dev;
async->async_wbufcid = 0;
async->async_startc = CSTART;
async->async_stopc = CSTOP;
(void) asy_program(asy, ASY_INIT);
} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
secpolicy_excl_open(cr) != 0) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return (EBUSY);
} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return (EBUSY);
}
if (*dev & OUTLINE)
async->async_flags |= ASYNC_OUT;
/* Raise DTR on every open */
mcr = INB(MCR);
OUTB(MCR, mcr|DTR);
/*
* Check carrier.
*/
if (asy->asy_flags & ASY_IGNORE_CD)
async->async_ttycommon.t_flags |= TS_SOFTCAR;
if ((async->async_ttycommon.t_flags & TS_SOFTCAR) ||
(INB(MSR) & DCD))
async->async_flags |= ASYNC_CARR_ON;
else
async->async_flags &= ~ASYNC_CARR_ON;
mutex_exit(asy->asy_excl_hi);
/*
* If FNDELAY and FNONBLOCK are clear, block until carrier up.
* Quit on interrupt.
*/
if (!(flag & (FNDELAY|FNONBLOCK)) &&
!(async->async_ttycommon.t_cflag & CLOCAL)) {
if (!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) ||
((async->async_flags & ASYNC_OUT) &&
!(*dev & OUTLINE))) {
async->async_flags |= ASYNC_WOPEN;
if (cv_wait_sig(&async->async_flags_cv,
asy->asy_excl) == 0) {
async->async_flags &= ~ASYNC_WOPEN;
mutex_exit(asy->asy_excl);
return (EINTR);
}
async->async_flags &= ~ASYNC_WOPEN;
goto again;
}
} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
mutex_exit(asy->asy_excl);
return (EBUSY);
}
if (asy->suspended) {
mutex_exit(asy->asy_excl);
(void) ddi_dev_is_needed(asy->asy_dip, 0, 1);
mutex_enter(asy->asy_excl);
}
async->async_ttycommon.t_readq = rq;
async->async_ttycommon.t_writeq = WR(rq);
rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
mutex_exit(asy->asy_excl);
qprocson(rq);
async->async_flags |= ASYNC_ISOPEN;
async->async_polltid = 0;
return (0);
}
static void
async_progress_check(void *arg)
{
struct asyncline *async = arg;
struct asycom *asy = async->async_common;
mblk_t *bp;
/*
* We define "progress" as either waiting on a timed break or delay, or
* having had at least one transmitter interrupt. If none of these are
* true, then just terminate the output and wake up that close thread.
*/
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
async->async_ocnt = 0;
async->async_flags &= ~ASYNC_BUSY;
async->async_timer = 0;
bp = async->async_xmitblk;
async->async_xmitblk = NULL;
mutex_exit(asy->asy_excl_hi);
if (bp != NULL)
freeb(bp);
/*
* Since this timer is running, we know that we're in exit(2).
* That means that the user can't possibly be waiting on any
* valid ioctl(2) completion anymore, and we should just flush
* everything.
*/
flushq(async->async_ttycommon.t_writeq, FLUSHALL);
cv_broadcast(&async->async_flags_cv);
} else {
async->async_flags &= ~ASYNC_PROGRESS;
async->async_timer = timeout(async_progress_check, async,
drv_usectohz(su_drain_check));
mutex_exit(asy->asy_excl_hi);
}
mutex_exit(asy->asy_excl);
}
/*
* Close routine.
*/
static int
asyclose(queue_t *q, int flag)
{
struct asyncline *async;
struct asycom *asy;
int icr, lcr;
int nohupcl;
#ifdef DEBUG
if (asydebug & ASY_DEBUG_CLOSE)
printf("close\n");
#endif
async = q->q_ptr;
ASSERT(async != NULL);
asy = async->async_common;
/* get the nohupcl OBP property of this device */
nohupcl = ddi_getprop(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
"nohupcl", 0);
mutex_enter(asy->asy_excl);
async->async_flags |= ASYNC_CLOSING;
/*
* Turn off PPS handling early to avoid events occuring during
* close. Also reset the DCD edge monitoring bit.
*/
mutex_enter(asy->asy_excl_hi);
asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
mutex_exit(asy->asy_excl_hi);
/*
* There are two flavors of break -- timed (M_BREAK or TCSBRK) and
* untimed (TIOCSBRK). For the timed case, these are enqueued on our
* write queue and there's a timer running, so we don't have to worry
* about them. For the untimed case, though, the user obviously made a
* mistake, because these are handled immediately. We'll terminate the
* break now and honor his implicit request by discarding the rest of
* the data.
*/
if (!(async->async_flags & ASYNC_BREAK)) {
mutex_enter(asy->asy_excl_hi);
lcr = INB(LCR);
if (lcr & SETBREAK) {
OUTB(LCR, (lcr & ~SETBREAK));
}
mutex_exit(asy->asy_excl_hi);
if (lcr & SETBREAK)
goto nodrain;
}
/*
* If the user told us not to delay the close ("non-blocking"), then
* don't bother trying to drain.
*
* If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
* getting an M_START (since these messages aren't enqueued), and the
* only other way to clear the stop condition is by loss of DCD, which
* would discard the queue data. Thus, we drop the output data if
* ASYNC_STOPPED is set.
*/
if ((flag & (FNDELAY|FNONBLOCK)) ||
(async->async_flags & ASYNC_STOPPED)) {
goto nodrain;
}
/*
* If there's any pending output, then we have to try to drain it.
* There are two main cases to be handled:
* - called by close(2): need to drain until done or until
* a signal is received. No timeout.
* - called by exit(2): need to drain while making progress
* or until a timeout occurs. No signals.
*
* If we can't rely on receiving a signal to get us out of a hung
* session, then we have to use a timer. In this case, we set a timer
* to check for progress in sending the output data -- all that we ask
* (at each interval) is that there's been some progress made. Since
* the interrupt routine grabs buffers from the write queue, we can't
* trust async_ocnt. Instead, we use a flag.
*
* Note that loss of carrier will cause the output queue to be flushed,
* and we'll wake up again and finish normally.
*/
if (!ddi_can_receive_sig() && su_drain_check != 0) {
async->async_flags &= ~ASYNC_PROGRESS;
async->async_timer = timeout(async_progress_check, async,
drv_usectohz(su_drain_check));
}
while (async->async_ocnt > 0 ||
async->async_ttycommon.t_writeq->q_first != NULL ||
(async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
if (cv_wait_sig(&async->async_flags_cv, asy->asy_excl) == 0)
break;
}
if (async->async_timer != 0) {
(void) untimeout(async->async_timer);
async->async_timer = 0;
}
nodrain:
mutex_enter(asy->asy_excl_hi);
/* turn off the loopback mode */
if ((async->async_dev != rconsdev) &&
(async->async_dev != kbddev) &&
(async->async_dev != stdindev)) {
OUTB(MCR, INB(MCR) & ~ ASY_LOOP);
}
async->async_ocnt = 0;
if (async->async_xmitblk != NULL)
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
/*
* If the "nohupcl" OBP property is set for this device, do
* not turn off DTR and RTS no matter what. Otherwise, if the
* line has HUPCL set or is incompletely opened, turn off DTR
* and RTS to fix the modem line.
*/
if (!nohupcl && ((async->async_ttycommon.t_cflag & HUPCL) ||
(async->async_flags & ASYNC_WOPEN))) {
/* turn off DTR, RTS but NOT interrupt to 386 */
OUTB(MCR, OUT2);
mutex_exit(asy->asy_excl_hi);
/*
* Don't let an interrupt in the middle of close
* bounce us back to the top; just continue closing
* as if nothing had happened.
*/
if (cv_wait_sig(&lbolt_cv, asy->asy_excl) == 0)
goto out;
mutex_enter(asy->asy_excl_hi);
}
/*
* If nobody's using it now, turn off receiver interrupts.
*/
if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
icr = INB(ICR);
OUTB(ICR, (icr & ~RIEN));
}
mutex_exit(asy->asy_excl_hi);
out:
/*
* Clear out device state.
*/
async->async_flags = 0;
ttycommon_close(&async->async_ttycommon);
cv_broadcast(&async->async_flags_cv);
/*
* Clear ASY_DOINGSOFT and ASY_NEEDSOFT in case we were in
* async_softint or an interrupt was pending when the process
* using the port exited.
*/
asy->asy_flags &= ~ASY_DOINGSOFT & ~ASY_NEEDSOFT;
/*
* Cancel outstanding "bufcall" request.
*/
if (async->async_wbufcid) {
unbufcall(async->async_wbufcid);
async->async_wbufcid = 0;
}
/*
* If inperim is true, it means the port is closing while there's
* a pending software interrupt. async_flags has been zeroed out,
* so this instance of leaveq() needs to be called before we call
* qprocsoff() to disable services on the q. If inperim is false,
* leaveq() has already been called or we're not in a perimeter.
*/
if (asy->inperim == B_TRUE) {
asy->inperim = B_FALSE;
mutex_exit(asy->asy_excl);
leaveq(q);
} else {
mutex_exit(asy->asy_excl);
}
/* Note that qprocsoff can't be done until after interrupts are off */
qprocsoff(q);
q->q_ptr = WR(q)->q_ptr = NULL;
async->async_ttycommon.t_readq = NULL;
async->async_ttycommon.t_writeq = NULL;
return (0);
}
/*
* Checks to see if the serial port is still transmitting
* characters. It returns true when there are characters
* queued to transmit, when the holding register contains
* a byte, or when the shifting register still contains
* data to send.
*
*/
static boolean_t
asy_isbusy(struct asycom *asy)
{
struct asyncline *async;
#ifdef DEBUG
if (asydebug & ASY_DEBUG_EOT)
printf("isbusy\n");
#endif
async = (struct asyncline *)asy->asy_priv;
ASSERT(mutex_owned(asy->asy_excl));
ASSERT(mutex_owned(asy->asy_excl_hi));
return ((async->async_ocnt > 0) ||
((INB(LSR) & XSRE) == 0));
}
/*
* Program the ASY port. Most of the async operation is based on the values
* of 'c_iflag' and 'c_cflag'.
*/
static int
asy_program(struct asycom *asy, int mode)
{
struct asyncline *async;
int baudrate, c_flag;
int icr, lcr;
int ocflags;
int error = 0;
ASSERT(mutex_owned(asy->asy_excl));
ASSERT(mutex_owned(asy->asy_excl_hi));
#ifdef DEBUG
if (asydebug & ASY_DEBUG_PROCS)
printf("program\n");
#endif
async = (struct asyncline *)asy->asy_priv;
baudrate = async->async_ttycommon.t_cflag & CBAUD;
if (async->async_ttycommon.t_cflag & CBAUDEXT)
baudrate += 16;
/* Limit baudrate so it can't index out of baudtable */
if (baudrate >= N_SU_SPEEDS) baudrate = B9600;
/*
* If baud rate requested is greater than the speed cap
* or is an unsupported baud rate then reset t_cflag baud
* to the last valid baud rate. If this is the initial
* pass through asy_program then set it to 9600.
*/
if (((baudrate > 0) && (asyspdtab[baudrate] == 0)) ||
(baudtable[baudrate] > asy->asy_speed_cap)) {
async->async_ttycommon.t_cflag &= ~CBAUD & ~CBAUDEXT &
~CIBAUD & ~CIBAUDEXT;
if (mode == ASY_INIT) {
async->async_ttycommon.t_cflag |= B9600;
baudrate = B9600;
} else {
async->async_ttycommon.t_cflag |=
(asy->asy_ocflags & (CBAUD | CBAUDEXT |
CIBAUD | CIBAUDEXT));
}
error = EINVAL;
goto end;
}
/* set the baud rate */
if (async->async_ttycommon.t_cflag & (CIBAUD|CIBAUDEXT)) {
async->async_ttycommon.t_cflag &= ~(CIBAUD);
if (baudrate > CBAUD) {
async->async_ttycommon.t_cflag |= CIBAUDEXT;
async->async_ttycommon.t_cflag |=
(((baudrate - CBAUD -1)<< IBSHIFT) & CIBAUD);
} else {
async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
async->async_ttycommon.t_cflag |=
((baudrate << IBSHIFT) & CIBAUD);
}
}
c_flag = async->async_ttycommon.t_cflag &
(CLOCAL | CREAD | CSTOPB | CSIZE | PARENB | PARODD | CBAUD |
CBAUDEXT | CIBAUD | CIBAUDEXT);
OUTB(ICR, 0); /* disable interrupts */
ocflags = asy->asy_ocflags;
/* flush/reset the status registers */
if (mode == ASY_INIT) {
(void) INB(DAT);
(void) INB(ISR);
(void) INB(LSR);
(void) INB(MSR);
}
if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
/* Set line control */
lcr = INB(LCR);
lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
if (c_flag & CSTOPB)
lcr |= STB; /* 2 stop bits */
if (c_flag & PARENB)
lcr |= PEN;
if ((c_flag & PARODD) == 0)
lcr |= EPS;
switch (c_flag & CSIZE) {
case CS5:
lcr |= BITS5;
break;
case CS6:
lcr |= BITS6;
break;
case CS7:
lcr |= BITS7;
break;
case CS8:
lcr |= BITS8;
break;
}
/* set the baud rate when the rate is NOT B0 */
if (baudrate != 0) {
OUTB(LCR, DLAB);
OUTB(DAT, (asyspdtab[baudrate] *
asy->asy_baud_divisor_factor) & 0xff);
OUTB(ICR, ((asyspdtab[baudrate] *
asy->asy_baud_divisor_factor) >> 8) & 0xff);
}
/* set the line control modes */
OUTB(LCR, lcr);
/*
* if transitioning from CREAD off to CREAD on,
* flush the FIFO buffer if we have one.
*/
if ((ocflags & CREAD) == 0 && (c_flag & CREAD)) {
if (asy->asy_use_fifo == FIFO_ON) {
OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
(asy->asy_trig_level & 0xff));
}
}
/* remember the new cflags */
asy->asy_ocflags = c_flag & ~CLOCAL;
}
/* whether or not CLOCAL is set, modify the modem control lines */
if (baudrate == 0)
/* B0 has been issued, lower DTR */
OUTB(MCR, RTS|OUT2);
else
/* raise DTR */
OUTB(MCR, DTR|RTS|OUT2);
/*
* Call the modem status interrupt handler to check for the carrier
* in case CLOCAL was turned off after the carrier came on.
* (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
*/
async_msint(asy);
/* Set interrupt control */
if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
/*
* direct-wired line ignores DCD, so we don't enable modem
* status interrupts.
*/
icr = (TIEN | SIEN);
else
icr = (TIEN | SIEN | MIEN);
if (c_flag & CREAD)
icr |= RIEN;
OUTB(ICR, icr);
end:
return (error);
}
/*
* asyintr() is the High Level Interrupt Handler.
*
* There are four different interrupt types indexed by ISR register values:
* 0: modem
* 1: Tx holding register is empty, ready for next char
* 2: Rx register now holds a char to be picked up
* 3: error or break on line
* This routine checks the Bit 0 (interrupt-not-pending) to determine if
* the interrupt is from this port.
*/
uint_t
asyintr(caddr_t argasy)
{
struct asycom *asy = (struct asycom *)argasy;
struct asyncline *async;
int ret_status = DDI_INTR_UNCLAIMED;
uchar_t interrupt_id, lsr;
interrupt_id = INB(ISR) & 0x0F;
async = (struct asyncline *)asy->asy_priv;
if ((async == NULL) ||
!(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
if (interrupt_id & NOINTERRUPT) {
return (DDI_INTR_UNCLAIMED);
} else {
lsr = INB(LSR);
if ((lsr & BRKDET) &&
((abort_enable == KIOCABORTENABLE) &&
(async->async_dev == rconsdev)))
abort_sequence_enter((char *)NULL);
else {
/* reset line status */
(void) INB(LSR);
/* discard any data */
(void) INB(DAT);
/* reset modem status */
(void) INB(MSR);
return (DDI_INTR_CLAIMED);
}
}
}
/*
* Spurious interrupts happen in this driver
* because of the transmission on serial port not handled
* properly.
*
* The reasons for Spurious interrupts are:
* 1. There is a path in async_nstart which transmits
* characters without going through interrupt services routine
* which causes spurious interrupts to happen.
* 2. In the async_txint more than one character is sent
* in one interrupt service.
* 3. In async_rxint more than one characters are received in
* in one interrupt service.
*
* Hence we have flags to indicate that such scenerio has happened.
* and claim only such interrupts and others we donot claim it
* as it could be a indicator of some hardware problem.
*
*/
if (interrupt_id & NOINTERRUPT) {
mutex_enter(asy->asy_excl_hi);
if ((asy->asy_xmit_count > 1) ||
(asy->asy_out_of_band_xmit > 0) ||
(asy->asy_rx_count > 1)) {
asy->asy_xmit_count = 0;
asy->asy_out_of_band_xmit = 0;
asy->asy_rx_count = 0;
mutex_exit(asy->asy_excl_hi);
return (DDI_INTR_CLAIMED);
} else {
mutex_exit(asy->asy_excl_hi);
return (DDI_INTR_UNCLAIMED);
}
}
ret_status = DDI_INTR_CLAIMED;
mutex_enter(asy->asy_excl_hi);
if (asy->asy_hwtype == ASY82510)
OUTB(ISR, 0x00); /* set bank 0 */
#ifdef DEBUG
if (asydebug & ASY_DEBUG_INTR)
prom_printf("l");
#endif
lsr = INB(LSR);
switch (interrupt_id) {
case RxRDY:
case RSTATUS:
case FFTMOUT:
/* receiver interrupt or receiver errors */
async_rxint(asy, lsr);
break;
case TxRDY:
/* transmit interrupt */
async_txint(asy, lsr);
break;
case MSTATUS:
/* modem status interrupt */
async_msint(asy);
break;
}
mutex_exit(asy->asy_excl_hi);
return (ret_status);
}
/*
* Transmitter interrupt service routine.
* If there is more data to transmit in the current pseudo-DMA block,
* send the next character if output is not stopped or draining.
* Otherwise, queue up a soft interrupt.
*
* XXX - Needs review for HW FIFOs.
*/
static void
async_txint(struct asycom *asy, uchar_t lsr)
{
struct asyncline *async = (struct asyncline *)asy->asy_priv;
int fifo_len;
int xmit_progress;
asycheckflowcontrol_hw(asy);
/*
* If ASYNC_BREAK has been set, return to asyintr()'s context to
* claim the interrupt without performing any action.
*/
if (async->async_flags & ASYNC_BREAK)
return;
fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
/*
* Check for flow control and do the needed action.
*/
if (asycheckflowcontrol_sw(asy)) {
return;
}
if (async->async_ocnt > 0 &&
!(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED))) {
xmit_progress = 0;
while (fifo_len > 0 && async->async_ocnt > 0) {
if (lsr & XHRE) {
OUTB(DAT, *async->async_optr++);
fifo_len--;
async->async_ocnt--;
xmit_progress++;
}
/*
* Reading the lsr, (moved reading at the end of
* while loop) as already we have read once at
* the beginning of interrupt service
*/
lsr = INB(LSR);
}
asy->asy_xmit_count = xmit_progress;
if (xmit_progress > 0)
async->async_flags |= ASYNC_PROGRESS;
}
if (fifo_len == 0) {
return;
}
ASYSETSOFT(asy);
}
/*
* Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
* error interrupt.
* Try to put the character into the circular buffer for this line; if it
* overflows, indicate a circular buffer overrun. If this port is always
* to be serviced immediately, or the character is a STOP character, or
* more than 15 characters have arrived, queue up a soft interrupt to
* drain the circular buffer.
* XXX - needs review for hw FIFOs support.
*/
static void
async_rxint(struct asycom *asy, uchar_t lsr)
{
struct asyncline *async = (struct asyncline *)asy->asy_priv;
uchar_t c = 0;
uint_t s = 0, needsoft = 0;
register tty_common_t *tp;
tp = &async->async_ttycommon;
if (!(tp->t_cflag & CREAD)) {
if (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
(void) (INB(DAT) & 0xff);
}
return; /* line is not open for read? */
}
asy->asy_rx_count = 0;
while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
c = 0;
s = 0;
asy->asy_rx_count++;
if (lsr & RCA) {
c = INB(DAT) & 0xff;
/*
* Even a single character is received
* we need Soft interrupt to pass it to
* higher layers.
*/
needsoft = 1;
}
/* Check for character break sequence */
if ((abort_enable == KIOCABORTALTERNATE) &&
(async->async_dev == rconsdev)) {
if (abort_charseq_recognize(c))
abort_sequence_enter((char *)NULL);
}
/* Handle framing errors */
if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
if (lsr & PARERR) {
if (tp->t_iflag & INPCK) /* parity enabled */
s |= PERROR;
}
if (lsr & (FRMERR|BRKDET))
s |= FRERROR;
if (lsr & OVRRUN) {
async->async_hw_overrun = 1;
s |= OVERRUN;
}
}
if (s == 0)
if ((tp->t_iflag & PARMRK) &&
!(tp->t_iflag & (IGNPAR|ISTRIP)) &&
(c == 0377))
if (RING_POK(async, 2)) {
RING_PUT(async, 0377);
RING_PUT(async, c);
} else
async->async_sw_overrun = 1;
else
if (RING_POK(async, 1))
RING_PUT(async, c);
else
async->async_sw_overrun = 1;
else
if (s & FRERROR) { /* Handle framing errors */
if (c == 0) {
/* Look for break on kbd, stdin, or rconsdev */
if ((async->async_dev == kbddev) ||
((async->async_dev == rconsdev) ||
(async->async_dev == stdindev)) &&
(abort_enable !=
KIOCABORTALTERNATE))
abort_sequence_enter((char *)0);
else
async->async_break++;
} else {
if (RING_POK(async, 1))
RING_MARK(async, c, s);
else
async->async_sw_overrun = 1;
}
} else { /* Parity errors handled by ldterm */
if (RING_POK(async, 1))
RING_MARK(async, c, s);
else
async->async_sw_overrun = 1;
}
lsr = INB(LSR);
if (asy->asy_rx_count > 16) break;
}
/* Check whether there is a request for hw/sw inbound/input flow ctrl */
if ((async->async_ttycommon.t_cflag & CRTSXOFF) ||
(async->async_ttycommon.t_iflag & IXOFF))
if ((int)(RING_CNT(async)) > (RINGSIZE * 3)/4) {
#ifdef DEBUG
if (asydebug & ASY_DEBUG_HFLOW)
printf("asy%d: hardware flow stop input.\n",
UNIT(async->async_dev));
#endif
async->async_flags |= ASYNC_HW_IN_FLOW;
async->async_flowc = async->async_stopc;
async->async_ringbuf_overflow = 1;
}
if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
(RING_FRAC(async)) || (async->async_polltid == 0))
ASYSETSOFT(asy); /* need a soft interrupt */
}
/*
* Interrupt on port: handle PPS event. This function is only called
* for a port on which PPS event handling has been enabled.
*/
static void
asy_ppsevent(struct asycom *asy, int msr)
{
if (asy->asy_flags & ASY_PPS_EDGE) {
/* Have seen leading edge, now look for and record drop */
if ((msr & DCD) == 0)
asy->asy_flags &= ~ASY_PPS_EDGE;
/*
* Waiting for leading edge, look for rise; stamp event and
* calibrate kernel clock.
*/
} else if (msr & DCD) {
/*
* This code captures a timestamp at the designated
* transition of the PPS signal (DCD asserted). The
* code provides a pointer to the timestamp, as well
* as the hardware counter value at the capture.
*
* Note: the kernel has nano based time values while
* NTP requires micro based, an in-line fast algorithm
* to convert nsec to usec is used here -- see hrt2ts()
* in common/os/timers.c for a full description.
*/
struct timeval *tvp = &asy_ppsev.tv;
timestruc_t ts;
long nsec, usec;
asy->asy_flags |= ASY_PPS_EDGE;
gethrestime(&ts);
nsec = ts.tv_nsec;
usec = nsec + (nsec >> 2);
usec = nsec + (usec >> 1);
usec = nsec + (usec >> 2);
usec = nsec + (usec >> 4);
usec = nsec - (usec >> 3);
usec = nsec + (usec >> 2);
usec = nsec + (usec >> 3);
usec = nsec + (usec >> 4);
usec = nsec + (usec >> 1);
usec = nsec + (usec >> 6);
tvp->tv_usec = usec >> 10;
tvp->tv_sec = ts.tv_sec;
++asy_ppsev.serial;
/*
* Because the kernel keeps a high-resolution time,
* pass the current highres timestamp in tvp and zero
* in usec.
*/
ddi_hardpps(tvp, 0);
}
}
/*
* Modem status interrupt.
*
* (Note: It is assumed that the MSR hasn't been read by asyintr().)
*/
static void
async_msint(struct asycom *asy)
{
struct asyncline *async = (struct asyncline *)asy->asy_priv;
int msr;
msr = INB(MSR); /* this resets the interrupt */
asy->asy_cached_msr = msr;
#ifdef DEBUG
if (asydebug & ASY_DEBUG_STATE) {
printf(" transition: %3s %3s %3s %3s\n"
"current state: %3s %3s %3s %3s\n",
(msr & DCTS) ? "CTS" : " ",
(msr & DDSR) ? "DSR" : " ",
(msr & DRI) ? "RI " : " ",
(msr & DDCD) ? "DCD" : " ",
(msr & CTS) ? "CTS" : " ",
(msr & DSR) ? "DSR" : " ",
(msr & RI) ? "RI " : " ",
(msr & DCD) ? "DCD" : " ");
}
#endif
if (async->async_ttycommon.t_cflag & CRTSCTS && !(msr & CTS)) {
#ifdef DEBUG
if (asydebug & ASY_DEBUG_HFLOW)
printf("asy%d: hflow start\n",
UNIT(async->async_dev));
#endif
async->async_flags |= ASYNC_HW_OUT_FLW;
}
if (asy->asy_hwtype == ASY82510)
OUTB(MSR, (msr & 0xF0));
/* Handle PPS event */
if (asy->asy_flags & ASY_PPS)
asy_ppsevent(asy, msr);
async->async_ext++;
ASYSETSOFT(asy);
}
/*
* Handle a second-stage interrupt.
*/
uint_t
asysoftintr(caddr_t intarg)
{
struct asycom *asy = (struct asycom *)intarg;
struct asyncline *async;
int rv;
int cc;
/*
* Test and clear soft interrupt.
*/
mutex_enter(asy->asy_soft_lock);
#ifdef DEBUG
if (asydebug & ASY_DEBUG_PROCS)
printf("softintr\n");
#endif
rv = asy->asysoftpend;
if (rv != 0)
asy->asysoftpend = 0;
mutex_exit(asy->asy_soft_lock);
if (rv) {
if (asy->asy_priv == NULL)
return (rv);
async = (struct asyncline *)asy->asy_priv;
mutex_enter(asy->asy_excl_hi);
if (asy->asy_flags & ASY_NEEDSOFT) {
asy->asy_flags &= ~ASY_NEEDSOFT;
mutex_exit(asy->asy_excl_hi);
(void) async_softint(asy);
mutex_enter(asy->asy_excl_hi);
}
/*
* There are some instances where the softintr is not
* scheduled and hence not called. It so happened that makes
* the last few characters to be stuck in ringbuffer.
* Hence, call once again the handler so that the last few
* characters are cleared.
*/
cc = RING_CNT(async);
mutex_exit(asy->asy_excl_hi);
if (cc > 0) {
(void) async_softint(asy);
}
}
return (rv);
}
/*
* Handle a software interrupt.
*/
static int
async_softint(struct asycom *asy)
{
struct asyncline *async = (struct asyncline *)asy->asy_priv;
uint_t cc;
mblk_t *bp;
queue_t *q;
uchar_t val;
uchar_t c;
tty_common_t *tp;
#ifdef DEBUG
if (asydebug & ASY_DEBUG_PROCS)
printf("process\n");
#endif
mutex_enter(asy->asy_excl);
if (asy->asy_flags & ASY_DOINGSOFT) {
mutex_exit(asy->asy_excl);
return (0);
}
tp = &async->async_ttycommon;
q = tp->t_readq;
if (q != NULL) {
mutex_exit(asy->asy_excl);
enterq(q);
mutex_enter(asy->asy_excl);
}
mutex_enter(asy->asy_excl_hi);
asy->asy_flags |= ASY_DOINGSOFT;
if (INB(ICR) & MIEN)
val = asy->asy_cached_msr & 0xFF;
else
val = INB(MSR) & 0xFF;
if (async->async_ttycommon.t_cflag & CRTSCTS) {
if ((val & CTS) && (async->async_flags & ASYNC_HW_OUT_FLW)) {
#ifdef DEBUG
if (asydebug & ASY_DEBUG_HFLOW)
printf("asy%d: hflow start\n",
UNIT(async->async_dev));
#endif
async->async_flags &= ~ASYNC_HW_OUT_FLW;
mutex_exit(asy->asy_excl_hi);
if (async->async_ocnt > 0) {
mutex_enter(asy->asy_excl_hi);
async_resume(async);
mutex_exit(asy->asy_excl_hi);
} else {
async_start(async);
}
mutex_enter(asy->asy_excl_hi);
}
}
if (async->async_ext) {
async->async_ext = 0;
/* check for carrier up */
if ((val & DCD) || (tp->t_flags & TS_SOFTCAR)) {
/* carrier present */
if ((async->async_flags & ASYNC_CARR_ON) == 0) {
async->async_flags |= ASYNC_CARR_ON;
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
if (async->async_flags & ASYNC_ISOPEN)
(void) putctl(q, M_UNHANGUP);
cv_broadcast(&async->async_flags_cv);
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
}
} else {
if ((async->async_flags & ASYNC_CARR_ON) &&
!(tp->t_cflag & CLOCAL)) {
int flushflag;
/*
* Carrier went away.
* Drop DTR, abort any output in
* progress, indicate that output is
* not stopped, and send a hangup
* notification upstream.
*
* If we're in the midst of close, then flush
* everything. Don't leave stale ioctls lying
* about.
*/
val = INB(MCR);
OUTB(MCR, (val & ~DTR));
flushflag = (async->async_flags &
ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
flushq(tp->t_writeq, flushflag);
if (async->async_xmitblk != NULL) {
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
}
if (async->async_flags & ASYNC_BUSY) {
async->async_ocnt = 0;
async->async_flags &= ~ASYNC_BUSY;
}
async->async_flags &= ~ASYNC_STOPPED;
if (async->async_flags & ASYNC_ISOPEN) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
(void) putctl(q, M_HANGUP);
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
}
}
async->async_flags &= ~ASYNC_CARR_ON;
mutex_exit(asy->asy_excl_hi);
cv_broadcast(&async->async_flags_cv);
mutex_enter(asy->asy_excl_hi);
}
}
/*
* If data has been added to the circular buffer, remove
* it from the buffer, and send it up the stream if there's
* somebody listening. Try to do it 16 bytes at a time. If we
* have more than 16 bytes to move, move 16 byte chunks and
* leave the rest for next time around (maybe it will grow).
*/
if (!(async->async_flags & ASYNC_ISOPEN)) {
RING_INIT(async);
goto rv;
}
if ((cc = RING_CNT(async)) == 0) {
goto rv;
}
mutex_exit(asy->asy_excl_hi);
if (!canput(q)) {
if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
#ifdef DEBUG
if (!(asydebug & ASY_DEBUG_HFLOW)) {
printf("asy%d: hflow stop input.\n",
UNIT(async->async_dev));
if (canputnext(q))
printf("asy%d: next queue is "
"ready\n",
UNIT(async->async_dev));
}
#endif
mutex_enter(asy->asy_excl_hi);
async->async_flags |= ASYNC_HW_IN_FLOW;
async->async_flowc = async->async_stopc;
} else mutex_enter(asy->asy_excl_hi);
goto rv;
}
if (async->async_ringbuf_overflow) {
if ((async->async_flags & ASYNC_HW_IN_FLOW) &&
((int)(RING_CNT(async)) < (RINGSIZE/4))) {
#ifdef DEBUG
if (asydebug & ASY_DEBUG_HFLOW)
printf("asy%d: hflow start input.\n",
UNIT(async->async_dev));
#endif
mutex_enter(asy->asy_excl_hi);
async->async_flags &= ~ASYNC_HW_IN_FLOW;
async->async_flowc = async->async_startc;
async->async_ringbuf_overflow = 0;
goto rv;
}
}
#ifdef DEBUG
if (asydebug & ASY_DEBUG_INPUT)
printf("asy%d: %d char(s) in queue.\n",
UNIT(async->async_dev), cc);
#endif
/*
* Before you pull the characters from the RING BUF
* Check whether you can put into the queue again
*/
if ((!canputnext(q)) || (!canput(q))) {
mutex_enter(asy->asy_excl_hi);
if ((async->async_flags & ASYNC_HW_IN_FLOW) == 0) {
async->async_flags |= ASYNC_HW_IN_FLOW;
async->async_flowc = async->async_stopc;
async->async_queue_full = 1;
}
goto rv;
}
mutex_enter(asy->asy_excl_hi);
if (async->async_queue_full) {
/*
* Last time the Stream queue didnot allow
* now it allows so, relax, the flow control
*/
if (async->async_flags & ASYNC_HW_IN_FLOW) {
async->async_flags &= ~ASYNC_HW_IN_FLOW;
async->async_queue_full = 0;
async->async_flowc = async->async_startc;
goto rv;
} else
async->async_queue_full = 0;
}
mutex_exit(asy->asy_excl_hi);
if (!(bp = allocb(cc, BPRI_MED))) {
ttycommon_qfull(&async->async_ttycommon, q);
mutex_enter(asy->asy_excl_hi);
goto rv;
}
mutex_enter(asy->asy_excl_hi);
do {
if (RING_ERR(async, S_ERRORS)) {
RING_UNMARK(async);
c = RING_GET(async);
break;
} else {
*bp->b_wptr++ = RING_GET(async);
}
} while (--cc);
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
if (bp->b_wptr > bp->b_rptr) {
if (!canputnext(q)) {
if (!canput(q)) {
/*
* Even after taking all precautions that
* Still we are unable to queue, then we
* cannot do anything, just drop the block
*/
cmn_err(CE_NOTE,
"su%d: local queue full\n",
UNIT(async->async_dev));
freemsg(bp);
mutex_enter(asy->asy_excl_hi);
if ((async->async_flags &
ASYNC_HW_IN_FLOW) == 0) {
async->async_flags |=
ASYNC_HW_IN_FLOW;
async->async_flowc =
async->async_stopc;
async->async_queue_full = 1;
}
mutex_exit(asy->asy_excl_hi);
} else {
(void) putq(q, bp);
}
} else {
putnext(q, bp);
}
} else {
freemsg(bp);
}
/*
* If we have a parity error, then send
* up an M_BREAK with the "bad"
* character as an argument. Let ldterm
* figure out what to do with the error.
*/
if (cc)
(void) putctl1(q, M_BREAK, c);
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
rv:
/*
* If a transmission has finished, indicate that it's finished,
* and start that line up again.
*/
if (async->async_break) {
async->async_break = 0;
if (async->async_flags & ASYNC_ISOPEN) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
(void) putctl(q, M_BREAK);
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
}
}
if ((async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) ||
async->async_queue_full) {
async->async_flags &= ~ASYNC_BUSY;
mutex_exit(asy->asy_excl_hi);
if (async->async_xmitblk)
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
if (async->async_flags & ASYNC_ISOPEN) {
asy->inperim = B_TRUE;
mutex_exit(asy->asy_excl);
enterq(async->async_ttycommon.t_writeq);
mutex_enter(asy->asy_excl);
}
async_start(async);
/*
* We need to check for inperim and ISOPEN due to
* multi-threading implications; it's possible to close the
* port and nullify async_flags while completing the software
* interrupt. If the port is closed, leaveq() will have already
* been called. We don't want to call it twice.
*/
if ((asy->inperim) && (async->async_flags & ASYNC_ISOPEN)) {
mutex_exit(asy->asy_excl);
leaveq(async->async_ttycommon.t_writeq);
mutex_enter(asy->asy_excl);
asy->inperim = B_FALSE;
}
if (!(async->async_flags & ASYNC_BUSY))
cv_broadcast(&async->async_flags_cv);
mutex_enter(asy->asy_excl_hi);
}
/*
* A note about these overrun bits: all they do is *tell* someone
* about an error- They do not track multiple errors. In fact,
* you could consider them latched register bits if you like.
* We are only interested in printing the error message once for
* any cluster of overrun errrors.
*/
if (async->async_hw_overrun) {
if (async->async_flags & ASYNC_ISOPEN) {
if (su_log > 0) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
cmn_err(CE_NOTE, "su%d: silo overflow\n",
UNIT(async->async_dev));
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
}
INC64_KSTAT(asy, siloover);
}
async->async_hw_overrun = 0;
}
if (async->async_sw_overrun) {
if (async->async_flags & ASYNC_ISOPEN) {
if (su_log > 0) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
cmn_err(CE_NOTE, "su%d: ring buffer overflow\n",
UNIT(async->async_dev));
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
}
INC64_KSTAT(asy, ringover);
}
async->async_sw_overrun = 0;
}
asy->asy_flags &= ~ASY_DOINGSOFT;
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
if (q != NULL)
leaveq(q);
return (0);
}
/*
* Restart output on a line after a delay or break timer expired.
*/
static void
async_restart(void *arg)
{
struct asyncline *async = arg;
struct asycom *asy = async->async_common;
queue_t *q;
uchar_t lcr;
/*
* If break timer expired, turn off the break bit.
*/
#ifdef DEBUG
if (asydebug & ASY_DEBUG_PROCS)
printf("restart\n");
#endif
mutex_enter(asy->asy_excl);
if (async->async_flags & ASYNC_BREAK) {
mutex_enter(asy->asy_excl_hi);
lcr = INB(LCR);
OUTB(LCR, (lcr & ~SETBREAK));
mutex_exit(asy->asy_excl_hi);
}
async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK|ASYNC_DRAINING);
if ((q = async->async_ttycommon.t_writeq) != NULL) {
mutex_exit(asy->asy_excl);
enterq(q);
mutex_enter(asy->asy_excl);
}
async_start(async);
mutex_exit(asy->asy_excl);
if (q != NULL)
leaveq(q);
/* cleared break or delay flag; may have made some output progress */
cv_broadcast(&async->async_flags_cv);
}
static void
async_start(struct asyncline *async)
{
async_nstart(async, 0);
}
/*
* Start output on a line, unless it's busy, frozen, or otherwise.
*/
static void
async_nstart(struct asyncline *async, int mode)
{
register struct asycom *asy = async->async_common;
register int cc;
register queue_t *q;
mblk_t *bp, *nbp;
uchar_t *xmit_addr;
uchar_t val;
int fifo_len = 1;
int xmit_progress;
#ifdef DEBUG
if (asydebug & ASY_DEBUG_PROCS)
printf("start\n");
#endif
if (asy->asy_use_fifo == FIFO_ON)
fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
ASSERT(mutex_owned(asy->asy_excl));
mutex_enter(asy->asy_excl_hi);
asycheckflowcontrol_hw(asy);
/*
* If the chip is busy (i.e., we're waiting for a break timeout
* to expire, or for the current transmission to finish, or for
* output to finish draining from chip), don't grab anything new.
*/
if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY|ASYNC_DRAINING)) {
mutex_exit(asy->asy_excl_hi);
#ifdef DEBUG
if (mode && asydebug & ASY_DEBUG_CLOSE)
printf("asy%d: start %s.\n",
UNIT(async->async_dev),
async->async_flags & ASYNC_BREAK
? "break" : "busy");
#endif
return;
}
/*
* If we have a flow-control character to transmit, do it now.
*/
if (asycheckflowcontrol_sw(asy)) {
mutex_exit(asy->asy_excl_hi);
return;
}
mutex_exit(asy->asy_excl_hi);
/*
* If we're waiting for a delay timeout to expire, don't grab
* anything new.
*/
if (async->async_flags & ASYNC_DELAY) {
#ifdef DEBUG
if (mode && asydebug & ASY_DEBUG_CLOSE)
printf("asy%d: start ASYNC_DELAY.\n",
UNIT(async->async_dev));
#endif
return;
}
if ((q = async->async_ttycommon.t_writeq) == NULL) {
#ifdef DEBUG
if (mode && asydebug & ASY_DEBUG_CLOSE)
printf("asy%d: start writeq is null.\n",
UNIT(async->async_dev));
#endif
return; /* not attached to a stream */
}
for (;;) {
if ((bp = getq(q)) == NULL)
return; /* no data to transmit */
/*
* We have a message block to work on.
* Check whether it's a break, a delay, or an ioctl (the latter
* occurs if the ioctl in question was waiting for the output
* to drain). If it's one of those, process it immediately.
*/
switch (bp->b_datap->db_type) {
case M_BREAK:
/*
* Set the break bit, and arrange for "async_restart"
* to be called in 1/4 second; it will turn the
* break bit off, and call "async_start" to grab
* the next message.
*/
mutex_enter(asy->asy_excl_hi);
val = INB(LCR);
OUTB(LCR, (val | SETBREAK));
mutex_exit(asy->asy_excl_hi);
async->async_flags |= ASYNC_BREAK;
(void) timeout(async_restart, async, hz / 4);
freemsg(bp);
return; /* wait for this to finish */
case M_DELAY:
/*
* Arrange for "async_restart" to be called when the
* delay expires; it will turn ASYNC_DELAY off,
* and call "async_start" to grab the next message.
*/
(void) timeout(async_restart, async,
(clock_t)(*(unsigned char *)bp->b_rptr + 6));
async->async_flags |= ASYNC_DELAY;
freemsg(bp);
return; /* wait for this to finish */
case M_IOCTL:
/*
* This ioctl needs to wait for the output ahead of
* it to drain. Try to do it, and then either
* redo the ioctl at a later time or grab the next
* message after it.
*/
mutex_enter(asy->asy_excl_hi);
if (asy_isbusy(asy)) {
/*
* Get the divisor by calculating the rate
*/
unsigned int rate;
mutex_exit(asy->asy_excl_hi);
rate = async->async_ttycommon.t_cflag & CBAUD;
if (async->async_ttycommon.t_cflag & CBAUDEXT)
rate += 16;
if (rate >= N_SU_SPEEDS || rate == B0) {
rate = B9600;
}
/*
* We need to do a callback as the port will
* be set to drain
*/
async->async_flags |= ASYNC_DRAINING;
/*
* Put the message we just processed back onto
* the end of the queue
*/
if (putq(q, bp) == 0)
freemsg(bp);
/*
* We need to delay until the TSR and THR
* have been exhausted. We base the delay on
* the amount of time it takes to transmit
* 2 chars at the current baud rate in
* microseconds.
*
* Therefore, the wait period is:
*
* (#TSR bits + #THR bits) *
* 1 MICROSEC / baud rate
*/
(void) timeout(async_restart, async,
drv_usectohz(16 * MICROSEC /
baudtable[rate]));
return;
}
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
async_ioctl(async, q, bp, B_FALSE);
mutex_enter(asy->asy_excl);
continue;
}
while (bp != NULL && (cc = bp->b_wptr - bp->b_rptr) == 0) {
nbp = bp->b_cont;
freeb(bp);
bp = nbp;
}
if (bp != NULL)
break;
}
/*
* We have data to transmit. If output is stopped, put
* it back and try again later.
*/
if (async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_STOPPED)) {
#ifdef DEBUG
if (asydebug & ASY_DEBUG_HFLOW &&
async->async_flags & ASYNC_HW_OUT_FLW)
printf("asy%d: output hflow in effect.\n",
UNIT(async->async_dev));
#endif
mutex_exit(asy->asy_excl);
(void) putbq(q, bp);
/*
* We entered the routine owning the lock, we need to
* exit the routine owning the lock.
*/
mutex_enter(asy->asy_excl);
return;
}
async->async_xmitblk = bp;
xmit_addr = bp->b_rptr;
bp = bp->b_cont;
if (bp != NULL) {
mutex_exit(asy->asy_excl);
(void) putbq(q, bp); /* not done with this message yet */
mutex_enter(asy->asy_excl);
}
/*
* In 5-bit mode, the high order bits are used
* to indicate character sizes less than five,
* so we need to explicitly mask before transmitting
*/
if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
register unsigned char *p = xmit_addr;
register int cnt = cc;
while (cnt--)
*p++ &= (unsigned char) 0x1f;
}
/*
* Set up this block for pseudo-DMA.
*/
mutex_enter(asy->asy_excl_hi);
async->async_optr = xmit_addr;
async->async_ocnt = cc;
/*
* If the transmitter is ready, shove some
* characters out.
*/
xmit_progress = 0;
while (fifo_len-- && async->async_ocnt) {
if (INB(LSR) & XHRE) {
OUTB(DAT, *async->async_optr++);
async->async_ocnt--;
xmit_progress++;
}
}
asy->asy_out_of_band_xmit = xmit_progress;
if (xmit_progress > 0)
async->async_flags |= ASYNC_PROGRESS;
async->async_flags |= ASYNC_BUSY;
mutex_exit(asy->asy_excl_hi);
}
/*
* Resume output by poking the transmitter.
*/
static void
async_resume(struct asyncline *async)
{
register struct asycom *asy = async->async_common;
ASSERT(mutex_owned(asy->asy_excl_hi));
#ifdef DEBUG
if (asydebug & ASY_DEBUG_PROCS)
printf("resume\n");
#endif
asycheckflowcontrol_hw(asy);
if (INB(LSR) & XHRE) {
if (asycheckflowcontrol_sw(asy)) {
return;
} else if (async->async_ocnt > 0) {
OUTB(DAT, *async->async_optr++);
async->async_ocnt--;
async->async_flags |= ASYNC_PROGRESS;
}
}
}
/*
* Process an "ioctl" message sent down to us.
* Note that we don't need to get any locks until we are ready to access
* the hardware. Nothing we access until then is going to be altered
* outside of the STREAMS framework, so we should be safe.
*/
static void
async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp, boolean_t iswput)
{
register struct asycom *asy = async->async_common;
register tty_common_t *tp = &async->async_ttycommon;
register struct iocblk *iocp;
register unsigned datasize;
mblk_t *datamp;
int error = 0;
uchar_t val, icr;
#ifdef DEBUG
if (asydebug & ASY_DEBUG_PROCS)
printf("ioctl\n");
#endif
if (tp->t_iocpending != NULL) {
/*
* We were holding an "ioctl" response pending the
* availability of an "mblk" to hold data to be passed up;
* another "ioctl" came through, which means that "ioctl"
* must have timed out or been aborted.
*/
freemsg(async->async_ttycommon.t_iocpending);
async->async_ttycommon.t_iocpending = NULL;
}
iocp = (struct iocblk *)mp->b_rptr;
/*
* For TIOCMGET, TIOCMBIC, TIOCMBIS, TIOCMSET, and PPS, do NOT call
* ttycommon_ioctl() because this function frees up the message block
* (mp->b_cont) that contains the address of the user variable where
* we need to pass back the bit array.
*/
if (iocp->ioc_cmd == TIOCMGET ||
iocp->ioc_cmd == TIOCMBIC ||
iocp->ioc_cmd == TIOCMBIS ||
iocp->ioc_cmd == TIOCMSET ||
iocp->ioc_cmd == TIOCGPPS ||
iocp->ioc_cmd == TIOCSPPS ||
iocp->ioc_cmd == TIOCGPPSEV)
error = -1; /* Do Nothing */
else
/*
* The only way in which "ttycommon_ioctl" can fail is if the "ioctl"
* requires a response containing data to be returned to the user,
* and no mblk could be allocated for the data.
* No such "ioctl" alters our state. Thus, we always go ahead and
* do any state-changes the "ioctl" calls for. If we couldn't allocate
* the data, "ttycommon_ioctl" has stashed the "ioctl" away safely, so
* we just call "bufcall" to request that we be called back when we
* stand a better chance of allocating the data.
*/
if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
if (async->async_wbufcid)
unbufcall(async->async_wbufcid);
async->async_wbufcid = bufcall(datasize, BPRI_HI, async_reioctl,
async);
return;
}
mutex_enter(asy->asy_excl);
if (error == 0) {
/*
* "ttycommon_ioctl" did most of the work; we just use the
* data it set up.
*/
switch (iocp->ioc_cmd) {
case TCSETS:
if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
asy->asy_lom_console)) {
mutex_enter(asy->asy_excl_hi);
error = asy_program(asy, ASY_NOINIT);
mutex_exit(asy->asy_excl_hi);
}
break;
case TCSETSF:
case TCSETSW:
case TCSETA:
case TCSETAW:
case TCSETAF:
if (!(asy->asy_rsc_console || asy->asy_rsc_control ||
asy->asy_lom_console)) {
mutex_enter(asy->asy_excl_hi);
if (iswput && asy_isbusy(asy)) {
if (putq(wq, mp) == 0)
freemsg(mp);
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return;
}
error = asy_program(asy, ASY_NOINIT);
mutex_exit(asy->asy_excl_hi);
}
break;
case TIOCSSOFTCAR:
/* Set the driver state appropriately */
mutex_enter(asy->asy_excl_hi);
if (tp->t_flags & TS_SOFTCAR)
asy->asy_flags |= ASY_IGNORE_CD;
else
asy->asy_flags &= ~ASY_IGNORE_CD;
mutex_exit(asy->asy_excl_hi);
break;
}
} else if (error < 0) {
/*
* "ttycommon_ioctl" didn't do anything; we process it here.
*/
error = 0;
switch (iocp->ioc_cmd) {
case TIOCGPPS:
/*
* Get PPS on/off.
*/
if (mp->b_cont != NULL)
freemsg(mp->b_cont);
mp->b_cont = allocb(sizeof (int), BPRI_HI);
if (mp->b_cont == NULL) {
error = ENOMEM;
break;
}
if (asy->asy_flags & ASY_PPS)
*(int *)mp->b_cont->b_wptr = 1;
else
*(int *)mp->b_cont->b_wptr = 0;
mp->b_cont->b_wptr += sizeof (int);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (int);
break;
case TIOCSPPS:
/*
* Set PPS on/off.
*/
error = miocpullup(mp, sizeof (int));
if (error != 0)
break;
mutex_enter(asy->asy_excl_hi);
if (*(int *)mp->b_cont->b_rptr)
asy->asy_flags |= ASY_PPS;
else
asy->asy_flags &= ~ASY_PPS;
/* Reset edge sense */
asy->asy_flags &= ~ASY_PPS_EDGE;
mutex_exit(asy->asy_excl_hi);
mp->b_datap->db_type = M_IOCACK;
break;
case TIOCGPPSEV: {
/*
* Get PPS event data.
*/
mblk_t *bp;
void *buf;
#ifdef _SYSCALL32_IMPL
struct ppsclockev32 p32;
#endif
struct ppsclockev ppsclockev;
if (mp->b_cont != NULL) {
freemsg(mp->b_cont);
mp->b_cont = NULL;
}
if ((asy->asy_flags & ASY_PPS) == 0) {
error = ENXIO;
break;
}
/* Protect from incomplete asy_ppsev */
mutex_enter(asy->asy_excl_hi);
ppsclockev = asy_ppsev;
mutex_exit(asy->asy_excl_hi);
#ifdef _SYSCALL32_IMPL
if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
p32.serial = ppsclockev.serial;
buf = &p32;
iocp->ioc_count = sizeof (struct ppsclockev32);
} else
#endif
{
buf = &ppsclockev;
iocp->ioc_count = sizeof (struct ppsclockev);
}
if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
error = ENOMEM;
break;
}
mp->b_cont = bp;
bcopy(buf, bp->b_wptr, iocp->ioc_count);
bp->b_wptr += iocp->ioc_count;
mp->b_datap->db_type = M_IOCACK;
break;
}
case TCSBRK:
error = miocpullup(mp, sizeof (int));
if (error != 0)
break;
mutex_enter(asy->asy_excl_hi);
if (*(int *)mp->b_cont->b_rptr == 0) {
/*
* Get the divisor by calculating the rate
*/
unsigned int rate, divisor;
rate = async->async_ttycommon.t_cflag & CBAUD;
if (async->async_ttycommon.t_cflag & CBAUDEXT)
rate += 16;
if (rate >= N_SU_SPEEDS) rate = B9600;
divisor = asyspdtab[rate] & 0xfff;
/*
* To ensure that erroneous characters are
* not sent out when the break is set, SB
* recommends three steps:
*
* 1) pad the TSR with 0 bits
* 2) When the TSR is full, set break
* 3) When the TSR has been flushed, unset
* the break when transmission must be
* restored.
*
* We loop until the TSR is empty and then
* set the break. ASYNC_BREAK has been set
* to ensure that no characters are
* transmitted while the TSR is being
* flushed and SOUT is being used for the
* break signal.
*
* The wait period is equal to
* clock / (baud * 16) * 16 * 2.
*/
async->async_flags |= ASYNC_BREAK;
while ((INB(LSR) & XSRE) == 0) {
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
drv_usecwait(32*divisor);
mutex_enter(asy->asy_excl);
mutex_enter(asy->asy_excl_hi);
}
/*
* Set the break bit, and arrange for
* "async_restart" to be called in 1/4 second;
* it will turn the break bit off, and call
* "async_start" to grab the next message.
*/
val = INB(LCR);
OUTB(LCR, (val | SETBREAK));
mutex_exit(asy->asy_excl_hi);
(void) timeout(async_restart, async, hz / 4);
} else {
#ifdef DEBUG
if (asydebug & ASY_DEBUG_CLOSE)
printf("asy%d: wait for flush.\n",
UNIT(async->async_dev));
#endif
if (iswput && asy_isbusy(asy)) {
if (putq(wq, mp) == 0)
freemsg(mp);
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
return;
}
mutex_exit(asy->asy_excl_hi);
#ifdef DEBUG
if (asydebug & ASY_DEBUG_CLOSE)
printf("asy%d: ldterm satisfied.\n",
UNIT(async->async_dev));
#endif
}
break;
case TIOCSBRK:
mutex_enter(asy->asy_excl_hi);
val = INB(LCR);
OUTB(LCR, (val | SETBREAK));
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
miocack(wq, mp, 0, 0);
return;
case TIOCCBRK:
mutex_enter(asy->asy_excl_hi);
val = INB(LCR);
OUTB(LCR, (val & ~SETBREAK));
mutex_exit(asy->asy_excl_hi);
mutex_exit(asy->asy_excl);
miocack(wq, mp, 0, 0);
return;
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
if (iocp->ioc_count == TRANSPARENT)
mcopyin(mp, NULL, sizeof (int), NULL);
else {
error = miocpullup(mp, sizeof (int));
if (error != 0)
break;
mutex_enter(asy->asy_excl_hi);
(void) asymctl(asy,
dmtoasy(*(int *)mp->b_cont->b_rptr),
iocp->ioc_cmd);
mutex_exit(asy->asy_excl_hi);
iocp->ioc_error = 0;
mp->b_datap->db_type = M_IOCACK;
}
break;
case TIOCSILOOP:
mutex_enter(asy->asy_excl_hi);
/*
* If somebody misues this Ioctl when used for
* driving keyboard and mouse indicate not supported
*/
if ((asy->asy_device_type == ASY_KEYBOARD) ||
(asy->asy_device_type == ASY_MOUSE)) {
mutex_exit(asy->asy_excl_hi);
error = ENOTTY;
break;
}
/* should not use when we're the console */
if ((async->async_dev == kbddev) ||
(async->async_dev == rconsdev) ||
(async->async_dev == stdindev)) {
mutex_exit(asy->asy_excl_hi);
error = EINVAL;
break;
}
val = INB(MCR);
icr = INB(ICR);
/*
* Disable the Modem Status Interrupt
* The reason for disabling is the status of
* modem signal are in the higher 4 bits instead of
* lower four bits when in loopback mode,
* so, donot worry about Modem interrupt when
* you are planning to set
* this in loopback mode until it is cleared by
* another ioctl to get out of the loopback mode
*/
OUTB(ICR, icr & ~ MIEN);
OUTB(MCR, val | ASY_LOOP);
mutex_exit(asy->asy_excl_hi);
iocp->ioc_error = 0;
mp->b_datap->db_type = M_IOCACK;
break;
case TIOCMGET:
datamp = allocb(sizeof (int), BPRI_MED);
if (datamp == NULL) {
error = EAGAIN;
break;
}
mutex_enter(asy->asy_excl_hi);
*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
mutex_exit(asy->asy_excl_hi);
if (iocp->ioc_count == TRANSPARENT) {
mcopyout(mp, NULL, sizeof (int), NULL, datamp);
} else {
if (mp->b_cont != NULL)
freemsg(mp->b_cont);
mp->b_cont = datamp;
mp->b_cont->b_wptr += sizeof (int);
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = sizeof (int);
}
break;
default: /* unexpected ioctl type */
/*
* If we don't understand it, it's an error. NAK it.
*/
error = EINVAL;
break;
}
}
if (error != 0) {
iocp->ioc_error = error;
mp->b_datap->db_type = M_IOCNAK;
}
mutex_exit(asy->asy_excl);
qreply(wq, mp);
}
static void
asyrsrv(queue_t *q)
{
mblk_t *bp;
struct asyncline *async;
async = (struct asyncline *)q->q_ptr;
while (canputnext(q) && (bp = getq(q)))
putnext(q, bp);
ASYSETSOFT(async->async_common);
async->async_polltid = 0;
}
/*
* Put procedure for write queue.
* Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
* set the flow control character for M_STOPI and M_STARTI messages;
* queue up M_BREAK, M_DELAY, and M_DATA messages for processing
* by the start routine, and then call the start routine; discard
* everything else. Note that this driver does not incorporate any
* mechanism to negotiate to handle the canonicalization process.
* It expects that these functions are handled in upper module(s),
* as we do in ldterm.
*/
static void
asywput(queue_t *q, mblk_t *mp)
{
register struct asyncline *async;
register struct asycom *asy;
int error;
async = (struct asyncline *)q->q_ptr;
asy = async->async_common;
switch (mp->b_datap->db_type) {
case M_STOP:
/*
* Since we don't do real DMA, we can just let the
* chip coast to a stop after applying the brakes.
*/
mutex_enter(asy->asy_excl);
async->async_flags |= ASYNC_STOPPED;
mutex_exit(asy->asy_excl);
freemsg(mp);
break;
case M_START:
mutex_enter(asy->asy_excl);
if (async->async_flags & ASYNC_STOPPED) {
async->async_flags &= ~ASYNC_STOPPED;
/*
* If an output operation is in progress,
* resume it. Otherwise, prod the start
* routine.
*/
if (async->async_ocnt > 0) {
mutex_enter(asy->asy_excl_hi);
async_resume(async);
mutex_exit(asy->asy_excl_hi);
} else {
async_start(async);
}
}
mutex_exit(asy->asy_excl);
freemsg(mp);
break;
case M_IOCTL:
switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
case TCSBRK:
error = miocpullup(mp, sizeof (int));
if (error != 0) {
miocnak(q, mp, 0, error);
return;
}
if (*(int *)mp->b_cont->b_rptr != 0) {
#ifdef DEBUG
if (asydebug & ASY_DEBUG_CLOSE)
printf("asy%d: flush request.\n",
UNIT(async->async_dev));
#endif
(void) putq(q, mp);
mutex_enter(asy->asy_excl);
async_nstart(async, 1);
mutex_exit(asy->asy_excl);
break;
}
/*FALLTHROUGH*/
case TCSETSW:
case TCSETSF:
case TCSETAW:
case TCSETAF:
/*
* The changes do not take effect until all
* output queued before them is drained.
* Put this message on the queue, so that
* "async_start" will see it when it's done
* with the output before it. Poke the
* start routine, just in case.
*/
(void) putq(q, mp);
mutex_enter(asy->asy_excl);
async_start(async);
mutex_exit(asy->asy_excl);
break;
default:
/*
* Do it now.
*/
async_ioctl(async, q, mp, B_TRUE);
break;
}
break;
case M_FLUSH:
if (*mp->b_rptr & FLUSHW) {
mutex_enter(asy->asy_excl);
/*
* Abort any output in progress.
*/
mutex_enter(asy->asy_excl_hi);
if (async->async_flags & ASYNC_BUSY) {
async->async_ocnt = 0;
async->async_flags &= ~ASYNC_BUSY;
}
mutex_exit(asy->asy_excl_hi);
/* Flush FIFO buffers */
if (asy->asy_use_fifo == FIFO_ON) {
OUTB(FIFOR, FIFO_ON | FIFODMA | FIFOTXFLSH |
(asy->asy_trig_level & 0xff));
}
/*
* Flush our write queue.
*/
flushq(q, FLUSHDATA); /* XXX doesn't flush M_DELAY */
if (async->async_xmitblk != NULL) {
freeb(async->async_xmitblk);
async->async_xmitblk = NULL;
}
mutex_exit(asy->asy_excl);
*mp->b_rptr &= ~FLUSHW; /* it has been flushed */
}
if (*mp->b_rptr & FLUSHR) {
/* Flush FIFO buffers */
if (asy->asy_use_fifo == FIFO_ON) {
OUTB(FIFOR, FIFO_ON | FIFODMA | FIFORXFLSH |
(asy->asy_trig_level & 0xff));
}
flushq(RD(q), FLUSHDATA);
qreply(q, mp); /* give the read queues a crack at it */
} else {
freemsg(mp);
}
/*
* We must make sure we process messages that survive the
* write-side flush. Without this call, the close protocol
* with ldterm can hang forever. (ldterm will have sent us a
* TCSBRK ioctl that it expects a response to.)
*/
mutex_enter(asy->asy_excl);
async_start(async);
mutex_exit(asy->asy_excl);
break;
case M_BREAK:
case M_DELAY:
case M_DATA:
/*
* Queue the message up to be transmitted,
* and poke the start routine.
*/
(void) putq(q, mp);
mutex_enter(asy->asy_excl);
async_start(async);
mutex_exit(asy->asy_excl);
break;
case M_STOPI:
mutex_enter(asy->asy_excl);
async->async_flowc = async->async_stopc;
async_start(async); /* poke the start routine */
mutex_exit(asy->asy_excl);
freemsg(mp);
break;
case M_STARTI:
mutex_enter(asy->asy_excl);
async->async_flowc = async->async_startc;
async_start(async); /* poke the start routine */
mutex_exit(asy->asy_excl);
freemsg(mp);
break;
case M_CTL:
if (MBLKL(mp) >= sizeof (struct iocblk) &&
((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX;
qreply(q, mp);
} else {
/*
* These MC_SERVICE type messages are used by upper
* modules to tell this driver to send input up
* immediately, or that it can wait for normal
* processing that may or may not be done. Sun
* requires these for the mouse module.
* (XXX - for x86?)
*/
mutex_enter(asy->asy_excl);
switch (*mp->b_rptr) {
case MC_SERVICEIMM:
async->async_flags |= ASYNC_SERVICEIMM;
break;
case MC_SERVICEDEF:
async->async_flags &= ~ASYNC_SERVICEIMM;
break;
}
mutex_exit(asy->asy_excl);
freemsg(mp);
}
break;
case M_IOCDATA:
async_iocdata(q, mp);
break;
default:
freemsg(mp);
break;
}
}
/*
* Retry an "ioctl", now that "bufcall" claims we may be able to allocate
* the buffer we need.
*/
static void
async_reioctl(void *arg)
{
struct asyncline *async = arg;
struct asycom *asy = async->async_common;
queue_t *q;
mblk_t *mp;
/*
* The bufcall is no longer pending.
*/
mutex_enter(asy->asy_excl);
async->async_wbufcid = 0;
if ((q = async->async_ttycommon.t_writeq) == NULL) {
mutex_exit(asy->asy_excl);
return;
}
if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
/* not pending any more */
async->async_ttycommon.t_iocpending = NULL;
mutex_exit(asy->asy_excl);
/* not in STREAMS queue; we no longer know if we're in wput */
async_ioctl(async, q, mp, B_TRUE);
} else
mutex_exit(asy->asy_excl);
}
static void
async_iocdata(queue_t *q, mblk_t *mp)
{
struct asyncline *async = (struct asyncline *)q->q_ptr;
struct asycom *asy;
struct copyresp *csp;
asy = async->async_common;
csp = (struct copyresp *)mp->b_rptr;
if (csp->cp_rval != 0) {
freemsg(mp);
return;
}
mutex_enter(asy->asy_excl);
switch (csp->cp_cmd) {
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
if (mp->b_cont == NULL) {
mutex_exit(asy->asy_excl);
miocnak(q, mp, 0, EINVAL);
break;
}
mutex_enter(asy->asy_excl_hi);
(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
csp->cp_cmd);
mutex_exit(asy->asy_excl_hi);
freemsg(mp->b_cont);
mp->b_cont = NULL;
mutex_exit(asy->asy_excl);
miocack(q, mp, 0, 0);
break;
case TIOCMGET:
if (mp->b_cont != NULL) {
freemsg(mp->b_cont);
mp->b_cont = NULL;
}
mutex_exit(asy->asy_excl);
miocack(q, mp, 0, 0);
break;
default:
mutex_exit(asy->asy_excl);
miocnak(q, mp, 0, EINVAL);
break;
}
}
/*
* Set or get the modem control status.
*/
static int
asymctl(struct asycom *asy, int bits, int how)
{
register int mcr_r, msr_r;
ASSERT(mutex_owned(asy->asy_excl_hi));
ASSERT(mutex_owned(asy->asy_excl));
/* Read Modem Control Registers */
mcr_r = INB(MCR);
switch (how) {
case TIOCMSET:
mcr_r = bits;
break;
case TIOCMBIS:
mcr_r |= bits; /* Set bits from input */
break;
case TIOCMBIC:
mcr_r &= ~bits; /* Set ~bits from input */
break;
case TIOCMGET:
/* Read Modem Status Registers */
if (INB(ICR) & MIEN)
msr_r = asy->asy_cached_msr;
else
msr_r = INB(MSR);
return (asytodm(mcr_r, msr_r));
}
OUTB(MCR, mcr_r);
return (mcr_r);
}
static int
asytodm(int mcr_r, int msr_r)
{
register int b = 0;
/* MCR registers */
if (mcr_r & RTS)
b |= TIOCM_RTS;
if (mcr_r & DTR)
b |= TIOCM_DTR;
/* MSR registers */
if (msr_r & DCD)
b |= TIOCM_CAR;
if (msr_r & CTS)
b |= TIOCM_CTS;
if (msr_r & DSR)
b |= TIOCM_DSR;
if (msr_r & RI)
b |= TIOCM_RNG;
return (b);
}
static int
dmtoasy(int bits)
{
register int b = 0;
#ifdef CAN_NOT_SET /* only DTR and RTS can be set */
if (bits & TIOCM_CAR)
b |= DCD;
if (bits & TIOCM_CTS)
b |= CTS;
if (bits & TIOCM_DSR)
b |= DSR;
if (bits & TIOCM_RNG)
b |= RI;
#endif
if (bits & TIOCM_RTS)
b |= RTS;
if (bits & TIOCM_DTR)
b |= DTR;
return (b);
}
static void
asycheckflowcontrol_hw(struct asycom *asy)
{
struct asyncline *async;
uchar_t mcr, flag;
ASSERT(mutex_owned(asy->asy_excl_hi));
async = (struct asyncline *)asy->asy_priv;
ASSERT(async != NULL);
if (async->async_ttycommon.t_cflag & CRTSXOFF) {
mcr = INB(MCR);
flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
if (((mcr ^ flag) & RTS) != 0) {
OUTB(MCR, (mcr ^ RTS));
}
}
}
static boolean_t
asycheckflowcontrol_sw(struct asycom *asy)
{
uchar_t ss;
struct asyncline *async;
int rval = B_FALSE;
ASSERT(mutex_owned(asy->asy_excl_hi));
async = (struct asyncline *)asy->asy_priv;
ASSERT(async != NULL);
if ((ss = async->async_flowc) != '\0' && (INB(LSR) & XHRE)) {
/*
* If we get this far, then we know that flowc is non-zero and
* that there's transmit room available. We've "handled" the
* request now, so clear it. If the user didn't ask for IXOFF,
* then don't actually send anything, but wait for the next
* opportunity.
*/
async->async_flowc = '\0';
if (async->async_ttycommon.t_iflag & IXOFF) {
async->async_flags |= ASYNC_BUSY;
OUTB(DAT, ss);
rval = B_TRUE;
}
}
return (rval);
}
/*
* Check for abort character sequence
*/
static boolean_t
abort_charseq_recognize(uchar_t ch)
{
static int state = 0;
#define CNTRL(c) ((c)&037)
static char sequence[] = { '\r', '~', CNTRL('b') };
if (ch == sequence[state]) {
if (++state >= sizeof (sequence)) {
state = 0;
return (B_TRUE);
}
} else {
state = (ch == sequence[0]) ? 1 : 0;
}
return (B_FALSE);
}