/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* PCI Control Block object
*/
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/systm.h> /* timeout() */
#include <sys/async.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/pci/pci_obj.h>
#include <sys/machsystm.h>
#ifdef _STARFIRE
#include <sys/starfire.h>
#endif /* _STARFIRE */
/*LINTLIBRARY*/
void
cb_create(pci_t *pci_p)
{
cb_t *cb_p = (cb_t *)kmem_zalloc(sizeof (cb_t), KM_SLEEP);
mutex_init(&cb_p->cb_intr_lock, NULL, MUTEX_DRIVER, NULL);
pci_p->pci_cb_p = cb_p;
cb_p->cb_pci_cmn_p = pci_p->pci_common_p;
pci_cb_setup(pci_p);
}
void
cb_destroy(pci_t *pci_p)
{
cb_t *cb_p = pci_p->pci_cb_p;
intr_dist_rem(cb_intr_dist, cb_p);
pci_cb_teardown(pci_p);
pci_p->pci_cb_p = NULL;
mutex_destroy(&cb_p->cb_intr_lock);
kmem_free(cb_p, sizeof (cb_t));
}
static void
cb_set_nintr_reg(cb_t *cb_p, ib_ino_t ino, uint64_t value)
{
uint64_t pa = cb_ino_to_clr_pa(cb_p, ino);
DEBUG3(DBG_CB|DBG_CONT, NULL,
"pci-%x cb_set_nintr_reg: ino=%x PA=%016llx\n",
cb_p->cb_pci_cmn_p->pci_common_id, ino, pa);
stdphysio(pa, value);
(void) lddphysio(pa); /* flush the previous write */
}
/*
* enable an internal interrupt source:
* if an interrupt is shared by both sides, record it in cb_inos[] and
* cb will own its distribution.
*/
void
cb_enable_nintr(pci_t *pci_p, enum cb_nintr_index idx)
{
cb_t *cb_p = pci_p->pci_cb_p;
ib_ino_t ino = IB_MONDO_TO_INO(pci_p->pci_inos[idx]);
ib_mondo_t mondo = CB_INO_TO_MONDO(cb_p, ino);
uint32_t cpu_id;
uint64_t reg, pa;
ASSERT(idx < CBNINTR_MAX);
pa = cb_ino_to_map_pa(cb_p, ino);
mutex_enter(&cb_p->cb_intr_lock);
cpu_id = intr_dist_cpuid();
#ifdef _STARFIRE
cpu_id = pc_translate_tgtid(cb_p->cb_ittrans_cookie, cpu_id,
IB_GET_MAPREG_INO(ino));
#endif /* _STARFIRE */
reg = ib_get_map_reg(mondo, cpu_id);
stdphysio(pa, reg);
ASSERT(cb_p->cb_inos[idx] == 0);
cb_p->cb_inos[idx] = ino;
cb_set_nintr_reg(cb_p, ino, COMMON_CLEAR_INTR_REG_IDLE);
mutex_exit(&cb_p->cb_intr_lock);
DEBUG3(DBG_CB|DBG_CONT, NULL,
"pci-%x cb_enable_nintr: ino=%x cpu_id=%x\n",
pci_p->pci_id, ino, cpu_id);
DEBUG2(DBG_CB|DBG_CONT, NULL, "\tPA=%016llx data=%016llx\n", pa, reg);
}
static void
cb_disable_nintr_reg(cb_t *cb_p, ib_ino_t ino, int wait)
{
uint64_t tmp, map_reg_pa = cb_ino_to_map_pa(cb_p, ino);
ASSERT(MUTEX_HELD(&cb_p->cb_intr_lock));
/* mark interrupt invalid in mapping register */
tmp = lddphysio(map_reg_pa) & ~COMMON_INTR_MAP_REG_VALID;
stdphysio(map_reg_pa, tmp);
(void) lddphysio(map_reg_pa); /* flush previous write */
if (wait) {
hrtime_t start_time;
uint64_t state_reg_pa = cb_p->cb_obsta_pa;
uint_t shift = (ino & 0x1f) << 1;
/* busy wait if there is interrupt being processed */
/* unless panic or timeout for interrupt pending is reached */
start_time = gethrtime();
while ((((lddphysio(state_reg_pa) >> shift) &
COMMON_CLEAR_INTR_REG_MASK) ==
COMMON_CLEAR_INTR_REG_PENDING) && !panicstr) {
if (gethrtime() - start_time > pci_intrpend_timeout) {
cmn_err(CE_WARN,
"pci@%x cb_disable_nintr_reg(%lx,%x) timeout",
cb_p->cb_pci_cmn_p->pci_common_id,
map_reg_pa,
CB_INO_TO_MONDO(cb_p, ino));
break;
}
}
}
}
void
cb_disable_nintr(cb_t *cb_p, enum cb_nintr_index idx, int wait)
{
ib_ino_t ino = cb_p->cb_inos[idx];
ASSERT(idx < CBNINTR_MAX);
ASSERT(ino);
mutex_enter(&cb_p->cb_intr_lock);
cb_disable_nintr_reg(cb_p, ino, wait);
cb_set_nintr_reg(cb_p, ino, COMMON_CLEAR_INTR_REG_PENDING);
cb_p->cb_inos[idx] = 0;
mutex_exit(&cb_p->cb_intr_lock);
#ifdef _STARFIRE
pc_ittrans_cleanup(cb_p->cb_ittrans_cookie,
(volatile uint64_t *)(uintptr_t)ino);
#endif /* _STARFIRE */
}
void
cb_clear_nintr(cb_t *cb_p, enum cb_nintr_index idx)
{
ib_ino_t ino = cb_p->cb_inos[idx];
ASSERT(idx < CBNINTR_MAX);
ASSERT(ino);
cb_set_nintr_reg(cb_p, ino, COMMON_CLEAR_INTR_REG_IDLE);
}
void
cb_intr_dist(void *arg)
{
int i;
cb_t *cb_p = (cb_t *)arg;
mutex_enter(&cb_p->cb_intr_lock);
for (i = 0; i < cb_p->cb_no_of_inos; i++) {
uint64_t mr_pa;
volatile uint64_t imr;
ib_mondo_t mondo;
uint32_t cpu_id;
ib_ino_t ino = cb_p->cb_inos[i];
if (!ino) /* skip non-shared interrupts */
continue;
mr_pa = cb_ino_to_map_pa(cb_p, ino);
imr = lddphysio(mr_pa);
if (!IB_INO_INTR_ISON(imr))
continue;
mondo = CB_INO_TO_MONDO(cb_p, ino);
cpu_id = intr_dist_cpuid();
#ifdef _STARFIRE
cpu_id = pc_translate_tgtid(cb_p->cb_ittrans_cookie, cpu_id,
IB_GET_MAPREG_INO(ino));
#else
if (ib_map_reg_get_cpu(imr) == cpu_id)
continue; /* same cpu target, no re-program */
#endif
cb_disable_nintr_reg(cb_p, ino, IB_INTR_WAIT);
stdphysio(mr_pa, ib_get_map_reg(mondo, cpu_id));
(void) lddphysio(mr_pa); /* flush previous write */
}
mutex_exit(&cb_p->cb_intr_lock);
}
void
cb_suspend(cb_t *cb_p)
{
int i, inos = cb_p->cb_no_of_inos;
ASSERT(!cb_p->cb_imr_save);
cb_p->cb_imr_save = kmem_alloc(inos * sizeof (uint64_t), KM_SLEEP);
/*
* save the internal interrupts' mapping registers content
*
* The PBM IMR really doesn't need to be saved, as it is
* different per side and is handled by pbm_suspend/resume.
* But it complicates the logic.
*/
for (i = 0; i < inos; i++) {
uint64_t pa;
ib_ino_t ino = cb_p->cb_inos[i];
if (!ino)
continue;
pa = cb_ino_to_map_pa(cb_p, ino);
cb_p->cb_imr_save[i] = lddphysio(pa);
}
}
void
cb_resume(cb_t *cb_p)
{
int i;
for (i = 0; i < cb_p->cb_no_of_inos; i++) {
uint64_t pa;
ib_ino_t ino = cb_p->cb_inos[i];
if (!ino)
continue;
pa = cb_ino_to_map_pa(cb_p, ino);
cb_set_nintr_reg(cb_p, ino, COMMON_CLEAR_INTR_REG_IDLE);
stdphysio(pa, cb_p->cb_imr_save[i]); /* restore IMR */
}
kmem_free(cb_p->cb_imr_save, cb_p->cb_no_of_inos * sizeof (uint64_t));
cb_p->cb_imr_save = NULL;
}