/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Daktari platform specific hotplug controller. This
* driver exports the same interfaces to user space
* as the generic hpc3130 driver. It adds specific
* functionality found on Daktari, such as slot button
* and platform specific LED displays. Placed in
* the daktari specific platform directory, it will
* be loaded instead of the generic module.
*/
#include <sys/types.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/errno.h>
#include <sys/cpuvar.h>
#include <sys/open.h>
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/modctl.h>
#include <sys/note.h>
#include <sys/hotplug/hpctrl.h>
#include <sys/hotplug/hpcsvc.h>
#include <sys/i2c/clients/hpc3130.h>
#include <sys/hpc3130_events.h>
#include <sys/daktari.h>
#include <sys/hpc3130_dak.h>
#ifdef DEBUG
static int hpc3130debug = 0;
#define D1CMN_ERR(ARGS) if (hpc3130debug & 0x1) cmn_err ARGS;
#define D2CMN_ERR(ARGS) if (hpc3130debug & 0x2) cmn_err ARGS;
#else
#define D1CMN_ERR(ARGS)
#define D2CMN_ERR(ARGS)
#endif /* DEBUG */
#define HPC3130_REG(offset, slot) ((offset) + ((slot)*8))
#define HPC3130_PIL 1
struct tuple {
uint8_t reg;
uint8_t val;
};
struct connect_command {
boolean_t set_bit;
uint8_t value;
};
struct tuple pci_sequence [] =
{
{HPC3130_GCR, HPC3130_AUTO2_SEQ},
{HPC3130_INTERRUPT, HPC3130_PWRGOOD |
HPC3130_DETECT0 | HPC3130_PRSNT1 | HPC3130_PRSNT2},
{HPC3130_EVENT_STATUS, 0xff},
{HPC3130_NO_REGISTER, 0},
};
struct tuple cpu_sequence [] =
{
{HPC3130_INTERRUPT,
HPC3130_PRSNT1 | HPC3130_DETECT0},
{HPC3130_EVENT_STATUS, 0xff},
{HPC3130_NO_REGISTER, 0},
};
struct connect_command connect_sequence [] =
{
{B_TRUE, HPC3130_SLOTREQ64},
{B_FALSE, HPC3130_SLOTRST},
{B_FALSE, HPC3130_CLKON},
{B_FALSE, HPC3130_REQ64},
{B_FALSE, HPC3130_SLOTREQ64},
{B_TRUE, HPC3130_SLOTRST},
{B_FALSE, HPC3130_BUS_CTL},
};
#define HPC3130_CONNECT_SEQ_COUNT (sizeof (connect_sequence)/ \
sizeof (struct connect_command))
struct xlate_entry {
char *nexus;
int pcidev;
};
/*
* The order here is significant. Its the order
* of appearance of slots from bottom to top
* on a Sun-Fire-880
*/
static struct xlate_entry slot_translate[] =
{
{"/pci@8,700000", 5}, /* PCI0 */
{"/pci@8,700000", 4}, /* PCI1 */
{"/pci@8,700000", 3}, /* PCI2 */
{"/pci@8,700000", 2}, /* PCI3 */
{"/pci@9,700000", 4}, /* PCI4 */
{"/pci@9,700000", 3}, /* PCI5 */
{"/pci@9,700000", 2}, /* PCI6 */
{"/pci@9,600000", 2}, /* PCI7 */
{"/pci@9,600000", 1} /* PCI8 */
};
#define HPC3130_LOOKUP_SLOTS (sizeof (slot_translate)/ \
sizeof (struct xlate_entry))
static int control_slot_control = HPC3130_SLOT_CONTROL_ENABLE;
hpc3130_unit_t *hpc3130soft_statep;
static int hpc3130_atoi(const char *);
int hpc3130_lookup_slot(char *, int);
static int hpc3130_init(dev_info_t *, struct tuple *);
static uint_t hpc3130_hard_intr(caddr_t);
static int hpc3130_cpu_init(hpc3130_unit_t *, int, i2c_client_hdl_t);
static int hpc3130_debounce_status(i2c_client_hdl_t, int, uint8_t *);
static int hpc3130_read(i2c_client_hdl_t, uint8_t, uint8_t, uint8_t *);
static int hpc3130_write(i2c_client_hdl_t, uint8_t, uint8_t, uint8_t);
static int hpc3130_rw(i2c_client_hdl_t, uint8_t, boolean_t, uint8_t *);
static int hpc3130_do_attach(dev_info_t *);
static int hpc3130_do_detach(dev_info_t *);
static int hpc3130_do_resume(void);
static int hpc3130_do_suspend();
static int hpc3130_get(intptr_t, int, hpc3130_unit_t *, int);
static int hpc3130_set(intptr_t, int, hpc3130_unit_t *, int);
static int hpc3130_slot_connect(caddr_t, hpc_slot_t, void *, uint_t);
static int hpc3130_slot_disconnect(caddr_t, hpc_slot_t, void *, uint_t);
static int hpc3130_verify_slot_power(hpc3130_unit_t *, i2c_client_hdl_t,
uint8_t, char *, boolean_t);
static int hpc3130_slot_insert(caddr_t, hpc_slot_t, void *, uint_t);
static int hpc3130_slot_remove(caddr_t, hpc_slot_t, void *, uint_t);
static int hpc3130_slot_control(caddr_t, hpc_slot_t, int, caddr_t);
/*
* cb ops
*/
static int hpc3130_open(dev_t *, int, int, cred_t *);
static int hpc3130_close(dev_t, int, int, cred_t *);
static int hpc3130_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
static int hpc3130_poll(dev_t dev, short events, int anyyet, short
*reventsp, struct pollhead **phpp);
static struct cb_ops hpc3130_cbops = {
hpc3130_open, /* open */
hpc3130_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
hpc3130_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
hpc3130_poll, /* poll */
ddi_prop_op, /* cb_prop_op */
NULL, /* streamtab */
D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
/*
* dev ops
*/
static int hpc3130_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
void **result);
static int hpc3130_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int hpc3130_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static struct dev_ops hpc3130_ops = {
DEVO_REV,
0,
hpc3130_info,
nulldev,
nulldev,
hpc3130_attach,
hpc3130_detach,
nodev,
&hpc3130_cbops,
NULL, /* bus_ops */
NULL, /* power */
ddi_quiesce_not_needed, /* quiesce */
};
extern struct mod_ops mod_driverops;
static struct modldrv hpc3130_modldrv = {
&mod_driverops, /* type of module - driver */
"Hotplug controller driver",
&hpc3130_ops
};
static struct modlinkage hpc3130_modlinkage = {
MODREV_1,
&hpc3130_modldrv,
0
};
int
_init(void)
{
int error;
error = mod_install(&hpc3130_modlinkage);
if (!error)
(void) ddi_soft_state_init((void *)&hpc3130soft_statep,
sizeof (hpc3130_unit_t), 4);
return (error);
}
int
_fini(void)
{
int error;
error = mod_remove(&hpc3130_modlinkage);
if (!error)
ddi_soft_state_fini((void *)&hpc3130soft_statep);
return (error);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&hpc3130_modlinkage, modinfop));
}
static int
hpc3130_open(dev_t *devp, int flags, int otyp, cred_t *credp)
{
_NOTE(ARGUNUSED(credp))
hpc3130_unit_t *unitp;
int instance;
int error = 0;
if (otyp != OTYP_CHR) {
return (EINVAL);
}
instance = MINOR_TO_INST(getminor(*devp));
unitp = (hpc3130_unit_t *)
ddi_get_soft_state(hpc3130soft_statep, instance);
if (unitp == NULL) {
return (ENXIO);
}
mutex_enter(&unitp->hpc3130_mutex);
if (flags & FEXCL) {
if (unitp->hpc3130_oflag != 0) {
error = EBUSY;
} else {
unitp->hpc3130_oflag = FEXCL;
}
} else {
if (unitp->hpc3130_oflag == FEXCL) {
error = EBUSY;
} else {
unitp->hpc3130_oflag = FOPEN;
}
}
mutex_exit(&unitp->hpc3130_mutex);
return (error);
}
static int
hpc3130_close(dev_t dev, int flags, int otyp, cred_t *credp)
{
_NOTE(ARGUNUSED(flags, otyp, credp))
hpc3130_unit_t *unitp;
int instance;
instance = MINOR_TO_INST(getminor(dev));
unitp = (hpc3130_unit_t *)
ddi_get_soft_state(hpc3130soft_statep, instance);
if (unitp == NULL) {
return (ENXIO);
}
mutex_enter(&unitp->hpc3130_mutex);
unitp->hpc3130_oflag = 0;
mutex_exit(&unitp->hpc3130_mutex);
return (DDI_SUCCESS);
}
static int
hpc3130_get(intptr_t arg, int reg, hpc3130_unit_t *unitp, int mode)
{
i2c_transfer_t *i2c_tran_pointer;
int err = DDI_SUCCESS;
if (arg == NULL) {
D2CMN_ERR((CE_WARN, "ioctl: arg passed in to "
"ioctl = NULL"));
return (EINVAL);
}
(void) i2c_transfer_alloc(unitp->hpc3130_hdl, &i2c_tran_pointer,
1, 1, I2C_SLEEP);
if (i2c_tran_pointer == NULL) {
D2CMN_ERR((CE_WARN, "Failed in HPC3130_GET_STATUS"
" i2c_tran_pointer not allocated"));
return (ENOMEM);
}
i2c_tran_pointer->i2c_flags = I2C_WR_RD;
i2c_tran_pointer->i2c_wbuf[0] = (uchar_t)reg;
err = i2c_transfer(unitp->hpc3130_hdl, i2c_tran_pointer);
if (err) {
D2CMN_ERR((CE_WARN, "Failed in HPC3130_GET_STATUS"
" i2c_trasfer routine"));
i2c_transfer_free(unitp->hpc3130_hdl, i2c_tran_pointer);
return (err);
}
D1CMN_ERR((CE_NOTE, "The i2c_rbuf contains %x",
i2c_tran_pointer->i2c_rbuf[0]));
if (ddi_copyout((caddr_t)i2c_tran_pointer->i2c_rbuf,
(caddr_t)arg,
sizeof (uint8_t), mode) != DDI_SUCCESS) {
D2CMN_ERR((CE_WARN, "Failed in HPC3130_GET_STATUS"
" ddi_copyout routine"));
err = EFAULT;
}
i2c_transfer_free(unitp->hpc3130_hdl, i2c_tran_pointer);
return (err);
}
static int
hpc3130_set(intptr_t arg, int reg, hpc3130_unit_t *unitp, int mode)
{
i2c_transfer_t *i2c_tran_pointer;
int err = DDI_SUCCESS;
uint8_t passin_byte;
if (arg == NULL) {
D2CMN_ERR((CE_WARN, "ioctl: arg passed in to "
"ioctl = NULL"));
return (EINVAL);
}
if (ddi_copyin((caddr_t)arg, (caddr_t)&passin_byte,
sizeof (uint8_t), mode) != DDI_SUCCESS) {
D2CMN_ERR((CE_WARN, "Failed in HPC3130_SET_CONTROL "
"ddi_copyin routine"));
return (EFAULT);
}
(void) i2c_transfer_alloc(unitp->hpc3130_hdl, &i2c_tran_pointer,
2, 0, I2C_SLEEP);
if (i2c_tran_pointer == NULL) {
D2CMN_ERR((CE_WARN, "Failed in "
"HPC3130_SET_CONTROL i2c_tran_pointer not allocated"));
return (ENOMEM);
}
i2c_tran_pointer->i2c_flags = I2C_WR;
i2c_tran_pointer->i2c_wbuf[0] = (uchar_t)reg;
i2c_tran_pointer->i2c_wbuf[1] = passin_byte;
err = i2c_transfer(unitp->hpc3130_hdl, i2c_tran_pointer);
i2c_transfer_free(unitp->hpc3130_hdl, i2c_tran_pointer);
return (err);
}
static int
hpc3130_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
_NOTE(ARGUNUSED(credp, rvalp))
hpc3130_unit_t *unitp;
int err = DDI_SUCCESS;
i2c_transfer_t *i2c_tran_pointer;
i2c_reg_t ioctl_reg;
int port = MINOR_TO_PORT(getminor(dev));
int instance = MINOR_TO_INST(getminor(dev));
hpc3130_slot_table_entry_t *ste;
unitp = (hpc3130_unit_t *)
ddi_get_soft_state(hpc3130soft_statep, instance);
if (unitp == NULL) {
D1CMN_ERR((CE_WARN, "unitp not filled"));
return (ENOMEM);
}
/*
* It should be the case that the port number is a valid
* index in the per instance slot table. If it is not
* then we should fail out.
*/
if (!(port >= 0 && port < unitp->hpc3130_slot_table_length)) {
return (EINVAL);
}
mutex_enter(&unitp->hpc3130_mutex);
ste = &unitp->hpc3130_slot_table[port];
D2CMN_ERR((CE_NOTE, "ioctl: port = %d instance = %d",
port, instance));
switch (cmd) {
case HPC3130_GET_STATUS:
err = hpc3130_get(arg, HPC3130_HP_STATUS_REG(port), unitp,
mode);
break;
case HPC3130_GET_CONTROL:
err = hpc3130_get(arg, HPC3130_HP_CONTROL_REG(port), unitp,
mode);
break;
case HPC3130_SET_CONTROL:
if (control_slot_control == HPC3130_SLOT_CONTROL_DISABLE) {
cmn_err(CE_WARN, "Cannot change control register.");
err = EINVAL;
break;
}
err = hpc3130_set(arg, HPC3130_HP_CONTROL_REG(port), unitp,
mode);
break;
case HPC3130_GET_EVENT_STATUS:
err = hpc3130_get(arg, HPC3130_INTERRUPT_STATUS_REG(port),
unitp, mode);
break;
case HPC3130_SET_EVENT_STATUS:
err = hpc3130_set(arg, HPC3130_INTERRUPT_STATUS_REG(port),
unitp, mode);
break;
case HPC3130_GET_GENERAL_CONFIG:
err = hpc3130_get(arg, HPC3130_GENERAL_CONFIG_REG(port),
unitp, mode);
break;
case HPC3130_SET_GENERAL_CONFIG:
err = hpc3130_set(arg, HPC3130_GENERAL_CONFIG_REG(port),
unitp, mode);
break;
case HPC3130_GET_INDICATOR_CONTROL:
err = hpc3130_get(arg, HPC3130_ATTENTION_INDICATOR(port),
unitp, mode);
break;
case HPC3130_SET_INDICATOR_CONTROL:
err = hpc3130_set(arg, HPC3130_ATTENTION_INDICATOR(port),
unitp, mode);
break;
case HPC3130_GET_EVENT_ENABLE:
err = hpc3130_get(arg, HPC3130_INTERRUPT_ENABLE_REG(port),
unitp, mode);
break;
case HPC3130_SET_EVENT_ENABLE:
err = hpc3130_set(arg, HPC3130_INTERRUPT_ENABLE_REG(port),
unitp, mode);
break;
case HPC3130_ENABLE_SLOT_CONTROL:
control_slot_control = HPC3130_SLOT_CONTROL_ENABLE;
D2CMN_ERR((CE_NOTE, "Set the control_slot_control variable to"
"HPC3130_SLOT_CONTROL_ENABLE"));
break;
case HPC3130_DISABLE_SLOT_CONTROL:
control_slot_control = HPC3130_SLOT_CONTROL_DISABLE;
D2CMN_ERR((CE_NOTE, "Set the control_slot_control variable to"
"HPC3130_SLOT_CONTROL_DISABLE"));
break;
case I2C_GET_REG:
if (arg == NULL) {
D2CMN_ERR((CE_WARN, "ioctl: arg passed in to "
"ioctl = NULL"));
err = EINVAL;
break;
}
if (ddi_copyin((caddr_t)arg, (caddr_t)&ioctl_reg,
sizeof (i2c_reg_t), mode) != DDI_SUCCESS) {
D2CMN_ERR((CE_WARN, "Failed in I2C_GET_REG "
"ddi_copyin routine"));
err = EFAULT;
break;
}
(void) i2c_transfer_alloc(unitp->hpc3130_hdl, &i2c_tran_pointer,
1, 1, I2C_SLEEP);
if (i2c_tran_pointer == NULL) {
D2CMN_ERR((CE_WARN, "Failed in I2C_GET_REG "
"i2c_tran_pointer not allocated"));
err = ENOMEM;
break;
}
i2c_tran_pointer->i2c_flags = I2C_WR_RD;
i2c_tran_pointer->i2c_wbuf[0] = ioctl_reg.reg_num;
err = i2c_transfer(unitp->hpc3130_hdl, i2c_tran_pointer);
if (err) {
D2CMN_ERR((CE_WARN, "Failed in I2C_GET_REG "
"i2c_transfer routine"));
i2c_transfer_free(unitp->hpc3130_hdl, i2c_tran_pointer);
break;
}
ioctl_reg.reg_value = i2c_tran_pointer->i2c_rbuf[0];
if (ddi_copyout((caddr_t)&ioctl_reg, (caddr_t)arg,
sizeof (i2c_reg_t), mode) != DDI_SUCCESS) {
D2CMN_ERR((CE_WARN, "Failed in I2C_GET_REG "
"ddi_copyout routine"));
err = EFAULT;
}
i2c_transfer_free(unitp->hpc3130_hdl, i2c_tran_pointer);
break;
case I2C_SET_REG:
if (arg == NULL) {
D2CMN_ERR((CE_WARN, "ioctl: arg passed in to "
"ioctl = NULL"));
err = EINVAL;
break;
}
if (ddi_copyin((caddr_t)arg, (caddr_t)&ioctl_reg,
sizeof (i2c_reg_t), mode) != DDI_SUCCESS) {
D2CMN_ERR((CE_WARN, "Failed in I2C_SET_REG "
"ddi_copyin routine"));
err = EFAULT;
break;
}
(void) i2c_transfer_alloc(unitp->hpc3130_hdl, &i2c_tran_pointer,
2, 0, I2C_SLEEP);
if (i2c_tran_pointer == NULL) {
D2CMN_ERR((CE_WARN, "Failed in I2C_GET_REG "
"i2c_tran_pointer not allocated"));
err = ENOMEM;
break;
}
i2c_tran_pointer->i2c_flags = I2C_WR;
i2c_tran_pointer->i2c_wbuf[0] = ioctl_reg.reg_num;
i2c_tran_pointer->i2c_wbuf[1] = (uchar_t)ioctl_reg.reg_value;
err = i2c_transfer(unitp->hpc3130_hdl, i2c_tran_pointer);
if (err) {
D2CMN_ERR((CE_WARN, "Failed in I2C_SET_REG "
"i2c_transfer routine"));
i2c_transfer_free(unitp->hpc3130_hdl, i2c_tran_pointer);
break;
}
i2c_transfer_free(unitp->hpc3130_hdl, i2c_tran_pointer);
break;
case HPC3130_GET_EVENT: {
struct hpc3130_event ev;
bzero(&ev, sizeof (struct hpc3130_event));
if (unitp->slots_are == HPC3130_SLOT_TYPE_SBD) {
DAK_GET_SBD_APID(ev.name, sizeof (ev.name), port);
} else {
(void) snprintf(ev.name, HPC3130_NAME_MAX,
"/devices%s:", ste->nexus);
ASSERT(strlen(ev.name) < HPC3130_NAME_MAX - 1);
DAK_GET_PCI_APID(ev.name + strlen(ev.name),
HPC3130_NAME_MAX - strlen(ev.name),
hpc3130_lookup_slot(ste->nexus,
ste->hpc3130_slot_info.pci_dev_num));
}
if (unitp->events[port] & HPC3130_IEVENT_OCCUPANCY) {
unitp->events[port] &= ~HPC3130_IEVENT_OCCUPANCY;
ev.id = (unitp->present[port] == B_FALSE ?
HPC3130_EVENT_REMOVAL :
HPC3130_EVENT_INSERTION);
} else if (unitp->events[port] & HPC3130_IEVENT_POWER) {
unitp->events[port] &= ~HPC3130_IEVENT_POWER;
ev.id = (unitp->power[port] == B_TRUE ?
HPC3130_EVENT_POWERON :
HPC3130_EVENT_POWEROFF);
} else if (unitp->events[port] & HPC3130_IEVENT_BUTTON) {
unitp->events[port] &= ~HPC3130_IEVENT_BUTTON;
ev.id = HPC3130_EVENT_BUTTON;
} else if (unitp->events[port] & HPC3130_IEVENT_FAULT) {
unitp->events[port] &= ~HPC3130_IEVENT_FAULT;
ev.id = (unitp->fault_led[port] == HPC3130_ATTN_ON ?
HPC3130_LED_FAULT_ON :
HPC3130_LED_FAULT_OFF);
} else if (unitp->events[port] & HPC3130_IEVENT_OK2REM) {
unitp->events[port] &= ~HPC3130_IEVENT_OK2REM;
ev.id = (unitp->ok2rem_led[port] == HPC3130_ATTN_ON ?
HPC3130_LED_REMOVABLE_ON :
HPC3130_LED_REMOVABLE_OFF);
}
D1CMN_ERR((CE_NOTE,
"sending EVENT: ap_id=%s, event=%d", ev.name, ev.id));
if (ddi_copyout((caddr_t)&ev, (caddr_t)arg,
sizeof (struct hpc3130_event), mode) != DDI_SUCCESS) {
D1CMN_ERR((CE_WARN, "Failed in hpc3130_ioctl"
" ddi_copyout routine"));
err = EFAULT;
}
break;
}
case HPC3130_CONF_DR: {
uint8_t offset;
int dr_conf;
if (ddi_copyin((caddr_t)arg, (caddr_t)&dr_conf,
sizeof (int), mode) != DDI_SUCCESS) {
D2CMN_ERR((CE_WARN, "Failed in HPC3130_CONF_DR "
"ddi_copyin routine"))
err = EFAULT;
break;
}
offset = ste->callback_info.offset;
unitp->enabled[offset] =
(dr_conf == HPC3130_DR_DISABLE ? B_FALSE : B_TRUE);
break;
}
default:
D2CMN_ERR((CE_WARN, "Invalid IOCTL cmd: %x", cmd));
err = EINVAL;
}
mutex_exit(&unitp->hpc3130_mutex);
return (err);
}
static int
hpc3130_poll(dev_t dev, short events, int anyyet, short
*reventsp, struct pollhead **phpp)
{
_NOTE(ARGUNUSED(events))
hpc3130_unit_t *unitp;
int port = MINOR_TO_PORT(getminor(dev));
int instance = MINOR_TO_INST(getminor(dev));
if (!(port >= 0 && port < HPC3130_MAX_SLOT)) {
return (EINVAL);
}
unitp = (hpc3130_unit_t *)
ddi_get_soft_state(hpc3130soft_statep, instance);
mutex_enter(&unitp->hpc3130_mutex);
if (unitp->events[port]) {
*reventsp = POLLIN;
} else {
*reventsp = 0;
if (!anyyet)
*phpp = &unitp->pollhead[port];
}
mutex_exit(&unitp->hpc3130_mutex);
return (0);
}
/* ARGSUSED */
static int
hpc3130_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
dev_t dev;
int instance;
if (infocmd == DDI_INFO_DEVT2INSTANCE) {
dev = (dev_t)arg;
instance = MINOR_TO_INST(getminor(dev));
*result = (void *)(uintptr_t)instance;
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
static int
hpc3130_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
switch (cmd) {
case DDI_ATTACH:
return (hpc3130_do_attach(dip));
case DDI_RESUME:
return (hpc3130_do_resume());
default:
return (DDI_FAILURE);
}
}
static int
hpc3130_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
switch (cmd) {
case DDI_DETACH:
return (hpc3130_do_detach(dip));
case DDI_SUSPEND:
return (hpc3130_do_suspend());
default:
return (DDI_FAILURE);
}
}
static int
hpc3130_do_attach(dev_info_t *dip)
{
hpc3130_unit_t *hpc3130_p;
char *s;
char *nexus;
char *pcidev;
char *reg_offset;
int r, i, n, j;
char name[MAXNAMELEN];
minor_t minor_number;
int hpc3130_pil = HPC3130_PIL;
int instance = ddi_get_instance(dip);
/*
* Allocate the soft state structure for this instance.
*/
r = ddi_soft_state_zalloc(hpc3130soft_statep, instance);
if (r != DDI_SUCCESS) {
return (DDI_FAILURE);
}
hpc3130_p =
(hpc3130_unit_t *)ddi_get_soft_state(hpc3130soft_statep, instance);
ASSERT(hpc3130_p);
if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
"interrupt-priorities", (caddr_t)&hpc3130_pil,
sizeof (hpc3130_pil)) != DDI_PROP_SUCCESS) {
goto failout0;
}
if (ddi_intr_hilevel(dip, 0)) {
cmn_err(CE_WARN, "High level interrupt not supported");
goto failout0;
}
/*
* Get the "slot-table" property which defines the list of
* hot-pluggable slots for this controller along with the
* corresponding bus nexus node and device identification
* for each slot.
*/
r = ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"slot-table", (caddr_t)&hpc3130_p->hpc3130_slot_table_data,
&hpc3130_p->hpc3130_slot_table_size);
switch (r) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NOT_FOUND:
cmn_err(CE_WARN,
"couldn't find slot-table property");
return (DDI_FAILURE);
case DDI_PROP_UNDEFINED:
cmn_err(CE_WARN,
"slot-table undefined");
return (DDI_FAILURE);
case DDI_PROP_NO_MEMORY:
cmn_err(CE_WARN,
"can't allocate memory for slot-table");
return (DDI_FAILURE);
}
/*
* Determine the size of the slot table from the OBP property and
* allocate the slot table arrary..
*/
for (i = 0, n = 0; i < hpc3130_p->hpc3130_slot_table_size; i++) {
if (hpc3130_p->hpc3130_slot_table_data[i] == 0) {
n++;
}
}
D1CMN_ERR((CE_NOTE, "hpc3130_attach(): slot table has %d entries", n));
/*
* There should be HPC3130_TABLE_COLUMNS elements per entry
*/
if (n % HPC3130_TABLE_COLUMNS) {
cmn_err(CE_WARN, "bad format in slot-table");
goto failout1;
}
hpc3130_p->dip = dip;
hpc3130_p->hpc3130_slot_table_length = n / HPC3130_TABLE_COLUMNS;
if (ddi_get_iblock_cookie(dip, 0, &hpc3130_p->ic_trap_cookie) !=
DDI_SUCCESS) {
cmn_err(CE_WARN, "ddi_get_iblock_cookie FAILED");
goto failout1;
}
mutex_init(&hpc3130_p->hpc3130_mutex, NULL, MUTEX_DRIVER,
(void *)hpc3130_p->ic_trap_cookie);
/*
* Create enough space for each slot table entry
* based on how many entries in the property
*/
hpc3130_p->hpc3130_slot_table = (hpc3130_slot_table_entry_t *)
kmem_zalloc(hpc3130_p->hpc3130_slot_table_length *
sizeof (hpc3130_slot_table_entry_t), KM_SLEEP);
/*
* Setup to talk to the i2c nexus
*/
if (i2c_client_register(dip, &hpc3130_p->hpc3130_hdl) != I2C_SUCCESS) {
cmn_err(CE_WARN, "failed to register as i2c client");
goto failout2;
}
s = hpc3130_p->hpc3130_slot_table_data;
for (i = 0; i < hpc3130_p->hpc3130_slot_table_length; i++) {
hpc3130_slot_table_entry_t *ste;
/* Pick off pointer to nexus path */
nexus = s;
s = s + strlen(s) + 1;
/* Pick off pointer to 3130 register offset */
reg_offset = s;
s = s + strlen(s) + 1;
/* Pick off pointer to the device number */
pcidev = s;
s = s + strlen(s) + 1;
j = hpc3130_atoi(reg_offset);
if (j < 0 || j >= HPC3130_MAX_SLOT) {
cmn_err(CE_WARN,
"invalid register offset value");
goto failout3;
}
ste = &hpc3130_p->hpc3130_slot_table[j];
(void) strcpy(ste->nexus, nexus);
if (strncmp(ste->nexus, "/pci", 4) == 0) {
ste->hpc3130_slot_info.pci_dev_num =
hpc3130_atoi(pcidev);
DAK_GET_PCI_APID(ste->hpc3130_slot_info.pci_slot_name,
PCI_SLOT_NAME_LEN,
hpc3130_lookup_slot(ste->nexus,
hpc3130_atoi(pcidev)));
ste->hpc3130_slot_info.slot_type = HPC_SLOT_TYPE_PCI;
ste->hpc3130_slot_info.slot_flags =
HPC_SLOT_CREATE_DEVLINK;
hpc3130_p->slots_are = HPC3130_SLOT_TYPE_PCI;
} else {
ste->hpc3130_slot_info.sbd_slot_num =
hpc3130_atoi(reg_offset);
ste->hpc3130_slot_info.slot_type = HPC_SLOT_TYPE_SBD;
hpc3130_p->slots_are = HPC3130_SLOT_TYPE_SBD;
}
hpc3130_p->present[j] = B_FALSE;
hpc3130_p->enabled[j] = B_TRUE;
/*
* The "callback_info" structure of the slot_table is what gets
* passed back in the callback routines. All that is needed
* at that point is the device handle and the register offset
* within it the chip it represents.
*/
ste->callback_info.handle = (caddr_t)hpc3130_p->hpc3130_hdl;
ste->callback_info.offset = hpc3130_atoi(reg_offset);
ste->callback_info.statep = (caddr_t)hpc3130_p;
}
hpc3130_p->hpc3130_slot_ops = hpc_alloc_slot_ops(KM_SLEEP);
hpc3130_p->hpc3130_slot_ops->hpc_version = 0;
hpc3130_p->hpc3130_slot_ops->hpc_op_connect = hpc3130_slot_connect;
hpc3130_p->hpc3130_slot_ops->hpc_op_disconnect =
hpc3130_slot_disconnect;
hpc3130_p->hpc3130_slot_ops->hpc_op_insert = hpc3130_slot_insert;
hpc3130_p->hpc3130_slot_ops->hpc_op_remove = hpc3130_slot_remove;
hpc3130_p->hpc3130_slot_ops->hpc_op_control = hpc3130_slot_control;
cv_init(&hpc3130_p->hpc3130_cond, NULL, CV_DEFAULT, NULL);
if (hpc3130_init(dip, (hpc3130_p->slots_are == HPC3130_SLOT_TYPE_SBD) ?
cpu_sequence : pci_sequence) != DDI_SUCCESS) {
goto failout4;
}
if (ddi_add_intr(dip, 0, &hpc3130_p->ic_trap_cookie,
NULL, hpc3130_hard_intr,
(caddr_t)hpc3130_p) != DDI_SUCCESS) {
cmn_err(CE_WARN, "failed to add interrupt");
goto failout4;
}
/*
* Register with the "services" module
*/
for (i = 0; i < hpc3130_p->hpc3130_slot_table_length; i++) {
hpc3130_slot_table_entry_t *ste =
&hpc3130_p->hpc3130_slot_table[i];
hpc3130_p->power[i] = B_TRUE;
if (ste->callback_info.handle != NULL) {
(void) hpc_slot_register(dip, ste->nexus,
&ste->hpc3130_slot_info,
&ste->hpc3130_slot_handle,
hpc3130_p->hpc3130_slot_ops,
(caddr_t)&ste->callback_info, 0);
}
}
(void) snprintf(hpc3130_p->hpc3130_name,
sizeof (hpc3130_p->hpc3130_name),
"%s%d", ddi_node_name(dip), instance);
for (i = 0; i < HPC3130_MAX_SLOT; i++) {
(void) snprintf(name, MAXNAMELEN, "port_%d", i);
minor_number = INST_TO_MINOR(instance) |
PORT_TO_MINOR(I2C_PORT(i));
if (ddi_create_minor_node(dip, name, S_IFCHR, minor_number,
"ddi_i2c:controller", NULL) == DDI_FAILURE) {
D1CMN_ERR((CE_WARN, "ddi_create_minor_node failed "
"for %s", name));
ddi_remove_intr(dip, 0u,
hpc3130_p->ic_trap_cookie);
goto failout4;
}
}
return (DDI_SUCCESS);
failout4:
hpc_free_slot_ops(hpc3130_p->hpc3130_slot_ops);
failout3:
i2c_client_unregister(hpc3130_p->hpc3130_hdl);
failout2:
mutex_destroy(&hpc3130_p->hpc3130_mutex);
kmem_free(hpc3130_p->hpc3130_slot_table,
hpc3130_p->hpc3130_slot_table_length *
sizeof (hpc3130_slot_table_entry_t));
failout1:
kmem_free(hpc3130_p->hpc3130_slot_table_data,
hpc3130_p->hpc3130_slot_table_size);
failout0:
ddi_soft_state_free(hpc3130soft_statep, instance);
return (DDI_FAILURE);
}
static int
hpc3130_do_resume()
{
return (DDI_SUCCESS);
}
static int
hpc3130_do_suspend()
{
return (DDI_SUCCESS);
}
static int
hpc3130_do_detach(dev_info_t *dip)
{
int i;
int instance = ddi_get_instance(dip);
hpc3130_unit_t *hpc3130_p;
hpc3130_p = (hpc3130_unit_t *)ddi_get_soft_state(hpc3130soft_statep,
instance);
if (hpc3130_p == NULL)
return (ENXIO);
i2c_client_unregister(hpc3130_p->hpc3130_hdl);
ddi_remove_intr(dip, 0u, hpc3130_p->ic_trap_cookie);
cv_destroy(&hpc3130_p->hpc3130_cond);
for (i = 0; i < hpc3130_p->hpc3130_slot_table_length; i++) {
(void) hpc_slot_unregister(
&hpc3130_p->hpc3130_slot_table[i].hpc3130_slot_handle);
}
kmem_free(hpc3130_p->hpc3130_slot_table,
hpc3130_p->hpc3130_slot_table_length *
sizeof (hpc3130_slot_table_entry_t));
kmem_free(hpc3130_p->hpc3130_slot_table_data,
hpc3130_p->hpc3130_slot_table_size);
hpc_free_slot_ops(hpc3130_p->hpc3130_slot_ops);
mutex_destroy(&hpc3130_p->hpc3130_mutex);
ddi_soft_state_free(hpc3130soft_statep, instance);
return (DDI_SUCCESS);
}
int
hpc3130_set_led(hpc3130_unit_t *unitp, int slot, int led, uint8_t value)
{
i2c_client_hdl_t handle = unitp->hpc3130_hdl;
uint8_t old;
uint8_t new;
if (hpc3130_read(handle, HPC3130_ATTEN, slot, &old) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
new = (old & ~HPC3130_ATTN_MASK(led)) |
value << HPC3130_ATTN_SHIFT(led);
D1CMN_ERR((CE_NOTE, "setting led %d to %x", led, value));
if (hpc3130_write(handle, HPC3130_ATTEN, slot, new) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
if ((value == HPC3130_ATTN_OFF || value == HPC3130_ATTN_ON) &&
((old & HPC3130_ATTN_MASK(led)) !=
(new & HPC3130_ATTN_MASK(led)))) {
/*
* We're turning a LED on or off (i.e., not blinking), and
* the value actually did change.
*/
if (led == HPC3130_LED_OK2REM) {
unitp->events[slot] |= HPC3130_IEVENT_OK2REM;
unitp->ok2rem_led[slot] = value;
D1CMN_ERR((CE_NOTE,
"recording IEVENT_OK2REM slot=%d, val=%d",
slot, value));
} else {
unitp->events[slot] |= HPC3130_IEVENT_FAULT;
unitp->fault_led[slot] = value;
D1CMN_ERR((CE_NOTE,
"recording IEVENT_FAULT slot=%d, val=%d",
slot, value));
}
ASSERT(MUTEX_HELD(&unitp->hpc3130_mutex));
mutex_exit(&unitp->hpc3130_mutex);
pollwakeup(&unitp->pollhead[slot], POLLIN);
mutex_enter(&unitp->hpc3130_mutex);
}
return (DDI_SUCCESS);
}
int
hpc3130_get_led(i2c_client_hdl_t handle, int slot,
int led, uint8_t *value)
{
uint8_t temp;
if (hpc3130_read(handle, HPC3130_ATTEN, slot, &temp) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
*value = (temp & HPC3130_ATTN_MASK(led)) >> HPC3130_ATTN_SHIFT(led);
return (DDI_SUCCESS);
}
static int
hpc3130_write(i2c_client_hdl_t handle, uint8_t offset,
uint8_t port, uint8_t data)
{
ASSERT(port < HPC3130_MAX_SLOT);
ASSERT(handle);
return (hpc3130_rw(handle,
HPC3130_REG(offset, port), B_TRUE, &data));
}
static int
hpc3130_read(i2c_client_hdl_t handle, uint8_t offset,
uint8_t port, uint8_t *data)
{
ASSERT(port < HPC3130_MAX_SLOT);
ASSERT(handle);
return (hpc3130_rw(handle,
HPC3130_REG(offset, port), B_FALSE, data));
}
static int
hpc3130_rw(i2c_client_hdl_t handle, uint8_t reg,
boolean_t write, uint8_t *data)
{
i2c_transfer_t *i2c_tran_pointer;
int err;
int rlen;
int wlen;
if (write == B_TRUE) {
wlen = 2;
rlen = 0;
} else {
wlen = 1;
rlen = 1;
}
(void) i2c_transfer_alloc(handle,
&i2c_tran_pointer, wlen, rlen, I2C_SLEEP);
if (i2c_tran_pointer == NULL) {
D1CMN_ERR((CE_WARN, "Failed in hpc3130_rw: "
"no transfer structure 0x%x", reg));
return (DDI_FAILURE);
}
i2c_tran_pointer->i2c_wbuf[0] = reg;
if (write == B_TRUE) {
i2c_tran_pointer->i2c_flags = I2C_WR;
i2c_tran_pointer->i2c_wbuf[1] = *data;
} else {
i2c_tran_pointer->i2c_flags = I2C_WR_RD;
}
err = i2c_transfer(handle, i2c_tran_pointer);
if (err) {
D1CMN_ERR((CE_WARN, "Failed in hpc3130_rw: "
"no I2C data transfered 0x%x", reg));
(void) i2c_transfer_free(handle, i2c_tran_pointer);
return (DDI_FAILURE);
}
if (write == B_FALSE)
*data = i2c_tran_pointer->i2c_rbuf[0];
(void) i2c_transfer_free(handle, i2c_tran_pointer);
return (DDI_SUCCESS);
}
/*
* Put the hot plug controller(s) in proper mode for further
* operations.
*/
static int
hpc3130_init(dev_info_t *dip,
struct tuple *init_sequence)
{
int slot;
i2c_client_hdl_t handle;
hpc3130_unit_t *hpc3130_p;
int instance = ddi_get_instance(dip);
int error = DDI_FAILURE;
struct tuple *tp;
hpc3130_p =
(hpc3130_unit_t *)ddi_get_soft_state(hpc3130soft_statep,
instance);
ASSERT(hpc3130_p);
mutex_enter(&hpc3130_p->hpc3130_mutex);
handle = hpc3130_p->hpc3130_hdl;
for (slot = 0; slot < HPC3130_MAX_SLOT; slot++) {
tp = init_sequence;
while (tp->reg != HPC3130_NO_REGISTER) {
if (hpc3130_write(handle, tp->reg, slot,
tp->val) != DDI_SUCCESS) {
goto out;
}
tp++;
}
/*
* CPU slots need some special initialization
* attention.
*/
if (hpc3130_p->slots_are == HPC3130_SLOT_TYPE_SBD) {
if (hpc3130_cpu_init(hpc3130_p, slot, handle)
!= DDI_SUCCESS) {
goto out;
}
}
}
error = DDI_SUCCESS;
out:
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (error);
}
/*
* When the TI 3130 produces an interrupt,
* this routine is called to sort it out.
*/
static uint_t
hpc3130_hard_intr(caddr_t arg)
{
uint8_t interrupt;
uint8_t status;
uint8_t slot;
i2c_client_hdl_t handle;
hpc3130_slot_type_t slot_type;
uint_t rc = DDI_INTR_UNCLAIMED;
hpc3130_unit_t *hpc3130_p = (hpc3130_unit_t *)arg;
ASSERT(hpc3130_p);
mutex_enter(&hpc3130_p->hpc3130_mutex);
slot_type = hpc3130_p->slots_are;
handle = hpc3130_p->hpc3130_hdl;
for (slot = 0; slot < HPC3130_MAX_SLOT; slot++) {
/*
* Read the interrupt event register - see
* which event(s) took place.
*/
if (hpc3130_read(handle, HPC3130_EVENT_STATUS, slot,
&interrupt)) {
continue;
}
if (interrupt == 0)
continue;
rc = DDI_INTR_CLAIMED;
if (hpc3130_debounce_status(handle,
slot, &status) != DDI_SUCCESS) {
continue;
}
if (interrupt & HPC3130_PWRGOOD) {
hpc3130_p->power[slot] = B_FALSE;
if (!(status & HPC3130_PWRGOOD)) {
hpc3130_p->power[slot] = B_TRUE;
}
cv_signal(&hpc3130_p->hpc3130_cond);
hpc3130_p->events[slot] |= HPC3130_IEVENT_POWER;
}
if (interrupt & HPC3130_DETECT0) {
if (slot_type == HPC3130_SLOT_TYPE_SBD) {
boolean_t present = !(status&HPC3130_DETECT0);
/* Turn ON/OFF OK-to-remove LED */
(void) hpc3130_set_led(hpc3130_p,
slot,
HPC3130_LED_OK2REM,
(present ? HPC3130_ATTN_ON :
HPC3130_ATTN_OFF));
if (!present) {
/* Clear the FAULT LED on removal */
(void) hpc3130_set_led(hpc3130_p,
slot,
HPC3130_LED_FAULT,
HPC3130_ATTN_OFF);
}
hpc3130_p->present[slot] = present;
hpc3130_p->events[slot] |=
HPC3130_IEVENT_OCCUPANCY;
} else {
ASSERT(slot_type == HPC3130_SLOT_TYPE_PCI);
if (!(status & HPC3130_DETECT0)) {
/*
* Event on the downward
* stroke of the button.
*/
hpc3130_p->events[slot] |=
HPC3130_IEVENT_BUTTON;
}
}
}
if (interrupt & (HPC3130_PRSNT1 | HPC3130_PRSNT2)) {
if (slot_type == HPC3130_SLOT_TYPE_SBD) {
if (!(status & HPC3130_PRSNT1)) {
/*
* Event only on the downward
* stroke of the button.
*/
hpc3130_p->events[slot] |=
HPC3130_IEVENT_BUTTON;
}
} else {
ASSERT(slot_type == HPC3130_SLOT_TYPE_PCI);
if ((status & (HPC3130_PRSNT1 |
HPC3130_PRSNT2)) ==
(HPC3130_PRSNT1 | HPC3130_PRSNT2)) {
hpc3130_p->present[slot] = B_FALSE;
/* Turn OFF Fault LED */
(void) hpc3130_set_led(hpc3130_p,
slot,
HPC3130_LED_FAULT,
HPC3130_ATTN_OFF);
/* Turn OFF OK-to-remove LED */
(void) hpc3130_set_led(hpc3130_p,
slot,
HPC3130_LED_OK2REM,
HPC3130_ATTN_OFF);
} else {
hpc3130_p->present[slot] = B_TRUE;
/* Turn ON OK-to-remove LED */
(void) hpc3130_set_led(hpc3130_p,
slot,
HPC3130_LED_OK2REM,
HPC3130_ATTN_ON);
}
hpc3130_p->events[slot] |=
HPC3130_IEVENT_OCCUPANCY;
}
}
if (hpc3130_p->events[slot] &&
(hpc3130_p->present[slot] == B_TRUE)) {
mutex_exit(&hpc3130_p->hpc3130_mutex);
pollwakeup(&hpc3130_p->pollhead[slot], POLLIN);
mutex_enter(&hpc3130_p->hpc3130_mutex);
}
(void) hpc3130_write(handle, HPC3130_EVENT_STATUS,
slot, interrupt);
}
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (rc);
}
static int
hpc3130_cpu_init(hpc3130_unit_t *hpc3130_p, int slot, i2c_client_hdl_t handle)
{
uint8_t slot_status;
uint8_t control_reg;
int result = HPC_ERR_FAILED;
if (hpc3130_read(handle, HPC3130_STATUS, slot,
&slot_status)) {
goto out;
}
if (hpc3130_read(handle, HPC3130_CONTROL, slot,
&control_reg)) {
goto out;
}
/*
* For the CPU slots, the DETECT[0] pin on the HPC3130
* goes low when a CPU module is in the slot. Pulled
* high otherwise.
*/
if (slot_status & HPC3130_DETECT0) {
D1CMN_ERR((CE_NOTE, "hpc3130_cpu_init(): "
"[0x%x]Power off....[%d]",
slot_status, slot));
control_reg = control_reg & ~HPC3130_SLTPWRCTL;
} else {
D1CMN_ERR((CE_NOTE, "hpc3130_cpu_init(): "
"[0x%x]Power LEFT on!!!....[%d]",
slot_status, slot));
hpc3130_p->present[slot] = B_TRUE;
control_reg = control_reg | HPC3130_SLTPWRCTL;
}
/*
* Set the control register accordingly
*/
if (hpc3130_write(handle, HPC3130_CONTROL,
slot, control_reg) != DDI_SUCCESS) {
goto out;
}
result = DDI_SUCCESS;
out:
return (result);
}
static int
hpc3130_debounce_status(i2c_client_hdl_t handle,
int slot, uint8_t *status)
{
int count, limit;
uint8_t old;
ASSERT(status);
/*
* Get HPC3130_DEBOUNCE_COUNT consecutive equal
* readings from the status register
*/
count = 0; limit = 0; old = 0xff;
do {
if (hpc3130_read(handle, HPC3130_STATUS,
slot, status)) {
return (DDI_FAILURE);
}
if (old != *status) {
count = 0;
} else {
count += 1;
}
limit += 1;
old = *status;
} while (count < HPC3130_DEBOUNCE_COUNT &&
limit < HPC3130_DEBOUNCE_LIMIT);
if (limit == HPC3130_DEBOUNCE_LIMIT) {
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
static int
hpc3130_slot_connect(caddr_t ops_arg, hpc_slot_t slot_hdl,
void *data, uint_t flags)
{
_NOTE(ARGUNUSED(slot_hdl, data, flags))
uint8_t control;
uint8_t offset;
uint8_t config;
uint8_t status;
hpc3130_unit_t *hpc3130_p;
i2c_client_hdl_t handle;
int i;
int result = HPC_ERR_FAILED;
hpc3130_slot_type_t slot_type;
hpc3130_slot_table_entry_t *ste;
char phys_slot[MAXPATHLEN];
boolean_t needs_to_be_powered_off = B_FALSE;
hpc3130_callback_arg_t *info_p = (hpc3130_callback_arg_t *)ops_arg;
/*
* Callback parameter has specific device handle and offset
* information in it.
*/
hpc3130_p = (hpc3130_unit_t *)info_p->statep;
ASSERT(hpc3130_p);
mutex_enter(&hpc3130_p->hpc3130_mutex);
handle = (i2c_client_hdl_t)info_p->handle;
offset = info_p->offset;
ste = &hpc3130_p->hpc3130_slot_table[offset];
if (hpc3130_p->slots_are == HPC3130_SLOT_TYPE_SBD) {
DAK_GET_SBD_APID(phys_slot, MAXPATHLEN, offset);
} else {
DAK_GET_PCI_APID(phys_slot, MAXPATHLEN,
hpc3130_lookup_slot(ste->nexus,
ste->hpc3130_slot_info.pci_dev_num));
}
ASSERT(ste->hpc3130_slot_handle != NULL);
slot_type = hpc3130_p->slots_are;
if (hpc3130_p->enabled[offset] == B_FALSE) {
cmn_err(CE_WARN, "hot-plug disabled on %s", phys_slot);
goto out;
}
/* Return (do nothing) if power already applied */
if (hpc3130_p->power[offset] == B_TRUE) {
D1CMN_ERR((CE_NOTE, "Slot power already on %s", phys_slot));
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (HPC_SUCCESS);
}
if (hpc3130_read(handle, HPC3130_STATUS, offset,
&status)) {
goto out;
}
/* Read the slot control register to get current value */
if (hpc3130_read(handle, HPC3130_CONTROL, offset,
&control)) {
goto out;
}
if (slot_type == HPC3130_SLOT_TYPE_SBD) {
D1CMN_ERR((CE_NOTE, "CPU connect %d control=%x status=%x",
offset, control, status));
control = control | HPC3130_SLTPWRCTL;
if (hpc3130_write(handle, HPC3130_CONTROL, offset,
control) != DDI_SUCCESS) {
goto out;
}
} else {
D1CMN_ERR((CE_NOTE, "PCI connect %d", offset));
/*
* PCI needs special sequencing of the control signals.
*/
if (hpc3130_read(handle, HPC3130_GCR, offset,
&config)) {
goto out;
}
/* Assert RST to comply with PCI spec. */
control &= ~HPC3130_SLOTRST;
if (hpc3130_write(handle, HPC3130_CONTROL, offset,
control) != DDI_SUCCESS) {
goto out;
}
drv_usecwait(HPC3130_ADEQUATE_PAUSE);
/* Send the power on signal and verify the result */
control = control | HPC3130_SLTPWRCTL;
if ((hpc3130_write(handle, HPC3130_CONTROL, offset,
control) != DDI_SUCCESS) ||
(hpc3130_verify_slot_power(hpc3130_p, handle, offset,
phys_slot, B_TRUE) == HPC_ERR_FAILED)) {
goto out;
}
/* The slot is now powered on. */
drv_usecwait(HPC3130_ADEQUATE_PAUSE);
/* Extinguish the "OK-to-remove" indicator */
(void) hpc3130_set_led(hpc3130_p, offset, HPC3130_LED_OK2REM,
HPC3130_ATTN_OFF);
/*
* Perform bus/card speed check functions.
*/
if (hpc3130_read(handle, HPC3130_STATUS, offset, &status)) {
goto out;
}
if ((config & HPC3130_SYSM66STAT) &&
!(status & HPC3130_M66EN)) {
cmn_err(CE_WARN, "66Mhz bus can't accept "
"33Mhz card in %s", phys_slot);
needs_to_be_powered_off = B_TRUE;
goto out;
}
if (!(config & HPC3130_SYSM66STAT) &&
(status & HPC3130_M66EN)) {
cmn_err(CE_NOTE, "66Mhz capable card throttled "
"back to 33Mhz in %s", phys_slot);
}
/*
* Send the connect sequence (see struct connect_sequence)
*/
for (i = 0; i < HPC3130_CONNECT_SEQ_COUNT; i++) {
if (connect_sequence[i].set_bit == B_TRUE) {
control |= connect_sequence[i].value;
} else {
control &= ~connect_sequence[i].value;
}
if (hpc3130_write(handle, HPC3130_CONTROL, offset,
control) != DDI_SUCCESS) {
goto out;
}
drv_usecwait(HPC3130_ADEQUATE_PAUSE);
}
}
(void) hpc_slot_event_notify(ste->hpc3130_slot_handle,
HPC_EVENT_SLOT_POWER_ON, 0);
/* Flash the "fault" indicator */
(void) hpc3130_set_led(hpc3130_p, offset, HPC3130_LED_FAULT,
HPC3130_ATTN_SLO);
result = HPC_SUCCESS;
out:
if (needs_to_be_powered_off == B_TRUE) {
/*
* We are in an error state where the slot is powered on, and
* it must be powered off.
*/
/* Send the power off signal and verify the result */
control = control & ~HPC3130_SLTPWRCTL;
if ((hpc3130_write(handle, HPC3130_CONTROL, offset,
control) == DDI_SUCCESS) &&
(hpc3130_verify_slot_power(hpc3130_p, handle, offset,
phys_slot, B_FALSE) == HPC_SUCCESS)) {
/* Re-light "OK-to-remove" LED */
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_OK2REM, HPC3130_ATTN_ON);
}
}
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (result);
}
static int
hpc3130_slot_disconnect(caddr_t ops_arg, hpc_slot_t slot_hdl,
void *data, uint_t flags)
{
_NOTE(ARGUNUSED(slot_hdl, data, flags))
uint8_t control;
uint8_t offset;
i2c_client_hdl_t handle;
hpc3130_unit_t *hpc3130_p;
int result = HPC_ERR_FAILED;
hpc3130_slot_type_t slot_type;
hpc3130_slot_table_entry_t *ste;
char phys_slot[MAXPATHLEN];
hpc3130_callback_arg_t *info_p = (hpc3130_callback_arg_t *)ops_arg;
/*
* Callback parameter has specific device handle and offset
* information in it.
*/
hpc3130_p = (hpc3130_unit_t *)info_p->statep;
ASSERT(hpc3130_p);
mutex_enter(&hpc3130_p->hpc3130_mutex);
handle = (i2c_client_hdl_t)info_p->handle;
offset = info_p->offset;
ASSERT(handle == hpc3130_p->hpc3130_hdl);
ste = &hpc3130_p->hpc3130_slot_table[offset];
if (hpc3130_p->slots_are == HPC3130_SLOT_TYPE_SBD) {
DAK_GET_SBD_APID(phys_slot, MAXPATHLEN, offset);
} else {
DAK_GET_PCI_APID(phys_slot, MAXPATHLEN,
hpc3130_lookup_slot(ste->nexus,
ste->hpc3130_slot_info.pci_dev_num));
}
ASSERT(ste->hpc3130_slot_handle != NULL);
slot_type = hpc3130_p->slots_are;
/*
* Read the slot control register to get current value
*/
if (hpc3130_read(handle, HPC3130_CONTROL, offset,
&control)) {
goto out;
}
if (slot_type == HPC3130_SLOT_TYPE_SBD) {
D1CMN_ERR((CE_NOTE, "CPU disconnect %d", offset));
control = control & ~HPC3130_SLTPWRCTL;
/*
* Write out the modified control register
*/
if (hpc3130_write(handle, HPC3130_CONTROL, offset,
control) != DDI_SUCCESS) {
goto out;
}
} else {
D1CMN_ERR((CE_NOTE, "PCI disconnect %d", offset));
control &= ~HPC3130_SLOTRST;
if (hpc3130_write(handle, HPC3130_CONTROL, offset,
control) != DDI_SUCCESS) {
goto out;
}
control |= HPC3130_BUS_CTL;
if (hpc3130_write(handle, HPC3130_CONTROL, offset,
control) != DDI_SUCCESS) {
goto out;
}
}
D1CMN_ERR((CE_WARN, "disconnect present[%d]==%d",
offset, hpc3130_p->present[offset]));
if (hpc3130_verify_slot_power(hpc3130_p, handle, offset,
phys_slot, B_FALSE) == HPC_ERR_FAILED) {
goto out;
}
(void) hpc_slot_event_notify(ste->hpc3130_slot_handle,
HPC_EVENT_SLOT_POWER_OFF, 0);
if (hpc3130_p->present[offset] == B_TRUE) {
/*
* Illuminate the "OK-to-remove" indicator
* if there is a card in the slot.
*/
(void) hpc3130_set_led(hpc3130_p, offset, HPC3130_LED_OK2REM,
HPC3130_ATTN_ON);
/*
* Turn off the "fault" indicator
*/
(void) hpc3130_set_led(hpc3130_p, offset, HPC3130_LED_FAULT,
HPC3130_ATTN_OFF);
} else {
/*
* If the slot is being powered off with
* no cards in there, its at "boot time",
* put the LEDs in a sane state
*/
if (slot_type == HPC3130_SLOT_TYPE_PCI) {
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_FAULT, HPC3130_ATTN_OFF);
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_OK2REM, HPC3130_ATTN_OFF);
}
}
result = HPC_SUCCESS;
out:
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (result);
}
static int
hpc3130_verify_slot_power(hpc3130_unit_t *hpc3130_p, i2c_client_hdl_t handle,
uint8_t offset, char *phys_slot, boolean_t slot_target_state)
{
uint8_t tries = 0;
uint8_t status;
int result = HPC_SUCCESS;
clock_t timeleft;
clock_t tm = drv_usectohz(300000);
boolean_t slot_actual_state;
boolean_t failure = B_FALSE;
hpc3130_slot_table_entry_t *ste;
/* This function is called while holding the hpc3130 mutex. */
/*
* For slot_target_state and slot_actual_state:
* B_TRUE == the slot is powered on
* B_FALSE == the slot is powered off
*/
ste = &hpc3130_p->hpc3130_slot_table[offset];
slot_actual_state = hpc3130_p->power[offset];
while ((slot_actual_state != slot_target_state) &&
(failure != B_TRUE)) {
timeleft = cv_reltimedwait(&hpc3130_p->hpc3130_cond,
&hpc3130_p->hpc3130_mutex, tm, TR_CLOCK_TICK);
if (timeleft == -1) {
if (tries++ < HPC3130_POWER_TRIES) {
/*
* The interrupt was missed - explicitly
* check the status.
*/
if (hpc3130_read(handle,
HPC3130_STATUS, offset, &status)) {
failure = B_TRUE;
continue;
}
if (status & HPC3130_PWRGOOD) {
slot_actual_state = B_FALSE;
} else {
slot_actual_state = B_TRUE;
}
hpc3130_p->power[offset] = slot_actual_state;
} else {
/* Too many tries. We failed. */
failure = B_TRUE;
}
}
}
if (failure == B_TRUE) {
result = HPC_ERR_FAILED;
if (slot_target_state == B_TRUE) {
cmn_err(CE_WARN,
"Could not power on slot %s", phys_slot);
} else {
cmn_err(CE_WARN,
"Could not power off slot %s", phys_slot);
}
(void) hpc3130_set_led(hpc3130_p, offset, HPC3130_LED_FAULT,
HPC3130_ATTN_ON);
(void) hpc_slot_event_notify(ste->hpc3130_slot_handle,
HPC_EVENT_SLOT_NOT_HEALTHY, 0);
}
return (result);
}
static int
hpc3130_slot_insert(caddr_t ops_arg, hpc_slot_t slot_hdl,
void *data, uint_t flags)
{
_NOTE(ARGUNUSED(ops_arg, slot_hdl, data, flags))
return (HPC_ERR_NOTSUPPORTED);
}
static int
hpc3130_slot_remove(caddr_t ops_arg, hpc_slot_t slot_hdl,
void *data, uint_t flags)
{
_NOTE(ARGUNUSED(ops_arg, slot_hdl, data, flags))
return (HPC_ERR_NOTSUPPORTED);
}
static int
hpc3130_slot_control(caddr_t ops_arg, hpc_slot_t slot_hdl,
int request, caddr_t arg)
{
_NOTE(ARGUNUSED(slot_hdl))
i2c_client_hdl_t handle;
uint8_t offset;
uint8_t state;
hpc_led_info_t *led_info;
hpc3130_unit_t *hpc3130_p;
hpc3130_slot_type_t slot_type;
hpc3130_callback_arg_t *info_p = (hpc3130_callback_arg_t *)ops_arg;
/*
* Callback parameter has specific device handle and offset
* information in it.
*/
hpc3130_p = (hpc3130_unit_t *)info_p->statep;
ASSERT(hpc3130_p);
mutex_enter(&hpc3130_p->hpc3130_mutex);
handle = (i2c_client_hdl_t)info_p->handle;
offset = info_p->offset;
ASSERT(handle == hpc3130_p->hpc3130_hdl);
slot_type = hpc3130_p->slots_are;
switch (request) {
case HPC_CTRL_GET_LED_STATE: {
int led;
led_info = (hpc_led_info_t *)arg;
if (led_info->led != HPC_FAULT_LED &&
led_info->led != HPC_ATTN_LED) {
D1CMN_ERR((CE_WARN,
"Only FAULT and ATTN leds allowed"));
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (HPC_ERR_INVALID);
}
if (led_info->led == HPC_FAULT_LED)
led = HPC3130_LED_FAULT;
else
led = HPC3130_LED_OK2REM;
if (hpc3130_get_led(handle, offset, led, &state) !=
DDI_SUCCESS) {
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (HPC_ERR_FAILED);
}
/* Make sure that no one broke the conversion macros */
ASSERT(state < sizeof (hpc3130_to_hpc_led_map));
ASSERT(state ==
HPC3130_FROM_HPC_LED(HPC3130_TO_HPC_LED(state)));
led_info->state = HPC3130_TO_HPC_LED(state);
}
break;
case HPC_CTRL_SET_LED_STATE: {
int led;
/*
* The HPC3130 support modifications to the Fault and
* Ok-to-remove LEDs.
*/
led_info = (hpc_led_info_t *)arg;
if (led_info->led != HPC_FAULT_LED &&
led_info->led != HPC_ATTN_LED) {
D1CMN_ERR((CE_WARN,
"Only FAULT and ATTN leds allowed"));
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (HPC_ERR_INVALID);
}
if (led_info->led == HPC_FAULT_LED)
led = HPC3130_LED_FAULT;
else
led = HPC3130_LED_OK2REM;
state = led_info->state;
if (state >= sizeof (hpc3130_from_hpc_led_map) ||
(state != HPC3130_TO_HPC_LED(
HPC3130_FROM_HPC_LED(state)))) {
D1CMN_ERR((CE_WARN,
"Improper LED value: %d %d", state,
HPC3130_TO_HPC_LED(
HPC3130_FROM_HPC_LED(state))));
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (HPC_ERR_INVALID);
}
(void) hpc3130_set_led(hpc3130_p, offset, led,
HPC3130_FROM_HPC_LED(state));
}
break;
case HPC_CTRL_GET_SLOT_STATE: {
if (hpc3130_p->power[offset] == B_FALSE) {
if (hpc3130_p->present[offset] == B_FALSE) {
*(ap_rstate_t *)arg =
AP_RSTATE_EMPTY;
} else {
*(ap_rstate_t *)arg =
AP_RSTATE_DISCONNECTED;
}
} else {
*(ap_rstate_t *)arg =
AP_RSTATE_CONNECTED;
}
}
break;
case HPC_CTRL_GET_BOARD_TYPE: {
*(hpc_board_type_t *)arg =
(slot_type == HPC3130_SLOT_TYPE_SBD ?
HPC_BOARD_UNKNOWN : HPC_BOARD_PCI_HOTPLUG);
}
break;
case HPC_CTRL_DEV_CONFIG_START:
case HPC_CTRL_DEV_UNCONFIG_START:
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_FAULT, HPC3130_ATTN_SLO);
break;
case HPC_CTRL_DEV_CONFIG_FAILURE:
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_FAULT, HPC3130_ATTN_ON);
break;
case HPC_CTRL_DEV_CONFIGURED:
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_FAULT, HPC3130_ATTN_OFF);
hpc3130_p->present[offset] = B_TRUE;
break;
case HPC_CTRL_DEV_UNCONFIGURED:
if (hpc3130_p->power[offset] == B_TRUE) {
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_FAULT, HPC3130_ATTN_SLO);
} else {
(void) hpc3130_set_led(hpc3130_p, offset,
HPC3130_LED_FAULT, HPC3130_ATTN_OFF);
}
break;
case HPC_CTRL_DISABLE_SLOT: {
hpc3130_p->enabled[offset] = B_FALSE;
}
break;
case HPC_CTRL_ENABLE_SLOT: {
hpc3130_p->enabled[offset] = B_TRUE;
}
break;
default:
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (HPC_ERR_FAILED);
}
mutex_exit(&hpc3130_p->hpc3130_mutex);
return (HPC_SUCCESS);
}
int
hpc3130_lookup_slot(char *nexus, int pcidev)
{
int i = 0;
while ((slot_translate[i].pcidev != pcidev ||
strcmp(nexus, slot_translate[i].nexus) != 0) &&
i < HPC3130_LOOKUP_SLOTS)
i++;
ASSERT(i != HPC3130_LOOKUP_SLOTS);
return (i);
}
/*
* A routine to convert a number (represented as a string) to
* the integer value it represents.
*/
static int
isdigit(int ch)
{
return (ch >= '0' && ch <= '9');
}
#define isspace(c) ((c) == ' ' || (c) == '\t' || (c) == '\n')
#define bad(val) (val == NULL || !isdigit(*val))
static int
hpc3130_atoi(const char *p)
{
int n;
int c, neg = 0;
if (!isdigit(c = *p)) {
while (isspace(c))
c = *++p;
switch (c) {
case '-':
neg++;
/* FALLTHROUGH */
case '+':
c = *++p;
}
if (!isdigit(c))
return (0);
}
for (n = '0' - c; isdigit(c = *++p); ) {
n *= 10; /* two steps to avoid unnecessary overflow */
n += '0' - c; /* accum neg to avoid surprises at MAX */
}
return (neg ? n : -n);
}