/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/machsystm.h>
#include <sys/archsystm.h>
#include <sys/vm.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <sys/reboot.h>
#include <sys/kdi.h>
#include <sys/bootconf.h>
#include <sys/memlist_plat.h>
#include <sys/memlist_impl.h>
#include <sys/prom_plat.h>
#include <sys/prom_isa.h>
#include <sys/autoconf.h>
#include <sys/ivintr.h>
#include <sys/fpu/fpusystm.h>
#include <sys/iommutsb.h>
#include <vm/vm_dep.h>
#include <vm/seg_dev.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kpm.h>
#include <vm/seg_map.h>
#include <vm/seg_kp.h>
#include <sys/sysconf.h>
#include <vm/hat_sfmmu.h>
#include <sys/kobj.h>
#include <sys/sun4asi.h>
#include <sys/clconf.h>
#include <sys/platform_module.h>
#include <sys/panic.h>
#include <sys/cpu_sgnblk_defs.h>
#include <sys/clock.h>
#include <sys/cmn_err.h>
#include <sys/dumphdr.h>
#include <sys/promif.h>
#include <sys/prom_debug.h>
#include <sys/traptrace.h>
#include <sys/memnode.h>
#include <sys/mem_cage.h>
#include <sys/mmu.h>
#include <sys/swap.h>
extern void setup_trap_table(void);
extern int cpu_intrq_setup(struct cpu *);
extern void cpu_intrq_register(struct cpu *);
extern void contig_mem_init(void);
extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
extern void mach_dump_buffer_init(void);
extern void mach_descrip_init(void);
extern void mach_descrip_startup_fini(void);
extern void mach_memscrub(void);
extern void mach_fpras(void);
extern void mach_cpu_halt_idle(void);
extern void mach_hw_copy_limit(void);
extern void load_mach_drivers(void);
extern void load_tod_module(void);
#pragma weak load_tod_module
extern int ndata_alloc_mmfsa(struct memlist *ndata);
#pragma weak ndata_alloc_mmfsa
extern void cif_init(void);
#pragma weak cif_init
extern void parse_idprom(void);
extern void add_vx_handler(char *, int, void (*)(cell_t *));
extern void mem_config_init(void);
extern void memseg_remap_init(void);
extern void mach_kpm_init(void);
extern void pcf_init();
extern int size_pse_array(pgcnt_t, int);
extern void pg_init();
/*
* External Data:
*/
extern int vac_size; /* cache size in bytes */
extern uint_t vac_mask; /* VAC alignment consistency mask */
extern uint_t vac_colors;
/*
* Global Data Definitions:
*/
/*
* XXX - Don't port this to new architectures
* A 3rd party volume manager driver (vxdm) depends on the symbol romp.
* 'romp' has no use with a prom with an IEEE 1275 client interface.
* The driver doesn't use the value, but it depends on the symbol.
*/
void *romp; /* veritas driver won't load without romp 4154976 */
/*
* Declare these as initialized data so we can patch them.
*/
pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */
pgcnt_t segkpsize =
btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
uint_t segmap_percent = 6; /* Size of segmap segment */
int use_cache = 1; /* cache not reliable (605 bugs) with MP */
int vac_copyback = 1;
char *cache_mode = NULL;
int use_mix = 1;
int prom_debug = 0;
caddr_t boot_tba; /* %tba at boot - used by kmdb */
uint_t tba_taken_over = 0;
caddr_t s_text; /* start of kernel text segment */
caddr_t e_text; /* end of kernel text segment */
caddr_t s_data; /* start of kernel data segment */
caddr_t e_data; /* end of kernel data segment */
caddr_t modtext; /* beginning of module text */
size_t modtext_sz; /* size of module text */
caddr_t moddata; /* beginning of module data reserve */
caddr_t e_moddata; /* end of module data reserve */
/*
* End of first block of contiguous kernel in 32-bit virtual address space
*/
caddr_t econtig32; /* end of first blk of contiguous kernel */
caddr_t ncbase; /* beginning of non-cached segment */
caddr_t ncend; /* end of non-cached segment */
size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */
caddr_t nalloc_base; /* beginning of nucleus allocation */
caddr_t nalloc_end; /* end of nucleus allocatable memory */
caddr_t valloc_base; /* beginning of kvalloc segment */
caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */
caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */
size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */
caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */
int kmem64_szc; /* page size code */
uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */
uintptr_t shm_alignment; /* VAC address consistency modulus */
struct memlist *phys_install; /* Total installed physical memory */
struct memlist *phys_avail; /* Available (unreserved) physical memory */
struct memlist *virt_avail; /* Available (unmapped?) virtual memory */
struct memlist *nopp_list; /* pages with no backing page structs */
struct memlist ndata; /* memlist of nucleus allocatable memory */
int memexp_flag; /* memory expansion card flag */
uint64_t ecache_flushaddr; /* physical address used for flushing E$ */
pgcnt_t obp_pages; /* Physical pages used by OBP */
/*
* VM data structures
*/
long page_hashsz; /* Size of page hash table (power of two) */
unsigned int page_hashsz_shift; /* log2(page_hashsz) */
struct page *pp_base; /* Base of system page struct array */
size_t pp_sz; /* Size in bytes of page struct array */
struct page **page_hash; /* Page hash table */
pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
int pse_shift; /* log2(pse_table_size) */
struct seg ktextseg; /* Segment used for kernel executable image */
struct seg kvalloc; /* Segment used for "valloc" mapping */
struct seg kpseg; /* Segment used for pageable kernel virt mem */
struct seg ktexthole; /* Segment used for nucleus text hole */
struct seg kmapseg; /* Segment used for generic kernel mappings */
struct seg kpmseg; /* Segment used for physical mapping */
struct seg kdebugseg; /* Segment used for the kernel debugger */
void *kpm_pp_base; /* Base of system kpm_page array */
size_t kpm_pp_sz; /* Size of system kpm_page array */
pgcnt_t kpm_npages; /* How many kpm pages are managed */
struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
int segzio_fromheap = 0; /* zio allocations occur from heap */
caddr_t segzio_base; /* Base address of segzio */
pgcnt_t segziosize = 0; /* size of zio segment in pages */
/*
* A static DR page_t VA map is reserved that can map the page structures
* for a domain's entire RA space. The pages that backs this space are
* dynamically allocated and need not be physically contiguous. The DR
* map size is derived from KPM size.
*/
int ppvm_enable = 0; /* Static virtual map for page structs */
page_t *ppvm_base; /* Base of page struct map */
pgcnt_t ppvm_size = 0; /* Size of page struct map */
/*
* debugger pages (if allocated)
*/
struct vnode kdebugvp;
/*
* VA range available to the debugger
*/
const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
const size_t kdi_segdebugsize = SEGDEBUGSIZE;
/*
* Segment for relocated kernel structures in 64-bit large RAM kernels
*/
struct seg kmem64;
struct memseg *memseg_free;
struct vnode unused_pages_vp;
/*
* VM data structures allocated early during boot.
*/
size_t pagehash_sz;
uint64_t memlist_sz;
char tbr_wr_addr_inited = 0;
caddr_t mpo_heap32_buf = NULL;
size_t mpo_heap32_bufsz = 0;
/*
* Static Routines:
*/
static int ndata_alloc_memseg(struct memlist *, size_t);
static void memlist_new(uint64_t, uint64_t, struct memlist **);
static void memlist_add(uint64_t, uint64_t,
struct memlist **, struct memlist **);
static void kphysm_init(void);
static void kvm_init(void);
static void install_kmem64_tte(void);
static void startup_init(void);
static void startup_memlist(void);
static void startup_modules(void);
static void startup_bop_gone(void);
static void startup_vm(void);
static void startup_end(void);
static void setup_cage_params(void);
static void startup_create_io_node(void);
static pgcnt_t npages;
static struct memlist *memlist;
void *memlist_end;
static pgcnt_t bop_alloc_pages;
static caddr_t hblk_base;
uint_t hblk_alloc_dynamic = 0;
uint_t hblk1_min = H1MIN;
/*
* Hooks for unsupported platforms and down-rev firmware
*/
int iam_positron(void);
#pragma weak iam_positron
static void do_prom_version_check(void);
/*
* After receiving a thermal interrupt, this is the number of seconds
* to delay before shutting off the system, assuming
* shutdown fails. Use /etc/system to change the delay if this isn't
* large enough.
*/
int thermal_powerdown_delay = 1200;
/*
* Used to hold off page relocations into the cage until OBP has completed
* its boot-time handoff of its resources to the kernel.
*/
int page_relocate_ready = 0;
/*
* Indicate if kmem64 allocation was done in small chunks
*/
int kmem64_smchunks = 0;
/*
* Enable some debugging messages concerning memory usage...
*/
#ifdef DEBUGGING_MEM
static int debugging_mem;
static void
printmemlist(char *title, struct memlist *list)
{
if (!debugging_mem)
return;
printf("%s\n", title);
while (list) {
prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
(uint32_t)(list->ml_address >> 32),
(uint32_t)list->ml_address,
(uint32_t)(list->ml_size >> 32),
(uint32_t)(list->ml_size));
list = list->ml_next;
}
}
void
printmemseg(struct memseg *memseg)
{
if (!debugging_mem)
return;
printf("memseg\n");
while (memseg) {
prom_printf("\tpage = 0x%p, epage = 0x%p, "
"pfn = 0x%x, epfn = 0x%x\n",
memseg->pages, memseg->epages,
memseg->pages_base, memseg->pages_end);
memseg = memseg->next;
}
}
#define debug_pause(str) halt((str))
#define MPRINTF(str) if (debugging_mem) prom_printf((str))
#define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a))
#define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b))
#define MPRINTF3(str, a, b, c) \
if (debugging_mem) prom_printf((str), (a), (b), (c))
#else /* DEBUGGING_MEM */
#define MPRINTF(str)
#define MPRINTF1(str, a)
#define MPRINTF2(str, a, b)
#define MPRINTF3(str, a, b, c)
#endif /* DEBUGGING_MEM */
/*
*
* Kernel's Virtual Memory Layout.
* /-----------------------\
* 0xFFFFFFFF.FFFFFFFF -| |-
* | OBP's virtual page |
* | tables |
* 0xFFFFFFFC.00000000 -|-----------------------|-
* : :
* : :
* -|-----------------------|-
* | segzio | (base and size vary)
* 0xFFFFFE00.00000000 -|-----------------------|-
* | | Ultrasparc I/II support
* | segkpm segment | up to 2TB of physical
* | (64-bit kernel ONLY) | memory, VAC has 2 colors
* | |
* 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment
* : :
* : :
* 0xFFFFF810.00000000 -|-----------------------|- hole_end
* | | ^
* | UltraSPARC I/II call | |
* | bug requires an extra | |
* | 4 GB of space between | |
* | hole and used RAM | |
* | | |
* 0xFFFFF800.00000000 -|-----------------------|- |
* | | |
* | Virtual Address Hole | UltraSPARC
* | on UltraSPARC I/II | I/II * ONLY *
* | | |
* 0x00000800.00000000 -|-----------------------|- |
* | | |
* | UltraSPARC I/II call | |
* | bug requires an extra | |
* | 4 GB of space between | |
* | hole and used RAM | |
* | | v
* 0x000007FF.00000000 -|-----------------------|- hole_start -----
* : : ^
* : : |
* |-----------------------| |
* | | |
* | ecache flush area | |
* | (twice largest e$) | |
* | | |
* 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ |
* | overmapped area | alignend_end |
* | (kmem64_alignsize | |
* | boundary) | |
* 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end |
* | | |
* | 64-bit kernel ONLY | |
* | | |
* | kmem64 segment | |
* | | |
* | (Relocated extra HME | Approximately
* | block allocations, | 1 TB of virtual
* | memnode freelists, | address space
* | HME hash buckets, | |
* | mml_table, kpmp_table,| |
* | page_t array and | |
* | hashblock pool to | |
* | avoid hard-coded | |
* | 32-bit vaddr | |
* | limitations) | |
* | | v
* 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base)
* | |
* | segkmem segment | (SYSLIMIT - SYSBASE = 4TB)
* | |
* 0x00000300.00000000 -|-----------------------|- SYSBASE
* : :
* : :
* -|-----------------------|-
* | |
* | segmap segment | SEGMAPSIZE (1/8th physmem,
* | | 256G MAX)
* 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE
* : :
* : :
* -|-----------------------|-
* | |
* | segkp | SEGKPSIZE (2GB)
* | |
* | |
* 0x000002a1.00000000 -|-----------------------|- SEGKPBASE
* | |
* 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE
* | | (SEGKPBASE - 0x400000)
* 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE
* | | (MEMSCRUBBASE - NCARGS)
* 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE
* | | (ARGSBASE - PPMAPSIZE)
* 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE
* | |
* 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE
* | |
* 0x0000029F.FF580000 -|-----------------------|- NARG_BASE
* : :
* : :
* 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR
* | |
* | OBP |
* | |
* 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR
* | kmdb |
* 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE
* : :
* : :
* 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32
* | |
* | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 =
* | | ~64MB)
* -|-----------------------|
* | IVSIZE |
* 0x00000000.70004000 -|-----------------------|
* | panicbuf |
* 0x00000000.70002000 -|-----------------------|
* | PAGESIZE |
* 0x00000000.70000000 -|-----------------------|- SYSBASE32
* | boot-time |
* | temporary space |
* 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE
* : :
* : :
* | |
* |-----------------------|- econtig32
* | vm structures |
* 0x00000000.01C00000 |-----------------------|- nalloc_end
* | TSBs |
* |-----------------------|- end/nalloc_base
* | kernel data & bss |
* 0x00000000.01800000 -|-----------------------|
* : nucleus text hole :
* 0x00000000.01400000 -|-----------------------|
* : :
* |-----------------------|
* | module text |
* |-----------------------|- e_text/modtext
* | kernel text |
* |-----------------------|
* | trap table (48k) |
* 0x00000000.01000000 -|-----------------------|- KERNELBASE
* | reserved for trapstat |} TSTAT_TOTAL_SIZE
* |-----------------------|
* | |
* | invalid |
* | |
* 0x00000000.00000000 _|_______________________|
*
*
*
* 32-bit User Virtual Memory Layout.
* /-----------------------\
* | |
* | invalid |
* | |
* 0xFFC00000 -|-----------------------|- USERLIMIT
* | user stack |
* : :
* : :
* : :
* | user data |
* -|-----------------------|-
* | user text |
* 0x00002000 -|-----------------------|-
* | invalid |
* 0x00000000 _|_______________________|
*
*
*
* 64-bit User Virtual Memory Layout.
* /-----------------------\
* | |
* | invalid |
* | |
* 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
* | user stack |
* : :
* : :
* : :
* | user data |
* -|-----------------------|-
* | user text |
* 0x00000000.01000000 -|-----------------------|-
* | invalid |
* 0x00000000.00000000 _|_______________________|
*/
extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
extern uint64_t ecache_flush_address(void);
#pragma weak load_platform_modules
#pragma weak plat_startup_memlist
#pragma weak ecache_init_scrub_flush_area
#pragma weak ecache_flush_address
/*
* By default the DR Cage is enabled for maximum OS
* MPSS performance. Users needing to disable the cage mechanism
* can set this variable to zero via /etc/system.
* Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
* will result in loss of DR functionality.
* Platforms wishing to disable kernel Cage by default
* should do so in their set_platform_defaults() routine.
*/
int kernel_cage_enable = 1;
static void
setup_cage_params(void)
{
void (*func)(void);
func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
if (func != NULL) {
(*func)();
return;
}
if (kernel_cage_enable == 0) {
return;
}
kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
if (kcage_on) {
cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
} else {
cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
}
}
/*
* Machine-dependent startup code
*/
void
startup(void)
{
startup_init();
if (&startup_platform)
startup_platform();
startup_memlist();
startup_modules();
setup_cage_params();
startup_bop_gone();
startup_vm();
startup_end();
}
struct regs sync_reg_buf;
uint64_t sync_tt;
void
sync_handler(void)
{
struct panic_trap_info ti;
int i;
/*
* Prevent trying to talk to the other CPUs since they are
* sitting in the prom and won't reply.
*/
for (i = 0; i < NCPU; i++) {
if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
cpu[i]->cpu_flags &= ~CPU_READY;
cpu[i]->cpu_flags |= CPU_QUIESCED;
CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
}
}
/*
* Force a serial dump, since there are no CPUs to help.
*/
dump_plat_mincpu = 0;
/*
* We've managed to get here without going through the
* normal panic code path. Try and save some useful
* information.
*/
if (!panicstr && (curthread->t_panic_trap == NULL)) {
ti.trap_type = sync_tt;
ti.trap_regs = &sync_reg_buf;
ti.trap_addr = NULL;
ti.trap_mmu_fsr = 0x0;
curthread->t_panic_trap = &ti;
}
/*
* If we're re-entering the panic path, update the signature
* block so that the SC knows we're in the second part of panic.
*/
if (panicstr)
CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
panic("sync initiated");
}
static void
startup_init(void)
{
/*
* We want to save the registers while we're still in OBP
* so that we know they haven't been fiddled with since.
* (In principle, OBP can't change them just because it
* makes a callback, but we'd rather not depend on that
* behavior.)
*/
char sync_str[] =
"warning @ warning off : sync "
"%%tl-c %%tstate h# %p x! "
"%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
"%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
"%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
"%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
"%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
"%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
"%%y h# %p l! %%tl-c %%tt h# %p x! "
"sync ; warning !";
/*
* 20 == num of %p substrings
* 16 == max num of chars %p will expand to.
*/
char bp[sizeof (sync_str) + 16 * 20];
/*
* Initialize ptl1 stack for the 1st CPU.
*/
ptl1_init_cpu(&cpu0);
/*
* Initialize the address map for cache consistent mappings
* to random pages; must be done after vac_size is set.
*/
ppmapinit();
/*
* Initialize the PROM callback handler.
*/
init_vx_handler();
/*
* have prom call sync_callback() to handle the sync and
* save some useful information which will be stored in the
* core file later.
*/
(void) sprintf((char *)bp, sync_str,
(void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
(void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
(void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
(void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
(void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
(void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
(void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
(void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
(void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
(void *)&sync_reg_buf.r_y, (void *)&sync_tt);
prom_interpret(bp, 0, 0, 0, 0, 0);
add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
}
size_t
calc_pp_sz(pgcnt_t npages)
{
return (npages * sizeof (struct page));
}
size_t
calc_kpmpp_sz(pgcnt_t npages)
{
kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
kpm_pgsz = 1ull << kpm_pgshft;
kpm_pgoff = kpm_pgsz - 1;
kpmp2pshft = kpm_pgshft - PAGESHIFT;
kpmpnpgs = 1 << kpmp2pshft;
if (kpm_smallpages == 0) {
/*
* Avoid fragmentation problems in kphysm_init()
* by allocating for all of physical memory
*/
kpm_npages = ptokpmpr(physinstalled);
return (kpm_npages * sizeof (kpm_page_t));
} else {
kpm_npages = npages;
return (kpm_npages * sizeof (kpm_spage_t));
}
}
size_t
calc_pagehash_sz(pgcnt_t npages)
{
/* LINTED */
ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page))));
/*
* The page structure hash table size is a power of 2
* such that the average hash chain length is PAGE_HASHAVELEN.
*/
page_hashsz = npages / PAGE_HASHAVELEN;
page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1),
highbit(page_hashsz));
page_hashsz = 1 << page_hashsz_shift;
return (page_hashsz * sizeof (struct page *));
}
int testkmem64_smchunks = 0;
int
alloc_kmem64(caddr_t base, caddr_t end)
{
int i;
caddr_t aligned_end = NULL;
if (testkmem64_smchunks)
return (1);
/*
* Make one large memory alloc after figuring out the 64-bit size. This
* will enable use of the largest page size appropriate for the system
* architecture.
*/
ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
size_t alloc_size, alignsize;
#if !defined(C_OBP)
unsigned long long pa;
#endif /* !C_OBP */
if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
continue;
alignsize = TTEBYTES(i);
kmem64_szc = i;
/* limit page size for small memory */
if (mmu_btop(alignsize) > (npages >> 2))
continue;
aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
alloc_size = aligned_end - base;
#if !defined(C_OBP)
if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
kmem64_pabase = pa;
kmem64_aligned_end = aligned_end;
install_kmem64_tte();
break;
} else {
prom_free_phys(alloc_size, pa);
}
}
#else /* !C_OBP */
if (prom_alloc(base, alloc_size, alignsize) == base) {
kmem64_pabase = va_to_pa(kmem64_base);
kmem64_aligned_end = aligned_end;
break;
}
#endif /* !C_OBP */
if (i == TTE8K) {
#ifdef sun4v
/* return failure to try small allocations */
return (1);
#else
prom_panic("kmem64 allocation failure");
#endif
}
}
ASSERT(aligned_end != NULL);
return (0);
}
static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
#if !defined(C_OBP)
/*
* Install a temporary tte handler in OBP for kmem64 area.
*
* We map kmem64 area with large pages before the trap table is taken
* over. Since OBP makes 8K mappings, it can create 8K tlb entries in
* the same area. Duplicate tlb entries with different page sizes
* cause unpredicatble behavior. To avoid this, we don't create
* kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
* OBP). Instead, we manage translations with a temporary va>tte-data
* handler (kmem64-tte). This handler is replaced by unix-tte when
* the trap table is taken over.
*
* The temporary handler knows the physical address of the kmem64
* area. It uses the prom's pgmap@ Forth word for other addresses.
*
* We have to use BOP_ALLOC() method for C-OBP platforms because
* pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
* sun4u platforms. On sun4u we flush tlb after trap table is taken
* over if we use large pages for kernel heap and kmem64. Since sun4u
* prom (unlike sun4v) calls va>tte-data first for client address
* translation prom's ttes for kmem64 can't get into TLB even if we
* later switch to prom's trap table again. C-OBP uses 4M pages for
* client mappings when possible so on all platforms we get the
* benefit from large mappings for kmem64 area immediately during
* boot.
*
* pseudo code:
* if (context != 0) {
* return false
* } else if (miss_va in range[kmem64_base, kmem64_end)) {
* tte = tte_template +
* (((miss_va & pagemask) - kmem64_base));
* return tte, true
* } else {
* return pgmap@ result
* }
*/
char kmem64_obp_str[] =
"h# %lx constant kmem64-base "
"h# %lx constant kmem64-end "
"h# %lx constant kmem64-pagemask "
"h# %lx constant kmem64-template "
": kmem64-tte ( addr cnum -- false | tte-data true ) "
" if ( addr ) "
" drop false exit then ( false ) "
" dup kmem64-base kmem64-end within if ( addr ) "
" kmem64-pagemask and ( addr' ) "
" kmem64-base - ( addr' ) "
" kmem64-template + ( tte ) "
" true ( tte true ) "
" else ( addr ) "
" pgmap@ ( tte ) "
" dup 0< if true else drop false then ( tte true | false ) "
" then ( tte true | false ) "
"; "
"' kmem64-tte is va>tte-data "
;
static void
install_kmem64_tte()
{
char b[sizeof (kmem64_obp_str) + (4 * 16)];
tte_t tte;
PRM_DEBUG(kmem64_pabase);
PRM_DEBUG(kmem64_szc);
sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
PROC_DATA | HAT_NOSYNC, kmem64_szc);
PRM_DEBUG(tte.ll);
(void) sprintf(b, kmem64_obp_str,
kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
ASSERT(strlen(b) < sizeof (b));
prom_interpret(b, 0, 0, 0, 0, 0);
}
#endif /* !C_OBP */
/*
* As OBP takes up some RAM when the system boots, pages will already be "lost"
* to the system and reflected in npages by the time we see it.
*
* We only want to allocate kernel structures in the 64-bit virtual address
* space on systems with enough RAM to make the overhead of keeping track of
* an extra kernel memory segment worthwhile.
*
* Since OBP has already performed its memory allocations by this point, if we
* have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
* memory in the 64-bit virtual address space; otherwise keep allocations
* contiguous with we've mapped so far in the 32-bit virtual address space.
*/
#define MINMOVE_RAM_MB ((size_t)1900)
#define MB_TO_BYTES(mb) ((mb) * 1048576ul)
#define BYTES_TO_MB(b) ((b) / 1048576ul)
pgcnt_t tune_npages = (pgcnt_t)
(MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
#pragma weak page_set_colorequiv_arr_cpu
extern void page_set_colorequiv_arr_cpu(void);
extern void page_set_colorequiv_arr(void);
static pgcnt_t ramdisk_npages;
static struct memlist *old_phys_avail;
kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
static void
startup_memlist(void)
{
size_t hmehash_sz, pagelist_sz, tt_sz;
size_t psetable_sz;
caddr_t alloc_base;
caddr_t memspace;
struct memlist *cur;
size_t syslimit = (size_t)SYSLIMIT;
size_t sysbase = (size_t)SYSBASE;
/*
* Initialize enough of the system to allow kmem_alloc to work by
* calling boot to allocate its memory until the time that
* kvm_init is completed. The page structs are allocated after
* rounding up end to the nearest page boundary; the memsegs are
* initialized and the space they use comes from the kernel heap.
* With appropriate initialization, they can be reallocated later
* to a size appropriate for the machine's configuration.
*
* At this point, memory is allocated for things that will never
* need to be freed, this used to be "valloced". This allows a
* savings as the pages don't need page structures to describe
* them because them will not be managed by the vm system.
*/
/*
* We're loaded by boot with the following configuration (as
* specified in the sun4u/conf/Mapfile):
*
* text: 4 MB chunk aligned on a 4MB boundary
* data & bss: 4 MB chunk aligned on a 4MB boundary
*
* These two chunks will eventually be mapped by 2 locked 4MB
* ttes and will represent the nucleus of the kernel. This gives
* us some free space that is already allocated, some or all of
* which is made available to kernel module text.
*
* The free space in the data-bss chunk is used for nucleus
* allocatable data structures and we reserve it using the
* nalloc_base and nalloc_end variables. This space is currently
* being used for hat data structures required for tlb miss
* handling operations. We align nalloc_base to a l2 cache
* linesize because this is the line size the hardware uses to
* maintain cache coherency.
* 512K is carved out for module data.
*/
moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
e_moddata = moddata + MODDATA;
nalloc_base = e_moddata;
nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
valloc_base = nalloc_base;
/*
* Calculate the start of the data segment.
*/
if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
prom_panic("nucleus data overflow");
PRM_DEBUG(moddata);
PRM_DEBUG(nalloc_base);
PRM_DEBUG(nalloc_end);
/*
* Remember any slop after e_text so we can give it to the modules.
*/
PRM_DEBUG(e_text);
modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
prom_panic("nucleus text overflow");
modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
modtext;
PRM_DEBUG(modtext);
PRM_DEBUG(modtext_sz);
init_boot_memlists();
copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
&boot_physavail, &boot_physavail_len,
&boot_virtavail, &boot_virtavail_len);
/*
* Remember what the physically available highest page is
* so that dumpsys works properly, and find out how much
* memory is installed.
*/
installed_top_size_memlist_array(boot_physinstalled,
boot_physinstalled_len, &physmax, &physinstalled);
PRM_DEBUG(physinstalled);
PRM_DEBUG(physmax);
/* Fill out memory nodes config structure */
startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
/*
* npages is the maximum of available physical memory possible.
* (ie. it will never be more than this)
*
* When we boot from a ramdisk, the ramdisk memory isn't free, so
* using phys_avail will underestimate what will end up being freed.
* A better initial guess is just total memory minus the kernel text
*/
npages = physinstalled - btop(MMU_PAGESIZE4M);
/*
* First allocate things that can go in the nucleus data page
* (fault status, TSBs, dmv, CPUs)
*/
ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
if (ndata_alloc_tsbs(&ndata, npages) != 0)
cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
if (ndata_alloc_dmv(&ndata) != 0)
cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
if (ndata_alloc_page_mutexs(&ndata) != 0)
cmn_err(CE_PANIC,
"no more nucleus memory after page free lists alloc");
if (ndata_alloc_hat(&ndata) != 0)
cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
/*
* WARNING WARNING WARNING WARNING WARNING WARNING WARNING
*
* There are comments all over the SFMMU code warning of dire
* consequences if the TSBs are moved out of 32-bit space. This
* is largely because the asm code uses "sethi %hi(addr)"-type
* instructions which will not provide the expected result if the
* address is a 64-bit one.
*
* WARNING WARNING WARNING WARNING WARNING WARNING WARNING
*/
alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
PRM_DEBUG(alloc_base);
alloc_base = sfmmu_ktsb_alloc(alloc_base);
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(alloc_base);
/*
* Allocate IOMMU TSB array. We do this here so that the physical
* memory gets deducted from the PROM's physical memory list.
*/
alloc_base = iommu_tsb_init(alloc_base);
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(alloc_base);
/*
* Allow for an early allocation of physically contiguous memory.
*/
alloc_base = contig_mem_prealloc(alloc_base, npages);
/*
* Platforms like Starcat and OPL need special structures assigned in
* 32-bit virtual address space because their probing routines execute
* FCode, and FCode can't handle 64-bit virtual addresses...
*/
if (&plat_startup_memlist) {
alloc_base = plat_startup_memlist(alloc_base);
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
ecache_alignsize);
PRM_DEBUG(alloc_base);
}
/*
* Save off where the contiguous allocations to date have ended
* in econtig32.
*/
econtig32 = alloc_base;
PRM_DEBUG(econtig32);
if (econtig32 > (caddr_t)KERNEL_LIMIT32)
cmn_err(CE_PANIC, "econtig32 too big");
pp_sz = calc_pp_sz(npages);
PRM_DEBUG(pp_sz);
if (kpm_enable) {
kpm_pp_sz = calc_kpmpp_sz(npages);
PRM_DEBUG(kpm_pp_sz);
}
hmehash_sz = calc_hmehash_sz(npages);
PRM_DEBUG(hmehash_sz);
pagehash_sz = calc_pagehash_sz(npages);
PRM_DEBUG(pagehash_sz);
pagelist_sz = calc_free_pagelist_sz();
PRM_DEBUG(pagelist_sz);
#ifdef TRAPTRACE
tt_sz = calc_traptrace_sz();
PRM_DEBUG(tt_sz);
#else
tt_sz = 0;
#endif /* TRAPTRACE */
/*
* Place the array that protects pp->p_selock in the kmem64 wad.
*/
pse_shift = size_pse_array(npages, max_ncpus);
PRM_DEBUG(pse_shift);
pse_table_size = 1 << pse_shift;
PRM_DEBUG(pse_table_size);
psetable_sz = roundup(
pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
PRM_DEBUG(psetable_sz);
/*
* Now allocate the whole wad
*/
kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
pagelist_sz + tt_sz + psetable_sz;
kmem64_sz = roundup(kmem64_sz, PAGESIZE);
kmem64_base = (caddr_t)syslimit;
kmem64_end = kmem64_base + kmem64_sz;
if (alloc_kmem64(kmem64_base, kmem64_end)) {
/*
* Attempt for kmem64 to allocate one big
* contiguous chunk of memory failed.
* We get here because we are sun4v.
* We will proceed by breaking up
* the allocation into two attempts.
* First, we allocate kpm_pp_sz, hmehash_sz,
* pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
* one contiguous chunk. This is a much smaller
* chunk and we should get it, if not we panic.
* Note that hmehash and tt need to be physically
* (in the real address sense) contiguous.
* Next, we use bop_alloc_chunk() to
* to allocate the page_t structures.
* This will allow the page_t to be allocated
* in multiple smaller chunks.
* In doing so, the assumption that page_t is
* physically contiguous no longer hold, this is ok
* for sun4v but not for sun4u.
*/
size_t tmp_size;
caddr_t tmp_base;
pp_sz = roundup(pp_sz, PAGESIZE);
/*
* Allocate kpm_pp_sz, hmehash_sz,
* pagehash_sz, pagelist_sz, tt_sz & psetable_sz
*/
tmp_base = kmem64_base + pp_sz;
tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
prom_panic("kmem64 prom_alloc contig failed");
PRM_DEBUG(tmp_base);
PRM_DEBUG(tmp_size);
/*
* Allocate the page_ts
*/
if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
prom_panic("kmem64 bop_alloc_chunk page_t failed");
PRM_DEBUG(kmem64_base);
PRM_DEBUG(pp_sz);
kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
ASSERT(kmem64_aligned_end >= kmem64_end);
kmem64_smchunks = 1;
} else {
/*
* We need to adjust pp_sz for the normal
* case where kmem64 can allocate one large chunk
*/
if (kpm_smallpages == 0) {
npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
} else {
npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
sizeof (kpm_spage_t));
}
pp_sz = npages * sizeof (struct page);
}
if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
cmn_err(CE_PANIC, "not enough kmem64 space");
PRM_DEBUG(kmem64_base);
PRM_DEBUG(kmem64_end);
PRM_DEBUG(kmem64_aligned_end);
/*
* ... and divy it up
*/
alloc_base = kmem64_base;
pp_base = (page_t *)alloc_base;
alloc_base += pp_sz;
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(pp_base);
PRM_DEBUG(npages);
if (kpm_enable) {
kpm_pp_base = alloc_base;
if (kpm_smallpages == 0) {
/* kpm_npages based on physinstalled, don't reset */
kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
} else {
kpm_npages = ptokpmpr(npages);
kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
}
alloc_base += kpm_pp_sz;
alloc_base =
(caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(kpm_pp_base);
}
alloc_base = alloc_hmehash(alloc_base);
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(alloc_base);
page_hash = (page_t **)alloc_base;
alloc_base += pagehash_sz;
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(page_hash);
alloc_base = alloc_page_freelists(alloc_base);
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(alloc_base);
#ifdef TRAPTRACE
ttrace_buf = alloc_base;
alloc_base += tt_sz;
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(alloc_base);
#endif /* TRAPTRACE */
pse_mutex = (pad_mutex_t *)alloc_base;
alloc_base += psetable_sz;
alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
PRM_DEBUG(alloc_base);
/*
* Note that if we use small chunk allocations for
* kmem64, we need to ensure kmem64_end is the same as
* kmem64_aligned_end to prevent subsequent logic from
* trying to reuse the overmapping.
* Otherwise we adjust kmem64_end to what we really allocated.
*/
if (kmem64_smchunks) {
kmem64_end = kmem64_aligned_end;
} else {
kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
}
kmem64_sz = kmem64_end - kmem64_base;
if (&ecache_init_scrub_flush_area) {
alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
}
/*
* If physmem is patched to be non-zero, use it instead of
* the monitor value unless physmem is larger than the total
* amount of memory on hand.
*/
if (physmem == 0 || physmem > npages)
physmem = npages;
/*
* root_is_ramdisk is set via /etc/system when the ramdisk miniroot
* is mounted as root. This memory is held down by OBP and unlike
* the stub boot_archive is never released.
*
* In order to get things sized correctly on lower memory
* machines (where the memory used by the ramdisk represents
* a significant portion of memory), physmem is adjusted.
*
* This is done by subtracting the ramdisk_size which is set
* to the size of the ramdisk (in Kb) in /etc/system at the
* time the miniroot archive is constructed.
*/
if (root_is_ramdisk == B_TRUE) {
ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
physmem -= ramdisk_npages;
}
if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
/*
* Allocate space for the interrupt vector table.
*/
memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
if (memspace != (caddr_t)intr_vec_table)
prom_panic("interrupt vector table allocation failure");
/*
* Between now and when we finish copying in the memory lists,
* allocations happen so the space gets fragmented and the
* lists longer. Leave enough space for lists twice as
* long as we have now; then roundup to a pagesize.
*/
memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
prom_phys_avail_len() + prom_virt_avail_len());
memlist_sz *= 2;
memlist_sz = roundup(memlist_sz, PAGESIZE);
memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
if (memspace == NULL)
cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
memlist = (struct memlist *)memspace;
memlist_end = (char *)memspace + memlist_sz;
PRM_DEBUG(memlist);
PRM_DEBUG(memlist_end);
PRM_DEBUG(sysbase);
PRM_DEBUG(syslimit);
kernelheap_init((void *)sysbase, (void *)syslimit,
(caddr_t)sysbase + PAGESIZE, NULL, NULL);
/*
* Take the most current snapshot we can by calling mem-update.
*/
copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
&boot_physavail, &boot_physavail_len,
&boot_virtavail, &boot_virtavail_len);
/*
* Remove the space used by prom_alloc from the kernel heap
* plus the area actually used by the OBP (if any)
* ignoring virtual addresses in virt_avail, above syslimit.
*/
virt_avail = memlist;
copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) {
uint64_t range_base, range_size;
if ((range_base = cur->ml_address + cur->ml_size) <
(uint64_t)sysbase)
continue;
if (range_base >= (uint64_t)syslimit)
break;
/*
* Limit the range to end at syslimit.
*/
range_size = MIN(cur->ml_next->ml_address,
(uint64_t)syslimit) - range_base;
(void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
0, 0, (void *)range_base, (void *)(range_base + range_size),
VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
}
phys_avail = memlist;
copy_memlist(boot_physavail, boot_physavail_len, &memlist);
/*
* Add any extra memory at the end of the ndata region if there's at
* least a page to add. There might be a few more pages available in
* the middle of the ndata region, but for now they are ignored.
*/
nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
if (nalloc_base == NULL)
nalloc_base = nalloc_end;
ndata_remain_sz = nalloc_end - nalloc_base;
/*
* Copy physinstalled list into kernel space.
*/
phys_install = memlist;
copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
/*
* Create list of physical addrs we don't need pp's for:
* kernel text 4M page
* kernel data 4M page - ndata_remain_sz
* kmem64 pages
*
* NB if adding any pages here, make sure no kpm page
* overlaps can occur (see ASSERTs in kphysm_memsegs)
*/
nopp_list = memlist;
memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
&memlist, &nopp_list);
/* Don't add to nopp_list if kmem64 was allocated in smchunks */
if (!kmem64_smchunks)
memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
if ((caddr_t)memlist > (memspace + memlist_sz))
prom_panic("memlist overflow");
/*
* Size the pcf array based on the number of cpus in the box at
* boot time.
*/
pcf_init();
/*
* Initialize the page structures from the memory lists.
*/
kphysm_init();
availrmem_initial = availrmem = freemem;
PRM_DEBUG(availrmem);
/*
* Some of the locks depend on page_hashsz being set!
* kmem_init() depends on this; so, keep it here.
*/
page_lock_init();
/*
* Initialize kernel memory allocator.
*/
kmem_init();
/*
* Factor in colorequiv to check additional 'equivalent' bins
*/
if (&page_set_colorequiv_arr_cpu != NULL)
page_set_colorequiv_arr_cpu();
else
page_set_colorequiv_arr();
/*
* Initialize bp_mapin().
*/
bp_init(shm_alignment, HAT_STRICTORDER);
/*
* Reserve space for MPO mblock structs from the 32-bit heap.
*/
if (mpo_heap32_bufsz > (size_t)0) {
(void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
PAGESIZE, 0, 0, mpo_heap32_buf,
mpo_heap32_buf + mpo_heap32_bufsz,
VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
}
mem_config_init();
}
static void
startup_modules(void)
{
int nhblk1, nhblk8;
size_t nhblksz;
pgcnt_t pages_per_hblk;
size_t hme8blk_sz, hme1blk_sz;
/*
* The system file /etc/system was read already under startup_memlist.
*/
if (&set_platform_defaults)
set_platform_defaults();
/*
* Calculate default settings of system parameters based upon
* maxusers, yet allow to be overridden via the /etc/system file.
*/
param_calc(0);
mod_setup();
/*
* If this is a positron, complain and halt.
*/
if (&iam_positron && iam_positron()) {
cmn_err(CE_WARN, "This hardware platform is not supported"
" by this release of Solaris.\n");
#ifdef DEBUG
prom_enter_mon(); /* Type 'go' to resume */
cmn_err(CE_WARN, "Booting an unsupported platform.\n");
cmn_err(CE_WARN, "Booting with down-rev firmware.\n");
#else /* DEBUG */
halt(0);
#endif /* DEBUG */
}
/*
* If we are running firmware that isn't 64-bit ready
* then complain and halt.
*/
do_prom_version_check();
/*
* Initialize system parameters
*/
param_init();
/*
* maxmem is the amount of physical memory we're playing with.
*/
maxmem = physmem;
/* Set segkp limits. */
ncbase = kdi_segdebugbase;
ncend = kdi_segdebugbase;
/*
* Initialize the hat layer.
*/
hat_init();
/*
* Initialize segment management stuff.
*/
seg_init();
/*
* Create the va>tte handler, so the prom can understand
* kernel translations. The handler is installed later, just
* as we are about to take over the trap table from the prom.
*/
create_va_to_tte();
/*
* Load the forthdebugger (optional)
*/
forthdebug_init();
/*
* Create OBP node for console input callbacks
* if it is needed.
*/
startup_create_io_node();
if (modloadonly("fs", "specfs") == -1)
halt("Can't load specfs");
if (modloadonly("fs", "devfs") == -1)
halt("Can't load devfs");
if (modloadonly("fs", "procfs") == -1)
halt("Can't load procfs");
if (modloadonly("misc", "swapgeneric") == -1)
halt("Can't load swapgeneric");
(void) modloadonly("sys", "lbl_edition");
dispinit();
/*
* Infer meanings to the members of the idprom buffer.
*/
parse_idprom();
/* Read cluster configuration data. */
clconf_init();
setup_ddi();
/*
* Lets take this opportunity to load the root device.
*/
if (loadrootmodules() != 0)
debug_enter("Can't load the root filesystem");
/*
* Load tod driver module for the tod part found on this system.
* Recompute the cpu frequency/delays based on tod as tod part
* tends to keep time more accurately.
*/
if (&load_tod_module)
load_tod_module();
/*
* Allow platforms to load modules which might
* be needed after bootops are gone.
*/
if (&load_platform_modules)
load_platform_modules();
setcpudelay();
copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
&boot_physavail, &boot_physavail_len,
&boot_virtavail, &boot_virtavail_len);
/*
* Calculation and allocation of hmeblks needed to remap
* the memory allocated by PROM till now.
* Overestimate the number of hblk1 elements by assuming
* worst case of TTE64K mappings.
* sfmmu_hblk_alloc will panic if this calculation is wrong.
*/
bop_alloc_pages = btopr(kmem64_end - kmem64_base);
pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
/* sfmmu_init_nucleus_hblks expects properly aligned data structures */
hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
nhblk8 = 0;
while (bop_alloc_pages > 1) {
bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
nhblk8 += bop_alloc_pages /= pages_per_hblk;
bop_alloc_pages *= hme8blk_sz;
bop_alloc_pages = btopr(bop_alloc_pages);
}
nhblk8 += 2;
/*
* Since hblk8's can hold up to 64k of mappings aligned on a 64k
* boundary, the number of hblk8's needed to map the entries in the
* boot_virtavail list needs to be adjusted to take this into
* consideration. Thus, we need to add additional hblk8's since it
* is possible that an hblk8 will not have all 8 slots used due to
* alignment constraints. Since there were boot_virtavail_len entries
* in that list, we need to add that many hblk8's to the number
* already calculated to make sure we don't underestimate.
*/
nhblk8 += boot_virtavail_len;
nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
/* Allocate in pagesize chunks */
nhblksz = roundup(nhblksz, MMU_PAGESIZE);
hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
}
static void
startup_bop_gone(void)
{
/*
* Destroy the MD initialized at startup
* The startup initializes the MD framework
* using prom and BOP alloc free it now.
*/
mach_descrip_startup_fini();
/*
* We're done with prom allocations.
*/
bop_fini();
copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
&boot_physavail, &boot_physavail_len,
&boot_virtavail, &boot_virtavail_len);
/*
* setup physically contiguous area twice as large as the ecache.
* this is used while doing displacement flush of ecaches
*/
if (&ecache_flush_address) {
ecache_flushaddr = ecache_flush_address();
if (ecache_flushaddr == (uint64_t)-1) {
cmn_err(CE_PANIC,
"startup: no memory to set ecache_flushaddr");
}
}
/*
* Virtual available next.
*/
ASSERT(virt_avail != NULL);
memlist_free_list(virt_avail);
virt_avail = memlist;
copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
}
/*
* startup_fixup_physavail - called from mach_sfmmu.c after the final
* allocations have been performed. We can't call it in startup_bop_gone
* since later operations can cause obp to allocate more memory.
*/
void
startup_fixup_physavail(void)
{
struct memlist *cur;
size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
PRM_DEBUG(kmem64_overmap_size);
/*
* take the most current snapshot we can by calling mem-update
*/
copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
&boot_physavail, &boot_physavail_len,
&boot_virtavail, &boot_virtavail_len);
/*
* Copy phys_avail list, again.
* Both the kernel/boot and the prom have been allocating
* from the original list we copied earlier.
*/
cur = memlist;
copy_memlist(boot_physavail, boot_physavail_len, &memlist);
/*
* Add any unused kmem64 memory from overmapped page
* (Note: va_to_pa does not work for kmem64_end)
*/
if (kmem64_overmap_size) {
memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
kmem64_overmap_size, &memlist, &cur);
}
/*
* Add any extra memory after e_data we added to the phys_avail list
* back to the old list.
*/
if (ndata_remain_sz >= MMU_PAGESIZE)
memlist_add(va_to_pa(nalloc_base),
(uint64_t)ndata_remain_sz, &memlist, &cur);
/*
* There isn't any bounds checking on the memlist area
* so ensure it hasn't overgrown.
*/
if ((caddr_t)memlist > (caddr_t)memlist_end)
cmn_err(CE_PANIC, "startup: memlist size exceeded");
/*
* The kernel removes the pages that were allocated for it from
* the freelist, but we now have to find any -extra- pages that
* the prom has allocated for it's own book-keeping, and remove
* them from the freelist too. sigh.
*/
sync_memlists(phys_avail, cur);
ASSERT(phys_avail != NULL);
old_phys_avail = phys_avail;
phys_avail = cur;
}
void
update_kcage_ranges(uint64_t addr, uint64_t len)
{
pfn_t base = btop(addr);
pgcnt_t num = btop(len);
int rv;
rv = kcage_range_add(base, num, kcage_startup_dir);
if (rv == ENOMEM) {
cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
(len == 0 ? 0 : BYTES_TO_MB(len)));
} else if (rv != 0) {
/* catch this in debug kernels */
ASSERT(0);
cmn_err(CE_WARN, "unexpected kcage_range_add"
" return value %d", rv);
}
}
static void
startup_vm(void)
{
size_t i;
struct segmap_crargs a;
struct segkpm_crargs b;
uint64_t avmem;
caddr_t va;
pgcnt_t max_phys_segkp;
int mnode;
extern int use_brk_lpg, use_stk_lpg;
/*
* get prom's mappings, create hments for them and switch
* to the kernel context.
*/
hat_kern_setup();
/*
* Take over trap table
*/
setup_trap_table();
/*
* Install the va>tte handler, so that the prom can handle
* misses and understand the kernel table layout in case
* we need call into the prom.
*/
install_va_to_tte();
/*
* Set a flag to indicate that the tba has been taken over.
*/
tba_taken_over = 1;
/* initialize MMU primary context register */
mmu_init_kcontext();
/*
* The boot cpu can now take interrupts, x-calls, x-traps
*/
CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
/*
* Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
*/
tbr_wr_addr_inited = 1;
/*
* Initialize VM system, and map kernel address space.
*/
kvm_init();
ASSERT(old_phys_avail != NULL && phys_avail != NULL);
if (kernel_cage_enable) {
diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
}
memlist_free_list(old_phys_avail);
/*
* If the following is true, someone has patched
* phsymem to be less than the number of pages that
* the system actually has. Remove pages until system
* memory is limited to the requested amount. Since we
* have allocated page structures for all pages, we
* correct the amount of memory we want to remove
* by the size of the memory used to hold page structures
* for the non-used pages.
*/
if (physmem + ramdisk_npages < npages) {
pgcnt_t diff, off;
struct page *pp;
struct seg kseg;
cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
off = 0;
diff = npages - (physmem + ramdisk_npages);
diff -= mmu_btopr(diff * sizeof (struct page));
kseg.s_as = &kas;
while (diff--) {
pp = page_create_va(&unused_pages_vp, (offset_t)off,
MMU_PAGESIZE, PG_WAIT | PG_EXCL,
&kseg, (caddr_t)off);
if (pp == NULL)
cmn_err(CE_PANIC, "limited physmem too much!");
page_io_unlock(pp);
page_downgrade(pp);
availrmem--;
off += MMU_PAGESIZE;
}
}
/*
* When printing memory, show the total as physmem less
* that stolen by a debugger.
*/
cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
(ulong_t)(physinstalled) << (PAGESHIFT - 10),
(ulong_t)(physinstalled) << (PAGESHIFT - 12));
avmem = (uint64_t)freemem << PAGESHIFT;
cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
/*
* For small memory systems disable automatic large pages.
*/
if (physmem < privm_lpg_min_physmem) {
use_brk_lpg = 0;
use_stk_lpg = 0;
}
/*
* Perform platform specific freelist processing
*/
if (&plat_freelist_process) {
for (mnode = 0; mnode < max_mem_nodes; mnode++)
if (mem_node_config[mnode].exists)
plat_freelist_process(mnode);
}
/*
* Initialize the segkp segment type. We position it
* after the configured tables and buffers (whose end
* is given by econtig) and before V_WKBASE_ADDR.
* Also in this area is segkmap (size SEGMAPSIZE).
*/
/* XXX - cache alignment? */
va = (caddr_t)SEGKPBASE;
ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
max_phys_segkp = (physmem * 2);
if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
segkpsize = btop(SEGKPDEFSIZE);
cmn_err(CE_WARN, "Illegal value for segkpsize. "
"segkpsize has been reset to %ld pages", segkpsize);
}
i = ptob(MIN(segkpsize, max_phys_segkp));
rw_enter(&kas.a_lock, RW_WRITER);
if (seg_attach(&kas, va, i, segkp) < 0)
cmn_err(CE_PANIC, "startup: cannot attach segkp");
if (segkp_create(segkp) != 0)
cmn_err(CE_PANIC, "startup: segkp_create failed");
rw_exit(&kas.a_lock);
/*
* kpm segment
*/
segmap_kpm = kpm_enable &&
segmap_kpm && PAGESIZE == MAXBSIZE;
if (kpm_enable) {
rw_enter(&kas.a_lock, RW_WRITER);
/*
* The segkpm virtual range range is larger than the
* actual physical memory size and also covers gaps in
* the physical address range for the following reasons:
* . keep conversion between segkpm and physical addresses
* simple, cheap and unambiguous.
* . avoid extension/shrink of the the segkpm in case of DR.
* . avoid complexity for handling of virtual addressed
* caches, segkpm and the regular mapping scheme must be
* kept in sync wrt. the virtual color of mapped pages.
* Any accesses to virtual segkpm ranges not backed by
* physical memory will fall through the memseg pfn hash
* and will be handled in segkpm_fault.
* Additional kpm_size spaces needed for vac alias prevention.
*/
if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
segkpm) < 0)
cmn_err(CE_PANIC, "cannot attach segkpm");
b.prot = PROT_READ | PROT_WRITE;
b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
if (segkpm_create(segkpm, (caddr_t)&b) != 0)
panic("segkpm_create segkpm");
rw_exit(&kas.a_lock);
mach_kpm_init();
}
va = kpm_vbase + (kpm_size * vac_colors);
if (!segzio_fromheap) {
size_t size;
size_t physmem_b = mmu_ptob(physmem);
/* size is in bytes, segziosize is in pages */
if (segziosize == 0) {
size = physmem_b;
} else {
size = mmu_ptob(segziosize);
}
if (size < SEGZIOMINSIZE) {
size = SEGZIOMINSIZE;
} else if (size > SEGZIOMAXSIZE) {
size = SEGZIOMAXSIZE;
/*
* On 64-bit x86, we only have 2TB of KVA. This exists
* for parity with x86.
*
* SEGZIOMAXSIZE is capped at 512gb so that segzio
* doesn't consume all of KVA. However, if we have a
* system that has more thant 512gb of physical memory,
* we can actually consume about half of the difference
* between 512gb and the rest of the available physical
* memory.
*/
if (physmem_b > SEGZIOMAXSIZE) {
size += (physmem_b - SEGZIOMAXSIZE) / 2;
}
}
segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
/* put the base of the ZIO segment after the kpm segment */
segzio_base = va;
va += mmu_ptob(segziosize);
PRM_DEBUG(segziosize);
PRM_DEBUG(segzio_base);
/*
* On some platforms, kvm_init is called after the kpm
* sizes have been determined. On SPARC, kvm_init is called
* before, so we have to attach the kzioseg after kvm is
* initialized, otherwise we'll try to allocate from the boot
* area since the kernel heap hasn't yet been configured.
*/
rw_enter(&kas.a_lock, RW_WRITER);
(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
&kzioseg);
(void) segkmem_zio_create(&kzioseg);
/* create zio area covering new segment */
segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
rw_exit(&kas.a_lock);
}
if (ppvm_enable) {
caddr_t ppvm_max;
/*
* ppvm refers to the static VA space used to map
* the page_t's for dynamically added memory.
*
* ppvm_base should not cross a potential VA hole.
*
* ppvm_size should be large enough to map the
* page_t's needed to manage all of KPM range.
*/
ppvm_size =
roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
MMU_PAGESIZE);
ppvm_max = (caddr_t)(0ull - ppvm_size);
ppvm_base = (page_t *)va;
if ((caddr_t)ppvm_base <= hole_end) {
cmn_err(CE_WARN,
"Memory DR disabled: invalid DR map base: 0x%p\n",
(void *)ppvm_base);
ppvm_enable = 0;
} else if ((caddr_t)ppvm_base > ppvm_max) {
uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
cmn_err(CE_WARN,
"Memory DR disabled: insufficient DR map size:"
" 0x%lx (needed 0x%lx)\n",
ppvm_size - diff, ppvm_size);
ppvm_enable = 0;
}
PRM_DEBUG(ppvm_size);
PRM_DEBUG(ppvm_base);
}
/*
* Now create generic mapping segment. This mapping
* goes SEGMAPSIZE beyond SEGMAPBASE. But if the total
* virtual address is greater than the amount of free
* memory that is available, then we trim back the
* segment size to that amount
*/
va = (caddr_t)SEGMAPBASE;
/*
* 1201049: segkmap base address must be MAXBSIZE aligned
*/
ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
/*
* Set size of segmap to percentage of freemem at boot,
* but stay within the allowable range
* Note we take percentage before converting from pages
* to bytes to avoid an overflow on 32-bit kernels.
*/
i = mmu_ptob((freemem * segmap_percent) / 100);
if (i < MINMAPSIZE)
i = MINMAPSIZE;
if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */
rw_enter(&kas.a_lock, RW_WRITER);
if (seg_attach(&kas, va, i, segkmap) < 0)
cmn_err(CE_PANIC, "cannot attach segkmap");
a.prot = PROT_READ | PROT_WRITE;
a.shmsize = shm_alignment;
a.nfreelist = 0; /* use segmap driver defaults */
if (segmap_create(segkmap, (caddr_t)&a) != 0)
panic("segmap_create segkmap");
rw_exit(&kas.a_lock);
segdev_init();
}
static void
startup_end(void)
{
if ((caddr_t)memlist > (caddr_t)memlist_end)
panic("memlist overflow 2");
memlist_free_block((caddr_t)memlist,
((caddr_t)memlist_end - (caddr_t)memlist));
memlist = NULL;
/* enable page_relocation since OBP is now done */
page_relocate_ready = 1;
/*
* Perform tasks that get done after most of the VM
* initialization has been done but before the clock
* and other devices get started.
*/
kern_setup1();
/*
* Perform CPC initialization for this CPU.
*/
kcpc_hw_init();
/*
* Intialize the VM arenas for allocating physically
* contiguus memory chunk for interrupt queues snd
* allocate/register boot cpu's queues, if any and
* allocate dump buffer for sun4v systems to store
* extra crash information during crash dump
*/
contig_mem_init();
mach_descrip_init();
if (cpu_intrq_setup(CPU)) {
cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
}
cpu_intrq_register(CPU);
mach_htraptrace_setup(CPU->cpu_id);
mach_htraptrace_configure(CPU->cpu_id);
mach_dump_buffer_init();
/*
* Initialize interrupt related stuff
*/
cpu_intr_alloc(CPU, NINTR_THREADS);
(void) splzs(); /* allow hi clock ints but not zs */
/*
* Initialize errors.
*/
error_init();
/*
* Note that we may have already used kernel bcopy before this
* point - but if you really care about this, adb the use_hw_*
* variables to 0 before rebooting.
*/
mach_hw_copy_limit();
/*
* Install the "real" preemption guards before DDI services
* are available.
*/
(void) prom_set_preprom(kern_preprom);
(void) prom_set_postprom(kern_postprom);
CPU->cpu_m.mutex_ready = 1;
/*
* Initialize segnf (kernel support for non-faulting loads).
*/
segnf_init();
/*
* Configure the root devinfo node.
*/
configure(); /* set up devices */
mach_cpu_halt_idle();
}
void
post_startup(void)
{
#ifdef PTL1_PANIC_DEBUG
extern void init_ptl1_thread(void);
#endif /* PTL1_PANIC_DEBUG */
extern void abort_sequence_init(void);
/*
* Set the system wide, processor-specific flags to be passed
* to userland via the aux vector for performance hints and
* instruction set extensions.
*/
bind_hwcap();
/*
* Startup memory scrubber (if any)
*/
mach_memscrub();
/*
* Allocate soft interrupt to handle abort sequence.
*/
abort_sequence_init();
/*
* Configure the rest of the system.
* Perform forceloading tasks for /etc/system.
*/
(void) mod_sysctl(SYS_FORCELOAD, NULL);
/*
* ON4.0: Force /proc module in until clock interrupt handle fixed
* ON4.0: This must be fixed or restated in /etc/systems.
*/
(void) modload("fs", "procfs");
/* load machine class specific drivers */
load_mach_drivers();
/* load platform specific drivers */
if (&load_platform_drivers)
load_platform_drivers();
/* load vis simulation module, if we are running w/fpu off */
if (!fpu_exists) {
if (modload("misc", "vis") == -1)
halt("Can't load vis");
}
mach_fpras();
maxmem = freemem;
pg_init();
#ifdef PTL1_PANIC_DEBUG
init_ptl1_thread();
#endif /* PTL1_PANIC_DEBUG */
}
#ifdef PTL1_PANIC_DEBUG
int ptl1_panic_test = 0;
int ptl1_panic_xc_one_test = 0;
int ptl1_panic_xc_all_test = 0;
int ptl1_panic_xt_one_test = 0;
int ptl1_panic_xt_all_test = 0;
kthread_id_t ptl1_thread_p = NULL;
kcondvar_t ptl1_cv;
kmutex_t ptl1_mutex;
int ptl1_recurse_count_threshold = 0x40;
int ptl1_recurse_trap_threshold = 0x3d;
extern void ptl1_recurse(int, int);
extern void ptl1_panic_xt(int, int);
/*
* Called once per second by timeout() to wake up
* the ptl1_panic thread to see if it should cause
* a trap to the ptl1_panic() code.
*/
/* ARGSUSED */
static void
ptl1_wakeup(void *arg)
{
mutex_enter(&ptl1_mutex);
cv_signal(&ptl1_cv);
mutex_exit(&ptl1_mutex);
}
/*
* ptl1_panic cross call function:
* Needed because xc_one() and xc_some() can pass
* 64 bit args but ptl1_recurse() expects ints.
*/
static void
ptl1_panic_xc(void)
{
ptl1_recurse(ptl1_recurse_count_threshold,
ptl1_recurse_trap_threshold);
}
/*
* The ptl1 thread waits for a global flag to be set
* and uses the recurse thresholds to set the stack depth
* to cause a ptl1_panic() directly via a call to ptl1_recurse
* or indirectly via the cross call and cross trap functions.
*
* This is useful testing stack overflows and normal
* ptl1_panic() states with a know stack frame.
*
* ptl1_recurse() is an asm function in ptl1_panic.s that
* sets the {In, Local, Out, and Global} registers to a
* know state on the stack and just prior to causing a
* test ptl1_panic trap.
*/
static void
ptl1_thread(void)
{
mutex_enter(&ptl1_mutex);
while (ptl1_thread_p) {
cpuset_t other_cpus;
int cpu_id;
int my_cpu_id;
int target_cpu_id;
int target_found;
if (ptl1_panic_test) {
ptl1_recurse(ptl1_recurse_count_threshold,
ptl1_recurse_trap_threshold);
}
/*
* Find potential targets for x-call and x-trap,
* if any exist while preempt is disabled we
* start a ptl1_panic if requested via a
* globals.
*/
kpreempt_disable();
my_cpu_id = CPU->cpu_id;
other_cpus = cpu_ready_set;
CPUSET_DEL(other_cpus, CPU->cpu_id);
target_found = 0;
if (!CPUSET_ISNULL(other_cpus)) {
/*
* Pick the first one
*/
for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
if (cpu_id == my_cpu_id)
continue;
if (CPU_XCALL_READY(cpu_id)) {
target_cpu_id = cpu_id;
target_found = 1;
break;
}
}
ASSERT(target_found);
if (ptl1_panic_xc_one_test) {
xc_one(target_cpu_id,
(xcfunc_t *)ptl1_panic_xc, 0, 0);
}
if (ptl1_panic_xc_all_test) {
xc_some(other_cpus,
(xcfunc_t *)ptl1_panic_xc, 0, 0);
}
if (ptl1_panic_xt_one_test) {
xt_one(target_cpu_id,
(xcfunc_t *)ptl1_panic_xt, 0, 0);
}
if (ptl1_panic_xt_all_test) {
xt_some(other_cpus,
(xcfunc_t *)ptl1_panic_xt, 0, 0);
}
}
kpreempt_enable();
(void) timeout(ptl1_wakeup, NULL, hz);
(void) cv_wait(&ptl1_cv, &ptl1_mutex);
}
mutex_exit(&ptl1_mutex);
}
/*
* Called during early startup to create the ptl1_thread
*/
void
init_ptl1_thread(void)
{
ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
&p0, TS_RUN, 0);
}
#endif /* PTL1_PANIC_DEBUG */
static void
memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
{
struct memlist *new;
new = *memlistp;
new->ml_address = start;
new->ml_size = len;
*memlistp = new + 1;
}
/*
* Add to a memory list.
* start = start of new memory segment
* len = length of new memory segment in bytes
* memlistp = pointer to array of available memory segment structures
* curmemlistp = memory list to which to add segment.
*/
static void
memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
struct memlist **curmemlistp)
{
struct memlist *new = *memlistp;
memlist_new(start, len, memlistp);
memlist_insert(new, curmemlistp);
}
static int
ndata_alloc_memseg(struct memlist *ndata, size_t avail)
{
int nseg;
size_t memseg_sz;
struct memseg *msp;
/*
* The memseg list is for the chunks of physical memory that
* will be managed by the vm system. The number calculated is
* a guess as boot may fragment it more when memory allocations
* are made before kphysm_init().
*/
memseg_sz = (avail + 10) * sizeof (struct memseg);
memseg_sz = roundup(memseg_sz, PAGESIZE);
nseg = memseg_sz / sizeof (struct memseg);
msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
if (msp == NULL)
return (1);
PRM_DEBUG(memseg_free);
while (nseg--) {
msp->next = memseg_free;
memseg_free = msp;
msp++;
}
return (0);
}
/*
* In the case of architectures that support dynamic addition of
* memory at run-time there are two cases where memsegs need to
* be initialized and added to the memseg list.
* 1) memsegs that are constructed at startup.
* 2) memsegs that are constructed at run-time on
* hot-plug capable architectures.
* This code was originally part of the function kphysm_init().
*/
static void
memseg_list_add(struct memseg *memsegp)
{
struct memseg **prev_memsegp;
pgcnt_t num;
/* insert in memseg list, decreasing number of pages order */
num = MSEG_NPAGES(memsegp);
for (prev_memsegp = &memsegs; *prev_memsegp;
prev_memsegp = &((*prev_memsegp)->next)) {
if (num > MSEG_NPAGES(*prev_memsegp))
break;
}
memsegp->next = *prev_memsegp;
*prev_memsegp = memsegp;
if (kpm_enable) {
memsegp->nextpa = (memsegp->next) ?
va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
if (prev_memsegp != &memsegs) {
struct memseg *msp;
msp = (struct memseg *)((caddr_t)prev_memsegp -
offsetof(struct memseg, next));
msp->nextpa = va_to_pa(memsegp);
} else {
memsegspa = va_to_pa(memsegs);
}
}
}
/*
* PSM add_physmem_cb(). US-II and newer processors have some
* flavor of the prefetch capability implemented. We exploit
* this capability for optimum performance.
*/
#define PREFETCH_BYTES 64
void
add_physmem_cb(page_t *pp, pfn_t pnum)
{
extern void prefetch_page_w(void *);
pp->p_pagenum = pnum;
/*
* Prefetch one more page_t into E$. To prevent future
* mishaps with the sizeof(page_t) changing on us, we
* catch this on debug kernels if we can't bring in the
* entire hpage with 2 PREFETCH_BYTES reads. See
* also, sun4u/cpu/cpu_module.c
*/
/*LINTED*/
ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
prefetch_page_w((char *)pp);
}
/*
* Find memseg with given pfn
*/
static struct memseg *
memseg_find(pfn_t base, pfn_t *next)
{
struct memseg *seg;
if (next != NULL)
*next = LONG_MAX;
for (seg = memsegs; seg != NULL; seg = seg->next) {
if (base >= seg->pages_base && base < seg->pages_end)
return (seg);
if (next != NULL && seg->pages_base > base &&
seg->pages_base < *next)
*next = seg->pages_base;
}
return (NULL);
}
/*
* Put page allocated by OBP on prom_ppages
*/
static void
kphysm_erase(uint64_t addr, uint64_t len)
{
struct page *pp;
struct memseg *seg;
pfn_t base = btop(addr), next;
pgcnt_t num = btop(len);
while (num != 0) {
pgcnt_t off, left;
seg = memseg_find(base, &next);
if (seg == NULL) {
if (next == LONG_MAX)
break;
left = MIN(next - base, num);
base += left, num -= left;
continue;
}
off = base - seg->pages_base;
pp = seg->pages + off;
left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
while (num != left) {
/*
* init it, lock it, and hashin on prom_pages vp.
*
* Mark it as NONRELOC to let DR know the page
* is locked long term, otherwise DR hangs when
* trying to remove those pages.
*
* XXX vnode offsets on the prom_ppages vnode
* are page numbers (gack) for >32 bit
* physical memory machines.
*/
PP_SETNORELOC(pp);
add_physmem_cb(pp, base);
if (page_trylock(pp, SE_EXCL) == 0)
cmn_err(CE_PANIC, "prom page locked");
(void) page_hashin(pp, &promvp,
(offset_t)base, NULL);
(void) page_pp_lock(pp, 0, 1);
pp++, base++, num--;
}
}
}
static page_t *ppnext;
static pgcnt_t ppleft;
static void *kpm_ppnext;
static pgcnt_t kpm_ppleft;
/*
* Create a memseg
*/
static void
kphysm_memseg(uint64_t addr, uint64_t len)
{
pfn_t base = btop(addr);
pgcnt_t num = btop(len);
struct memseg *seg;
seg = memseg_free;
memseg_free = seg->next;
ASSERT(seg != NULL);
seg->pages = ppnext;
seg->epages = ppnext + num;
seg->pages_base = base;
seg->pages_end = base + num;
ppnext += num;
ppleft -= num;
if (kpm_enable) {
pgcnt_t kpnum = ptokpmpr(num);
if (kpnum > kpm_ppleft)
panic("kphysm_memseg: kpm_pp overflow");
seg->pagespa = va_to_pa(seg->pages);
seg->epagespa = va_to_pa(seg->epages);
seg->kpm_pbase = kpmptop(ptokpmp(base));
seg->kpm_nkpmpgs = kpnum;
/*
* In the kpm_smallpage case, the kpm array
* is 1-1 wrt the page array
*/
if (kpm_smallpages) {
kpm_spage_t *kpm_pp = kpm_ppnext;
kpm_ppnext = kpm_pp + kpnum;
seg->kpm_spages = kpm_pp;
seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
} else {
kpm_page_t *kpm_pp = kpm_ppnext;
kpm_ppnext = kpm_pp + kpnum;
seg->kpm_pages = kpm_pp;
seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
/* ASSERT no kpm overlaps */
ASSERT(
memseg_find(base - pmodkpmp(base), NULL) == NULL);
ASSERT(memseg_find(
roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
}
kpm_ppleft -= kpnum;
}
memseg_list_add(seg);
}
/*
* Add range to free list
*/
void
kphysm_add(uint64_t addr, uint64_t len, int reclaim)
{
struct page *pp;
struct memseg *seg;
pfn_t base = btop(addr);
pgcnt_t num = btop(len);
seg = memseg_find(base, NULL);
ASSERT(seg != NULL);
pp = seg->pages + (base - seg->pages_base);
if (reclaim) {
struct page *rpp = pp;
struct page *lpp = pp + num;
/*
* page should be locked on prom_ppages
* unhash and unlock it
*/
while (rpp < lpp) {
ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp);
ASSERT(PP_ISNORELOC(rpp));
PP_CLRNORELOC(rpp);
page_pp_unlock(rpp, 0, 1);
page_hashout(rpp, NULL);
page_unlock(rpp);
rpp++;
}
}
/*
* add_physmem() initializes the PSM part of the page
* struct by calling the PSM back with add_physmem_cb().
* In addition it coalesces pages into larger pages as
* it initializes them.
*/
add_physmem(pp, num, base);
}
/*
* kphysm_init() tackles the problem of initializing physical memory.
*/
static void
kphysm_init(void)
{
struct memlist *pmem;
ASSERT(page_hash != NULL && page_hashsz != 0);
ppnext = pp_base;
ppleft = npages;
kpm_ppnext = kpm_pp_base;
kpm_ppleft = kpm_npages;
/*
* installed pages not on nopp_memlist go in memseg list
*/
diff_memlists(phys_install, nopp_list, kphysm_memseg);
/*
* Free the avail list
*/
for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next)
kphysm_add(pmem->ml_address, pmem->ml_size, 0);
/*
* Erase pages that aren't available
*/
diff_memlists(phys_install, phys_avail, kphysm_erase);
build_pfn_hash();
}
/*
* Kernel VM initialization.
* Assumptions about kernel address space ordering:
* (1) gap (user space)
* (2) kernel text
* (3) kernel data/bss
* (4) gap
* (5) kernel data structures
* (6) gap
* (7) debugger (optional)
* (8) monitor
* (9) gap (possibly null)
* (10) dvma
* (11) devices
*/
static void
kvm_init(void)
{
/*
* Put the kernel segments in kernel address space.
*/
rw_enter(&kas.a_lock, RW_WRITER);
as_avlinit(&kas);
(void) seg_attach(&kas, (caddr_t)KERNELBASE,
(size_t)(e_moddata - KERNELBASE), &ktextseg);
(void) segkmem_create(&ktextseg);
(void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
(size_t)(MMU_PAGESIZE4M), &ktexthole);
(void) segkmem_create(&ktexthole);
(void) seg_attach(&kas, (caddr_t)valloc_base,
(size_t)(econtig32 - valloc_base), &kvalloc);
(void) segkmem_create(&kvalloc);
if (kmem64_base) {
(void) seg_attach(&kas, (caddr_t)kmem64_base,
(size_t)(kmem64_end - kmem64_base), &kmem64);
(void) segkmem_create(&kmem64);
}
/*
* We're about to map out /boot. This is the beginning of the
* system resource management transition. We can no longer
* call into /boot for I/O or memory allocations.
*/
(void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
(void) segkmem_create(&kvseg);
hblk_alloc_dynamic = 1;
/*
* we need to preallocate pages for DR operations before enabling large
* page kernel heap because of memseg_remap_init() hat_unload() hack.
*/
memseg_remap_init();
/* at this point we are ready to use large page heap */
segkmem_heap_lp_init();
(void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
&kvseg32);
(void) segkmem_create(&kvseg32);
/*
* Create a segment for the debugger.
*/
(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
(void) segkmem_create(&kdebugseg);
rw_exit(&kas.a_lock);
}
char obp_tte_str[] =
"h# %x constant MMU_PAGESHIFT "
"h# %x constant TTE8K "
"h# %x constant SFHME_SIZE "
"h# %x constant SFHME_TTE "
"h# %x constant HMEBLK_TAG "
"h# %x constant HMEBLK_NEXT "
"h# %x constant HMEBLK_MISC "
"h# %x constant HMEBLK_HME1 "
"h# %x constant NHMENTS "
"h# %x constant HBLK_SZMASK "
"h# %x constant HBLK_RANGE_SHIFT "
"h# %x constant HMEBP_HBLK "
"h# %x constant HMEBLK_ENDPA "
"h# %x constant HMEBUCKET_SIZE "
"h# %x constant HTAG_SFMMUPSZ "
"h# %x constant HTAG_BSPAGE_SHIFT "
"h# %x constant HTAG_REHASH_SHIFT "
"h# %x constant SFMMU_INVALID_SHMERID "
"h# %x constant mmu_hashcnt "
"h# %p constant uhme_hash "
"h# %p constant khme_hash "
"h# %x constant UHMEHASH_SZ "
"h# %x constant KHMEHASH_SZ "
"h# %p constant KCONTEXT "
"h# %p constant KHATID "
"h# %x constant ASI_MEM "
": PHYS-X@ ( phys -- data ) "
" ASI_MEM spacex@ "
"; "
": PHYS-W@ ( phys -- data ) "
" ASI_MEM spacew@ "
"; "
": PHYS-L@ ( phys -- data ) "
" ASI_MEM spaceL@ "
"; "
": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
" 3 * MMU_PAGESHIFT + "
"; "
": TTE_IS_VALID ( ttep -- flag ) "
" PHYS-X@ 0< "
"; "
": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
" dup TTE8K = if "
" drop HBLK_RANGE_SHIFT "
" else "
" TTE_PAGE_SHIFT "
" then "
"; "
": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
" tuck >> swap MMU_PAGESHIFT - << "
"; "
": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
" >> over xor swap ( hash sfmmup ) "
" KHATID <> if ( hash ) "
" UHMEHASH_SZ and ( bucket ) "
" HMEBUCKET_SIZE * uhme_hash + ( hmebp ) "
" else ( hash ) "
" KHMEHASH_SZ and ( bucket ) "
" HMEBUCKET_SIZE * khme_hash + ( hmebp ) "
" then ( hmebp ) "
"; "
": HME_HASH_TABLE_SEARCH "
" ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) "
" >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
" dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) "
" dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) "
" dup hmeblk_tag + 8 + phys-x@ 2 pick = if "
" true ( sfmmup hmeblkp true ) ( r: hblktag ) "
" else "
" hmeblk_next + phys-x@ false "
" ( sfmmup hmeblkp false ) ( r: hblktag ) "
" then "
" else "
" hmeblk_next + phys-x@ false "
" ( sfmmup hmeblkp false ) ( r: hblktag ) "
" then "
" else "
" drop 0 true "
" then "
" until r> drop "
"; "
": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
" over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) "
" HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )"
" swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )"
" SFMMU_INVALID_SHMERID or nip ( hblktag ) "
"; "
": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
" over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) "
" TTE8K = if ( hmeblkp addr ) "
" MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) "
" else ( hmeblkp addr ) "
" drop 0 ( hmeblkp 0 ) "
" then ( hmeblkp hme-index ) "
" SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) "
" SFHME_TTE + ( ttep ) "
"; "
": unix-tte ( addr cnum -- false | tte-data true ) "
" KCONTEXT = if ( addr ) "
" KHATID ( addr khatid ) "
" else ( addr ) "
" drop false exit ( false ) "
" then "
" ( addr khatid ) "
" mmu_hashcnt 1+ 1 do ( addr sfmmup ) "
" 2dup swap i HME_HASH_SHIFT "
"( addr sfmmup sfmmup addr hmeshift ) "
" HME_HASH_FUNCTION ( addr sfmmup hmebp ) "
" over i 4 pick "
"( addr sfmmup hmebp sfmmup rehash addr ) "
" HME_HASH_TAG ( addr sfmmup hmebp hblktag ) "
" HME_HASH_TABLE_SEARCH "
"( addr sfmmup { null | hmeblkp } ) "
" ?dup if ( addr sfmmup hmeblkp ) "
" nip swap HBLK_TO_TTEP ( ttep ) "
" dup TTE_IS_VALID if ( valid-ttep ) "
" PHYS-X@ true ( tte-data true ) "
" else ( invalid-tte ) "
" drop false ( false ) "
" then ( false | tte-data true ) "
" unloop exit ( false | tte-data true ) "
" then ( addr sfmmup ) "
" loop ( addr sfmmup ) "
" 2drop false ( false ) "
"; "
;
void
create_va_to_tte(void)
{
char *bp;
extern int khmehash_num, uhmehash_num;
extern struct hmehash_bucket *khme_hash, *uhme_hash;
#define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field))
bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
/*
* Teach obp how to parse our sw ttes.
*/
(void) sprintf(bp, obp_tte_str,
MMU_PAGESHIFT,
TTE8K,
sizeof (struct sf_hment),
OFFSET(struct sf_hment, hme_tte),
OFFSET(struct hme_blk, hblk_tag),
OFFSET(struct hme_blk, hblk_nextpa),
OFFSET(struct hme_blk, hblk_misc),
OFFSET(struct hme_blk, hblk_hme),
NHMENTS,
HBLK_SZMASK,
HBLK_RANGE_SHIFT,
OFFSET(struct hmehash_bucket, hmeh_nextpa),
HMEBLK_ENDPA,
sizeof (struct hmehash_bucket),
HTAG_SFMMUPSZ,
HTAG_BSPAGE_SHIFT,
HTAG_REHASH_SHIFT,
SFMMU_INVALID_SHMERID,
mmu_hashcnt,
(caddr_t)va_to_pa((caddr_t)uhme_hash),
(caddr_t)va_to_pa((caddr_t)khme_hash),
UHMEHASH_SZ,
KHMEHASH_SZ,
KCONTEXT,
KHATID,
ASI_MEM);
prom_interpret(bp, 0, 0, 0, 0, 0);
kobj_free(bp, MMU_PAGESIZE);
}
void
install_va_to_tte(void)
{
/*
* advise prom that he can use unix-tte
*/
prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
}
/*
* Here we add "device-type=console" for /os-io node, for currently
* our kernel console output only supports displaying text and
* performing cursor-positioning operations (through kernel framebuffer
* driver) and it doesn't support other functionalities required for a
* standard "display" device as specified in 1275 spec. The main missing
* interface defined by the 1275 spec is "draw-logo".
* also see the comments above prom_stdout_is_framebuffer().
*/
static char *create_node =
"\" /\" find-device "
"new-device "
"\" os-io\" device-name "
"\" "OBP_DISPLAY_CONSOLE"\" device-type "
": cb-r/w ( adr,len method$ -- #read/#written ) "
" 2>r swap 2 2r> ['] $callback catch if "
" 2drop 3drop 0 "
" then "
"; "
": read ( adr,len -- #read ) "
" \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then "
" ( retN ... ret1 N ) "
" ?dup if "
" swap >r 1- 0 ?do drop loop r> "
" else "
" -2 "
" then "
"; "
": write ( adr,len -- #written ) "
" \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then "
" ( retN ... ret1 N ) "
" ?dup if "
" swap >r 1- 0 ?do drop loop r> "
" else "
" 0 "
" then "
"; "
": poll-tty ( -- ) ; "
": install-abort ( -- ) ['] poll-tty d# 10 alarm ; "
": remove-abort ( -- ) ['] poll-tty 0 alarm ; "
": cb-give/take ( $method -- ) "
" 0 -rot ['] $callback catch ?dup if "
" >r 2drop 2drop r> throw "
" else "
" 0 ?do drop loop "
" then "
"; "
": give ( -- ) \" exit-input\" cb-give/take ; "
": take ( -- ) \" enter-input\" cb-give/take ; "
": open ( -- ok? ) true ; "
": close ( -- ) ; "
"finish-device "
"device-end ";
/*
* Create the OBP input/output node (FCode serial driver).
* It is needed for both USB console keyboard and for
* the kernel terminal emulator. It is too early to check for a
* kernel console compatible framebuffer now, so we create this
* so that we're ready if we need to enable kernel terminal emulation.
*
* When the USB software takes over the input device at the time
* consconfig runs, OBP's stdin is redirected to this node.
* Whenever the FORTH user interface is used after this switch,
* the node will call back into the kernel for console input.
* If a serial device such as ttya or a UART with a Type 5 keyboard
* attached is used, OBP takes over the serial device when the system
* goes to the debugger after the system is booted. This sharing
* of the relatively simple serial device is difficult but possible.
* Sharing the USB host controller is impossible due its complexity.
*
* Similarly to USB keyboard input redirection, after consconfig_dacf
* configures a kernel console framebuffer as the standard output
* device, OBP's stdout is switched to to vector through the
* /os-io node into the kernel terminal emulator.
*/
static void
startup_create_io_node(void)
{
prom_interpret(create_node, 0, 0, 0, 0, 0);
}
static void
do_prom_version_check(void)
{
int i;
pnode_t node;
char buf[64];
static char drev[] = "Down-rev firmware detected%s\n"
"\tPlease upgrade to the following minimum version:\n"
"\t\t%s\n";
i = prom_version_check(buf, sizeof (buf), &node);
if (i == PROM_VER64_OK)
return;
if (i == PROM_VER64_UPGRADE) {
cmn_err(CE_WARN, drev, "", buf);
#ifdef DEBUG
prom_enter_mon(); /* Type 'go' to continue */
cmn_err(CE_WARN, "Booting with down-rev firmware\n");
return;
#else
halt(0);
#endif
}
/*
* The other possibility is that this is a server running
* good firmware, but down-rev firmware was detected on at
* least one other cpu board. We just complain if we see
* that.
*/
cmn_err(CE_WARN, drev, " on one or more CPU boards", buf);
}
/*
* Must be defined in platform dependent code.
*/
extern caddr_t modtext;
extern size_t modtext_sz;
extern caddr_t moddata;
#define HEAPTEXT_ARENA(addr) \
((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
(((uintptr_t)(addr) - HEAPTEXT_BASE) / \
(HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
#define HEAPTEXT_OVERSIZED(addr) \
((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
#define HEAPTEXT_IN_NUCLEUSDATA(addr) \
(((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
vmem_t *texthole_source[HEAPTEXT_NARENAS];
vmem_t *texthole_arena[HEAPTEXT_NARENAS];
kmutex_t texthole_lock;
char kern_bootargs[OBP_MAXPATHLEN];
char kern_bootfile[OBP_MAXPATHLEN];
void
kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
{
uintptr_t addr, limit;
addr = HEAPTEXT_BASE;
limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
/*
* Before we initialize the text_arena, we want to punch holes in the
* underlying heaptext_arena. This guarantees that for any text
* address we can find a text hole less than HEAPTEXT_MAPPED away.
*/
for (; addr + HEAPTEXT_UNMAPPED <= limit;
addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
(void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
}
/*
* Allocate one page at the oversize to break up the text region
* from the oversized region.
*/
(void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
(void *)limit, (void *)(limit + PAGESIZE),
VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
*text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
heaptext_arena, 0, VM_SLEEP);
*data_arena = vmem_create("module_data", moddata, MODDATA, 1,
segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
}
caddr_t
kobj_text_alloc(vmem_t *arena, size_t size)
{
caddr_t rval, better;
/*
* First, try a sleeping allocation.
*/
rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
return (rval);
/*
* We didn't get the area that we wanted. We're going to try to do an
* allocation with explicit constraints.
*/
better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
(void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
VM_NOSLEEP | VM_BESTFIT);
if (better != NULL) {
/*
* That worked. Free our first attempt and return.
*/
vmem_free(arena, rval, size);
return (better);
}
/*
* That didn't work; we'll have to return our first attempt.
*/
return (rval);
}
caddr_t
kobj_texthole_alloc(caddr_t addr, size_t size)
{
int arena = HEAPTEXT_ARENA(addr);
char c[30];
uintptr_t base;
if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
/*
* If this is an oversized allocation or it is allocated in
* the nucleus data page, there is no text hole available for
* it; return NULL.
*/
return (NULL);
}
mutex_enter(&texthole_lock);
if (texthole_arena[arena] == NULL) {
ASSERT(texthole_source[arena] == NULL);
if (arena == 0) {
texthole_source[0] = vmem_create("module_text_holesrc",
(void *)(KERNELBASE + MMU_PAGESIZE4M),
MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
0, VM_SLEEP);
} else {
base = HEAPTEXT_BASE +
(arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
(void) snprintf(c, sizeof (c),
"heaptext_holesrc_%d", arena);
texthole_source[arena] = vmem_create(c, (void *)base,
HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
0, VM_SLEEP);
}
(void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
texthole_arena[arena] = vmem_create(c, NULL, 0,
sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
texthole_source[arena], 0, VM_SLEEP);
}
mutex_exit(&texthole_lock);
ASSERT(texthole_arena[arena] != NULL);
ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
return (vmem_alloc(texthole_arena[arena], size,
VM_BESTFIT | VM_NOSLEEP));
}
void
kobj_texthole_free(caddr_t addr, size_t size)
{
int arena = HEAPTEXT_ARENA(addr);
ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
ASSERT(texthole_arena[arena] != NULL);
vmem_free(texthole_arena[arena], addr, size);
}
void
release_bootstrap(void)
{
if (&cif_init)
cif_init();
}