opteron_pcbe.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors.
*/
#include <sys/cpuvar.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/cpc_pcbe.h>
#include <sys/kmem.h>
#include <sys/sdt.h>
#include <sys/modctl.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/x86_archext.h>
#include <sys/privregs.h>
static int opt_pcbe_init(void);
static uint_t opt_pcbe_ncounters(void);
static const char *opt_pcbe_impl_name(void);
static const char *opt_pcbe_cpuref(void);
static char *opt_pcbe_list_events(uint_t picnum);
static char *opt_pcbe_list_attrs(void);
static uint64_t opt_pcbe_event_coverage(char *event);
static uint64_t opt_pcbe_overflow_bitmap(void);
static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset,
uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data,
void *token);
static void opt_pcbe_program(void *token);
static void opt_pcbe_allstop(void);
static void opt_pcbe_sample(void *token);
static void opt_pcbe_free(void *config);
static pcbe_ops_t opt_pcbe_ops = {
PCBE_VER_1,
CPC_CAP_OVERFLOW_INTERRUPT,
opt_pcbe_ncounters,
opt_pcbe_impl_name,
opt_pcbe_cpuref,
opt_pcbe_list_events,
opt_pcbe_list_attrs,
opt_pcbe_event_coverage,
opt_pcbe_overflow_bitmap,
opt_pcbe_configure,
opt_pcbe_program,
opt_pcbe_allstop,
opt_pcbe_sample,
opt_pcbe_free
};
/*
* Define offsets and masks for the fields in the Performance
* Event-Select (PES) registers.
*/
#define OPT_PES_CMASK_SHIFT 24
#define OPT_PES_CMASK_MASK 0xFF
#define OPT_PES_INV_SHIFT 23
#define OPT_PES_ENABLE_SHIFT 22
#define OPT_PES_INT_SHIFT 20
#define OPT_PES_PC_SHIFT 19
#define OPT_PES_EDGE_SHIFT 18
#define OPT_PES_OS_SHIFT 17
#define OPT_PES_USR_SHIFT 16
#define OPT_PES_UMASK_SHIFT 8
#define OPT_PES_UMASK_MASK 0xFF
#define OPT_PES_INV (1 << OPT_PES_INV_SHIFT)
#define OPT_PES_ENABLE (1 << OPT_PES_ENABLE_SHIFT)
#define OPT_PES_INT (1 << OPT_PES_INT_SHIFT)
#define OPT_PES_PC (1 << OPT_PES_PC_SHIFT)
#define OPT_PES_EDGE (1 << OPT_PES_EDGE_SHIFT)
#define OPT_PES_OS (1 << OPT_PES_OS_SHIFT)
#define OPT_PES_USR (1 << OPT_PES_USR_SHIFT)
typedef struct _opt_pcbe_config {
uint8_t opt_picno; /* Counter number: 0, 1, 2, or 3 */
uint64_t opt_evsel; /* Event Selection register */
uint64_t opt_rawpic; /* Raw counter value */
} opt_pcbe_config_t;
opt_pcbe_config_t nullcfgs[4] = {
{ 0, 0, 0 },
{ 1, 0, 0 },
{ 2, 0, 0 },
{ 3, 0, 0 }
};
typedef struct _opt_event {
char *name;
uint8_t emask; /* Event mask setting */
uint8_t umask_valid; /* Mask of unreserved UNIT_MASK bits */
} opt_event_t;
/*
* Base MSR addresses for the PerfEvtSel registers and the counters themselves.
* Add counter number to base address to get corresponding MSR address.
*/
#define PES_BASE_ADDR 0xC0010000
#define PIC_BASE_ADDR 0xC0010004
#define MASK48 0xFFFFFFFFFFFF
#define EV_END {NULL, 0, 0}
static opt_event_t opt_events[] = {
{ "FP_dispatched_fpu_ops", 0x0, 0x1F },
{ "FP_cycles_no_fpu_ops_retired", 0x1, 0x0 },
{ "FP_dispatched_fpu_ops_ff", 0x2, 0x0 },
{ "LS_seg_reg_load", 0x20, 0x7F },
{ "LS_uarch_resync_self_modify", 0x21, 0x0 },
{ "LS_uarch_resync_snoop", 0x22, 0x0 },
{ "LS_buffer_2_full", 0x23, 0x0 },
{ "LS_locked_operation", 0x24, 0x7 },
{ "LS_uarch_late_cancel_op", 0x25, 0x0 },
{ "LS_retired_cflush", 0x26, 0x0 },
{ "LS_retired_cpuid", 0x27, 0x0 },
{ "DC_access", 0x40, 0x0 },
{ "DC_miss", 0x41, 0x0 },
{ "DC_refill_from_L2", 0x42, 0x1F },
{ "DC_refill_from_system", 0x43, 0x1F },
{ "DC_copyback", 0x44, 0x1F },
{ "DC_dtlb_L1_miss_L2_hit", 0x45, 0x0 },
{ "DC_dtlb_L1_miss_L2_miss", 0x46, 0x0 },
{ "DC_misaligned_data_ref", 0x47, 0x0 },
{ "DC_uarch_late_cancel_access", 0x48, 0x0 },
{ "DC_uarch_early_cancel_access", 0x49, 0x0 },
{ "DC_1bit_ecc_error_found", 0x4A, 0x3 },
{ "DC_dispatched_prefetch_instr", 0x4B, 0x7 },
{ "DC_dcache_accesses_by_locks", 0x4C, 0x3 },
{ "BU_cpu_clk_unhalted", 0x76, 0x0 },
{ "BU_internal_L2_req", 0x7D, 0x1F },
{ "BU_fill_req_missed_L2", 0x7E, 0x7 },
{ "BU_fill_into_L2", 0x7F, 0x3 },
{ "IC_fetch", 0x80, 0x0 },
{ "IC_miss", 0x81, 0x0 },
{ "IC_refill_from_L2", 0x82, 0x0 },
{ "IC_refill_from_system", 0x83, 0x0 },
{ "IC_itlb_L1_miss_L2_hit", 0x84, 0x0 },
{ "IC_itlb_L1_miss_L2_miss", 0x85, 0x0 },
{ "IC_uarch_resync_snoop", 0x86, 0x0 },
{ "IC_instr_fetch_stall", 0x87, 0x0 },
{ "IC_return_stack_hit", 0x88, 0x0 },
{ "IC_return_stack_overflow", 0x89, 0x0 },
{ "FR_retired_x86_instr_w_excp_intr", 0xC0, 0x0 },
{ "FR_retired_uops", 0xC1, 0x0 },
{ "FR_retired_branches_w_excp_intr", 0xC2, 0x0 },
{ "FR_retired_branches_mispred", 0xC3, 0x0 },
{ "FR_retired_taken_branches", 0xC4, 0x0 },
{ "FR_retired_taken_branches_mispred", 0xC5, 0x0 },
{ "FR_retired_far_ctl_transfer", 0xC6, 0x0 },
{ "FR_retired_resyncs", 0xC7, 0x0 },
{ "FR_retired_near_rets", 0xC8, 0x0 },
{ "FR_retired_near_rets_mispred", 0xC9, 0x0 },
{ "FR_retired_taken_branches_mispred_addr_miscomp", 0xCA, 0x0 },
{ "FR_retired_fpu_instr", 0xCB, 0xF },
{ "FR_retired_fastpath_double_op_instr", 0xCC, 0x7 },
{ "FR_intr_masked_cycles", 0xCD, 0x0 },
{ "FR_intr_masked_while_pending_cycles", 0xCE, 0x0 },
{ "FR_taken_hardware_intrs", 0xCF, 0x0 },
{ "FR_nothing_to_dispatch", 0xD0, 0x0 },
{ "FR_dispatch_stalls", 0xD1, 0x0 },
{ "FR_dispatch_stall_branch_abort_to_retire", 0xD2, 0x0 },
{ "FR_dispatch_stall_serialization", 0xD3, 0x0 },
{ "FR_dispatch_stall_segment_load", 0xD4, 0x0 },
{ "FR_dispatch_stall_reorder_buffer_full", 0xD5, 0x0 },
{ "FR_dispatch_stall_resv_stations_full", 0xD6, 0x0 },
{ "FR_dispatch_stall_fpu_full", 0xD7, 0x0 },
{ "FR_dispatch_stall_ls_full", 0xD8, 0x0 },
{ "FR_dispatch_stall_waiting_all_quiet", 0xD9, 0x0 },
{ "FR_dispatch_stall_far_ctl_trsfr_resync_branch_pend", 0xDA, 0x0 },
{ "FR_fpu_exception", 0xDB, 0xF },
{ "FR_num_brkpts_dr0", 0xDC, 0x0 },
{ "FR_num_brkpts_dr1", 0xDD, 0x0 },
{ "FR_num_brkpts_dr2", 0xDE, 0x0 },
{ "FR_num_brkpts_dr3", 0xDF, 0x0 },
{ "NB_mem_ctrlr_page_access", 0xE0, 0x7 },
{ "NB_mem_ctrlr_page_table_overflow", 0xE1, 0x0 },
{ "NB_mem_ctrlr_dram_cmd_slots_missed", 0xE2, 0x0 },
{ "NB_mem_ctrlr_turnaround", 0xE3, 0x7 },
{ "NB_mem_ctrlr_bypass_counter_saturation", 0xE4, 0xF },
{ "NB_sized_commands", 0xEB, 0x7F },
{ "NB_probe_result", 0xEC, 0xF },
{ "NB_ht_bus0_bandwidth", 0xF6, 0xF },
{ "NB_ht_bus1_bandwidth", 0xF7, 0xF },
{ "NB_ht_bus2_bandwidth", 0xF8, 0xF },
EV_END
};
static char *evlist;
static size_t evlist_sz;
#define BITS(v, u, l) \
(((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1))
#define OPTERON_FAMILY 15
static int
opt_pcbe_init(void)
{
opt_event_t *evp;
/*
* Make sure this really _is_ an Opteron or Athlon 64 system. The kernel
* loads this module based on its name in the module directory, but it
* could have been renamed.
*/
if (cpuid_getvendor(CPU) != X86_VENDOR_AMD ||
cpuid_getfamily(CPU) != OPTERON_FAMILY)
return (-1);
/*
* Construct event list.
*
* First pass: Calculate size needed. We'll need an additional byte
* for the NULL pointer during the last strcat.
*
* Second pass: Copy strings.
*/
for (evp = opt_events; evp->name != NULL; evp++)
evlist_sz += strlen(evp->name) + 1;
evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP);
evlist[0] = '\0';
for (evp = opt_events; evp->name != NULL; evp++) {
(void) strcat(evlist, evp->name);
(void) strcat(evlist, ",");
}
/*
* Remove trailing comma.
*/
evlist[evlist_sz - 1] = '\0';
return (0);
}
static uint_t
opt_pcbe_ncounters(void)
{
return (4);
}
static const char *
opt_pcbe_impl_name(void)
{
return ("AMD Opteron & Athlon64");
}
static const char *
opt_pcbe_cpuref(void)
{
return ("See Chapter 10 of the \"BIOS and Kernel Developer's Guide "
"for the AMD Athlon 64 and AMD Opteron Processors,\" "
"AMD publication #26094");
}
/*ARGSUSED*/
static char *
opt_pcbe_list_events(uint_t picnum)
{
return (evlist);
}
static char *
opt_pcbe_list_attrs(void)
{
return ("edge,pc,inv,cmask,umask");
}
/*ARGSUSED*/
static uint64_t
opt_pcbe_event_coverage(char *event)
{
/*
* Fortunately, all counters can count all events.
*/
return (0xF);
}
static uint64_t
opt_pcbe_overflow_bitmap(void)
{
/*
* Unfortunately, this chip cannot detect which counter overflowed, so
* we must act as if they all did.
*/
return (0xF);
}
static opt_event_t *
find_event(char *name)
{
opt_event_t *evp;
for (evp = opt_events; evp->name != NULL; evp++)
if (strcmp(name, evp->name) == 0)
return (evp);
return (NULL);
}
/*ARGSUSED*/
static int
opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags,
uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token)
{
opt_pcbe_config_t *cfg;
opt_event_t *evp;
int i;
uint32_t evsel = 0;
/*
* If we've been handed an existing configuration, we need only preset
* the counter value.
*/
if (*data != NULL) {
cfg = *data;
cfg->opt_rawpic = preset & MASK48;
return (0);
}
if (picnum >= 4)
return (CPC_INVALID_PICNUM);
if ((evp = find_event(event)) == NULL)
return (CPC_INVALID_EVENT);
evsel |= evp->emask;
if (flags & CPC_COUNT_USER)
evsel |= OPT_PES_USR;
if (flags & CPC_COUNT_SYSTEM)
evsel |= OPT_PES_OS;
if (flags & CPC_OVF_NOTIFY_EMT)
evsel |= OPT_PES_INT;
for (i = 0; i < nattrs; i++) {
if (strcmp(attrs[i].ka_name, "edge") == 0) {
if (attrs[i].ka_val != 0)
evsel |= OPT_PES_EDGE;
} else if (strcmp(attrs[i].ka_name, "pc") == 0) {
if (attrs[i].ka_val != 0)
evsel |= OPT_PES_PC;
} else if (strcmp(attrs[i].ka_name, "inv") == 0) {
if (attrs[i].ka_val != 0)
evsel |= OPT_PES_INV;
} else if (strcmp(attrs[i].ka_name, "cmask") == 0) {
if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) !=
OPT_PES_CMASK_MASK)
return (CPC_ATTRIBUTE_OUT_OF_RANGE);
evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT;
} else if (strcmp(attrs[i].ka_name, "umask") == 0) {
if ((attrs[i].ka_val | evp->umask_valid) !=
evp->umask_valid)
return (CPC_ATTRIBUTE_OUT_OF_RANGE);
evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT;
} else
return (CPC_INVALID_ATTRIBUTE);
}
cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP);
cfg->opt_picno = picnum;
cfg->opt_evsel = evsel;
cfg->opt_rawpic = preset & MASK48;
*data = cfg;
return (0);
}
static void
opt_pcbe_program(void *token)
{
opt_pcbe_config_t *cfgs[4] = { &nullcfgs[0], &nullcfgs[1],
&nullcfgs[2], &nullcfgs[3] };
opt_pcbe_config_t *pcfg = NULL;
int i;
uint64_t tmp;
uint32_t curcr4 = getcr4();
/*
* Allow nonprivileged code to read the performance counters if desired.
*/
if (kcpc_allow_nonpriv(token))
setcr4(curcr4 | CR4_PCE);
else
setcr4(curcr4 & ~CR4_PCE);
/*
* Query kernel for all configs which will be co-programmed.
*/
do {
pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL);
if (pcfg != NULL) {
ASSERT(pcfg->opt_picno < 4);
cfgs[pcfg->opt_picno] = pcfg;
}
} while (pcfg != NULL);
/*
* Program in two loops. The first configures and presets the counter,
* and the second loop enables the counters. This ensures that the
* counters are all enabled as closely together in time as possible.
*/
for (i = 0; i < 4; i++) {
wrmsr(PES_BASE_ADDR + i, &cfgs[i]->opt_evsel);
wrmsr(PIC_BASE_ADDR + i, &cfgs[i]->opt_rawpic);
}
for (i = 0; i < 4; i++) {
tmp = cfgs[i]->opt_evsel | OPT_PES_ENABLE;
wrmsr(PES_BASE_ADDR + i, &tmp);
}
}
static void
opt_pcbe_allstop(void)
{
int i;
uint64_t tmp = 0;
for (i = 0; i < 4; i++)
wrmsr(PES_BASE_ADDR + i, &tmp);
/*
* Disable non-privileged access to the counter registers.
*/
setcr4((uint32_t)getcr4() & ~CR4_PCE);
}
static void
opt_pcbe_sample(void *token)
{
opt_pcbe_config_t *cfgs[4] = { NULL, NULL, NULL, NULL };
opt_pcbe_config_t *pcfg = NULL;
int i;
uint64_t curpic[4];
uint64_t *addrs[4];
uint64_t *tmp;
int64_t diff;
for (i = 0; i < 4; i++)
(void) rdmsr(PIC_BASE_ADDR + i, &curpic[i]);
/*
* Query kernel for all configs which are co-programmed.
*/
do {
pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp);
if (pcfg != NULL) {
ASSERT(pcfg->opt_picno < 4);
cfgs[pcfg->opt_picno] = pcfg;
addrs[pcfg->opt_picno] = tmp;
}
} while (pcfg != NULL);
for (i = 0; i < 4; i++) {
if (cfgs[i] == NULL)
continue;
diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48;
*addrs[i] += diff;
DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i],
uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic);
cfgs[i]->opt_rawpic = *addrs[i] & MASK48;
}
}
static void
opt_pcbe_free(void *config)
{
kmem_free(config, sizeof (opt_pcbe_config_t));
}
static struct modlpcbe modlpcbe = {
&mod_pcbeops,
"AMD Performance Counters v%I%",
&opt_pcbe_ops
};
static struct modlinkage modl = {
MODREV_1,
&modlpcbe,
};
int
_init(void)
{
int ret;
if (opt_pcbe_init() != 0)
return (ENOTSUP);
if ((ret = mod_install(&modl)) != 0)
kmem_free(evlist, evlist_sz + 1);
return (ret);
}
int
_fini(void)
{
int ret;
if ((ret = mod_remove(&modl)) == 0)
kmem_free(evlist, evlist_sz + 1);
return (ret);
}
int
_info(struct modinfo *mi)
{
return (mod_info(&modl, mi));
}