/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* This file contains preset event names from the Performance Application
* Programming Interface v3.5 which included the following notice:
*
* Copyright (c) 2005,6
* Innovative Computing Labs
* Computer Science Department,
* University of Tennessee,
* Knoxville, TN.
* All Rights Reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University of Tennessee nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* This open source software license conforms to the BSD License template.
*/
/*
* Portions Copyright 2009 Advanced Micro Devices, Inc.
*/
/*
* Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors.
*/
#include <sys/cpuvar.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/cpc_pcbe.h>
#include <sys/kmem.h>
#include <sys/sdt.h>
#include <sys/modctl.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/x86_archext.h>
#include <sys/privregs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
static int opt_pcbe_init(void);
static uint_t opt_pcbe_ncounters(void);
static const char *opt_pcbe_impl_name(void);
static const char *opt_pcbe_cpuref(void);
static char *opt_pcbe_list_events(uint_t picnum);
static char *opt_pcbe_list_attrs(void);
static uint64_t opt_pcbe_event_coverage(char *event);
static uint64_t opt_pcbe_overflow_bitmap(void);
static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset,
uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data,
void *token);
static void opt_pcbe_program(void *token);
static void opt_pcbe_allstop(void);
static void opt_pcbe_sample(void *token);
static void opt_pcbe_free(void *config);
static pcbe_ops_t opt_pcbe_ops = {
PCBE_VER_1,
CPC_CAP_OVERFLOW_INTERRUPT,
opt_pcbe_ncounters,
opt_pcbe_impl_name,
opt_pcbe_cpuref,
opt_pcbe_list_events,
opt_pcbe_list_attrs,
opt_pcbe_event_coverage,
opt_pcbe_overflow_bitmap,
opt_pcbe_configure,
opt_pcbe_program,
opt_pcbe_allstop,
opt_pcbe_sample,
opt_pcbe_free
};
/*
* Define offsets and masks for the fields in the Performance
* Event-Select (PES) registers.
*/
#define OPT_PES_HOST_SHIFT 41
#define OPT_PES_GUEST_SHIFT 40
#define OPT_PES_CMASK_SHIFT 24
#define OPT_PES_CMASK_MASK 0xFF
#define OPT_PES_INV_SHIFT 23
#define OPT_PES_ENABLE_SHIFT 22
#define OPT_PES_INT_SHIFT 20
#define OPT_PES_PC_SHIFT 19
#define OPT_PES_EDGE_SHIFT 18
#define OPT_PES_OS_SHIFT 17
#define OPT_PES_USR_SHIFT 16
#define OPT_PES_UMASK_SHIFT 8
#define OPT_PES_UMASK_MASK 0xFF
#define OPT_PES_INV (1ULL << OPT_PES_INV_SHIFT)
#define OPT_PES_ENABLE (1ULL << OPT_PES_ENABLE_SHIFT)
#define OPT_PES_INT (1ULL << OPT_PES_INT_SHIFT)
#define OPT_PES_PC (1ULL << OPT_PES_PC_SHIFT)
#define OPT_PES_EDGE (1ULL << OPT_PES_EDGE_SHIFT)
#define OPT_PES_OS (1ULL << OPT_PES_OS_SHIFT)
#define OPT_PES_USR (1ULL << OPT_PES_USR_SHIFT)
#define OPT_PES_HOST (1ULL << OPT_PES_HOST_SHIFT)
#define OPT_PES_GUEST (1ULL << OPT_PES_GUEST_SHIFT)
typedef struct _opt_pcbe_config {
uint8_t opt_picno; /* Counter number: 0, 1, 2, or 3 */
uint64_t opt_evsel; /* Event Selection register */
uint64_t opt_rawpic; /* Raw counter value */
} opt_pcbe_config_t;
opt_pcbe_config_t nullcfgs[4] = {
{ 0, 0, 0 },
{ 1, 0, 0 },
{ 2, 0, 0 },
{ 3, 0, 0 }
};
typedef struct _amd_event {
char *name;
uint16_t emask; /* Event mask setting */
} amd_event_t;
typedef struct _amd_generic_event {
char *name;
char *event;
uint8_t umask;
} amd_generic_event_t;
/*
* Base MSR addresses for the PerfEvtSel registers and the counters themselves.
* Add counter number to base address to get corresponding MSR address.
*/
#define PES_BASE_ADDR 0xC0010000
#define PIC_BASE_ADDR 0xC0010004
#define MASK48 0xFFFFFFFFFFFF
#define EV_END {NULL, 0}
#define GEN_EV_END {NULL, NULL, 0 }
#define AMD_cmn_events \
{ "FP_dispatched_fpu_ops", 0x0 }, \
{ "FP_cycles_no_fpu_ops_retired", 0x1 }, \
{ "FP_dispatched_fpu_ops_ff", 0x2 }, \
{ "LS_seg_reg_load", 0x20 }, \
{ "LS_uarch_resync_self_modify", 0x21 }, \
{ "LS_uarch_resync_snoop", 0x22 }, \
{ "LS_buffer_2_full", 0x23 }, \
{ "LS_locked_operation", 0x24 }, \
{ "LS_retired_cflush", 0x26 }, \
{ "LS_retired_cpuid", 0x27 }, \
{ "DC_access", 0x40 }, \
{ "DC_miss", 0x41 }, \
{ "DC_refill_from_L2", 0x42 }, \
{ "DC_refill_from_system", 0x43 }, \
{ "DC_copyback", 0x44 }, \
{ "DC_dtlb_L1_miss_L2_hit", 0x45 }, \
{ "DC_dtlb_L1_miss_L2_miss", 0x46 }, \
{ "DC_misaligned_data_ref", 0x47 }, \
{ "DC_uarch_late_cancel_access", 0x48 }, \
{ "DC_uarch_early_cancel_access", 0x49 }, \
{ "DC_1bit_ecc_error_found", 0x4A }, \
{ "DC_dispatched_prefetch_instr", 0x4B }, \
{ "DC_dcache_accesses_by_locks", 0x4C }, \
{ "BU_memory_requests", 0x65 }, \
{ "BU_data_prefetch", 0x67 }, \
{ "BU_system_read_responses", 0x6C }, \
{ "BU_cpu_clk_unhalted", 0x76 }, \
{ "BU_internal_L2_req", 0x7D }, \
{ "BU_fill_req_missed_L2", 0x7E }, \
{ "BU_fill_into_L2", 0x7F }, \
{ "IC_fetch", 0x80 }, \
{ "IC_miss", 0x81 }, \
{ "IC_refill_from_L2", 0x82 }, \
{ "IC_refill_from_system", 0x83 }, \
{ "IC_itlb_L1_miss_L2_hit", 0x84 }, \
{ "IC_itlb_L1_miss_L2_miss", 0x85 }, \
{ "IC_uarch_resync_snoop", 0x86 }, \
{ "IC_instr_fetch_stall", 0x87 }, \
{ "IC_return_stack_hit", 0x88 }, \
{ "IC_return_stack_overflow", 0x89 }, \
{ "FR_retired_x86_instr_w_excp_intr", 0xC0 }, \
{ "FR_retired_uops", 0xC1 }, \
{ "FR_retired_branches_w_excp_intr", 0xC2 }, \
{ "FR_retired_branches_mispred", 0xC3 }, \
{ "FR_retired_taken_branches", 0xC4 }, \
{ "FR_retired_taken_branches_mispred", 0xC5 }, \
{ "FR_retired_far_ctl_transfer", 0xC6 }, \
{ "FR_retired_resyncs", 0xC7 }, \
{ "FR_retired_near_rets", 0xC8 }, \
{ "FR_retired_near_rets_mispred", 0xC9 }, \
{ "FR_retired_taken_branches_mispred_addr_miscomp", 0xCA },\
{ "FR_retired_fastpath_double_op_instr", 0xCC }, \
{ "FR_intr_masked_cycles", 0xCD }, \
{ "FR_intr_masked_while_pending_cycles", 0xCE }, \
{ "FR_taken_hardware_intrs", 0xCF }, \
{ "FR_nothing_to_dispatch", 0xD0 }, \
{ "FR_dispatch_stalls", 0xD1 }, \
{ "FR_dispatch_stall_branch_abort_to_retire", 0xD2 }, \
{ "FR_dispatch_stall_serialization", 0xD3 }, \
{ "FR_dispatch_stall_segment_load", 0xD4 }, \
{ "FR_dispatch_stall_reorder_buffer_full", 0xD5 }, \
{ "FR_dispatch_stall_resv_stations_full", 0xD6 }, \
{ "FR_dispatch_stall_fpu_full", 0xD7 }, \
{ "FR_dispatch_stall_ls_full", 0xD8 }, \
{ "FR_dispatch_stall_waiting_all_quiet", 0xD9 }, \
{ "FR_dispatch_stall_far_ctl_trsfr_resync_branch_pend", 0xDA },\
{ "FR_fpu_exception", 0xDB }, \
{ "FR_num_brkpts_dr0", 0xDC }, \
{ "FR_num_brkpts_dr1", 0xDD }, \
{ "FR_num_brkpts_dr2", 0xDE }, \
{ "FR_num_brkpts_dr3", 0xDF }, \
{ "NB_mem_ctrlr_page_access", 0xE0 }, \
{ "NB_mem_ctrlr_turnaround", 0xE3 }, \
{ "NB_mem_ctrlr_bypass_counter_saturation", 0xE4 }, \
{ "NB_cpu_io_to_mem_io", 0xE9 }, \
{ "NB_cache_block_commands", 0xEA }, \
{ "NB_sized_commands", 0xEB }, \
{ "NB_ht_bus0_bandwidth", 0xF6 }
#define AMD_FAMILY_f_events \
{ "BU_quadwords_written_to_system", 0x6D }, \
{ "FR_retired_fpu_instr", 0xCB }, \
{ "NB_mem_ctrlr_page_table_overflow", 0xE1 }, \
{ "NB_sized_blocks", 0xE5 }, \
{ "NB_ECC_errors", 0xE8 }, \
{ "NB_probe_result", 0xEC }, \
{ "NB_gart_events", 0xEE }, \
{ "NB_ht_bus1_bandwidth", 0xF7 }, \
{ "NB_ht_bus2_bandwidth", 0xF8 }
#define AMD_FAMILY_10h_events \
{ "FP_retired_sse_ops", 0x3 }, \
{ "FP_retired_move_ops", 0x4 }, \
{ "FP_retired_serialize_ops", 0x5 }, \
{ "FP_serialize_ops_cycles", 0x6 }, \
{ "LS_cancelled_store_to_load_fwd_ops", 0x2A }, \
{ "LS_smi_received", 0x2B }, \
{ "DC_dtlb_L1_hit", 0x4D }, \
{ "LS_ineffective_prefetch", 0x52 }, \
{ "LS_global_tlb_flush", 0x54 }, \
{ "BU_octwords_written_to_system", 0x6D }, \
{ "Page_size_mismatches", 0x165 }, \
{ "IC_eviction", 0x8B }, \
{ "IC_cache_lines_invalidate", 0x8C }, \
{ "IC_itlb_reload", 0x99 }, \
{ "IC_itlb_reload_aborted", 0x9A }, \
{ "FR_retired_mmx_sse_fp_instr", 0xCB }, \
{ "Retired_x87_fp_ops", 0x1C0 }, \
{ "IBS_ops_tagged", 0x1CF }, \
{ "LFENCE_inst_retired", 0x1D3 }, \
{ "SFENCE_inst_retired", 0x1D4 }, \
{ "MFENCE_inst_retired", 0x1D5 }, \
{ "NB_mem_ctrlr_page_table_overflow", 0xE1 }, \
{ "NB_mem_ctrlr_dram_cmd_slots_missed", 0xE2 }, \
{ "NB_thermal_status", 0xE8 }, \
{ "NB_probe_results_upstream_req", 0xEC }, \
{ "NB_gart_events", 0xEE }, \
{ "NB_mem_ctrlr_req", 0x1F0 }, \
{ "CB_cpu_to_dram_req_to_target", 0x1E0 }, \
{ "CB_io_to_dram_req_to_target", 0x1E1 }, \
{ "CB_cpu_read_cmd_latency_to_target_0_to_3", 0x1E2 }, \
{ "CB_cpu_read_cmd_req_to_target_0_to_3", 0x1E3 }, \
{ "CB_cpu_read_cmd_latency_to_target_4_to_7", 0x1E4 }, \
{ "CB_cpu_read_cmd_req_to_target_4_to_7", 0x1E5 }, \
{ "CB_cpu_cmd_latency_to_target_0_to_7", 0x1E6 }, \
{ "CB_cpu_req_to_target_0_to_7", 0x1E7 }, \
{ "NB_ht_bus1_bandwidth", 0xF7 }, \
{ "NB_ht_bus2_bandwidth", 0xF8 }, \
{ "NB_ht_bus3_bandwidth", 0x1F9 }, \
{ "L3_read_req", 0x4E0 }, \
{ "L3_miss", 0x4E1 }, \
{ "L3_l2_eviction_l3_fill", 0x4E2 }, \
{ "L3_eviction", 0x4E3 }
#define AMD_FAMILY_11h_events \
{ "BU_quadwords_written_to_system", 0x6D }, \
{ "FR_retired_mmx_fp_instr", 0xCB }, \
{ "NB_mem_ctrlr_page_table_events", 0xE1 }, \
{ "NB_thermal_status", 0xE8 }, \
{ "NB_probe_results_upstream_req", 0xEC }, \
{ "NB_dev_events", 0xEE }, \
{ "NB_mem_ctrlr_req", 0x1F0 }
#define AMD_cmn_generic_events \
{ "PAPI_br_ins", "FR_retired_branches_w_excp_intr", 0x0 },\
{ "PAPI_br_msp", "FR_retired_branches_mispred", 0x0 }, \
{ "PAPI_br_tkn", "FR_retired_taken_branches", 0x0 }, \
{ "PAPI_fp_ops", "FP_dispatched_fpu_ops", 0x3 }, \
{ "PAPI_fad_ins", "FP_dispatched_fpu_ops", 0x1 }, \
{ "PAPI_fml_ins", "FP_dispatched_fpu_ops", 0x2 }, \
{ "PAPI_fpu_idl", "FP_cycles_no_fpu_ops_retired", 0x0 }, \
{ "PAPI_tot_cyc", "BU_cpu_clk_unhalted", 0x0 }, \
{ "PAPI_tot_ins", "FR_retired_x86_instr_w_excp_intr", 0x0 }, \
{ "PAPI_l1_dca", "DC_access", 0x0 }, \
{ "PAPI_l1_dcm", "DC_miss", 0x0 }, \
{ "PAPI_l1_ldm", "DC_refill_from_L2", 0xe }, \
{ "PAPI_l1_stm", "DC_refill_from_L2", 0x10 }, \
{ "PAPI_l1_ica", "IC_fetch", 0x0 }, \
{ "PAPI_l1_icm", "IC_miss", 0x0 }, \
{ "PAPI_l1_icr", "IC_fetch", 0x0 }, \
{ "PAPI_l2_dch", "DC_refill_from_L2", 0x1e }, \
{ "PAPI_l2_dcm", "DC_refill_from_system", 0x1e }, \
{ "PAPI_l2_dcr", "DC_refill_from_L2", 0xe }, \
{ "PAPI_l2_dcw", "DC_refill_from_L2", 0x10 }, \
{ "PAPI_l2_ich", "IC_refill_from_L2", 0x0 }, \
{ "PAPI_l2_icm", "IC_refill_from_system", 0x0 }, \
{ "PAPI_l2_ldm", "DC_refill_from_system", 0xe }, \
{ "PAPI_l2_stm", "DC_refill_from_system", 0x10 }, \
{ "PAPI_res_stl", "FR_dispatch_stalls", 0x0 }, \
{ "PAPI_stl_icy", "FR_nothing_to_dispatch", 0x0 }, \
{ "PAPI_hw_int", "FR_taken_hardware_intrs", 0x0 }
#define OPT_cmn_generic_events \
{ "PAPI_tlb_dm", "DC_dtlb_L1_miss_L2_miss", 0x0 }, \
{ "PAPI_tlb_im", "IC_itlb_L1_miss_L2_miss", 0x0 }, \
{ "PAPI_fp_ins", "FR_retired_fpu_instr", 0xd }, \
{ "PAPI_vec_ins", "FR_retired_fpu_instr", 0x4 }
#define AMD_FAMILY_10h_generic_events \
{ "PAPI_tlb_dm", "DC_dtlb_L1_miss_L2_miss", 0x7 }, \
{ "PAPI_tlb_im", "IC_itlb_L1_miss_L2_miss", 0x3 }, \
{ "PAPI_l3_dcr", "L3_read_req", 0xf1 }, \
{ "PAPI_l3_icr", "L3_read_req", 0xf2 }, \
{ "PAPI_l3_tcr", "L3_read_req", 0xf7 }, \
{ "PAPI_l3_stm", "L3_miss", 0xf4 }, \
{ "PAPI_l3_ldm", "L3_miss", 0xf3 }, \
{ "PAPI_l3_tcm", "L3_miss", 0xf7 }
#define AMD_PCBE_SUPPORTED(family) (((family) >= 0xf) && ((family) <= 0x11))
static amd_event_t family_f_events[] = {
AMD_cmn_events,
AMD_FAMILY_f_events,
EV_END
};
static amd_event_t family_10h_events[] = {
AMD_cmn_events,
AMD_FAMILY_10h_events,
EV_END
};
static amd_event_t family_11h_events[] = {
AMD_cmn_events,
AMD_FAMILY_11h_events,
EV_END
};
static amd_generic_event_t opt_generic_events[] = {
AMD_cmn_generic_events,
OPT_cmn_generic_events,
GEN_EV_END
};
static amd_generic_event_t family_10h_generic_events[] = {
AMD_cmn_generic_events,
AMD_FAMILY_10h_generic_events,
GEN_EV_END
};
static char *evlist;
static size_t evlist_sz;
static amd_event_t *amd_events = NULL;
static uint_t amd_family;
static amd_generic_event_t *amd_generic_events = NULL;
#define AMD_CPUREF_SIZE 256
static char amd_generic_bkdg[AMD_CPUREF_SIZE];
static char amd_fam_f_rev_ae_bkdg[] = "See \"BIOS and Kernel Developer's " \
"Guide for AMD Athlon 64 and AMD Opteron Processors\" (AMD publication 26094)";
static char amd_fam_f_NPT_bkdg[] = "See \"BIOS and Kernel Developer's Guide " \
"for AMD NPT Family 0Fh Processors\" (AMD publication 32559)";
static char amd_fam_10h_bkdg[] = "See \"BIOS and Kernel Developer's Guide " \
"(BKDG) For AMD Family 10h Processors\" (AMD publication 31116)";
static char amd_fam_11h_bkdg[] = "See \"BIOS and Kernel Developer's Guide " \
"(BKDG) For AMD Family 11h Processors\" (AMD publication 41256)";
static char amd_pcbe_impl_name[64];
static char *amd_pcbe_cpuref;
#define BITS(v, u, l) \
(((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1))
static int
opt_pcbe_init(void)
{
amd_event_t *evp;
amd_generic_event_t *gevp;
amd_family = cpuid_getfamily(CPU);
/*
* Make sure this really _is_ an Opteron or Athlon 64 system. The kernel
* loads this module based on its name in the module directory, but it
* could have been renamed.
*/
if (cpuid_getvendor(CPU) != X86_VENDOR_AMD || amd_family < 0xf)
return (-1);
if (amd_family == 0xf)
/* Some tools expect this string for family 0fh */
(void) snprintf(amd_pcbe_impl_name, sizeof (amd_pcbe_impl_name),
"AMD Opteron & Athlon64");
else
(void) snprintf(amd_pcbe_impl_name, sizeof (amd_pcbe_impl_name),
"AMD Family %02xh%s", amd_family,
AMD_PCBE_SUPPORTED(amd_family) ? "" :" (unsupported)");
/*
* Figure out processor revision here and assign appropriate
* event configuration.
*/
if (amd_family == 0xf) {
uint32_t rev;
rev = cpuid_getchiprev(CPU);
if (X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_F))
amd_pcbe_cpuref = amd_fam_f_NPT_bkdg;
else
amd_pcbe_cpuref = amd_fam_f_rev_ae_bkdg;
amd_events = family_f_events;
amd_generic_events = opt_generic_events;
} else if (amd_family == 0x10) {
amd_pcbe_cpuref = amd_fam_10h_bkdg;
amd_events = family_10h_events;
amd_generic_events = family_10h_generic_events;
} else if (amd_family == 0x11) {
amd_pcbe_cpuref = amd_fam_11h_bkdg;
amd_events = family_11h_events;
amd_generic_events = opt_generic_events;
} else {
amd_pcbe_cpuref = amd_generic_bkdg;
(void) snprintf(amd_pcbe_cpuref, AMD_CPUREF_SIZE,
"See BIOS and Kernel Developer's Guide " \
"(BKDG) For AMD Family %02xh Processors. " \
"(Note that this pcbe does not explicitly " \
"support this family)", amd_family);
/*
* For families that are not explicitly supported we'll use
* events for family 0xf. Even if they are not quite right,
* it's OK --- we state that pcbe is unsupported.
*/
amd_events = family_f_events;
amd_generic_events = opt_generic_events;
}
/*
* Construct event list.
*
* First pass: Calculate size needed. We'll need an additional byte
* for the NULL pointer during the last strcat.
*
* Second pass: Copy strings.
*/
for (evp = amd_events; evp->name != NULL; evp++)
evlist_sz += strlen(evp->name) + 1;
for (gevp = amd_generic_events; gevp->name != NULL; gevp++)
evlist_sz += strlen(gevp->name) + 1;
evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP);
evlist[0] = '\0';
for (evp = amd_events; evp->name != NULL; evp++) {
(void) strcat(evlist, evp->name);
(void) strcat(evlist, ",");
}
for (gevp = amd_generic_events; gevp->name != NULL; gevp++) {
(void) strcat(evlist, gevp->name);
(void) strcat(evlist, ",");
}
/*
* Remove trailing comma.
*/
evlist[evlist_sz - 1] = '\0';
return (0);
}
static uint_t
opt_pcbe_ncounters(void)
{
return (4);
}
static const char *
opt_pcbe_impl_name(void)
{
return (amd_pcbe_impl_name);
}
static const char *
opt_pcbe_cpuref(void)
{
return (amd_pcbe_cpuref);
}
/*ARGSUSED*/
static char *
opt_pcbe_list_events(uint_t picnum)
{
return (evlist);
}
static char *
opt_pcbe_list_attrs(void)
{
return ("edge,pc,inv,cmask,umask");
}
static amd_generic_event_t *
find_generic_event(char *name)
{
amd_generic_event_t *gevp;
for (gevp = amd_generic_events; gevp->name != NULL; gevp++)
if (strcmp(name, gevp->name) == 0)
return (gevp);
return (NULL);
}
static amd_event_t *
find_event(char *name)
{
amd_event_t *evp;
for (evp = amd_events; evp->name != NULL; evp++)
if (strcmp(name, evp->name) == 0)
return (evp);
return (NULL);
}
/*ARGSUSED*/
static uint64_t
opt_pcbe_event_coverage(char *event)
{
/*
* Check whether counter event is supported
*/
if (find_event(event) == NULL && find_generic_event(event) == NULL)
return (0);
/*
* Fortunately, all counters can count all events.
*/
return (0xF);
}
static uint64_t
opt_pcbe_overflow_bitmap(void)
{
/*
* Unfortunately, this chip cannot detect which counter overflowed, so
* we must act as if they all did.
*/
return (0xF);
}
/*ARGSUSED*/
static int
opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags,
uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token)
{
opt_pcbe_config_t *cfg;
amd_event_t *evp;
amd_event_t ev_raw = { "raw", 0};
amd_generic_event_t *gevp;
int i;
uint64_t evsel = 0, evsel_tmp = 0;
/*
* If we've been handed an existing configuration, we need only preset
* the counter value.
*/
if (*data != NULL) {
cfg = *data;
cfg->opt_rawpic = preset & MASK48;
return (0);
}
if (picnum >= 4)
return (CPC_INVALID_PICNUM);
if ((evp = find_event(event)) == NULL) {
if ((gevp = find_generic_event(event)) != NULL) {
evp = find_event(gevp->event);
ASSERT(evp != NULL);
if (nattrs > 0)
return (CPC_ATTRIBUTE_OUT_OF_RANGE);
evsel |= gevp->umask << OPT_PES_UMASK_SHIFT;
} else {
long tmp;
/*
* If ddi_strtol() likes this event, use it as a raw
* event code.
*/
if (ddi_strtol(event, NULL, 0, &tmp) != 0)
return (CPC_INVALID_EVENT);
ev_raw.emask = tmp;
evp = &ev_raw;
}
}
/*
* Configuration of EventSelect register. While on some families
* certain bits might not be supported (e.g. Guest/Host on family
* 11h), setting these bits is harmless
*/
/* Set GuestOnly bit to 0 and HostOnly bit to 1 */
evsel &= ~OPT_PES_HOST;
evsel &= ~OPT_PES_GUEST;
/* Set bits [35:32] for extended part of Event Select field */
evsel_tmp = evp->emask & 0x0f00;
evsel |= evsel_tmp << 24;
evsel |= evp->emask & 0x00ff;
if (flags & CPC_COUNT_USER)
evsel |= OPT_PES_USR;
if (flags & CPC_COUNT_SYSTEM)
evsel |= OPT_PES_OS;
if (flags & CPC_OVF_NOTIFY_EMT)
evsel |= OPT_PES_INT;
for (i = 0; i < nattrs; i++) {
if (strcmp(attrs[i].ka_name, "edge") == 0) {
if (attrs[i].ka_val != 0)
evsel |= OPT_PES_EDGE;
} else if (strcmp(attrs[i].ka_name, "pc") == 0) {
if (attrs[i].ka_val != 0)
evsel |= OPT_PES_PC;
} else if (strcmp(attrs[i].ka_name, "inv") == 0) {
if (attrs[i].ka_val != 0)
evsel |= OPT_PES_INV;
} else if (strcmp(attrs[i].ka_name, "cmask") == 0) {
if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) !=
OPT_PES_CMASK_MASK)
return (CPC_ATTRIBUTE_OUT_OF_RANGE);
evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT;
} else if (strcmp(attrs[i].ka_name, "umask") == 0) {
if ((attrs[i].ka_val | OPT_PES_UMASK_MASK) !=
OPT_PES_UMASK_MASK)
return (CPC_ATTRIBUTE_OUT_OF_RANGE);
evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT;
} else
return (CPC_INVALID_ATTRIBUTE);
}
cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP);
cfg->opt_picno = picnum;
cfg->opt_evsel = evsel;
cfg->opt_rawpic = preset & MASK48;
*data = cfg;
return (0);
}
static void
opt_pcbe_program(void *token)
{
opt_pcbe_config_t *cfgs[4] = { &nullcfgs[0], &nullcfgs[1],
&nullcfgs[2], &nullcfgs[3] };
opt_pcbe_config_t *pcfg = NULL;
int i;
ulong_t curcr4 = getcr4();
/*
* Allow nonprivileged code to read the performance counters if desired.
*/
if (kcpc_allow_nonpriv(token))
setcr4(curcr4 | CR4_PCE);
else
setcr4(curcr4 & ~CR4_PCE);
/*
* Query kernel for all configs which will be co-programmed.
*/
do {
pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL);
if (pcfg != NULL) {
ASSERT(pcfg->opt_picno < 4);
cfgs[pcfg->opt_picno] = pcfg;
}
} while (pcfg != NULL);
/*
* Program in two loops. The first configures and presets the counter,
* and the second loop enables the counters. This ensures that the
* counters are all enabled as closely together in time as possible.
*/
for (i = 0; i < 4; i++) {
wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel);
wrmsr(PIC_BASE_ADDR + i, cfgs[i]->opt_rawpic);
}
for (i = 0; i < 4; i++) {
wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel |
(uint64_t)(uintptr_t)OPT_PES_ENABLE);
}
}
static void
opt_pcbe_allstop(void)
{
int i;
for (i = 0; i < 4; i++)
wrmsr(PES_BASE_ADDR + i, 0ULL);
/*
* Disable non-privileged access to the counter registers.
*/
setcr4(getcr4() & ~CR4_PCE);
}
static void
opt_pcbe_sample(void *token)
{
opt_pcbe_config_t *cfgs[4] = { NULL, NULL, NULL, NULL };
opt_pcbe_config_t *pcfg = NULL;
int i;
uint64_t curpic[4];
uint64_t *addrs[4];
uint64_t *tmp;
int64_t diff;
for (i = 0; i < 4; i++)
curpic[i] = rdmsr(PIC_BASE_ADDR + i);
/*
* Query kernel for all configs which are co-programmed.
*/
do {
pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp);
if (pcfg != NULL) {
ASSERT(pcfg->opt_picno < 4);
cfgs[pcfg->opt_picno] = pcfg;
addrs[pcfg->opt_picno] = tmp;
}
} while (pcfg != NULL);
for (i = 0; i < 4; i++) {
if (cfgs[i] == NULL)
continue;
diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48;
*addrs[i] += diff;
DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i],
uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic);
cfgs[i]->opt_rawpic = *addrs[i] & MASK48;
}
}
static void
opt_pcbe_free(void *config)
{
kmem_free(config, sizeof (opt_pcbe_config_t));
}
static struct modlpcbe modlpcbe = {
&mod_pcbeops,
"AMD Performance Counters",
&opt_pcbe_ops
};
static struct modlinkage modl = {
MODREV_1,
&modlpcbe,
};
int
_init(void)
{
int ret;
if (opt_pcbe_init() != 0)
return (ENOTSUP);
if ((ret = mod_install(&modl)) != 0)
kmem_free(evlist, evlist_sz + 1);
return (ret);
}
int
_fini(void)
{
int ret;
if ((ret = mod_remove(&modl)) == 0)
kmem_free(evlist, evlist_sz + 1);
return (ret);
}
int
_info(struct modinfo *mi)
{
return (mod_info(&modl, mi));
}