/*
* O.S : Solaris
* FILE NAME : arcmsr.c
* BY : Erich Chen, C.L. Huang
* Description: SCSI RAID Device Driver for
* ARECA RAID Host adapter
*
* Copyright (C) 2002,2010 Areca Technology Corporation All rights reserved.
* Copyright (C) 2002,2010 Erich Chen
* Web site: www.areca.com.tw
* E-mail: erich@areca.com.tw; ching2048@areca.com.tw
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The party using or redistributing the source code and binary forms
* agrees to the disclaimer below and the terms and conditions set forth
* herein.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
*/
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/ddidmareq.h>
#include <sys/scsi/scsi.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/file.h>
#include <sys/disp.h>
#include <sys/signal.h>
#include <sys/debug.h>
#include <sys/pci.h>
#include <sys/policy.h>
#include <sys/atomic.h>
#include "arcmsr.h"
static int arcmsr_attach(dev_info_t *dev_info, ddi_attach_cmd_t cmd);
static int arcmsr_cb_ioctl(dev_t dev, int ioctl_cmd, intptr_t arg,
int mode, cred_t *credp, int *rvalp);
static int arcmsr_detach(dev_info_t *dev_info, ddi_detach_cmd_t cmd);
static int arcmsr_reset(dev_info_t *resetdev, ddi_reset_cmd_t cmd);
static int arcmsr_tran_start(struct scsi_address *ap, struct scsi_pkt *pkt);
static int arcmsr_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt);
static int arcmsr_tran_reset(struct scsi_address *ap, int level);
static int arcmsr_tran_getcap(struct scsi_address *ap, char *cap, int whom);
static int arcmsr_tran_setcap(struct scsi_address *ap, char *cap, int value,
int whom);
static int arcmsr_tran_tgt_init(dev_info_t *host_dev_info,
dev_info_t *target_dev_info, scsi_hba_tran_t *hosttran,
struct scsi_device *sd);
static void arcmsr_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt);
static void arcmsr_tran_destroy_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt);
static void arcmsr_tran_sync_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt);
static struct scsi_pkt *arcmsr_tran_init_pkt(struct scsi_address *ap,
struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen,
int tgtlen, int flags, int (*callback)(), caddr_t arg);
static int arcmsr_config_child(struct ACB *acb, struct scsi_device *sd,
dev_info_t **dipp);
static int arcmsr_config_lun(struct ACB *acb, uint16_t tgt, uint8_t lun,
dev_info_t **ldip);
static uint8_t arcmsr_abort_host_command(struct ACB *acb);
static uint8_t arcmsr_get_echo_from_iop(struct ACB *acb);
static uint_t arcmsr_intr_handler(caddr_t arg, caddr_t arg2);
static int arcmsr_initialize(struct ACB *acb);
static int arcmsr_dma_alloc(struct ACB *acb,
struct scsi_pkt *pkt, struct buf *bp, int flags, int (*callback)());
static int arcmsr_dma_move(struct ACB *acb,
struct scsi_pkt *pkt, struct buf *bp);
static void arcmsr_handle_iop_bus_hold(struct ACB *acb);
static void arcmsr_hbc_message_isr(struct ACB *acb);
static void arcmsr_pcidev_disattach(struct ACB *acb);
static void arcmsr_ccb_complete(struct CCB *ccb, int flag);
static void arcmsr_iop_init(struct ACB *acb);
static void arcmsr_iop_parking(struct ACB *acb);
/*PRINTFLIKE3*/
static void arcmsr_log(struct ACB *acb, int level, char *fmt, ...);
/*PRINTFLIKE2*/
static void arcmsr_warn(struct ACB *acb, char *fmt, ...);
static void arcmsr_mutex_init(struct ACB *acb);
static void arcmsr_remove_intr(struct ACB *acb);
static void arcmsr_ccbs_timeout(void* arg);
static void arcmsr_devMap_monitor(void* arg);
static void arcmsr_pcidev_disattach(struct ACB *acb);
static void arcmsr_iop_message_read(struct ACB *acb);
static void arcmsr_free_ccb(struct CCB *ccb);
static void arcmsr_post_ioctldata2iop(struct ACB *acb);
static void arcmsr_report_sense_info(struct CCB *ccb);
static void arcmsr_init_list_head(struct list_head *list);
static void arcmsr_enable_allintr(struct ACB *acb, uint32_t intmask_org);
static void arcmsr_done4abort_postqueue(struct ACB *acb);
static void arcmsr_list_add_tail(kmutex_t *list_lock,
struct list_head *new_one, struct list_head *head);
static int arcmsr_name_node(dev_info_t *dip, char *name, int len);
static int arcmsr_seek_cmd2abort(struct ACB *acb, struct scsi_pkt *abortpkt);
static int arcmsr_iop_message_xfer(struct ACB *acb, struct scsi_pkt *pkt);
static int arcmsr_post_ccb(struct ACB *acb, struct CCB *ccb);
static int arcmsr_parse_devname(char *devnm, int *tgt, int *lun);
static int arcmsr_do_ddi_attach(dev_info_t *dev_info, int instance);
static uint8_t arcmsr_iop_reset(struct ACB *acb);
static uint32_t arcmsr_disable_allintr(struct ACB *acb);
static uint32_t arcmsr_iop_confirm(struct ACB *acb);
static struct CCB *arcmsr_get_freeccb(struct ACB *acb);
static void arcmsr_flush_hba_cache(struct ACB *acb);
static void arcmsr_flush_hbb_cache(struct ACB *acb);
static void arcmsr_flush_hbc_cache(struct ACB *acb);
static void arcmsr_stop_hba_bgrb(struct ACB *acb);
static void arcmsr_stop_hbb_bgrb(struct ACB *acb);
static void arcmsr_stop_hbc_bgrb(struct ACB *acb);
static void arcmsr_start_hba_bgrb(struct ACB *acb);
static void arcmsr_start_hbb_bgrb(struct ACB *acb);
static void arcmsr_start_hbc_bgrb(struct ACB *acb);
static void arcmsr_mutex_destroy(struct ACB *acb);
static void arcmsr_polling_hba_ccbdone(struct ACB *acb, struct CCB *poll_ccb);
static void arcmsr_polling_hbb_ccbdone(struct ACB *acb, struct CCB *poll_ccb);
static void arcmsr_polling_hbc_ccbdone(struct ACB *acb, struct CCB *poll_ccb);
static void arcmsr_build_ccb(struct CCB *ccb);
static int arcmsr_tran_bus_config(dev_info_t *parent, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp);
static int arcmsr_name_node(dev_info_t *dip, char *name, int len);
static dev_info_t *arcmsr_find_child(struct ACB *acb, uint16_t tgt,
uint8_t lun);
static struct QBUFFER *arcmsr_get_iop_rqbuffer(struct ACB *acb);
static int arcmsr_add_intr(struct ACB *, int);
static void *arcmsr_soft_state = NULL;
static ddi_dma_attr_t arcmsr_dma_attr = {
DMA_ATTR_V0, /* ddi_dma_attr version */
0, /* low DMA address range */
0xffffffffffffffffull, /* high DMA address range */
0x00ffffff, /* DMA counter counter upper bound */
1, /* DMA address alignment requirements */
DEFAULT_BURSTSIZE | BURST32 | BURST64, /* burst sizes */
1, /* minimum effective DMA size */
ARCMSR_MAX_XFER_LEN, /* maximum DMA xfer size */
/*
* The dma_attr_seg field supplies the limit of each Scatter/Gather
* list element's "address+length". The Intel IOP331 can not use
* segments over the 4G boundary due to segment boundary restrictions
*/
0xffffffff,
ARCMSR_MAX_SG_ENTRIES, /* scatter/gather list count */
1, /* device granularity */
DDI_DMA_FORCE_PHYSICAL /* Bus specific DMA flags */
};
static ddi_dma_attr_t arcmsr_ccb_attr = {
DMA_ATTR_V0, /* ddi_dma_attr version */
0, /* low DMA address range */
0xffffffff, /* high DMA address range */
0x00ffffff, /* DMA counter counter upper bound */
1, /* default byte alignment */
DEFAULT_BURSTSIZE | BURST32 | BURST64, /* burst sizes */
1, /* minimum effective DMA size */
0xffffffff, /* maximum DMA xfer size */
0x00ffffff, /* max segment size, segment boundary restrictions */
1, /* scatter/gather list count */
1, /* device granularity */
DDI_DMA_FORCE_PHYSICAL /* Bus specific DMA flags */
};
static struct cb_ops arcmsr_cb_ops = {
scsi_hba_open, /* open(9E) */
scsi_hba_close, /* close(9E) */
nodev, /* strategy(9E), returns ENXIO */
nodev, /* print(9E) */
nodev, /* dump(9E) Cannot be used as a dump device */
nodev, /* read(9E) */
nodev, /* write(9E) */
arcmsr_cb_ioctl, /* ioctl(9E) */
nodev, /* devmap(9E) */
nodev, /* mmap(9E) */
nodev, /* segmap(9E) */
NULL, /* chpoll(9E) returns ENXIO */
nodev, /* prop_op(9E) */
NULL, /* streamtab(9S) */
D_MP,
CB_REV,
nodev, /* aread(9E) */
nodev /* awrite(9E) */
};
static struct dev_ops arcmsr_ops = {
DEVO_REV, /* devo_rev */
0, /* reference count */
nodev, /* getinfo */
nulldev, /* identify */
nulldev, /* probe */
arcmsr_attach, /* attach */
arcmsr_detach, /* detach */
arcmsr_reset, /* reset, shutdown, reboot notify */
&arcmsr_cb_ops, /* driver operations */
NULL, /* bus operations */
NULL /* power */
};
static struct modldrv arcmsr_modldrv = {
&mod_driverops, /* Type of module. This is a driver. */
"ARECA RAID Controller", /* module name, from arcmsr.h */
&arcmsr_ops, /* driver ops */
};
static struct modlinkage arcmsr_modlinkage = {
MODREV_1,
&arcmsr_modldrv,
NULL
};
int
_init(void)
{
int ret;
ret = ddi_soft_state_init(&arcmsr_soft_state, sizeof (struct ACB), 1);
if (ret != 0) {
return (ret);
}
if ((ret = scsi_hba_init(&arcmsr_modlinkage)) != 0) {
ddi_soft_state_fini(&arcmsr_soft_state);
return (ret);
}
if ((ret = mod_install(&arcmsr_modlinkage)) != 0) {
scsi_hba_fini(&arcmsr_modlinkage);
if (arcmsr_soft_state != NULL) {
ddi_soft_state_fini(&arcmsr_soft_state);
}
}
return (ret);
}
int
_fini(void)
{
int ret;
ret = mod_remove(&arcmsr_modlinkage);
if (ret == 0) {
/* if ret = 0 , said driver can remove */
scsi_hba_fini(&arcmsr_modlinkage);
if (arcmsr_soft_state != NULL) {
ddi_soft_state_fini(&arcmsr_soft_state);
}
}
return (ret);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&arcmsr_modlinkage, modinfop));
}
/*
* Function: arcmsr_attach(9E)
* Description: Set up all device state and allocate data structures,
* mutexes, condition variables, etc. for device operation.
* Set mt_attr property for driver to indicate MT-safety.
* Add interrupts needed.
* Input: dev_info_t *dev_info, ddi_attach_cmd_t cmd
* Output: Return DDI_SUCCESS if device is ready,
* else return DDI_FAILURE
*/
static int
arcmsr_attach(dev_info_t *dev_info, ddi_attach_cmd_t cmd)
{
scsi_hba_tran_t *hba_trans;
struct ACB *acb;
switch (cmd) {
case DDI_ATTACH:
return (arcmsr_do_ddi_attach(dev_info,
ddi_get_instance(dev_info)));
case DDI_RESUME:
/*
* There is no hardware state to restart and no
* timeouts to restart since we didn't DDI_SUSPEND with
* active cmds or active timeouts We just need to
* unblock waiting threads and restart I/O the code
*/
hba_trans = ddi_get_driver_private(dev_info);
if (hba_trans == NULL) {
return (DDI_FAILURE);
}
acb = hba_trans->tran_hba_private;
mutex_enter(&acb->acb_mutex);
arcmsr_iop_init(acb);
/* restart ccbs "timeout" watchdog */
acb->timeout_count = 0;
acb->timeout_id = timeout(arcmsr_ccbs_timeout, (caddr_t)acb,
(ARCMSR_TIMEOUT_WATCH * drv_usectohz(1000000)));
acb->timeout_sc_id = timeout(arcmsr_devMap_monitor,
(caddr_t)acb,
(ARCMSR_DEV_MAP_WATCH * drv_usectohz(1000000)));
mutex_exit(&acb->acb_mutex);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* Function: arcmsr_detach(9E)
* Description: Remove all device allocation and system resources, disable
* device interrupt.
* Input: dev_info_t *dev_info
* ddi_detach_cmd_t cmd
* Output: Return DDI_SUCCESS if done,
* else returnDDI_FAILURE
*/
static int
arcmsr_detach(dev_info_t *dev_info, ddi_detach_cmd_t cmd) {
int instance;
struct ACB *acb;
instance = ddi_get_instance(dev_info);
acb = ddi_get_soft_state(arcmsr_soft_state, instance);
if (acb == NULL)
return (DDI_FAILURE);
switch (cmd) {
case DDI_DETACH:
mutex_enter(&acb->acb_mutex);
if (acb->timeout_id != 0) {
mutex_exit(&acb->acb_mutex);
(void) untimeout(acb->timeout_id);
mutex_enter(&acb->acb_mutex);
acb->timeout_id = 0;
}
if (acb->timeout_sc_id != 0) {
mutex_exit(&acb->acb_mutex);
(void) untimeout(acb->timeout_sc_id);
mutex_enter(&acb->acb_mutex);
acb->timeout_sc_id = 0;
}
arcmsr_pcidev_disattach(acb);
/* Remove interrupt set up by ddi_add_intr */
arcmsr_remove_intr(acb);
/* unbind mapping object to handle */
(void) ddi_dma_unbind_handle(acb->ccbs_pool_handle);
/* Free ccb pool memory */
ddi_dma_mem_free(&acb->ccbs_acc_handle);
/* Free DMA handle */
ddi_dma_free_handle(&acb->ccbs_pool_handle);
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
if (scsi_hba_detach(dev_info) != DDI_SUCCESS)
arcmsr_warn(acb, "Unable to detach instance cleanly "
"(should not happen)");
/* free scsi_hba_transport from scsi_hba_tran_alloc */
scsi_hba_tran_free(acb->scsi_hba_transport);
ddi_taskq_destroy(acb->taskq);
ddi_prop_remove_all(dev_info);
mutex_exit(&acb->acb_mutex);
arcmsr_mutex_destroy(acb);
pci_config_teardown(&acb->pci_acc_handle);
ddi_set_driver_private(dev_info, NULL);
ddi_soft_state_free(arcmsr_soft_state, instance);
return (DDI_SUCCESS);
case DDI_SUSPEND:
mutex_enter(&acb->acb_mutex);
if (acb->timeout_id != 0) {
acb->acb_flags |= ACB_F_SCSISTOPADAPTER;
mutex_exit(&acb->acb_mutex);
(void) untimeout(acb->timeout_id);
(void) untimeout(acb->timeout_sc_id);
mutex_enter(&acb->acb_mutex);
acb->timeout_id = 0;
}
if (acb->timeout_sc_id != 0) {
acb->acb_flags |= ACB_F_SCSISTOPADAPTER;
mutex_exit(&acb->acb_mutex);
(void) untimeout(acb->timeout_sc_id);
mutex_enter(&acb->acb_mutex);
acb->timeout_sc_id = 0;
}
/* disable all outbound interrupt */
(void) arcmsr_disable_allintr(acb);
/* stop adapter background rebuild */
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_stop_hba_bgrb(acb);
arcmsr_flush_hba_cache(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_stop_hbb_bgrb(acb);
arcmsr_flush_hbb_cache(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_stop_hbc_bgrb(acb);
arcmsr_flush_hbc_cache(acb);
break;
}
mutex_exit(&acb->acb_mutex);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
static int
arcmsr_reset(dev_info_t *resetdev, ddi_reset_cmd_t cmd)
{
struct ACB *acb;
scsi_hba_tran_t *scsi_hba_transport;
_NOTE(ARGUNUSED(cmd));
scsi_hba_transport = ddi_get_driver_private(resetdev);
if (scsi_hba_transport == NULL)
return (DDI_FAILURE);
acb = (struct ACB *)scsi_hba_transport->tran_hba_private;
if (!acb)
return (DDI_FAILURE);
arcmsr_pcidev_disattach(acb);
return (DDI_SUCCESS);
}
static int
arcmsr_cb_ioctl(dev_t dev, int ioctl_cmd, intptr_t arg, int mode,
cred_t *credp, int *rvalp)
{
struct ACB *acb;
struct CMD_MESSAGE_FIELD *pktioctlfld;
int retvalue = 0;
int instance = MINOR2INST(getminor(dev));
if (instance < 0)
return (ENXIO);
if (secpolicy_sys_config(credp, B_FALSE) != 0)
return (EPERM);
acb = ddi_get_soft_state(arcmsr_soft_state, instance);
if (acb == NULL)
return (ENXIO);
pktioctlfld = kmem_zalloc(sizeof (struct CMD_MESSAGE_FIELD), KM_SLEEP);
mutex_enter(&acb->ioctl_mutex);
if (ddi_copyin((void *)arg, pktioctlfld,
sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) {
retvalue = ENXIO;
goto ioctl_out;
}
if (memcmp(pktioctlfld->cmdmessage.Signature, "ARCMSR", 6) != 0) {
/* validity check */
retvalue = ENXIO;
goto ioctl_out;
}
switch ((unsigned int)ioctl_cmd) {
case ARCMSR_MESSAGE_READ_RQBUFFER:
{
uint8_t *ver_addr;
uint8_t *pQbuffer, *ptmpQbuffer;
int32_t allxfer_len = 0;
ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP);
ptmpQbuffer = ver_addr;
while ((acb->rqbuf_firstidx != acb->rqbuf_lastidx) &&
(allxfer_len < (MSGDATABUFLEN - 1))) {
/* copy READ QBUFFER to srb */
pQbuffer = &acb->rqbuffer[acb->rqbuf_firstidx];
(void) memcpy(ptmpQbuffer, pQbuffer, 1);
acb->rqbuf_firstidx++;
/* if last index number set it to 0 */
acb->rqbuf_firstidx %= ARCMSR_MAX_QBUFFER;
ptmpQbuffer++;
allxfer_len++;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
struct QBUFFER *prbuffer;
uint8_t *pQbuffer;
uint8_t *iop_data;
int32_t iop_len;
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = (uint8_t *)prbuffer->data;
iop_len = (int32_t)prbuffer->data_len;
/*
* this iop data does no chance to make me overflow
* again here, so just do it
*/
while (iop_len > 0) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_lastidx];
(void) memcpy(pQbuffer, iop_data, 1);
acb->rqbuf_lastidx++;
/* if last index number set it to 0 */
acb->rqbuf_lastidx %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
/* let IOP know data has been read */
arcmsr_iop_message_read(acb);
}
(void) memcpy(pktioctlfld->messagedatabuffer,
ver_addr, allxfer_len);
pktioctlfld->cmdmessage.Length = allxfer_len;
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
if (ddi_copyout(pktioctlfld, (void *)arg,
sizeof (struct CMD_MESSAGE_FIELD), mode) != 0)
retvalue = ENXIO;
kmem_free(ver_addr, MSGDATABUFLEN);
break;
}
case ARCMSR_MESSAGE_WRITE_WQBUFFER:
{
uint8_t *ver_addr;
int32_t my_empty_len, user_len;
int32_t wqbuf_firstidx, wqbuf_lastidx;
uint8_t *pQbuffer, *ptmpuserbuffer;
ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP);
ptmpuserbuffer = ver_addr;
user_len = min(pktioctlfld->cmdmessage.Length,
MSGDATABUFLEN);
(void) memcpy(ptmpuserbuffer,
pktioctlfld->messagedatabuffer, user_len);
/*
* check ifdata xfer length of this request will overflow
* my array qbuffer
*/
wqbuf_lastidx = acb->wqbuf_lastidx;
wqbuf_firstidx = acb->wqbuf_firstidx;
if (wqbuf_lastidx != wqbuf_firstidx) {
arcmsr_post_ioctldata2iop(acb);
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_ERROR;
} else {
my_empty_len = (wqbuf_firstidx - wqbuf_lastidx - 1)
& (ARCMSR_MAX_QBUFFER - 1);
if (my_empty_len >= user_len) {
while (user_len > 0) {
/* copy srb data to wqbuffer */
pQbuffer =
&acb->wqbuffer[acb->wqbuf_lastidx];
(void) memcpy(pQbuffer,
ptmpuserbuffer, 1);
acb->wqbuf_lastidx++;
/* iflast index number set it to 0 */
acb->wqbuf_lastidx %=
ARCMSR_MAX_QBUFFER;
ptmpuserbuffer++;
user_len--;
}
/* post first Qbuffer */
if (acb->acb_flags &
ACB_F_MESSAGE_WQBUFFER_CLEARED) {
acb->acb_flags &=
~ACB_F_MESSAGE_WQBUFFER_CLEARED;
arcmsr_post_ioctldata2iop(acb);
}
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
} else {
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_ERROR;
}
}
if (ddi_copyout(pktioctlfld, (void *)arg,
sizeof (struct CMD_MESSAGE_FIELD), mode) != 0)
retvalue = ENXIO;
kmem_free(ver_addr, MSGDATABUFLEN);
break;
}
case ARCMSR_MESSAGE_CLEAR_RQBUFFER:
{
uint8_t *pQbuffer = acb->rqbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED;
acb->rqbuf_firstidx = 0;
acb->rqbuf_lastidx = 0;
bzero(pQbuffer, ARCMSR_MAX_QBUFFER);
/* report success */
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
if (ddi_copyout(pktioctlfld, (void *)arg,
sizeof (struct CMD_MESSAGE_FIELD), mode) != 0)
retvalue = ENXIO;
break;
}
case ARCMSR_MESSAGE_CLEAR_WQBUFFER:
{
uint8_t *pQbuffer = acb->wqbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READ);
acb->wqbuf_firstidx = 0;
acb->wqbuf_lastidx = 0;
bzero(pQbuffer, ARCMSR_MAX_QBUFFER);
/* report success */
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
if (ddi_copyout(pktioctlfld, (void *)arg,
sizeof (struct CMD_MESSAGE_FIELD), mode) != 0)
retvalue = ENXIO;
break;
}
case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER:
{
uint8_t *pQbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READ);
acb->rqbuf_firstidx = 0;
acb->rqbuf_lastidx = 0;
acb->wqbuf_firstidx = 0;
acb->wqbuf_lastidx = 0;
pQbuffer = acb->rqbuffer;
bzero(pQbuffer, sizeof (struct QBUFFER));
pQbuffer = acb->wqbuffer;
bzero(pQbuffer, sizeof (struct QBUFFER));
/* report success */
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
if (ddi_copyout(pktioctlfld, (void *)arg,
sizeof (struct CMD_MESSAGE_FIELD), mode) != 0)
retvalue = ENXIO;
break;
}
case ARCMSR_MESSAGE_REQUEST_RETURN_CODE_3F:
pktioctlfld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_3F;
if (ddi_copyout(pktioctlfld, (void *)arg,
sizeof (struct CMD_MESSAGE_FIELD), mode) != 0)
retvalue = ENXIO;
break;
/* Not supported: ARCMSR_MESSAGE_SAY_HELLO */
case ARCMSR_MESSAGE_SAY_GOODBYE:
arcmsr_iop_parking(acb);
break;
case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE:
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_flush_hba_cache(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_flush_hbb_cache(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_flush_hbc_cache(acb);
break;
}
break;
default:
mutex_exit(&acb->ioctl_mutex);
kmem_free(pktioctlfld, sizeof (struct CMD_MESSAGE_FIELD));
return (scsi_hba_ioctl(dev, ioctl_cmd, arg, mode, credp,
rvalp));
}
ioctl_out:
kmem_free(pktioctlfld, sizeof (struct CMD_MESSAGE_FIELD));
mutex_exit(&acb->ioctl_mutex);
return (retvalue);
}
/*
* Function: arcmsr_tran_tgt_init
* Description: Called when initializing a target device instance. If
* no per-target initialization is required, the HBA
* may leave tran_tgt_init to NULL
* Input:
* dev_info_t *host_dev_info,
* dev_info_t *target_dev_info,
* scsi_hba_tran_t *tran,
* struct scsi_device *sd
*
* Return: DDI_SUCCESS if success, else return DDI_FAILURE
*
* entry point enables the HBA to allocate and/or initialize any per-
* target resources.
* It also enables the HBA to qualify the device's address as valid and
* supportable for that particular HBA.
* By returning DDI_FAILURE, the instance of the target driver for that
* device will not be probed or attached.
* This entry point is not required, and if none is supplied,
* the framework will attempt to probe and attach all possible instances
* of the appropriate target drivers.
*/
static int
arcmsr_tran_tgt_init(dev_info_t *host_dev_info, dev_info_t *target_dev_info,
scsi_hba_tran_t *tran, struct scsi_device *sd)
{
uint16_t target;
uint8_t lun;
struct ACB *acb = tran->tran_hba_private;
_NOTE(ARGUNUSED(tran, target_dev_info, host_dev_info))
target = sd->sd_address.a_target;
lun = sd->sd_address.a_lun;
if ((target >= ARCMSR_MAX_TARGETID) || (lun >= ARCMSR_MAX_TARGETLUN)) {
return (DDI_FAILURE);
}
if (ndi_dev_is_persistent_node(target_dev_info) == 0) {
/*
* If no persistent node exist, we don't allow .conf node
* to be created.
*/
if (arcmsr_find_child(acb, target, lun) != NULL) {
if ((ndi_merge_node(target_dev_info,
arcmsr_name_node) != DDI_SUCCESS)) {
return (DDI_SUCCESS);
}
}
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* Function: arcmsr_tran_getcap(9E)
* Description: Get the capability named, and returnits value.
* Return Values: current value of capability, ifdefined
* -1 ifcapability is not defined
* ------------------------------------------------------
* Common Capability Strings Array
* ------------------------------------------------------
* #define SCSI_CAP_DMA_MAX 0
* #define SCSI_CAP_MSG_OUT 1
* #define SCSI_CAP_DISCONNECT 2
* #define SCSI_CAP_SYNCHRONOUS 3
* #define SCSI_CAP_WIDE_XFER 4
* #define SCSI_CAP_PARITY 5
* #define SCSI_CAP_INITIATOR_ID 6
* #define SCSI_CAP_UNTAGGED_QING 7
* #define SCSI_CAP_TAGGED_QING 8
* #define SCSI_CAP_ARQ 9
* #define SCSI_CAP_LINKED_CMDS 10 a
* #define SCSI_CAP_SECTOR_SIZE 11 b
* #define SCSI_CAP_TOTAL_SECTORS 12 c
* #define SCSI_CAP_GEOMETRY 13 d
* #define SCSI_CAP_RESET_NOTIFICATION 14 e
* #define SCSI_CAP_QFULL_RETRIES 15 f
* #define SCSI_CAP_QFULL_RETRY_INTERVAL 16 10
* #define SCSI_CAP_SCSI_VERSION 17 11
* #define SCSI_CAP_INTERCONNECT_TYPE 18 12
* #define SCSI_CAP_LUN_RESET 19 13
*/
static int
arcmsr_tran_getcap(struct scsi_address *ap, char *cap, int whom)
{
int capability = 0;
struct ACB *acb = (struct ACB *)ap->a_hba_tran->tran_hba_private;
if (cap == NULL || whom == 0) {
return (DDI_FAILURE);
}
mutex_enter(&acb->acb_mutex);
if (acb->devstate[ap->a_target][ap->a_lun] == ARECA_RAID_GONE) {
mutex_exit(&acb->acb_mutex);
return (-1);
}
switch (scsi_hba_lookup_capstr(cap)) {
case SCSI_CAP_MSG_OUT:
case SCSI_CAP_DISCONNECT:
case SCSI_CAP_WIDE_XFER:
case SCSI_CAP_TAGGED_QING:
case SCSI_CAP_UNTAGGED_QING:
case SCSI_CAP_PARITY:
case SCSI_CAP_ARQ:
capability = 1;
break;
case SCSI_CAP_SECTOR_SIZE:
capability = ARCMSR_DEV_SECTOR_SIZE;
break;
case SCSI_CAP_DMA_MAX:
/* Limit to 16MB max transfer */
capability = ARCMSR_MAX_XFER_LEN;
break;
case SCSI_CAP_INITIATOR_ID:
capability = ARCMSR_SCSI_INITIATOR_ID;
break;
case SCSI_CAP_GEOMETRY:
/* head , track , cylinder */
capability = (255 << 16) | 63;
break;
default:
capability = -1;
break;
}
mutex_exit(&acb->acb_mutex);
return (capability);
}
/*
* Function: arcmsr_tran_setcap(9E)
* Description: Set the specific capability.
* Return Values: 1 - capability exists and can be set to new value
* 0 - capability could not be set to new value
* -1 - no such capability
*/
static int
arcmsr_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom)
{
_NOTE(ARGUNUSED(value))
int supported = 0;
struct ACB *acb = (struct ACB *)ap->a_hba_tran->tran_hba_private;
if (cap == NULL || whom == 0) {
return (-1);
}
mutex_enter(&acb->acb_mutex);
if (acb->devstate[ap->a_target][ap->a_lun] == ARECA_RAID_GONE) {
mutex_exit(&acb->acb_mutex);
return (-1);
}
switch (supported = scsi_hba_lookup_capstr(cap)) {
case SCSI_CAP_ARQ: /* 9 auto request sense */
case SCSI_CAP_UNTAGGED_QING: /* 7 */
case SCSI_CAP_TAGGED_QING: /* 8 */
/* these are always on, and cannot be turned off */
supported = (value == 1) ? 1 : 0;
break;
case SCSI_CAP_TOTAL_SECTORS: /* c */
supported = 1;
break;
case SCSI_CAP_DISCONNECT: /* 2 */
case SCSI_CAP_WIDE_XFER: /* 4 */
case SCSI_CAP_INITIATOR_ID: /* 6 */
case SCSI_CAP_DMA_MAX: /* 0 */
case SCSI_CAP_MSG_OUT: /* 1 */
case SCSI_CAP_PARITY: /* 5 */
case SCSI_CAP_LINKED_CMDS: /* a */
case SCSI_CAP_RESET_NOTIFICATION: /* e */
case SCSI_CAP_SECTOR_SIZE: /* b */
/* these are not settable */
supported = 0;
break;
default:
supported = -1;
break;
}
mutex_exit(&acb->acb_mutex);
return (supported);
}
/*
* Function: arcmsr_tran_init_pkt
* Return Values: pointer to scsi_pkt, or NULL
* Description: simultaneously allocate both a scsi_pkt(9S) structure and
* DMA resources for that pkt.
* Called by kernel on behalf of a target driver
* calling scsi_init_pkt(9F).
* Refer to tran_init_pkt(9E) man page
* Context: Can be called from different kernel process threads.
* Can be called by interrupt thread.
* Allocates SCSI packet and DMA resources
*/
static struct
scsi_pkt *arcmsr_tran_init_pkt(struct scsi_address *ap,
register struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen,
int tgtlen, int flags, int (*callback)(), caddr_t arg)
{
struct CCB *ccb;
struct ARCMSR_CDB *arcmsr_cdb;
struct ACB *acb;
int old_pkt_flag;
acb = (struct ACB *)ap->a_hba_tran->tran_hba_private;
if (acb->acb_flags & ACB_F_BUS_RESET) {
return (NULL);
}
if (pkt == NULL) {
/* get free CCB */
(void) ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
ccb = arcmsr_get_freeccb(acb);
if (ccb == (struct CCB *)NULL) {
return (NULL);
}
if (statuslen < sizeof (struct scsi_arq_status)) {
statuslen = sizeof (struct scsi_arq_status);
}
pkt = scsi_hba_pkt_alloc(acb->dev_info, ap, cmdlen,
statuslen, tgtlen, sizeof (void *), callback, arg);
if (pkt == NULL) {
arcmsr_warn(acb, "scsi pkt allocation failed");
arcmsr_free_ccb(ccb);
return (NULL);
}
/* Initialize CCB */
ccb->pkt = pkt;
ccb->pkt_dma_handle = NULL;
/* record how many sg are needed to xfer on this pkt */
ccb->pkt_ncookies = 0;
/* record how many sg we got from this window */
ccb->pkt_cookie = 0;
/* record how many windows have partial dma map set */
ccb->pkt_nwin = 0;
/* record current sg window position */
ccb->pkt_curwin = 0;
ccb->pkt_dma_len = 0;
ccb->pkt_dma_offset = 0;
ccb->resid_dmacookie.dmac_size = 0;
/*
* we will still use this point for we want to fake some
* information in tran_start
*/
ccb->bp = bp;
/* Initialize arcmsr_cdb */
arcmsr_cdb = &ccb->arcmsr_cdb;
bzero(arcmsr_cdb, sizeof (struct ARCMSR_CDB));
arcmsr_cdb->Bus = 0;
arcmsr_cdb->Function = 1;
arcmsr_cdb->LUN = ap->a_lun;
arcmsr_cdb->TargetID = ap->a_target;
arcmsr_cdb->CdbLength = (uint8_t)cmdlen;
arcmsr_cdb->Context = (uintptr_t)arcmsr_cdb;
/* Fill in the rest of the structure */
pkt->pkt_ha_private = ccb;
pkt->pkt_address = *ap;
pkt->pkt_comp = NULL;
pkt->pkt_flags = 0;
pkt->pkt_time = 0;
pkt->pkt_resid = 0;
pkt->pkt_statistics = 0;
pkt->pkt_reason = 0;
old_pkt_flag = 0;
} else {
ccb = pkt->pkt_ha_private;
if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) {
if (!(ccb->ccb_state & ARCMSR_CCB_BACK)) {
return (NULL);
}
}
/*
* you cannot update CdbLength with cmdlen here, it would
* cause a data compare error
*/
ccb->ccb_state = ARCMSR_CCB_UNBUILD;
old_pkt_flag = 1;
}
/* Second step : dma allocation/move */
if (bp && bp->b_bcount != 0) {
/*
* system had a lot of data trunk need to xfer, from...20 byte
* to 819200 byte.
* arcmsr_dma_alloc will get pkt_dma_handle (not null) until
* this lot of data trunk xfer done this mission will be done
* by some of continue READ or WRITE scsi command, till this
* lot of data trunk xfer completed.
* arcmsr_dma_move do the action repeatedly, and use the same
* ccb till this lot of data trunk xfer complete notice.
* when after the arcmsr_tran_init_pkt returns the solaris
* kernel is by your pkt_resid and its b_bcount to give you
* which type of scsi command descriptor to implement the
* length of folowing arcmsr_tran_start scsi cdb (data length)
*
* Each transfer should be aligned on a 512 byte boundary
*/
if (ccb->pkt_dma_handle == NULL) {
if (arcmsr_dma_alloc(acb, pkt, bp, flags, callback) ==
DDI_FAILURE) {
/*
* the HBA driver is unable to allocate DMA
* resources, it must free the allocated
* scsi_pkt(9S) before returning
*/
arcmsr_warn(acb, "dma allocation failure");
if (old_pkt_flag == 0) {
arcmsr_warn(acb, "dma "
"allocation failed to free "
"scsi hba pkt");
arcmsr_free_ccb(ccb);
scsi_hba_pkt_free(ap, pkt);
}
return (NULL);
}
} else {
/* DMA resources to next DMA window, for old pkt */
if (arcmsr_dma_move(acb, pkt, bp) == DDI_FAILURE) {
arcmsr_warn(acb, "dma move failed");
return (NULL);
}
}
} else {
pkt->pkt_resid = 0;
}
return (pkt);
}
/*
* Function: arcmsr_tran_start(9E)
* Description: Transport the command in pktp to the target device.
* The command is not finished when this returns, only
* sent to the target; arcmsr_intr_handler will call
* scsi_hba_pkt_comp(pktp) when the target device has done.
*
* Input: struct scsi_address *ap, struct scsi_pkt *pktp
* Output: TRAN_ACCEPT if pkt is OK and not driver not busy
* TRAN_BUSY if driver is
* TRAN_BADPKT if pkt is invalid
*/
static int
arcmsr_tran_start(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct ACB *acb;
struct CCB *ccb;
int target = ap->a_target;
int lun = ap->a_lun;
acb = (struct ACB *)ap->a_hba_tran->tran_hba_private;
ccb = pkt->pkt_ha_private;
*pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */
if ((ccb->ccb_flags & CCB_FLAG_DMAVALID) &&
(ccb->ccb_flags & DDI_DMA_CONSISTENT))
(void) ddi_dma_sync(ccb->pkt_dma_handle, 0, 0,
DDI_DMA_SYNC_FORDEV);
if (ccb->ccb_state == ARCMSR_CCB_UNBUILD)
arcmsr_build_ccb(ccb);
if (acb->acb_flags & ACB_F_BUS_RESET) {
pkt->pkt_reason = CMD_RESET;
pkt->pkt_statistics |= STAT_BUS_RESET;
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET |
STATE_SENT_CMD | STATE_GOT_STATUS);
if ((ccb->ccb_flags & CCB_FLAG_DMACONSISTENT) &&
(pkt->pkt_state & STATE_XFERRED_DATA))
(void) ddi_dma_sync(ccb->pkt_dma_handle,
0, 0, DDI_DMA_SYNC_FORCPU);
scsi_hba_pkt_comp(pkt);
return (TRAN_ACCEPT);
}
/* IMPORTANT: Target 16 is a virtual device for iop message transfer */
if (target == 16) {
struct buf *bp = ccb->bp;
uint8_t scsicmd = pkt->pkt_cdbp[0];
switch (scsicmd) {
case SCMD_INQUIRY: {
if (lun != 0) {
ccb->pkt->pkt_reason = CMD_TIMEOUT;
ccb->pkt->pkt_statistics |= STAT_TIMEOUT;
arcmsr_ccb_complete(ccb, 0);
return (TRAN_ACCEPT);
}
if (bp && bp->b_un.b_addr && bp->b_bcount) {
uint8_t inqdata[36];
/* The EVDP and pagecode is not supported */
if (pkt->pkt_cdbp[1] || pkt->pkt_cdbp[2]) {
inqdata[1] = 0xFF;
inqdata[2] = 0x00;
} else {
/* Periph Qualifier & Periph Dev Type */
inqdata[0] = DTYPE_PROCESSOR;
/* rem media bit & Dev Type Modifier */
inqdata[1] = 0;
/* ISO, ECMA, & ANSI versions */
inqdata[2] = 0;
inqdata[3] = 0;
/* length of additional data */
inqdata[4] = 31;
/* Vendor Identification */
bcopy("Areca ", &inqdata[8], VIDLEN);
/* Product Identification */
bcopy("RAID controller ", &inqdata[16],
PIDLEN);
/* Product Revision */
bcopy(&inqdata[32], "R001", REVLEN);
if (bp->b_flags & (B_PHYS | B_PAGEIO))
bp_mapin(bp);
(void) memcpy(bp->b_un.b_addr,
inqdata, sizeof (inqdata));
}
ccb->pkt->pkt_state |= STATE_XFERRED_DATA;
}
arcmsr_ccb_complete(ccb, 0);
return (TRAN_ACCEPT);
}
case SCMD_WRITE_BUFFER:
case SCMD_READ_BUFFER: {
if (arcmsr_iop_message_xfer(acb, pkt)) {
/* error just for retry */
ccb->pkt->pkt_reason = CMD_TRAN_ERR;
ccb->pkt->pkt_statistics |= STAT_TERMINATED;
}
ccb->pkt->pkt_state |= STATE_XFERRED_DATA;
arcmsr_ccb_complete(ccb, 0);
return (TRAN_ACCEPT);
}
default:
ccb->pkt->pkt_state |= STATE_XFERRED_DATA;
arcmsr_ccb_complete(ccb, 0);
return (TRAN_ACCEPT);
}
}
if (acb->devstate[target][lun] == ARECA_RAID_GONE) {
uint8_t block_cmd;
block_cmd = pkt->pkt_cdbp[0] & 0x0f;
if (block_cmd == 0x08 || block_cmd == 0x0a) {
pkt->pkt_reason = CMD_TIMEOUT;
pkt->pkt_statistics |= STAT_TIMEOUT;
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET |
STATE_SENT_CMD | STATE_GOT_STATUS);
if ((ccb->ccb_flags & CCB_FLAG_DMACONSISTENT) &&
(pkt->pkt_state & STATE_XFERRED_DATA)) {
(void) ddi_dma_sync(ccb->pkt_dma_handle,
ccb->pkt_dma_offset,
ccb->pkt_dma_len, DDI_DMA_SYNC_FORCPU);
}
scsi_hba_pkt_comp(pkt);
return (TRAN_ACCEPT);
}
}
mutex_enter(&acb->postq_mutex);
if (acb->ccboutstandingcount >= ARCMSR_MAX_OUTSTANDING_CMD) {
ccb->ccb_state = ARCMSR_CCB_RETRY;
mutex_exit(&acb->postq_mutex);
return (TRAN_BUSY);
} else if (arcmsr_post_ccb(acb, ccb) == DDI_FAILURE) {
arcmsr_warn(acb, "post ccb failure, ccboutstandingcount = %d",
acb->ccboutstandingcount);
mutex_exit(&acb->postq_mutex);
return (TRAN_FATAL_ERROR);
}
mutex_exit(&acb->postq_mutex);
return (TRAN_ACCEPT);
}
/*
* Function name: arcmsr_tran_destroy_pkt
* Return Values: none
* Description: Called by kernel on behalf of a target driver
* calling scsi_destroy_pkt(9F).
* Refer to tran_destroy_pkt(9E) man page
* Context: Can be called from different kernel process threads.
* Can be called by interrupt thread.
*/
static void
arcmsr_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct CCB *ccb = pkt->pkt_ha_private;
ddi_dma_handle_t pkt_dma_handle = ccb->pkt_dma_handle;
if (ccb == NULL) {
return;
}
if (ccb->pkt != pkt) {
return;
}
if (ccb->ccb_flags & CCB_FLAG_DMAVALID) {
ccb->ccb_flags &= ~CCB_FLAG_DMAVALID;
if (pkt_dma_handle) {
(void) ddi_dma_unbind_handle(ccb->pkt_dma_handle);
}
}
if (pkt_dma_handle) {
(void) ddi_dma_free_handle(&pkt_dma_handle);
}
pkt->pkt_ha_private = NULL;
if (ccb) {
if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) {
if (ccb->ccb_state & ARCMSR_CCB_BACK) {
arcmsr_free_ccb(ccb);
} else {
ccb->ccb_state |= ARCMSR_CCB_WAIT4_FREE;
}
} else {
arcmsr_free_ccb(ccb);
}
}
scsi_hba_pkt_free(ap, pkt);
}
/*
* Function name: arcmsr_tran_dmafree()
* Return Values: none
* Description: free dvma resources
* Context: Can be called from different kernel process threads.
* Can be called by interrupt thread.
*/
static void
arcmsr_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct CCB *ccb = pkt->pkt_ha_private;
if ((ccb == NULL) || (ccb->pkt != pkt)) {
return;
}
if (ccb->ccb_flags & CCB_FLAG_DMAVALID) {
ccb->ccb_flags &= ~CCB_FLAG_DMAVALID;
if (ddi_dma_unbind_handle(ccb->pkt_dma_handle) != DDI_SUCCESS) {
arcmsr_warn(ccb->acb, "ddi_dma_unbind_handle() failed "
"(target %d lun %d)", ap->a_target, ap->a_lun);
}
ddi_dma_free_handle(&ccb->pkt_dma_handle);
ccb->pkt_dma_handle = NULL;
}
}
/*
* Function name: arcmsr_tran_sync_pkt()
* Return Values: none
* Description: sync dma
* Context: Can be called from different kernel process threads.
* Can be called by interrupt thread.
*/
static void
arcmsr_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
{
struct CCB *ccb;
ccb = pkt->pkt_ha_private;
if ((ccb == NULL) || (ccb->pkt != pkt)) {
return;
}
if (ccb->ccb_flags & CCB_FLAG_DMAVALID) {
if (ddi_dma_sync(ccb->pkt_dma_handle, 0, 0,
(ccb->ccb_flags & CCB_FLAG_DMAWRITE) ?
DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU) !=
DDI_SUCCESS) {
arcmsr_warn(ccb->acb,
"sync pkt failed for target %d lun %d",
ap->a_target, ap->a_lun);
}
}
}
/*
* Function: arcmsr_tran_abort(9E)
* SCSA interface routine to abort pkt(s) in progress.
* Aborts the pkt specified. If NULL pkt, aborts ALL pkts.
* Output: Return 1 if success
* Return 0 if failure
*/
static int
arcmsr_tran_abort(struct scsi_address *ap, struct scsi_pkt *abortpkt)
{
struct ACB *acb;
int return_code;
acb = ap->a_hba_tran->tran_hba_private;
while (acb->ccboutstandingcount != 0) {
drv_usecwait(10000);
}
mutex_enter(&acb->isr_mutex);
return_code = arcmsr_seek_cmd2abort(acb, abortpkt);
mutex_exit(&acb->isr_mutex);
if (return_code != DDI_SUCCESS) {
arcmsr_warn(acb, "abort command failed for target %d lun %d",
ap->a_target, ap->a_lun);
return (0);
}
return (1);
}
/*
* Function: arcmsr_tran_reset(9E)
* SCSA interface routine to perform scsi resets on either
* a specified target or the bus (default).
* Output: Return 1 if success
* Return 0 if failure
*/
static int
arcmsr_tran_reset(struct scsi_address *ap, int level) {
struct ACB *acb;
int return_code = 1;
int target = ap->a_target;
int lun = ap->a_lun;
/* Are we in the middle of dumping core? */
if (ddi_in_panic())
return (return_code);
acb = (struct ACB *)ap->a_hba_tran->tran_hba_private;
mutex_enter(&acb->isr_mutex);
switch (level) {
case RESET_ALL: /* 0 */
acb->num_resets++;
acb->acb_flags |= ACB_F_BUS_RESET;
if (acb->timeout_count) {
if (arcmsr_iop_reset(acb) != 0) {
arcmsr_handle_iop_bus_hold(acb);
acb->acb_flags &= ~ACB_F_BUS_HANG_ON;
}
}
acb->acb_flags &= ~ACB_F_BUS_RESET;
break;
case RESET_TARGET: /* 1 */
if (acb->devstate[target][lun] == ARECA_RAID_GONE)
return_code = 0;
break;
case RESET_BUS: /* 2 */
return_code = 0;
break;
case RESET_LUN: /* 3 */
return_code = 0;
break;
default:
return_code = 0;
}
mutex_exit(&acb->isr_mutex);
return (return_code);
}
static int
arcmsr_tran_bus_config(dev_info_t *parent, uint_t flags,
ddi_bus_config_op_t op, void *arg, dev_info_t **childp)
{
struct ACB *acb;
int circ = 0;
int rval;
int tgt, lun;
if ((acb = ddi_get_soft_state(arcmsr_soft_state,
ddi_get_instance(parent))) == NULL)
return (NDI_FAILURE);
ndi_devi_enter(parent, &circ);
switch (op) {
case BUS_CONFIG_ONE:
if (arcmsr_parse_devname(arg, &tgt, &lun) != 0) {
rval = NDI_FAILURE;
break;
}
if (acb->device_map[tgt] & 1 << lun) {
acb->devstate[tgt][lun] = ARECA_RAID_GOOD;
rval = arcmsr_config_lun(acb, tgt, lun, childp);
}
break;
case BUS_CONFIG_DRIVER:
case BUS_CONFIG_ALL:
for (tgt = 0; tgt < ARCMSR_MAX_TARGETID; tgt++)
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++)
if (acb->device_map[tgt] & 1 << lun) {
acb->devstate[tgt][lun] =
ARECA_RAID_GOOD;
(void) arcmsr_config_lun(acb, tgt,
lun, NULL);
}
rval = NDI_SUCCESS;
break;
}
if (rval == NDI_SUCCESS)
rval = ndi_busop_bus_config(parent, flags, op, arg, childp, 0);
ndi_devi_exit(parent, circ);
return (rval);
}
/*
* Function name: arcmsr_dma_alloc
* Return Values: 0 if successful, -1 if failure
* Description: allocate DMA resources
* Context: Can only be called from arcmsr_tran_init_pkt()
* register struct scsi_address *ap = &((pkt)->pkt_address);
*/
static int
arcmsr_dma_alloc(struct ACB *acb, struct scsi_pkt *pkt,
struct buf *bp, int flags, int (*callback)())
{
struct CCB *ccb = pkt->pkt_ha_private;
int alloc_result, map_method, dma_flags;
int resid = 0;
int total_ccb_xferlen = 0;
int (*cb)(caddr_t);
uint8_t i;
/*
* at this point the PKT SCSI CDB is empty, and dma xfer length
* is bp->b_bcount
*/
if (bp->b_flags & B_READ) {
ccb->ccb_flags &= ~CCB_FLAG_DMAWRITE;
dma_flags = DDI_DMA_READ;
} else {
ccb->ccb_flags |= CCB_FLAG_DMAWRITE;
dma_flags = DDI_DMA_WRITE;
}
if (flags & PKT_CONSISTENT) {
ccb->ccb_flags |= CCB_FLAG_DMACONSISTENT;
dma_flags |= DDI_DMA_CONSISTENT;
}
if (flags & PKT_DMA_PARTIAL) {
dma_flags |= DDI_DMA_PARTIAL;
}
dma_flags |= DDI_DMA_REDZONE;
cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
alloc_result = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_dma_attr,
cb, 0, &ccb->pkt_dma_handle);
if (alloc_result != DDI_SUCCESS) {
arcmsr_warn(acb, "dma allocate failed (%x)", alloc_result);
return (DDI_FAILURE);
}
map_method = ddi_dma_buf_bind_handle(ccb->pkt_dma_handle,
bp, dma_flags, cb, 0,
&ccb->pkt_dmacookies[0], /* SG List pointer */
&ccb->pkt_ncookies); /* number of sgl cookies */
switch (map_method) {
case DDI_DMA_PARTIAL_MAP:
/*
* When your main memory size larger then 4G
* DDI_DMA_PARTIAL_MAP will be touched.
*
* We've already set DDI_DMA_PARTIAL in dma_flags,
* so if it's now missing, there's something screwy
* happening. We plow on....
*/
if ((dma_flags & DDI_DMA_PARTIAL) == 0) {
arcmsr_warn(acb,
"dma partial mapping lost ...impossible case!");
}
if (ddi_dma_numwin(ccb->pkt_dma_handle, &ccb->pkt_nwin) ==
DDI_FAILURE) {
arcmsr_warn(acb, "ddi_dma_numwin() failed");
}
if (ddi_dma_getwin(ccb->pkt_dma_handle, ccb->pkt_curwin,
&ccb->pkt_dma_offset, &ccb->pkt_dma_len,
&ccb->pkt_dmacookies[0], &ccb->pkt_ncookies) ==
DDI_FAILURE) {
arcmsr_warn(acb, "ddi_dma_getwin failed");
}
i = 0;
/* first cookie is accessed from ccb->pkt_dmacookies[0] */
total_ccb_xferlen = ccb->pkt_dmacookies[0].dmac_size;
for (;;) {
i++;
if ((i == ARCMSR_MAX_SG_ENTRIES) ||
(i == ccb->pkt_ncookies) ||
(total_ccb_xferlen == ARCMSR_MAX_XFER_LEN)) {
break;
}
/*
* next cookie will be retrieved from
* ccb->pkt_dmacookies[i]
*/
ddi_dma_nextcookie(ccb->pkt_dma_handle,
&ccb->pkt_dmacookies[i]);
total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size;
}
ccb->pkt_cookie = i;
ccb->arcmsr_cdb.sgcount = i;
if (total_ccb_xferlen > 512) {
resid = total_ccb_xferlen % 512;
if (resid != 0) {
i--;
total_ccb_xferlen -= resid;
/* modify last sg length */
ccb->pkt_dmacookies[i].dmac_size =
ccb->pkt_dmacookies[i].dmac_size - resid;
ccb->resid_dmacookie.dmac_size = resid;
ccb->resid_dmacookie.dmac_laddress =
ccb->pkt_dmacookies[i].dmac_laddress +
ccb->pkt_dmacookies[i].dmac_size;
}
}
ccb->total_dmac_size = total_ccb_xferlen;
ccb->ccb_flags |= CCB_FLAG_DMAVALID;
pkt->pkt_resid = bp->b_bcount - ccb->total_dmac_size;
return (DDI_SUCCESS);
case DDI_DMA_MAPPED:
ccb->pkt_nwin = 1; /* all mapped, so only one window */
ccb->pkt_dma_len = 0;
ccb->pkt_dma_offset = 0;
i = 0;
/* first cookie is accessed from ccb->pkt_dmacookies[0] */
total_ccb_xferlen = ccb->pkt_dmacookies[0].dmac_size;
for (;;) {
i++;
if ((i == ARCMSR_MAX_SG_ENTRIES) ||
(i == ccb->pkt_ncookies) ||
(total_ccb_xferlen == ARCMSR_MAX_XFER_LEN)) {
break;
}
/*
* next cookie will be retrieved from
* ccb->pkt_dmacookies[i]
*/
ddi_dma_nextcookie(ccb->pkt_dma_handle,
&ccb->pkt_dmacookies[i]);
total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size;
}
ccb->pkt_cookie = i;
ccb->arcmsr_cdb.sgcount = i;
if (total_ccb_xferlen > 512) {
resid = total_ccb_xferlen % 512;
if (resid != 0) {
i--;
total_ccb_xferlen -= resid;
/* modify last sg length */
ccb->pkt_dmacookies[i].dmac_size =
ccb->pkt_dmacookies[i].dmac_size - resid;
ccb->resid_dmacookie.dmac_size = resid;
ccb->resid_dmacookie.dmac_laddress =
ccb->pkt_dmacookies[i].dmac_laddress +
ccb->pkt_dmacookies[i].dmac_size;
}
}
ccb->total_dmac_size = total_ccb_xferlen;
ccb->ccb_flags |= CCB_FLAG_DMAVALID;
pkt->pkt_resid = bp->b_bcount - ccb->total_dmac_size;
return (DDI_SUCCESS);
case DDI_DMA_NORESOURCES:
arcmsr_warn(acb, "dma map got 'no resources'");
bioerror(bp, ENOMEM);
break;
case DDI_DMA_NOMAPPING:
arcmsr_warn(acb, "dma map got 'no mapping'");
bioerror(bp, EFAULT);
break;
case DDI_DMA_TOOBIG:
arcmsr_warn(acb, "dma map got 'too big'");
bioerror(bp, EINVAL);
break;
case DDI_DMA_INUSE:
arcmsr_warn(acb, "dma map got 'in use' "
"(should not happen)");
break;
default:
arcmsr_warn(acb, "dma map failed (0x%x)", i);
break;
}
ddi_dma_free_handle(&ccb->pkt_dma_handle);
ccb->pkt_dma_handle = NULL;
ccb->ccb_flags &= ~CCB_FLAG_DMAVALID;
return (DDI_FAILURE);
}
/*
* Function name: arcmsr_dma_move
* Return Values: 0 if successful, -1 if failure
* Description: move DMA resources to next DMA window
* Context: Can only be called from arcmsr_tran_init_pkt()
*/
static int
arcmsr_dma_move(struct ACB *acb, struct scsi_pkt *pkt, struct buf *bp)
{
struct CCB *ccb = pkt->pkt_ha_private;
uint8_t i = 0;
int resid = 0;
int total_ccb_xferlen = 0;
if (ccb->resid_dmacookie.dmac_size != 0) {
total_ccb_xferlen += ccb->resid_dmacookie.dmac_size;
ccb->pkt_dmacookies[i].dmac_size =
ccb->resid_dmacookie.dmac_size;
ccb->pkt_dmacookies[i].dmac_laddress =
ccb->resid_dmacookie.dmac_laddress;
i++;
ccb->resid_dmacookie.dmac_size = 0;
}
/*
* If there are no more cookies remaining in this window,
* move to the next window.
*/
if (ccb->pkt_cookie == ccb->pkt_ncookies) {
/*
* only dma map "partial" arrive here
*/
if ((ccb->pkt_curwin == ccb->pkt_nwin) &&
(ccb->pkt_nwin == 1)) {
return (DDI_SUCCESS);
}
/* At last window, cannot move */
if (++ccb->pkt_curwin >= ccb->pkt_nwin) {
arcmsr_warn(acb, "dma partial set, numwin exceeded");
return (DDI_FAILURE);
}
if (ddi_dma_getwin(ccb->pkt_dma_handle, ccb->pkt_curwin,
&ccb->pkt_dma_offset, &ccb->pkt_dma_len,
&ccb->pkt_dmacookies[i], &ccb->pkt_ncookies) ==
DDI_FAILURE) {
arcmsr_warn(acb, "ddi_dma_getwin failed");
return (DDI_FAILURE);
}
/* reset cookie pointer */
ccb->pkt_cookie = 0;
} else {
/*
* only dma map "all" arrive here
* We still have more cookies in this window,
* get the next one
* access the pkt_dma_handle remain cookie record at
* ccb->pkt_dmacookies array
*/
ddi_dma_nextcookie(ccb->pkt_dma_handle,
&ccb->pkt_dmacookies[i]);
}
/* Get remaining cookies in this window, up to our maximum */
total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size;
/* retrieve and store cookies, start at ccb->pkt_dmacookies[0] */
for (;;) {
i++;
/* handled cookies count level indicator */
ccb->pkt_cookie++;
if ((i == ARCMSR_MAX_SG_ENTRIES) ||
(ccb->pkt_cookie == ccb->pkt_ncookies) ||
(total_ccb_xferlen == ARCMSR_MAX_XFER_LEN)) {
break;
}
ddi_dma_nextcookie(ccb->pkt_dma_handle,
&ccb->pkt_dmacookies[i]);
total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size;
}
ccb->arcmsr_cdb.sgcount = i;
if (total_ccb_xferlen > 512) {
resid = total_ccb_xferlen % 512;
if (resid != 0) {
i--;
total_ccb_xferlen -= resid;
/* modify last sg length */
ccb->pkt_dmacookies[i].dmac_size =
ccb->pkt_dmacookies[i].dmac_size - resid;
ccb->resid_dmacookie.dmac_size = resid;
ccb->resid_dmacookie.dmac_laddress =
ccb->pkt_dmacookies[i].dmac_laddress +
ccb->pkt_dmacookies[i].dmac_size;
}
}
ccb->total_dmac_size += total_ccb_xferlen;
pkt->pkt_resid = bp->b_bcount - ccb->total_dmac_size;
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static void
arcmsr_build_ccb(struct CCB *ccb)
{
struct scsi_pkt *pkt = ccb->pkt;
struct ARCMSR_CDB *arcmsr_cdb;
char *psge;
uint32_t address_lo, address_hi;
int arccdbsize = 0x30;
uint8_t sgcount;
arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb;
psge = (char *)&arcmsr_cdb->sgu;
bcopy((caddr_t)pkt->pkt_cdbp, arcmsr_cdb->Cdb, arcmsr_cdb->CdbLength);
sgcount = ccb->arcmsr_cdb.sgcount;
if (sgcount != 0) {
int length, i;
int cdb_sgcount = 0;
int total_xfer_length = 0;
/* map stor port SG list to our iop SG List. */
for (i = 0; i < sgcount; i++) {
/* Get physaddr of the current data pointer */
length = ccb->pkt_dmacookies[i].dmac_size;
total_xfer_length += length;
address_lo =
dma_addr_lo32(ccb->pkt_dmacookies[i].dmac_laddress);
address_hi =
dma_addr_hi32(ccb->pkt_dmacookies[i].dmac_laddress);
if (address_hi == 0) {
struct SG32ENTRY *dma_sg;
dma_sg = (struct SG32ENTRY *)(intptr_t)psge;
dma_sg->address = address_lo;
dma_sg->length = length;
psge += sizeof (struct SG32ENTRY);
arccdbsize += sizeof (struct SG32ENTRY);
} else {
struct SG64ENTRY *dma_sg;
dma_sg = (struct SG64ENTRY *)(intptr_t)psge;
dma_sg->addresshigh = address_hi;
dma_sg->address = address_lo;
dma_sg->length = length | IS_SG64_ADDR;
psge += sizeof (struct SG64ENTRY);
arccdbsize += sizeof (struct SG64ENTRY);
}
cdb_sgcount++;
}
arcmsr_cdb->sgcount = (uint8_t)cdb_sgcount;
arcmsr_cdb->DataLength = total_xfer_length;
if (arccdbsize > 256) {
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE;
}
} else {
arcmsr_cdb->DataLength = 0;
}
if (ccb->ccb_flags & CCB_FLAG_DMAWRITE)
arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE;
ccb->arc_cdb_size = arccdbsize;
}
/*
* arcmsr_post_ccb - Send a protocol specific ARC send postcard to a AIOC.
*
* handle: Handle of registered ARC protocol driver
* adapter_id: AIOC unique identifier(integer)
* pPOSTCARD_SEND: Pointer to ARC send postcard
*
* This routine posts a ARC send postcard to the request post FIFO of a
* specific ARC adapter.
*/
static int
arcmsr_post_ccb(struct ACB *acb, struct CCB *ccb)
{
uint32_t cdb_phyaddr_pattern = ccb->cdb_phyaddr_pattern;
struct scsi_pkt *pkt = ccb->pkt;
struct ARCMSR_CDB *arcmsr_cdb;
uint_t pkt_flags = pkt->pkt_flags;
arcmsr_cdb = &ccb->arcmsr_cdb;
/* TODO: Use correct offset and size for syncing? */
if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, DDI_DMA_SYNC_FORDEV) ==
DDI_FAILURE)
return (DDI_FAILURE);
atomic_inc_32(&acb->ccboutstandingcount);
ccb->ccb_time = (time_t)(ddi_get_time() + pkt->pkt_time);
ccb->ccb_state = ARCMSR_CCB_START;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) {
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_queueport,
cdb_phyaddr_pattern |
ARCMSR_CCBPOST_FLAG_SGL_BSIZE);
} else {
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_queueport, cdb_phyaddr_pattern);
}
if (pkt_flags & FLAG_NOINTR)
arcmsr_polling_hba_ccbdone(acb, ccb);
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
int ending_index, index;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
index = phbbmu->postq_index;
ending_index = ((index+1)%ARCMSR_MAX_HBB_POSTQUEUE);
phbbmu->post_qbuffer[ending_index] = 0;
if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) {
phbbmu->post_qbuffer[index] =
(cdb_phyaddr_pattern|ARCMSR_CCBPOST_FLAG_SGL_BSIZE);
} else {
phbbmu->post_qbuffer[index] = cdb_phyaddr_pattern;
}
index++;
/* if last index number set it to 0 */
index %= ARCMSR_MAX_HBB_POSTQUEUE;
phbbmu->postq_index = index;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_CDB_POSTED);
if (pkt_flags & FLAG_NOINTR)
arcmsr_polling_hbb_ccbdone(acb, ccb);
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
uint32_t ccb_post_stamp, arc_cdb_size;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
arc_cdb_size = (ccb->arc_cdb_size > 0x300) ? 0x300 :
ccb->arc_cdb_size;
ccb_post_stamp = (cdb_phyaddr_pattern |
((arc_cdb_size-1) >> 6) |1);
if (acb->cdb_phyaddr_hi32) {
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_queueport_high,
acb->cdb_phyaddr_hi32);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_queueport_low, ccb_post_stamp);
} else {
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_queueport_low, ccb_post_stamp);
}
if (pkt_flags & FLAG_NOINTR)
arcmsr_polling_hbc_ccbdone(acb, ccb);
break;
}
}
return (DDI_SUCCESS);
}
static void
arcmsr_ccb_complete(struct CCB *ccb, int flag)
{
struct ACB *acb = ccb->acb;
struct scsi_pkt *pkt = ccb->pkt;
if (pkt == NULL) {
return;
}
ccb->ccb_state |= ARCMSR_CCB_DONE;
pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET |
STATE_SENT_CMD | STATE_GOT_STATUS);
if ((ccb->ccb_flags & CCB_FLAG_DMACONSISTENT) &&
(pkt->pkt_state & STATE_XFERRED_DATA)) {
(void) ddi_dma_sync(ccb->pkt_dma_handle, 0, 0,
DDI_DMA_SYNC_FORCPU);
}
/*
* TODO: This represents a potential race condition, and is
* ultimately a poor design decision. Revisit this code
* and solve the mutex ownership issue correctly.
*/
if (mutex_owned(&acb->isr_mutex)) {
mutex_exit(&acb->isr_mutex);
scsi_hba_pkt_comp(pkt);
mutex_enter(&acb->isr_mutex);
} else {
scsi_hba_pkt_comp(pkt);
}
if (flag == 1) {
atomic_dec_32(&acb->ccboutstandingcount);
}
}
static void
arcmsr_report_ccb_state(struct ACB *acb, struct CCB *ccb, boolean_t error)
{
int id, lun;
ccb->ccb_state |= ARCMSR_CCB_DONE;
id = ccb->pkt->pkt_address.a_target;
lun = ccb->pkt->pkt_address.a_lun;
if (!error) {
if (acb->devstate[id][lun] == ARECA_RAID_GONE) {
acb->devstate[id][lun] = ARECA_RAID_GOOD;
}
ccb->pkt->pkt_reason = CMD_CMPLT;
ccb->pkt->pkt_state |= STATE_XFERRED_DATA;
arcmsr_list_add_tail(&acb->ccb_complete_list_mutex,
&ccb->complete_queue_pointer, &acb->ccb_complete_list);
} else {
switch (ccb->arcmsr_cdb.DeviceStatus) {
case ARCMSR_DEV_SELECT_TIMEOUT:
if (acb->devstate[id][lun] == ARECA_RAID_GOOD) {
arcmsr_warn(acb,
"target %d lun %d selection "
"timeout", id, lun);
}
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pkt->pkt_reason = CMD_TIMEOUT; /* CMD_DEV_GONE; */
ccb->pkt->pkt_statistics |= STAT_TIMEOUT;
arcmsr_list_add_tail(&acb->ccb_complete_list_mutex,
&ccb->complete_queue_pointer,
&acb->ccb_complete_list);
break;
case ARCMSR_DEV_ABORTED:
case ARCMSR_DEV_INIT_FAIL:
arcmsr_warn(acb, "isr got 'ARCMSR_DEV_ABORTED'"
" 'ARCMSR_DEV_INIT_FAIL'");
arcmsr_log(acb, CE_NOTE, "raid volume was kicked out");
acb->devstate[id][lun] = ARECA_RAID_GONE;
ccb->pkt->pkt_reason = CMD_DEV_GONE;
ccb->pkt->pkt_statistics |= STAT_TERMINATED;
arcmsr_list_add_tail(&acb->ccb_complete_list_mutex,
&ccb->complete_queue_pointer,
&acb->ccb_complete_list);
break;
case SCSISTAT_CHECK_CONDITION:
acb->devstate[id][lun] = ARECA_RAID_GOOD;
arcmsr_report_sense_info(ccb);
arcmsr_list_add_tail(&acb->ccb_complete_list_mutex,
&ccb->complete_queue_pointer,
&acb->ccb_complete_list);
break;
default:
arcmsr_warn(acb,
"target %d lun %d isr received CMD_DONE"
" with unknown DeviceStatus (0x%x)",
id, lun, ccb->arcmsr_cdb.DeviceStatus);
arcmsr_log(acb, CE_NOTE, "raid volume was kicked out");
acb->devstate[id][lun] = ARECA_RAID_GONE;
/* unknown error or crc error just for retry */
ccb->pkt->pkt_reason = CMD_TRAN_ERR;
ccb->pkt->pkt_statistics |= STAT_TERMINATED;
arcmsr_list_add_tail(&acb->ccb_complete_list_mutex,
&ccb->complete_queue_pointer,
&acb->ccb_complete_list);
break;
}
}
}
static void
arcmsr_drain_donequeue(struct ACB *acb, struct CCB *ccb, boolean_t error)
{
uint16_t ccb_state;
if (ccb->acb != acb) {
return;
}
if (ccb->ccb_state != ARCMSR_CCB_START) {
switch (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) {
case ARCMSR_CCB_TIMEOUT:
ccb_state = ccb->ccb_state;
if (ccb_state & ARCMSR_CCB_WAIT4_FREE)
arcmsr_free_ccb(ccb);
else
ccb->ccb_state |= ARCMSR_CCB_BACK;
return;
case ARCMSR_CCB_ABORTED:
ccb_state = ccb->ccb_state;
if (ccb_state & ARCMSR_CCB_WAIT4_FREE)
arcmsr_free_ccb(ccb);
else
ccb->ccb_state |= ARCMSR_CCB_BACK;
return;
case ARCMSR_CCB_RESET:
ccb_state = ccb->ccb_state;
if (ccb_state & ARCMSR_CCB_WAIT4_FREE)
arcmsr_free_ccb(ccb);
else
ccb->ccb_state |= ARCMSR_CCB_BACK;
return;
default:
return;
}
}
arcmsr_report_ccb_state(acb, ccb, error);
}
static void
arcmsr_report_sense_info(struct CCB *ccb)
{
struct SENSE_DATA *cdb_sensedata;
struct scsi_pkt *pkt = ccb->pkt;
struct scsi_arq_status *arq_status;
union scsi_cdb *cdbp;
uint64_t err_blkno;
cdbp = (void *)pkt->pkt_cdbp;
err_blkno = ARCMSR_GETGXADDR(ccb->arcmsr_cdb.CdbLength, cdbp);
arq_status = (struct scsi_arq_status *)(intptr_t)(pkt->pkt_scbp);
bzero((caddr_t)arq_status, sizeof (struct scsi_arq_status));
*pkt->pkt_scbp = STATUS_CHECK; /* CHECK CONDITION */
arq_status->sts_rqpkt_reason = CMD_CMPLT;
arq_status->sts_rqpkt_state = (STATE_GOT_BUS | STATE_GOT_TARGET |
STATE_SENT_CMD | STATE_XFERRED_DATA | STATE_GOT_STATUS);
arq_status->sts_rqpkt_statistics = 0;
arq_status->sts_rqpkt_resid = 0;
pkt->pkt_reason = CMD_CMPLT;
/* auto rqsense took place */
pkt->pkt_state |= STATE_ARQ_DONE;
cdb_sensedata = (struct SENSE_DATA *)ccb->arcmsr_cdb.SenseData;
if (&arq_status->sts_sensedata != NULL) {
if (err_blkno <= 0xfffffffful) {
struct scsi_extended_sense *sts_sensedata;
sts_sensedata = &arq_status->sts_sensedata;
sts_sensedata->es_code = cdb_sensedata->ErrorCode;
/* must eq CLASS_EXTENDED_SENSE (0x07) */
sts_sensedata->es_class = cdb_sensedata->ErrorClass;
sts_sensedata->es_valid = cdb_sensedata->Valid;
sts_sensedata->es_segnum = cdb_sensedata->SegmentNumber;
sts_sensedata->es_key = cdb_sensedata->SenseKey;
sts_sensedata->es_ili = cdb_sensedata->IncorrectLength;
sts_sensedata->es_eom = cdb_sensedata->EndOfMedia;
sts_sensedata->es_filmk = cdb_sensedata->FileMark;
sts_sensedata->es_info_1 = (err_blkno >> 24) & 0xFF;
sts_sensedata->es_info_2 = (err_blkno >> 16) & 0xFF;
sts_sensedata->es_info_3 = (err_blkno >> 8) & 0xFF;
sts_sensedata->es_info_4 = err_blkno & 0xFF;
sts_sensedata->es_add_len =
cdb_sensedata->AdditionalSenseLength;
sts_sensedata->es_cmd_info[0] =
cdb_sensedata->CommandSpecificInformation[0];
sts_sensedata->es_cmd_info[1] =
cdb_sensedata->CommandSpecificInformation[1];
sts_sensedata->es_cmd_info[2] =
cdb_sensedata->CommandSpecificInformation[2];
sts_sensedata->es_cmd_info[3] =
cdb_sensedata->CommandSpecificInformation[3];
sts_sensedata->es_add_code =
cdb_sensedata->AdditionalSenseCode;
sts_sensedata->es_qual_code =
cdb_sensedata->AdditionalSenseCodeQualifier;
sts_sensedata->es_fru_code =
cdb_sensedata->FieldReplaceableUnitCode;
} else { /* 64-bit LBA */
struct scsi_descr_sense_hdr *dsp;
struct scsi_information_sense_descr *isd;
dsp = (struct scsi_descr_sense_hdr *)
&arq_status->sts_sensedata;
dsp->ds_class = CLASS_EXTENDED_SENSE;
dsp->ds_code = CODE_FMT_DESCR_CURRENT;
dsp->ds_key = cdb_sensedata->SenseKey;
dsp->ds_add_code = cdb_sensedata->AdditionalSenseCode;
dsp->ds_qual_code =
cdb_sensedata->AdditionalSenseCodeQualifier;
dsp->ds_addl_sense_length =
sizeof (struct scsi_information_sense_descr);
isd = (struct scsi_information_sense_descr *)(dsp+1);
isd->isd_descr_type = DESCR_INFORMATION;
isd->isd_valid = 1;
isd->isd_information[0] = (err_blkno >> 56) & 0xFF;
isd->isd_information[1] = (err_blkno >> 48) & 0xFF;
isd->isd_information[2] = (err_blkno >> 40) & 0xFF;
isd->isd_information[3] = (err_blkno >> 32) & 0xFF;
isd->isd_information[4] = (err_blkno >> 24) & 0xFF;
isd->isd_information[5] = (err_blkno >> 16) & 0xFF;
isd->isd_information[6] = (err_blkno >> 8) & 0xFF;
isd->isd_information[7] = (err_blkno) & 0xFF;
}
}
}
static int
arcmsr_seek_cmd2abort(struct ACB *acb, struct scsi_pkt *abortpkt)
{
struct CCB *ccb;
uint32_t intmask_org = 0;
int i = 0;
acb->num_aborts++;
if (abortpkt != NULL) {
/*
* We don't support abort of a single packet. All
* callers in our kernel always do a global abort, so
* there is no point in having code to support it
* here.
*/
return (DDI_FAILURE);
}
/*
* if abortpkt is NULL, the upper layer needs us
* to abort all commands
*/
if (acb->ccboutstandingcount != 0) {
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_allintr(acb);
/* clear and abort all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
/* talk to iop 331 outstanding command aborted */
(void) arcmsr_abort_host_command(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->ccb_state == ARCMSR_CCB_START) {
/*
* this ccb will complete at
* hwinterrupt
*/
/* ccb->ccb_state = ARCMSR_CCB_ABORTED; */
ccb->pkt->pkt_reason = CMD_ABORTED;
ccb->pkt->pkt_statistics |= STAT_ABORTED;
arcmsr_ccb_complete(ccb, 1);
}
}
/*
* enable outbound Post Queue, outbound
* doorbell Interrupt
*/
arcmsr_enable_allintr(acb, intmask_org);
}
return (DDI_SUCCESS);
}
/*
* Autoconfiguration support
*/
static int
arcmsr_parse_devname(char *devnm, int *tgt, int *lun) {
char devbuf[SCSI_MAXNAMELEN];
char *addr;
char *p, *tp, *lp;
long num;
/* Parse dev name and address */
(void) strlcpy(devbuf, devnm, sizeof (devbuf));
addr = "";
for (p = devbuf; *p != '\0'; p++) {
if (*p == '@') {
addr = p + 1;
*p = '\0';
} else if (*p == ':') {
*p = '\0';
break;
}
}
/* Parse target and lun */
for (p = tp = addr, lp = NULL; *p != '\0'; p++) {
if (*p == ',') {
lp = p + 1;
*p = '\0';
break;
}
}
if ((tgt != NULL) && (tp != NULL)) {
if (ddi_strtol(tp, NULL, 0x10, &num) != 0)
return (-1);
*tgt = (int)num;
}
if ((lun != NULL) && (lp != NULL)) {
if (ddi_strtol(lp, NULL, 0x10, &num) != 0)
return (-1);
*lun = (int)num;
}
return (0);
}
static int
arcmsr_name_node(dev_info_t *dip, char *name, int len)
{
int tgt, lun;
tgt = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "target",
-1);
if (tgt == -1)
return (DDI_FAILURE);
lun = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "lun",
-1);
if (lun == -1)
return (DDI_FAILURE);
(void) snprintf(name, len, "%x,%x", tgt, lun);
return (DDI_SUCCESS);
}
static dev_info_t *
arcmsr_find_child(struct ACB *acb, uint16_t tgt, uint8_t lun)
{
dev_info_t *child = NULL;
char addr[SCSI_MAXNAMELEN];
char tmp[SCSI_MAXNAMELEN];
(void) sprintf(addr, "%x,%x", tgt, lun);
for (child = ddi_get_child(acb->dev_info);
child;
child = ddi_get_next_sibling(child)) {
/* We don't care about non-persistent node */
if (ndi_dev_is_persistent_node(child) == 0)
continue;
if (arcmsr_name_node(child, tmp, SCSI_MAXNAMELEN) !=
DDI_SUCCESS)
continue;
if (strcmp(addr, tmp) == 0)
break;
}
return (child);
}
static int
arcmsr_config_child(struct ACB *acb, struct scsi_device *sd, dev_info_t **dipp)
{
char *nodename = NULL;
char **compatible = NULL;
int ncompatible = 0;
dev_info_t *ldip = NULL;
int tgt = sd->sd_address.a_target;
int lun = sd->sd_address.a_lun;
int dtype = sd->sd_inq->inq_dtype & DTYPE_MASK;
int rval;
scsi_hba_nodename_compatible_get(sd->sd_inq, NULL, dtype,
NULL, &nodename, &compatible, &ncompatible);
if (nodename == NULL) {
arcmsr_warn(acb, "found no comptible driver for T%dL%d",
tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
/* Create dev node */
rval = ndi_devi_alloc(acb->dev_info, nodename, DEVI_SID_NODEID, &ldip);
if (rval == NDI_SUCCESS) {
if (ndi_prop_update_int(DDI_DEV_T_NONE, ldip, "target", tgt) !=
DDI_PROP_SUCCESS) {
arcmsr_warn(acb,
"unable to create target property for T%dL%d",
tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
if (ndi_prop_update_int(DDI_DEV_T_NONE, ldip, "lun", lun) !=
DDI_PROP_SUCCESS) {
arcmsr_warn(acb,
"unable to create lun property for T%dL%d",
tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
if (ndi_prop_update_string_array(DDI_DEV_T_NONE, ldip,
"compatible", compatible, ncompatible) !=
DDI_PROP_SUCCESS) {
arcmsr_warn(acb,
"unable to create compatible property for T%dL%d",
tgt, lun);
rval = NDI_FAILURE;
goto finish;
}
rval = ndi_devi_online(ldip, NDI_ONLINE_ATTACH);
if (rval != NDI_SUCCESS) {
arcmsr_warn(acb, "unable to online T%dL%d", tgt, lun);
ndi_prop_remove_all(ldip);
(void) ndi_devi_free(ldip);
} else {
arcmsr_log(acb, CE_NOTE, "T%dL%d onlined", tgt, lun);
}
}
finish:
if (dipp)
*dipp = ldip;
scsi_hba_nodename_compatible_free(nodename, compatible);
return (rval);
}
static int
arcmsr_config_lun(struct ACB *acb, uint16_t tgt, uint8_t lun, dev_info_t **ldip)
{
struct scsi_device sd;
dev_info_t *child;
int rval;
if ((child = arcmsr_find_child(acb, tgt, lun)) != NULL) {
if (ldip) {
*ldip = child;
}
return (NDI_SUCCESS);
}
bzero(&sd, sizeof (struct scsi_device));
sd.sd_address.a_hba_tran = acb->scsi_hba_transport;
sd.sd_address.a_target = tgt;
sd.sd_address.a_lun = lun;
rval = scsi_hba_probe(&sd, NULL);
if (rval == SCSIPROBE_EXISTS)
rval = arcmsr_config_child(acb, &sd, ldip);
scsi_unprobe(&sd);
return (rval);
}
static int
arcmsr_add_intr(struct ACB *acb, int intr_type)
{
int rc, count;
dev_info_t *dev_info;
const char *type_str;
switch (intr_type) {
case DDI_INTR_TYPE_MSI:
type_str = "MSI";
break;
case DDI_INTR_TYPE_MSIX:
type_str = "MSIX";
break;
case DDI_INTR_TYPE_FIXED:
type_str = "FIXED";
break;
default:
type_str = "unknown";
break;
}
dev_info = acb->dev_info;
/* Determine number of supported interrupts */
rc = ddi_intr_get_nintrs(dev_info, intr_type, &count);
if ((rc != DDI_SUCCESS) || (count == 0)) {
arcmsr_warn(acb,
"no interrupts of type %s, rc=0x%x, count=%d",
type_str, rc, count);
return (DDI_FAILURE);
}
acb->intr_size = sizeof (ddi_intr_handle_t) * count;
acb->phandle = kmem_zalloc(acb->intr_size, KM_SLEEP);
rc = ddi_intr_alloc(dev_info, acb->phandle, intr_type, 0,
count, &acb->intr_count, DDI_INTR_ALLOC_NORMAL);
if ((rc != DDI_SUCCESS) || (acb->intr_count == 0)) {
arcmsr_warn(acb, "ddi_intr_alloc(%s) failed 0x%x",
type_str, rc);
return (DDI_FAILURE);
}
if (acb->intr_count < count) {
arcmsr_log(acb, CE_NOTE, "Got %d interrupts, but requested %d",
acb->intr_count, count);
}
/*
* Get priority for first msi, assume remaining are all the same
*/
if (ddi_intr_get_pri(acb->phandle[0], &acb->intr_pri) != DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_intr_get_pri failed");
return (DDI_FAILURE);
}
if (acb->intr_pri >= ddi_intr_get_hilevel_pri()) {
arcmsr_warn(acb, "high level interrupt not supported");
return (DDI_FAILURE);
}
for (int x = 0; x < acb->intr_count; x++) {
if (ddi_intr_add_handler(acb->phandle[x], arcmsr_intr_handler,
(caddr_t)acb, NULL) != DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_intr_add_handler(%s) failed",
type_str);
return (DDI_FAILURE);
}
}
(void) ddi_intr_get_cap(acb->phandle[0], &acb->intr_cap);
if (acb->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI */
(void) ddi_intr_block_enable(acb->phandle, acb->intr_count);
} else {
/* Call ddi_intr_enable() for MSI non block enable */
for (int x = 0; x < acb->intr_count; x++) {
(void) ddi_intr_enable(acb->phandle[x]);
}
}
return (DDI_SUCCESS);
}
static void
arcmsr_remove_intr(struct ACB *acb)
{
int x;
if (acb->phandle == NULL)
return;
/* Disable all interrupts */
if (acb->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_disable() */
(void) ddi_intr_block_disable(acb->phandle, acb->intr_count);
} else {
for (x = 0; x < acb->intr_count; x++) {
(void) ddi_intr_disable(acb->phandle[x]);
}
}
/* Call ddi_intr_remove_handler() */
for (x = 0; x < acb->intr_count; x++) {
(void) ddi_intr_remove_handler(acb->phandle[x]);
(void) ddi_intr_free(acb->phandle[x]);
}
kmem_free(acb->phandle, acb->intr_size);
acb->phandle = NULL;
}
static void
arcmsr_mutex_init(struct ACB *acb)
{
mutex_init(&acb->isr_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&acb->acb_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&acb->postq_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&acb->workingQ_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&acb->ioctl_mutex, NULL, MUTEX_DRIVER, NULL);
}
static void
arcmsr_mutex_destroy(struct ACB *acb)
{
mutex_destroy(&acb->isr_mutex);
mutex_destroy(&acb->acb_mutex);
mutex_destroy(&acb->postq_mutex);
mutex_destroy(&acb->workingQ_mutex);
mutex_destroy(&acb->ioctl_mutex);
}
static int
arcmsr_initialize(struct ACB *acb)
{
struct CCB *pccb_tmp;
size_t allocated_length;
uint16_t wval;
uint_t intmask_org, count;
caddr_t arcmsr_ccbs_area;
uint32_t wlval, cdb_phyaddr, offset, realccb_size;
int32_t dma_sync_size;
int i, id, lun, instance;
instance = ddi_get_instance(acb->dev_info);
wlval = pci_config_get32(acb->pci_acc_handle, 0);
wval = (uint16_t)((wlval >> 16) & 0xffff);
realccb_size = P2ROUNDUP(sizeof (struct CCB), 32);
switch (wval) {
case PCI_DEVICE_ID_ARECA_1880:
case PCI_DEVICE_ID_ARECA_1882:
{
uint32_t *iop_mu_regs_map0;
acb->adapter_type = ACB_ADAPTER_TYPE_C; /* lsi */
dma_sync_size = ARCMSR_MAX_FREECCB_NUM * realccb_size + 0x20;
if (ddi_regs_map_setup(acb->dev_info, 2,
(caddr_t *)&iop_mu_regs_map0, 0,
sizeof (struct HBC_msgUnit), &acb->dev_acc_attr,
&acb->reg_mu_acc_handle0) != DDI_SUCCESS) {
arcmsr_warn(acb, "unable to map registers");
return (DDI_FAILURE);
}
if ((i = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_ccb_attr,
DDI_DMA_SLEEP, NULL, &acb->ccbs_pool_handle)) !=
DDI_SUCCESS) {
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
arcmsr_warn(acb, "ddi_dma_alloc_handle failed");
return (DDI_FAILURE);
}
if (ddi_dma_mem_alloc(acb->ccbs_pool_handle, dma_sync_size,
&acb->dev_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP, NULL, (caddr_t *)&arcmsr_ccbs_area,
&allocated_length, &acb->ccbs_acc_handle) != DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_dma_mem_alloc failed");
ddi_dma_free_handle(&acb->ccbs_pool_handle);
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
return (DDI_FAILURE);
}
if (ddi_dma_addr_bind_handle(acb->ccbs_pool_handle, NULL,
(caddr_t)arcmsr_ccbs_area, dma_sync_size, DDI_DMA_RDWR |
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &acb->ccb_cookie,
&count) != DDI_DMA_MAPPED) {
arcmsr_warn(acb, "ddi_dma_addr_bind_handle failed");
ddi_dma_mem_free(&acb->ccbs_acc_handle);
ddi_dma_free_handle(&acb->ccbs_pool_handle);
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
return (DDI_FAILURE);
}
bzero(arcmsr_ccbs_area, dma_sync_size);
offset = (uint32_t)(P2ROUNDUP(PtrToNum(arcmsr_ccbs_area), 32)
- PtrToNum(arcmsr_ccbs_area));
arcmsr_ccbs_area = arcmsr_ccbs_area + offset;
/* ioport base */
acb->pmu = (struct msgUnit *)(intptr_t)iop_mu_regs_map0;
break;
}
case PCI_DEVICE_ID_ARECA_1201:
{
uint32_t *iop_mu_regs_map0;
uint32_t *iop_mu_regs_map1;
struct HBB_msgUnit *phbbmu;
acb->adapter_type = ACB_ADAPTER_TYPE_B; /* marvell */
dma_sync_size =
(ARCMSR_MAX_FREECCB_NUM * realccb_size + 0x20) +
sizeof (struct HBB_msgUnit);
/* Allocate memory for the ccb */
if ((i = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_ccb_attr,
DDI_DMA_SLEEP, NULL, &acb->ccbs_pool_handle)) !=
DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_dma_alloc_handle failed");
return (DDI_FAILURE);
}
if (ddi_dma_mem_alloc(acb->ccbs_pool_handle, dma_sync_size,
&acb->dev_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP, NULL, (caddr_t *)&arcmsr_ccbs_area,
&allocated_length, &acb->ccbs_acc_handle) != DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_dma_mem_alloc failed");
ddi_dma_free_handle(&acb->ccbs_pool_handle);
return (DDI_FAILURE);
}
if (ddi_dma_addr_bind_handle(acb->ccbs_pool_handle, NULL,
(caddr_t)arcmsr_ccbs_area, dma_sync_size,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
NULL, &acb->ccb_cookie, &count) != DDI_DMA_MAPPED) {
arcmsr_warn(acb, "ddi_dma_addr_bind_handle failed");
ddi_dma_mem_free(&acb->ccbs_acc_handle);
ddi_dma_free_handle(&acb->ccbs_pool_handle);
return (DDI_FAILURE);
}
bzero(arcmsr_ccbs_area, dma_sync_size);
offset = (uint32_t)(P2ROUNDUP(PtrToNum(arcmsr_ccbs_area), 32)
- PtrToNum(arcmsr_ccbs_area));
arcmsr_ccbs_area = arcmsr_ccbs_area + offset;
acb->pmu = (struct msgUnit *)
NumToPtr(PtrToNum(arcmsr_ccbs_area) +
(realccb_size*ARCMSR_MAX_FREECCB_NUM));
phbbmu = (struct HBB_msgUnit *)acb->pmu;
/* setup device register */
if (ddi_regs_map_setup(acb->dev_info, 1,
(caddr_t *)&iop_mu_regs_map0, 0,
sizeof (struct HBB_DOORBELL), &acb->dev_acc_attr,
&acb->reg_mu_acc_handle0) != DDI_SUCCESS) {
arcmsr_warn(acb, "unable to map base0 registers");
(void) ddi_dma_unbind_handle(acb->ccbs_pool_handle);
ddi_dma_mem_free(&acb->ccbs_acc_handle);
ddi_dma_free_handle(&acb->ccbs_pool_handle);
return (DDI_FAILURE);
}
/* ARCMSR_DRV2IOP_DOORBELL */
phbbmu->hbb_doorbell = (struct HBB_DOORBELL *)iop_mu_regs_map0;
if (ddi_regs_map_setup(acb->dev_info, 2,
(caddr_t *)&iop_mu_regs_map1, 0,
sizeof (struct HBB_RWBUFFER), &acb->dev_acc_attr,
&acb->reg_mu_acc_handle1) != DDI_SUCCESS) {
arcmsr_warn(acb, "unable to map base1 registers");
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
(void) ddi_dma_unbind_handle(acb->ccbs_pool_handle);
ddi_dma_mem_free(&acb->ccbs_acc_handle);
ddi_dma_free_handle(&acb->ccbs_pool_handle);
return (DDI_FAILURE);
}
/* ARCMSR_MSGCODE_RWBUFFER */
phbbmu->hbb_rwbuffer = (struct HBB_RWBUFFER *)iop_mu_regs_map1;
break;
}
case PCI_DEVICE_ID_ARECA_1110:
case PCI_DEVICE_ID_ARECA_1120:
case PCI_DEVICE_ID_ARECA_1130:
case PCI_DEVICE_ID_ARECA_1160:
case PCI_DEVICE_ID_ARECA_1170:
case PCI_DEVICE_ID_ARECA_1210:
case PCI_DEVICE_ID_ARECA_1220:
case PCI_DEVICE_ID_ARECA_1230:
case PCI_DEVICE_ID_ARECA_1231:
case PCI_DEVICE_ID_ARECA_1260:
case PCI_DEVICE_ID_ARECA_1261:
case PCI_DEVICE_ID_ARECA_1270:
case PCI_DEVICE_ID_ARECA_1280:
case PCI_DEVICE_ID_ARECA_1212:
case PCI_DEVICE_ID_ARECA_1222:
case PCI_DEVICE_ID_ARECA_1380:
case PCI_DEVICE_ID_ARECA_1381:
case PCI_DEVICE_ID_ARECA_1680:
case PCI_DEVICE_ID_ARECA_1681:
{
uint32_t *iop_mu_regs_map0;
acb->adapter_type = ACB_ADAPTER_TYPE_A; /* intel */
dma_sync_size = ARCMSR_MAX_FREECCB_NUM * realccb_size + 0x20;
if (ddi_regs_map_setup(acb->dev_info, 1,
(caddr_t *)&iop_mu_regs_map0, 0,
sizeof (struct HBA_msgUnit), &acb->dev_acc_attr,
&acb->reg_mu_acc_handle0) != DDI_SUCCESS) {
arcmsr_warn(acb, "unable to map registers");
return (DDI_FAILURE);
}
if ((i = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_ccb_attr,
DDI_DMA_SLEEP, NULL, &acb->ccbs_pool_handle)) !=
DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_dma_alloc_handle failed");
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
return (DDI_FAILURE);
}
if (ddi_dma_mem_alloc(acb->ccbs_pool_handle, dma_sync_size,
&acb->dev_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_SLEEP, NULL, (caddr_t *)&arcmsr_ccbs_area,
&allocated_length, &acb->ccbs_acc_handle) != DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_dma_mem_alloc failed", instance);
ddi_dma_free_handle(&acb->ccbs_pool_handle);
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
return (DDI_FAILURE);
}
if (ddi_dma_addr_bind_handle(acb->ccbs_pool_handle, NULL,
(caddr_t)arcmsr_ccbs_area, dma_sync_size, DDI_DMA_RDWR |
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &acb->ccb_cookie,
&count) != DDI_DMA_MAPPED) {
arcmsr_warn(acb, "ddi_dma_addr_bind_handle failed");
ddi_dma_mem_free(&acb->ccbs_acc_handle);
ddi_dma_free_handle(&acb->ccbs_pool_handle);
ddi_regs_map_free(&acb->reg_mu_acc_handle0);
return (DDI_FAILURE);
}
bzero(arcmsr_ccbs_area, dma_sync_size);
offset = (uint32_t)(P2ROUNDUP(PtrToNum(arcmsr_ccbs_area), 32)
- PtrToNum(arcmsr_ccbs_area));
arcmsr_ccbs_area = arcmsr_ccbs_area + offset;
/* ioport base */
acb->pmu = (struct msgUnit *)(intptr_t)iop_mu_regs_map0;
break;
}
default:
arcmsr_warn(acb, "Unknown RAID adapter type!");
return (DDI_FAILURE);
}
arcmsr_init_list_head(&acb->ccb_complete_list);
/* here we can not access pci configuration again */
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READ);
acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER;
/* physical address of acb->pccb_pool */
cdb_phyaddr = acb->ccb_cookie.dmac_address + offset;
pccb_tmp = (struct CCB *)(intptr_t)arcmsr_ccbs_area;
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
pccb_tmp->cdb_phyaddr_pattern =
(acb->adapter_type == ACB_ADAPTER_TYPE_C) ?
cdb_phyaddr : (cdb_phyaddr >> 5);
pccb_tmp->acb = acb;
acb->ccbworkingQ[i] = acb->pccb_pool[i] = pccb_tmp;
cdb_phyaddr = cdb_phyaddr + realccb_size;
pccb_tmp = (struct CCB *)NumToPtr(PtrToNum(pccb_tmp) +
realccb_size);
}
acb->vir2phy_offset = PtrToNum(pccb_tmp) - cdb_phyaddr;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_allintr(acb);
if (!arcmsr_iop_confirm(acb)) {
arcmsr_warn(acb, "arcmsr_iop_confirm error", instance);
ddi_dma_mem_free(&acb->ccbs_acc_handle);
ddi_dma_free_handle(&acb->ccbs_pool_handle);
return (DDI_FAILURE);
}
for (id = 0; id < ARCMSR_MAX_TARGETID; id++) {
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
acb->devstate[id][lun] = ARECA_RAID_GONE;
}
}
/* enable outbound Post Queue, outbound doorbell Interrupt */
arcmsr_enable_allintr(acb, intmask_org);
return (0);
}
static int
arcmsr_do_ddi_attach(dev_info_t *dev_info, int instance)
{
scsi_hba_tran_t *hba_trans;
ddi_device_acc_attr_t dev_acc_attr;
struct ACB *acb;
uint16_t wval;
int raid6 = 1;
char *type;
int intr_types;
/*
* Soft State Structure
* The driver should allocate the per-device-instance
* soft state structure, being careful to clean up properly if
* an error occurs. Allocate data structure.
*/
if (ddi_soft_state_zalloc(arcmsr_soft_state, instance) != DDI_SUCCESS) {
arcmsr_warn(NULL, "ddi_soft_state_zalloc failed");
return (DDI_FAILURE);
}
acb = ddi_get_soft_state(arcmsr_soft_state, instance);
ASSERT(acb);
arcmsr_mutex_init(acb);
/* acb is already zalloc()d so we don't need to bzero() it */
dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
acb->dev_info = dev_info;
acb->dev_acc_attr = dev_acc_attr;
/*
* The driver, if providing DMA, should also check that its hardware is
* installed in a DMA-capable slot
*/
if (ddi_slaveonly(dev_info) == DDI_SUCCESS) {
arcmsr_warn(acb, "hardware is not installed in"
" a DMA-capable slot");
goto error_level_0;
}
if (pci_config_setup(dev_info, &acb->pci_acc_handle) != DDI_SUCCESS) {
arcmsr_warn(acb, "pci_config_setup() failed, attach failed");
goto error_level_0;
}
wval = pci_config_get16(acb->pci_acc_handle, PCI_CONF_VENID);
if (wval != PCI_VENDOR_ID_ARECA) {
arcmsr_warn(acb,
"'vendorid (0x%04x) does not match 0x%04x "
"(PCI_VENDOR_ID_ARECA)",
wval, PCI_VENDOR_ID_ARECA);
goto error_level_0;
}
wval = pci_config_get16(acb->pci_acc_handle, PCI_CONF_DEVID);
switch (wval) {
case PCI_DEVICE_ID_ARECA_1110:
case PCI_DEVICE_ID_ARECA_1210:
case PCI_DEVICE_ID_ARECA_1201:
raid6 = 0;
/*FALLTHRU*/
case PCI_DEVICE_ID_ARECA_1120:
case PCI_DEVICE_ID_ARECA_1130:
case PCI_DEVICE_ID_ARECA_1160:
case PCI_DEVICE_ID_ARECA_1170:
case PCI_DEVICE_ID_ARECA_1220:
case PCI_DEVICE_ID_ARECA_1230:
case PCI_DEVICE_ID_ARECA_1260:
case PCI_DEVICE_ID_ARECA_1270:
case PCI_DEVICE_ID_ARECA_1280:
type = "SATA 3G";
break;
case PCI_DEVICE_ID_ARECA_1380:
case PCI_DEVICE_ID_ARECA_1381:
case PCI_DEVICE_ID_ARECA_1680:
case PCI_DEVICE_ID_ARECA_1681:
type = "SAS 3G";
break;
case PCI_DEVICE_ID_ARECA_1880:
type = "SAS 6G";
break;
default:
type = "X-TYPE";
arcmsr_warn(acb, "Unknown Host Adapter RAID Controller!");
goto error_level_0;
}
arcmsr_log(acb, CE_CONT, "Areca %s Host Adapter RAID Controller%s\n",
type, raid6 ? " (RAID6 capable)" : "");
/* we disable iop interrupt here */
if (arcmsr_initialize(acb) == DDI_FAILURE) {
arcmsr_warn(acb, "arcmsr_initialize failed");
goto error_level_1;
}
/* Allocate a transport structure */
hba_trans = scsi_hba_tran_alloc(dev_info, SCSI_HBA_CANSLEEP);
if (hba_trans == NULL) {
arcmsr_warn(acb, "scsi_hba_tran_alloc failed");
goto error_level_2;
}
acb->scsi_hba_transport = hba_trans;
acb->dev_info = dev_info;
/* init scsi host adapter transport entry */
hba_trans->tran_hba_private = acb;
hba_trans->tran_tgt_private = NULL;
/*
* If no per-target initialization is required, the HBA can leave
* tran_tgt_init set to NULL.
*/
hba_trans->tran_tgt_init = arcmsr_tran_tgt_init;
hba_trans->tran_tgt_probe = scsi_hba_probe;
hba_trans->tran_tgt_free = NULL;
hba_trans->tran_start = arcmsr_tran_start;
hba_trans->tran_abort = arcmsr_tran_abort;
hba_trans->tran_reset = arcmsr_tran_reset;
hba_trans->tran_getcap = arcmsr_tran_getcap;
hba_trans->tran_setcap = arcmsr_tran_setcap;
hba_trans->tran_init_pkt = arcmsr_tran_init_pkt;
hba_trans->tran_destroy_pkt = arcmsr_tran_destroy_pkt;
hba_trans->tran_dmafree = arcmsr_tran_dmafree;
hba_trans->tran_sync_pkt = arcmsr_tran_sync_pkt;
hba_trans->tran_reset_notify = NULL;
hba_trans->tran_get_bus_addr = NULL;
hba_trans->tran_get_name = NULL;
hba_trans->tran_quiesce = NULL;
hba_trans->tran_unquiesce = NULL;
hba_trans->tran_bus_reset = NULL;
hba_trans->tran_bus_config = arcmsr_tran_bus_config;
hba_trans->tran_add_eventcall = NULL;
hba_trans->tran_get_eventcookie = NULL;
hba_trans->tran_post_event = NULL;
hba_trans->tran_remove_eventcall = NULL;
/* iop init and enable interrupt here */
arcmsr_iop_init(acb);
/* Get supported interrupt types */
if (ddi_intr_get_supported_types(dev_info, &intr_types) !=
DDI_SUCCESS) {
arcmsr_warn(acb, "ddi_intr_get_supported_types failed");
goto error_level_3;
}
if (intr_types & DDI_INTR_TYPE_FIXED) {
if (arcmsr_add_intr(acb, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS)
goto error_level_5;
} else if (intr_types & DDI_INTR_TYPE_MSI) {
if (arcmsr_add_intr(acb, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS)
goto error_level_5;
}
/*
* The driver should attach this instance of the device, and
* perform error cleanup if necessary
*/
if (scsi_hba_attach_setup(dev_info, &arcmsr_dma_attr,
hba_trans, SCSI_HBA_TRAN_CLONE) != DDI_SUCCESS) {
arcmsr_warn(acb, "scsi_hba_attach_setup failed");
goto error_level_5;
}
/* Create a taskq for dealing with dr events */
if ((acb->taskq = ddi_taskq_create(dev_info, "arcmsr_dr_taskq", 1,
TASKQ_DEFAULTPRI, 0)) == NULL) {
arcmsr_warn(acb, "ddi_taskq_create failed");
goto error_level_8;
}
acb->timeout_count = 0;
/* active ccbs "timeout" watchdog */
acb->timeout_id = timeout(arcmsr_ccbs_timeout, (caddr_t)acb,
(ARCMSR_TIMEOUT_WATCH * drv_usectohz(1000000)));
acb->timeout_sc_id = timeout(arcmsr_devMap_monitor, (caddr_t)acb,
(ARCMSR_DEV_MAP_WATCH * drv_usectohz(1000000)));
/* report device info */
ddi_report_dev(dev_info);
return (DDI_SUCCESS);
error_level_8:
error_level_7:
error_level_6:
(void) scsi_hba_detach(dev_info);
error_level_5:
arcmsr_remove_intr(acb);
error_level_3:
error_level_4:
if (acb->scsi_hba_transport)
scsi_hba_tran_free(acb->scsi_hba_transport);
error_level_2:
if (acb->ccbs_acc_handle)
ddi_dma_mem_free(&acb->ccbs_acc_handle);
if (acb->ccbs_pool_handle)
ddi_dma_free_handle(&acb->ccbs_pool_handle);
error_level_1:
if (acb->pci_acc_handle)
pci_config_teardown(&acb->pci_acc_handle);
arcmsr_mutex_destroy(acb);
ddi_soft_state_free(arcmsr_soft_state, instance);
error_level_0:
return (DDI_FAILURE);
}
static void
arcmsr_vlog(struct ACB *acb, int level, char *fmt, va_list ap)
{
char buf[256];
if (acb != NULL) {
(void) snprintf(buf, sizeof (buf), "%s%d: %s",
ddi_driver_name(acb->dev_info),
ddi_get_instance(acb->dev_info), fmt);
fmt = buf;
}
vcmn_err(level, fmt, ap);
}
static void
arcmsr_log(struct ACB *acb, int level, char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
arcmsr_vlog(acb, level, fmt, ap);
va_end(ap);
}
static void
arcmsr_warn(struct ACB *acb, char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
arcmsr_vlog(acb, CE_WARN, fmt, ap);
va_end(ap);
}
static void
arcmsr_init_list_head(struct list_head *list)
{
list->next = list;
list->prev = list;
}
static void
arcmsr_x_list_del(struct list_head *prev, struct list_head *next)
{
next->prev = prev;
prev->next = next;
}
static void
arcmsr_x_list_add(struct list_head *new_one, struct list_head *prev,
struct list_head *next)
{
next->prev = new_one;
new_one->next = next;
new_one->prev = prev;
prev->next = new_one;
}
static void
arcmsr_list_add_tail(kmutex_t *list_lock, struct list_head *new_one,
struct list_head *head)
{
mutex_enter(list_lock);
arcmsr_x_list_add(new_one, head->prev, head);
mutex_exit(list_lock);
}
static struct list_head *
arcmsr_list_get_first(kmutex_t *list_lock, struct list_head *head)
{
struct list_head *one = NULL;
mutex_enter(list_lock);
if (head->next == head) {
mutex_exit(list_lock);
return (NULL);
}
one = head->next;
arcmsr_x_list_del(one->prev, one->next);
arcmsr_init_list_head(one);
mutex_exit(list_lock);
return (one);
}
static struct CCB *
arcmsr_get_complete_ccb_from_list(struct ACB *acb)
{
struct list_head *first_complete_ccb_list = NULL;
struct CCB *ccb;
first_complete_ccb_list =
arcmsr_list_get_first(&acb->ccb_complete_list_mutex,
&acb->ccb_complete_list);
if (first_complete_ccb_list == NULL) {
return (NULL);
}
ccb = (void *)((caddr_t)(first_complete_ccb_list) -
offsetof(struct CCB, complete_queue_pointer));
return (ccb);
}
static struct CCB *
arcmsr_get_freeccb(struct ACB *acb)
{
struct CCB *ccb;
int ccb_get_index, ccb_put_index;
mutex_enter(&acb->workingQ_mutex);
ccb_put_index = acb->ccb_put_index;
ccb_get_index = acb->ccb_get_index;
ccb = acb->ccbworkingQ[ccb_get_index];
ccb_get_index++;
if (ccb_get_index >= ARCMSR_MAX_FREECCB_NUM)
ccb_get_index = ccb_get_index - ARCMSR_MAX_FREECCB_NUM;
if (ccb_put_index != ccb_get_index) {
acb->ccb_get_index = ccb_get_index;
arcmsr_init_list_head(&ccb->complete_queue_pointer);
ccb->ccb_state = ARCMSR_CCB_UNBUILD;
} else {
ccb = NULL;
}
mutex_exit(&acb->workingQ_mutex);
return (ccb);
}
static void
arcmsr_free_ccb(struct CCB *ccb)
{
struct ACB *acb = ccb->acb;
if (ccb->ccb_state == ARCMSR_CCB_FREE) {
return;
}
mutex_enter(&acb->workingQ_mutex);
ccb->ccb_state = ARCMSR_CCB_FREE;
ccb->pkt = NULL;
ccb->pkt_dma_handle = NULL;
ccb->ccb_flags = 0;
acb->ccbworkingQ[acb->ccb_put_index] = ccb;
acb->ccb_put_index++;
if (acb->ccb_put_index >= ARCMSR_MAX_FREECCB_NUM)
acb->ccb_put_index =
acb->ccb_put_index - ARCMSR_MAX_FREECCB_NUM;
mutex_exit(&acb->workingQ_mutex);
}
static void
arcmsr_ccbs_timeout(void* arg)
{
struct ACB *acb = (struct ACB *)arg;
struct CCB *ccb;
int i, instance, timeout_count = 0;
uint32_t intmask_org;
time_t current_time = ddi_get_time();
intmask_org = arcmsr_disable_allintr(acb);
mutex_enter(&acb->isr_mutex);
if (acb->ccboutstandingcount != 0) {
/* check each ccb */
i = ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
if (i != DDI_SUCCESS) {
if ((acb->timeout_id != 0) &&
((acb->acb_flags & ACB_F_SCSISTOPADAPTER) == 0)) {
/* do pkt timeout check each 60 secs */
acb->timeout_id = timeout(arcmsr_ccbs_timeout,
(void*)acb, (ARCMSR_TIMEOUT_WATCH *
drv_usectohz(1000000)));
}
mutex_exit(&acb->isr_mutex);
arcmsr_enable_allintr(acb, intmask_org);
return;
}
instance = ddi_get_instance(acb->dev_info);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->acb != acb) {
break;
}
if (ccb->ccb_state == ARCMSR_CCB_FREE) {
continue;
}
if (ccb->pkt == NULL) {
continue;
}
if (ccb->pkt->pkt_time == 0) {
continue;
}
if (ccb->ccb_time >= current_time) {
continue;
}
int id = ccb->pkt->pkt_address.a_target;
int lun = ccb->pkt->pkt_address.a_lun;
if (ccb->ccb_state == ARCMSR_CCB_START) {
uint8_t *cdb = (uint8_t *)&ccb->arcmsr_cdb.Cdb;
timeout_count++;
arcmsr_warn(acb,
"scsi target %d lun %d cmd=0x%x "
"command timeout, ccb=0x%p",
instance, id, lun, *cdb, (void *)ccb);
ccb->ccb_state = ARCMSR_CCB_TIMEOUT;
ccb->pkt->pkt_reason = CMD_TIMEOUT;
ccb->pkt->pkt_statistics = STAT_TIMEOUT;
/* acb->devstate[id][lun] = ARECA_RAID_GONE; */
arcmsr_ccb_complete(ccb, 1);
continue;
} else if ((ccb->ccb_state & ARCMSR_CCB_CAN_BE_FREE) ==
ARCMSR_CCB_CAN_BE_FREE) {
arcmsr_free_ccb(ccb);
}
}
}
if ((acb->timeout_id != 0) &&
((acb->acb_flags & ACB_F_SCSISTOPADAPTER) == 0)) {
/* do pkt timeout check each 60 secs */
acb->timeout_id = timeout(arcmsr_ccbs_timeout,
(void*)acb, (ARCMSR_TIMEOUT_WATCH * drv_usectohz(1000000)));
}
mutex_exit(&acb->isr_mutex);
arcmsr_enable_allintr(acb, intmask_org);
}
static void
arcmsr_abort_dr_ccbs(struct ACB *acb, uint16_t target, uint8_t lun)
{
struct CCB *ccb;
uint32_t intmask_org;
int i;
/* disable all outbound interrupts */
intmask_org = arcmsr_disable_allintr(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->ccb_state == ARCMSR_CCB_START) {
if ((target == ccb->pkt->pkt_address.a_target) &&
(lun == ccb->pkt->pkt_address.a_lun)) {
ccb->ccb_state = ARCMSR_CCB_ABORTED;
ccb->pkt->pkt_reason = CMD_ABORTED;
ccb->pkt->pkt_statistics |= STAT_ABORTED;
arcmsr_ccb_complete(ccb, 1);
arcmsr_log(acb, CE_NOTE,
"abort T%dL%d ccb", target, lun);
}
}
}
/* enable outbound Post Queue, outbound doorbell Interrupt */
arcmsr_enable_allintr(acb, intmask_org);
}
static int
arcmsr_scsi_device_probe(struct ACB *acb, uint16_t tgt, uint8_t lun)
{
struct scsi_device sd;
dev_info_t *child;
int rval;
bzero(&sd, sizeof (struct scsi_device));
sd.sd_address.a_hba_tran = acb->scsi_hba_transport;
sd.sd_address.a_target = (uint16_t)tgt;
sd.sd_address.a_lun = (uint8_t)lun;
if ((child = arcmsr_find_child(acb, tgt, lun)) != NULL) {
rval = scsi_hba_probe(&sd, NULL);
if (rval == SCSIPROBE_EXISTS) {
rval = ndi_devi_online(child, NDI_ONLINE_ATTACH);
if (rval != NDI_SUCCESS) {
arcmsr_warn(acb, "unable to online T%dL%d",
tgt, lun);
} else {
arcmsr_log(acb, CE_NOTE, "T%dL%d onlined",
tgt, lun);
}
}
} else {
rval = scsi_hba_probe(&sd, NULL);
if (rval == SCSIPROBE_EXISTS)
rval = arcmsr_config_child(acb, &sd, NULL);
}
scsi_unprobe(&sd);
return (rval);
}
static void
arcmsr_dr_handle(struct ACB *acb)
{
char *acb_dev_map = (char *)acb->device_map;
char *devicemap;
char temp;
uint16_t target;
uint8_t lun;
char diff;
int circ = 0;
dev_info_t *dip;
ddi_acc_handle_t reg;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
devicemap = (char *)&phbamu->msgcode_rwbuffer[21];
reg = acb->reg_mu_acc_handle0;
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
devicemap = (char *)
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[21];
reg = acb->reg_mu_acc_handle1;
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
devicemap = (char *)&phbcmu->msgcode_rwbuffer[21];
reg = acb->reg_mu_acc_handle0;
break;
}
}
for (target = 0; target < ARCMSR_MAX_TARGETID - 1; target++) {
temp = CHIP_REG_READ8(reg, devicemap);
diff = (*acb_dev_map)^ temp;
if (diff != 0) {
*acb_dev_map = temp;
for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) {
if ((temp & 0x01) == 1 && (diff & 0x01) == 1) {
ndi_devi_enter(acb->dev_info, &circ);
acb->devstate[target][lun] =
ARECA_RAID_GOOD;
(void) arcmsr_scsi_device_probe(acb,
target, lun);
ndi_devi_exit(acb->dev_info, circ);
arcmsr_log(acb, CE_NOTE,
"T%dL%d on-line", target, lun);
} else if ((temp & 0x01) == 0 &&
(diff & 0x01) == 1) {
dip = arcmsr_find_child(acb, target,
lun);
if (dip != NULL) {
acb->devstate[target][lun] =
ARECA_RAID_GONE;
if (mutex_owned(&acb->
isr_mutex)) {
arcmsr_abort_dr_ccbs(
acb, target, lun);
(void)
ndi_devi_offline(
dip,
NDI_DEVI_REMOVE |
NDI_DEVI_OFFLINE);
} else {
mutex_enter(&acb->
isr_mutex);
arcmsr_abort_dr_ccbs(
acb, target, lun);
(void)
ndi_devi_offline(
dip,
NDI_DEVI_REMOVE |
NDI_DEVI_OFFLINE);
mutex_exit(&acb->
isr_mutex);
}
}
arcmsr_log(acb, CE_NOTE,
"T%dL%d off-line", target, lun);
}
temp >>= 1;
diff >>= 1;
}
}
devicemap++;
acb_dev_map++;
}
}
static void
arcmsr_devMap_monitor(void* arg)
{
struct ACB *acb = (struct ACB *)arg;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_GET_CONFIG);
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_MESSAGE_GET_CONFIG);
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_GET_CONFIG);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE);
break;
}
}
if ((acb->timeout_id != 0) &&
((acb->acb_flags & ACB_F_SCSISTOPADAPTER) == 0)) {
/* do pkt timeout check each 5 secs */
acb->timeout_id = timeout(arcmsr_devMap_monitor, (void*)acb,
(ARCMSR_DEV_MAP_WATCH * drv_usectohz(1000000)));
}
}
static uint32_t
arcmsr_disable_allintr(struct ACB *acb) {
uint32_t intmask_org;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/* disable all outbound interrupt */
intmask_org = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intmask);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intmask,
intmask_org|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE);
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
/* disable all outbound interrupt */
intmask_org = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell_mask);
/* disable all interrupts */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell_mask, 0);
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/* disable all outbound interrupt */
intmask_org = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->host_int_mask); /* disable outbound message0 int */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->host_int_mask,
intmask_org|ARCMSR_HBCMU_ALL_INTMASKENABLE);
break;
}
}
return (intmask_org);
}
static void
arcmsr_enable_allintr(struct ACB *acb, uint32_t intmask_org) {
int mask;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/*
* enable outbound Post Queue, outbound doorbell message0
* Interrupt
*/
mask = ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE |
ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE |
ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intmask, intmask_org & mask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff;
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
mask = (ARCMSR_IOP2DRV_DATA_WRITE_OK |
ARCMSR_IOP2DRV_DATA_READ_OK | ARCMSR_IOP2DRV_CDB_DONE |
ARCMSR_IOP2DRV_MESSAGE_CMD_DONE);
/* 1=interrupt enable, 0=interrupt disable */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell_mask,
intmask_org | mask);
acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f;
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/* enable outbound Post Queue,outbound doorbell Interrupt */
mask = ~(ARCMSR_HBCMU_UTILITY_A_ISR_MASK |
ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR_MASK |
ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR_MASK);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->host_int_mask, intmask_org & mask);
acb->outbound_int_enable = ~(intmask_org & mask) & 0x0000000f;
break;
}
}
}
static void
arcmsr_iop_parking(struct ACB *acb)
{
/* stop adapter background rebuild */
if (acb->acb_flags & ACB_F_MSG_START_BGRB) {
uint32_t intmask_org;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_allintr(acb);
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_stop_hba_bgrb(acb);
arcmsr_flush_hba_cache(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_stop_hbb_bgrb(acb);
arcmsr_flush_hbb_cache(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_stop_hbc_bgrb(acb);
arcmsr_flush_hbc_cache(acb);
break;
}
/*
* enable outbound Post Queue
* enable outbound doorbell Interrupt
*/
arcmsr_enable_allintr(acb, intmask_org);
}
}
static uint8_t
arcmsr_hba_wait_msgint_ready(struct ACB *acb)
{
uint32_t i;
uint8_t retries = 0x00;
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
do {
for (i = 0; i < 100; i++) {
if (CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus) &
ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
/* clear interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus,
ARCMSR_MU_OUTBOUND_MESSAGE0_INT);
return (TRUE);
}
drv_usecwait(10000);
if (ddi_in_panic()) {
/* clear interrupts */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus,
ARCMSR_MU_OUTBOUND_MESSAGE0_INT);
return (TRUE);
}
} /* max 1 second */
} while (retries++ < 20); /* max 20 seconds */
return (FALSE);
}
static uint8_t
arcmsr_hbb_wait_msgint_ready(struct ACB *acb)
{
struct HBB_msgUnit *phbbmu;
uint32_t i;
uint8_t retries = 0x00;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
do {
for (i = 0; i < 100; i++) {
if (CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell) &
ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
/* clear interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell,
ARCMSR_MESSAGE_INT_CLEAR_PATTERN);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_END_OF_INTERRUPT);
return (TRUE);
}
drv_usecwait(10000);
if (ddi_in_panic()) {
/* clear interrupts */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell,
ARCMSR_MESSAGE_INT_CLEAR_PATTERN);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_END_OF_INTERRUPT);
return (TRUE);
}
} /* max 1 second */
} while (retries++ < 20); /* max 20 seconds */
return (FALSE);
}
static uint8_t
arcmsr_hbc_wait_msgint_ready(struct ACB *acb)
{
uint32_t i;
uint8_t retries = 0x00;
struct HBC_msgUnit *phbcmu;
uint32_t c = ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
do {
for (i = 0; i < 100; i++) {
if (CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell) &
ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
/* clear interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell_clear, c);
return (TRUE);
}
drv_usecwait(10000);
if (ddi_in_panic()) {
/* clear interrupts */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell_clear, c);
return (TRUE);
}
} /* max 1 second */
} while (retries++ < 20); /* max 20 seconds */
return (FALSE);
}
static void
arcmsr_flush_hba_cache(struct ACB *acb) {
struct HBA_msgUnit *phbamu;
int retry_count = 30;
/* enlarge wait flush adapter cache time: 10 minutes */
phbamu = (struct HBA_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbamu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_FLUSH_CACHE);
do {
if (arcmsr_hba_wait_msgint_ready(acb)) {
break;
} else {
retry_count--;
}
} while (retry_count != 0);
}
static void
arcmsr_flush_hbb_cache(struct ACB *acb) {
struct HBB_msgUnit *phbbmu;
int retry_count = 30;
/* enlarge wait flush adapter cache time: 10 minutes */
phbbmu = (struct HBB_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_MESSAGE_FLUSH_CACHE);
do {
if (arcmsr_hbb_wait_msgint_ready(acb)) {
break;
} else {
retry_count--;
}
} while (retry_count != 0);
}
static void
arcmsr_flush_hbc_cache(struct ACB *acb)
{
struct HBC_msgUnit *phbcmu;
int retry_count = 30;
/* enlarge wait flush adapter cache time: 10 minutes */
phbcmu = (struct HBC_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_FLUSH_CACHE);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE);
do {
if (arcmsr_hbc_wait_msgint_ready(acb)) {
break;
} else {
retry_count--;
}
} while (retry_count != 0);
}
static uint8_t
arcmsr_abort_hba_allcmd(struct ACB *acb)
{
struct HBA_msgUnit *phbamu = (struct HBA_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbamu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_ABORT_CMD);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
arcmsr_warn(acb,
"timeout while waiting for 'abort all "
"outstanding commands'");
return (0xff);
}
return (0x00);
}
static uint8_t
arcmsr_abort_hbb_allcmd(struct ACB *acb)
{
struct HBB_msgUnit *phbbmu = (struct HBB_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell, ARCMSR_MESSAGE_ABORT_CMD);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
arcmsr_warn(acb,
"timeout while waiting for 'abort all "
"outstanding commands'");
return (0x00);
}
return (0x00);
}
static uint8_t
arcmsr_abort_hbc_allcmd(struct ACB *acb)
{
struct HBC_msgUnit *phbcmu = (struct HBC_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_ABORT_CMD);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE);
if (!arcmsr_hbc_wait_msgint_ready(acb)) {
arcmsr_warn(acb,
"timeout while waiting for 'abort all "
"outstanding commands'");
return (0xff);
}
return (0x00);
}
static void
arcmsr_done4abort_postqueue(struct ACB *acb)
{
struct CCB *ccb;
uint32_t flag_ccb;
int i = 0;
boolean_t error;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
uint32_t outbound_intstatus;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/* clear and abort all outbound posted Q */
outbound_intstatus = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus) & acb->outbound_int_enable;
/* clear interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus, outbound_intstatus);
while (((flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_queueport)) != 0xFFFFFFFF) &&
(i++ < ARCMSR_MAX_OUTSTANDING_CMD)) {
/* frame must be 32 bytes aligned */
/* the CDB is the first field of the CCB */
ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5)));
/* check if command done with no error */
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ?
B_TRUE : B_FALSE;
arcmsr_drain_donequeue(acb, ccb, error);
}
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
/* clear all outbound posted Q */
/* clear doorbell interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell,
ARCMSR_DOORBELL_INT_CLEAR_PATTERN);
for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) {
if ((flag_ccb = phbbmu->done_qbuffer[i]) != 0) {
phbbmu->done_qbuffer[i] = 0;
/* frame must be 32 bytes aligned */
ccb = NumToPtr((acb->vir2phy_offset +
(flag_ccb << 5)));
/* check if command done with no error */
error =
(flag_ccb &
ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ?
B_TRUE : B_FALSE;
arcmsr_drain_donequeue(acb, ccb, error);
}
phbbmu->post_qbuffer[i] = 0;
} /* drain reply FIFO */
phbbmu->doneq_index = 0;
phbbmu->postq_index = 0;
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
uint32_t ccb_cdb_phy;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
while ((CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->host_int_status) &
ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) &&
(i++ < ARCMSR_MAX_OUTSTANDING_CMD)) {
/* need to do */
flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_queueport_low);
/* frame must be 32 bytes aligned */
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
ccb = NumToPtr((acb->vir2phy_offset + ccb_cdb_phy));
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1)?
B_TRUE : B_FALSE;
arcmsr_drain_donequeue(acb, ccb, error);
}
break;
}
}
}
/*
* Routine Description: try to get echo from iop.
* Arguments:
* Return Value: Nothing.
*/
static uint8_t
arcmsr_get_echo_from_iop(struct ACB *acb)
{
uint32_t intmask_org;
uint8_t rtnval = 0;
if (acb->adapter_type == ACB_ADAPTER_TYPE_A) {
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
intmask_org = arcmsr_disable_allintr(acb);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_GET_CONFIG);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
arcmsr_warn(acb, "try to get echo from iop,"
"... timeout ...");
acb->acb_flags |= ACB_F_BUS_HANG_ON;
rtnval = 0xFF;
}
/* enable all outbound interrupt */
arcmsr_enable_allintr(acb, intmask_org);
}
return (rtnval);
}
/*
* Routine Description: Reset 80331 iop.
* Arguments:
* Return Value: Nothing.
*/
static uint8_t
arcmsr_iop_reset(struct ACB *acb)
{
struct CCB *ccb;
uint32_t intmask_org;
uint8_t rtnval = 0;
int i = 0;
if (acb->ccboutstandingcount > 0) {
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_allintr(acb);
/* clear and abort all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
/* talk to iop 331 outstanding command aborted */
rtnval = (acb->acb_flags & ACB_F_BUS_HANG_ON) ?
0xFF : arcmsr_abort_host_command(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->ccb_state == ARCMSR_CCB_START) {
/* ccb->ccb_state = ARCMSR_CCB_RESET; */
ccb->pkt->pkt_reason = CMD_RESET;
ccb->pkt->pkt_statistics |= STAT_BUS_RESET;
arcmsr_ccb_complete(ccb, 1);
}
}
atomic_and_32(&acb->ccboutstandingcount, 0);
/* enable all outbound interrupt */
arcmsr_enable_allintr(acb, intmask_org);
} else {
rtnval = arcmsr_get_echo_from_iop(acb);
}
return (rtnval);
}
static struct QBUFFER *
arcmsr_get_iop_rqbuffer(struct ACB *acb)
{
struct QBUFFER *qb;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
qb = (struct QBUFFER *)&phbamu->message_rbuffer;
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
qb = (struct QBUFFER *)&phbbmu->hbb_rwbuffer->message_rbuffer;
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
qb = (struct QBUFFER *)&phbcmu->message_rbuffer;
break;
}
}
return (qb);
}
static struct QBUFFER *
arcmsr_get_iop_wqbuffer(struct ACB *acb)
{
struct QBUFFER *qbuffer = NULL;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
qbuffer = (struct QBUFFER *)&phbamu->message_wbuffer;
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
qbuffer = (struct QBUFFER *)
&phbbmu->hbb_rwbuffer->message_wbuffer;
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
qbuffer = (struct QBUFFER *)&phbcmu->message_wbuffer;
break;
}
}
return (qbuffer);
}
static void
arcmsr_iop_message_read(struct ACB *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/* let IOP know the data has been read */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_doorbell,
ARCMSR_INBOUND_DRIVER_DATA_READ_OK);
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
/* let IOP know the data has been read */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_DATA_READ_OK);
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/* let IOP know data has been read */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK);
break;
}
}
}
static void
arcmsr_iop_message_wrote(struct ACB *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/*
* push inbound doorbell tell iop, driver data write ok
* and wait reply on next hwinterrupt for next Qbuffer post
*/
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_doorbell,
ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK);
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
/*
* push inbound doorbell tell iop, driver data was writen
* successfully, then await reply on next hwinterrupt for
* next Qbuffer post
*/
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_DATA_WRITE_OK);
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/*
* push inbound doorbell tell iop, driver data write ok
* and wait reply on next hwinterrupt for next Qbuffer post
*/
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_DATA_WRITE_OK);
break;
}
}
}
static void
arcmsr_post_ioctldata2iop(struct ACB *acb)
{
uint8_t *pQbuffer;
struct QBUFFER *pwbuffer;
uint8_t *iop_data;
int32_t allxfer_len = 0;
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t *)pwbuffer->data;
if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READ) {
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READ);
while ((acb->wqbuf_firstidx != acb->wqbuf_lastidx) &&
(allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[acb->wqbuf_firstidx];
(void) memcpy(iop_data, pQbuffer, 1);
acb->wqbuf_firstidx++;
/* if last index number set it to 0 */
acb->wqbuf_firstidx %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
pwbuffer->data_len = allxfer_len;
/*
* push inbound doorbell and wait reply at hwinterrupt
* routine for next Qbuffer post
*/
arcmsr_iop_message_wrote(acb);
}
}
static void
arcmsr_stop_hba_bgrb(struct ACB *acb)
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_STOP_BGRB);
if (!arcmsr_hba_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for background rebuild completion");
}
static void
arcmsr_stop_hbb_bgrb(struct ACB *acb)
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell, ARCMSR_MESSAGE_STOP_BGRB);
if (!arcmsr_hbb_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for background rebuild completion");
}
static void
arcmsr_stop_hbc_bgrb(struct ACB *acb)
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
acb->acb_flags &= ~ACB_F_MSG_START_BGRB;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_STOP_BGRB);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell, ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE);
if (!arcmsr_hbc_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for background rebuild completion");
}
static int
arcmsr_iop_message_xfer(struct ACB *acb, struct scsi_pkt *pkt)
{
struct CMD_MESSAGE_FIELD *pcmdmessagefld;
struct CCB *ccb = pkt->pkt_ha_private;
struct buf *bp = ccb->bp;
uint8_t *pQbuffer;
int retvalue = 0, transfer_len = 0;
char *buffer;
uint32_t controlcode;
/* 4 bytes: Areca io control code */
controlcode =
(uint32_t)pkt->pkt_cdbp[5] << 24 |
(uint32_t)pkt->pkt_cdbp[6] << 16 |
(uint32_t)pkt->pkt_cdbp[7] << 8 |
(uint32_t)pkt->pkt_cdbp[8];
if (bp->b_flags & (B_PHYS | B_PAGEIO))
bp_mapin(bp);
buffer = bp->b_un.b_addr;
transfer_len = bp->b_bcount;
if (transfer_len > sizeof (struct CMD_MESSAGE_FIELD)) {
retvalue = ARCMSR_MESSAGE_FAIL;
goto message_out;
}
pcmdmessagefld = (struct CMD_MESSAGE_FIELD *)(intptr_t)buffer;
switch (controlcode) {
case ARCMSR_MESSAGE_READ_RQBUFFER:
{
unsigned long *ver_addr;
uint8_t *ptmpQbuffer;
int32_t allxfer_len = 0;
ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP);
ptmpQbuffer = (uint8_t *)ver_addr;
while ((acb->rqbuf_firstidx != acb->rqbuf_lastidx) &&
(allxfer_len < (MSGDATABUFLEN - 1))) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_firstidx];
(void) memcpy(ptmpQbuffer, pQbuffer, 1);
acb->rqbuf_firstidx++;
acb->rqbuf_firstidx %= ARCMSR_MAX_QBUFFER;
ptmpQbuffer++;
allxfer_len++;
}
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
struct QBUFFER *prbuffer;
uint8_t *iop_data;
int32_t iop_len;
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = (uint8_t *)prbuffer->data;
iop_len = (int32_t)prbuffer->data_len;
while (iop_len > 0) {
pQbuffer = &acb->rqbuffer[acb->rqbuf_lastidx];
(void) memcpy(pQbuffer, iop_data, 1);
acb->rqbuf_lastidx++;
acb->rqbuf_lastidx %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
arcmsr_iop_message_read(acb);
}
(void) memcpy(pcmdmessagefld->messagedatabuffer,
(uint8_t *)ver_addr, allxfer_len);
pcmdmessagefld->cmdmessage.Length = allxfer_len;
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
kmem_free(ver_addr, MSGDATABUFLEN);
break;
}
case ARCMSR_MESSAGE_WRITE_WQBUFFER:
{
uint8_t *ver_addr;
int32_t my_empty_len, user_len, wqbuf_firstidx,
wqbuf_lastidx;
uint8_t *ptmpuserbuffer;
ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP);
ptmpuserbuffer = ver_addr;
user_len = min(pcmdmessagefld->cmdmessage.Length,
MSGDATABUFLEN);
(void) memcpy(ptmpuserbuffer,
pcmdmessagefld->messagedatabuffer, user_len);
wqbuf_lastidx = acb->wqbuf_lastidx;
wqbuf_firstidx = acb->wqbuf_firstidx;
if (wqbuf_lastidx != wqbuf_firstidx) {
struct scsi_arq_status *arq_status;
arcmsr_post_ioctldata2iop(acb);
arq_status = (struct scsi_arq_status *)
(intptr_t)(pkt->pkt_scbp);
bzero((caddr_t)arq_status,
sizeof (struct scsi_arq_status));
arq_status->sts_rqpkt_reason = CMD_CMPLT;
arq_status->sts_rqpkt_state = (STATE_GOT_BUS |
STATE_GOT_TARGET | STATE_SENT_CMD |
STATE_XFERRED_DATA | STATE_GOT_STATUS);
arq_status->sts_rqpkt_statistics =
pkt->pkt_statistics;
arq_status->sts_rqpkt_resid = 0;
if (&arq_status->sts_sensedata != NULL) {
struct scsi_extended_sense *sts_sensedata;
sts_sensedata = &arq_status->sts_sensedata;
/* has error report sensedata */
sts_sensedata->es_code = 0x0;
sts_sensedata->es_valid = 0x01;
sts_sensedata->es_key = KEY_ILLEGAL_REQUEST;
/* AdditionalSenseLength */
sts_sensedata->es_add_len = 0x0A;
/* AdditionalSenseCode */
sts_sensedata->es_add_code = 0x20;
}
retvalue = ARCMSR_MESSAGE_FAIL;
} else {
my_empty_len = (wqbuf_firstidx-wqbuf_lastidx - 1) &
(ARCMSR_MAX_QBUFFER - 1);
if (my_empty_len >= user_len) {
while (user_len > 0) {
pQbuffer = &acb->wqbuffer[
acb->wqbuf_lastidx];
(void) memcpy(pQbuffer,
ptmpuserbuffer, 1);
acb->wqbuf_lastidx++;
acb->wqbuf_lastidx %=
ARCMSR_MAX_QBUFFER;
ptmpuserbuffer++;
user_len--;
}
if (acb->acb_flags &
ACB_F_MESSAGE_WQBUFFER_CLEARED) {
acb->acb_flags &=
~ACB_F_MESSAGE_WQBUFFER_CLEARED;
arcmsr_post_ioctldata2iop(acb);
}
} else {
struct scsi_arq_status *arq_status;
/* has error report sensedata */
arq_status = (struct scsi_arq_status *)
(intptr_t)(pkt->pkt_scbp);
bzero((caddr_t)arq_status,
sizeof (struct scsi_arq_status));
arq_status->sts_rqpkt_reason = CMD_CMPLT;
arq_status->sts_rqpkt_state =
(STATE_GOT_BUS |
STATE_GOT_TARGET |STATE_SENT_CMD |
STATE_XFERRED_DATA | STATE_GOT_STATUS);
arq_status->sts_rqpkt_statistics =
pkt->pkt_statistics;
arq_status->sts_rqpkt_resid = 0;
if (&arq_status->sts_sensedata != NULL) {
struct scsi_extended_sense *
sts_sensedata;
sts_sensedata =
&arq_status->sts_sensedata;
/* has error report sensedata */
sts_sensedata->es_code = 0x0;
sts_sensedata->es_valid = 0x01;
sts_sensedata->es_key =
KEY_ILLEGAL_REQUEST;
/* AdditionalSenseLength */
sts_sensedata->es_add_len = 0x0A;
/* AdditionalSenseCode */
sts_sensedata->es_add_code = 0x20;
}
retvalue = ARCMSR_MESSAGE_FAIL;
}
}
kmem_free(ver_addr, MSGDATABUFLEN);
break;
}
case ARCMSR_MESSAGE_CLEAR_RQBUFFER:
pQbuffer = acb->rqbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED;
acb->rqbuf_firstidx = 0;
acb->rqbuf_lastidx = 0;
(void) memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
case ARCMSR_MESSAGE_CLEAR_WQBUFFER:
pQbuffer = acb->wqbuffer;
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READ);
acb->wqbuf_firstidx = 0;
acb->wqbuf_lastidx = 0;
(void) memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER);
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER:
if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) {
acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW;
arcmsr_iop_message_read(acb);
}
acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED |
ACB_F_MESSAGE_RQBUFFER_CLEARED |
ACB_F_MESSAGE_WQBUFFER_READ);
acb->rqbuf_firstidx = 0;
acb->rqbuf_lastidx = 0;
acb->wqbuf_firstidx = 0;
acb->wqbuf_lastidx = 0;
pQbuffer = acb->rqbuffer;
(void) memset(pQbuffer, 0, sizeof (struct QBUFFER));
pQbuffer = acb->wqbuffer;
(void) memset(pQbuffer, 0, sizeof (struct QBUFFER));
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_OK;
break;
case ARCMSR_MESSAGE_REQUEST_RETURN_CODE_3F:
pcmdmessagefld->cmdmessage.ReturnCode =
ARCMSR_MESSAGE_RETURNCODE_3F;
break;
/*
* Not supported - ARCMSR_MESSAGE_SAY_HELLO
*/
case ARCMSR_MESSAGE_SAY_GOODBYE:
arcmsr_iop_parking(acb);
break;
case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE:
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_flush_hba_cache(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_flush_hbb_cache(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_flush_hbc_cache(acb);
break;
}
break;
default:
retvalue = ARCMSR_MESSAGE_FAIL;
}
message_out:
return (retvalue);
}
static void
arcmsr_pcidev_disattach(struct ACB *acb)
{
struct CCB *ccb;
int i = 0;
/* disable all outbound interrupts */
(void) arcmsr_disable_allintr(acb);
/* stop adapter background rebuild */
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_stop_hba_bgrb(acb);
arcmsr_flush_hba_cache(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_stop_hbb_bgrb(acb);
arcmsr_flush_hbb_cache(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_stop_hbc_bgrb(acb);
arcmsr_flush_hbc_cache(acb);
break;
}
/* abort all outstanding commands */
acb->acb_flags |= ACB_F_SCSISTOPADAPTER;
acb->acb_flags &= ~ACB_F_IOP_INITED;
if (acb->ccboutstandingcount != 0) {
/* clear and abort all outbound posted Q */
arcmsr_done4abort_postqueue(acb);
/* talk to iop outstanding command aborted */
(void) arcmsr_abort_host_command(acb);
for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) {
ccb = acb->pccb_pool[i];
if (ccb->ccb_state == ARCMSR_CCB_START) {
/* ccb->ccb_state = ARCMSR_CCB_ABORTED; */
ccb->pkt->pkt_reason = CMD_ABORTED;
ccb->pkt->pkt_statistics |= STAT_ABORTED;
arcmsr_ccb_complete(ccb, 1);
}
}
}
}
/* get firmware miscellaneous data */
static void
arcmsr_get_hba_config(struct ACB *acb)
{
struct HBA_msgUnit *phbamu;
char *acb_firm_model;
char *acb_firm_version;
char *acb_device_map;
char *iop_firm_model;
char *iop_firm_version;
char *iop_device_map;
int count;
phbamu = (struct HBA_msgUnit *)acb->pmu;
acb_firm_model = acb->firm_model;
acb_firm_version = acb->firm_version;
acb_device_map = acb->device_map;
/* firm_model, 15 */
iop_firm_model =
(char *)(&phbamu->msgcode_rwbuffer[ARCMSR_FW_MODEL_OFFSET]);
/* firm_version, 17 */
iop_firm_version =
(char *)(&phbamu->msgcode_rwbuffer[ARCMSR_FW_VERS_OFFSET]);
/* device_map, 21 */
iop_device_map =
(char *)(&phbamu->msgcode_rwbuffer[ARCMSR_FW_MAP_OFFSET]);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_GET_CONFIG);
if (!arcmsr_hba_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for adapter firmware "
"miscellaneous data");
count = 8;
while (count) {
*acb_firm_model = CHIP_REG_READ8(acb->reg_mu_acc_handle0,
iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count) {
*acb_firm_version =
CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
count = 16;
while (count) {
*acb_device_map =
CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_device_map);
acb_device_map++;
iop_device_map++;
count--;
}
arcmsr_log(acb, CE_CONT, "ARECA RAID FIRMWARE VERSION %s\n",
acb->firm_version);
/* firm_request_len, 1 */
acb->firm_request_len = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->msgcode_rwbuffer[1]);
/* firm_numbers_queue, 2 */
acb->firm_numbers_queue = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->msgcode_rwbuffer[2]);
/* firm_sdram_size, 3 */
acb->firm_sdram_size = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->msgcode_rwbuffer[3]);
/* firm_ide_channels, 4 */
acb->firm_ide_channels = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->msgcode_rwbuffer[4]);
}
/* get firmware miscellaneous data */
static void
arcmsr_get_hbb_config(struct ACB *acb)
{
struct HBB_msgUnit *phbbmu;
char *acb_firm_model;
char *acb_firm_version;
char *acb_device_map;
char *iop_firm_model;
char *iop_firm_version;
char *iop_device_map;
int count;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
acb_firm_model = acb->firm_model;
acb_firm_version = acb->firm_version;
acb_device_map = acb->device_map;
/* firm_model, 15 */
iop_firm_model = (char *)
(&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[ARCMSR_FW_MODEL_OFFSET]);
/* firm_version, 17 */
iop_firm_version = (char *)
(&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[ARCMSR_FW_VERS_OFFSET]);
/* device_map, 21 */
iop_device_map = (char *)
(&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[ARCMSR_FW_MAP_OFFSET]);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell, ARCMSR_MESSAGE_GET_CONFIG);
if (!arcmsr_hbb_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for adapter firmware "
"miscellaneous data");
count = 8;
while (count) {
*acb_firm_model =
CHIP_REG_READ8(acb->reg_mu_acc_handle1, iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count) {
*acb_firm_version =
CHIP_REG_READ8(acb->reg_mu_acc_handle1, iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
count = 16;
while (count) {
*acb_device_map =
CHIP_REG_READ8(acb->reg_mu_acc_handle1, iop_device_map);
acb_device_map++;
iop_device_map++;
count--;
}
arcmsr_log(acb, CE_CONT, "ARECA RAID FIRMWARE VERSION %s\n",
acb->firm_version);
/* firm_request_len, 1 */
acb->firm_request_len = CHIP_REG_READ32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[1]);
/* firm_numbers_queue, 2 */
acb->firm_numbers_queue = CHIP_REG_READ32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[2]);
/* firm_sdram_size, 3 */
acb->firm_sdram_size = CHIP_REG_READ32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[3]);
/* firm_ide_channels, 4 */
acb->firm_ide_channels = CHIP_REG_READ32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[4]);
}
/* get firmware miscellaneous data */
static void
arcmsr_get_hbc_config(struct ACB *acb)
{
struct HBC_msgUnit *phbcmu;
char *acb_firm_model;
char *acb_firm_version;
char *acb_device_map;
char *iop_firm_model;
char *iop_firm_version;
char *iop_device_map;
int count;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
acb_firm_model = acb->firm_model;
acb_firm_version = acb->firm_version;
acb_device_map = acb->device_map;
/* firm_model, 15 */
iop_firm_model =
(char *)(&phbcmu->msgcode_rwbuffer[ARCMSR_FW_MODEL_OFFSET]);
/* firm_version, 17 */
iop_firm_version =
(char *)(&phbcmu->msgcode_rwbuffer[ARCMSR_FW_VERS_OFFSET]);
/* device_map, 21 */
iop_device_map =
(char *)(&phbcmu->msgcode_rwbuffer[ARCMSR_FW_MAP_OFFSET]);
/* post "get config" instruction */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_GET_CONFIG);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell, ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE);
if (!arcmsr_hbc_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for adapter firmware "
"miscellaneous data");
count = 8;
while (count) {
*acb_firm_model =
CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_firm_model);
acb_firm_model++;
iop_firm_model++;
count--;
}
count = 16;
while (count) {
*acb_firm_version =
CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_firm_version);
acb_firm_version++;
iop_firm_version++;
count--;
}
count = 16;
while (count) {
*acb_device_map =
CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_device_map);
acb_device_map++;
iop_device_map++;
count--;
}
arcmsr_log(acb, CE_CONT, "ARECA RAID FIRMWARE VERSION %s\n",
acb->firm_version);
/* firm_request_len, 1, 04-07 */
acb->firm_request_len = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->msgcode_rwbuffer[1]);
/* firm_numbers_queue, 2, 08-11 */
acb->firm_numbers_queue = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->msgcode_rwbuffer[2]);
/* firm_sdram_size, 3, 12-15 */
acb->firm_sdram_size = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->msgcode_rwbuffer[3]);
/* firm_ide_channels, 4, 16-19 */
acb->firm_ide_channels = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->msgcode_rwbuffer[4]);
/* firm_cfg_version, 25, 100-103 */
acb->firm_cfg_version = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->msgcode_rwbuffer[25]);
}
/* start background rebuild */
static void
arcmsr_start_hba_bgrb(struct ACB *acb) {
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_START_BGRB);
if (!arcmsr_hba_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for background rebuild to start");
}
static void
arcmsr_start_hbb_bgrb(struct ACB *acb) {
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_MESSAGE_START_BGRB);
if (!arcmsr_hbb_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for background rebuild to start");
}
static void
arcmsr_start_hbc_bgrb(struct ACB *acb) {
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
acb->acb_flags |= ACB_F_MSG_START_BGRB;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_START_BGRB);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell, ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE);
if (!arcmsr_hbc_wait_msgint_ready(acb))
arcmsr_warn(acb,
"timeout while waiting for background rebuild to start");
}
static void
arcmsr_polling_hba_ccbdone(struct ACB *acb, struct CCB *poll_ccb)
{
struct HBA_msgUnit *phbamu;
struct CCB *ccb;
boolean_t error;
uint32_t flag_ccb, outbound_intstatus, intmask_org;
boolean_t poll_ccb_done = B_FALSE;
uint32_t poll_count = 0;
phbamu = (struct HBA_msgUnit *)acb->pmu;
polling_ccb_retry:
/* TODO: Use correct offset and size for syncing? */
if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS)
return;
intmask_org = arcmsr_disable_allintr(acb);
for (;;) {
if ((flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_queueport)) == 0xFFFFFFFF) {
if (poll_ccb_done) {
/* chip FIFO no ccb for completion already */
break;
} else {
drv_usecwait(25000);
if ((poll_count > 100) && (poll_ccb != NULL)) {
break;
}
if (acb->ccboutstandingcount == 0) {
break;
}
poll_count++;
outbound_intstatus =
CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus) &
acb->outbound_int_enable;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus,
outbound_intstatus); /* clear interrupt */
}
}
/* frame must be 32 bytes aligned */
ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5)));
/* check if command done with no error */
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ?
B_TRUE : B_FALSE;
if (poll_ccb != NULL)
poll_ccb_done = (ccb == poll_ccb) ? B_TRUE : B_FALSE;
if (ccb->acb != acb) {
arcmsr_warn(acb, "ccb got a wrong acb!");
continue;
}
if (ccb->ccb_state != ARCMSR_CCB_START) {
if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) {
ccb->ccb_state |= ARCMSR_CCB_BACK;
ccb->pkt->pkt_reason = CMD_ABORTED;
ccb->pkt->pkt_statistics |= STAT_ABORTED;
arcmsr_ccb_complete(ccb, 1);
continue;
}
arcmsr_report_ccb_state(acb, ccb, error);
arcmsr_warn(acb,
"polling op got unexpected ccb command done");
continue;
}
arcmsr_report_ccb_state(acb, ccb, error);
} /* drain reply FIFO */
arcmsr_enable_allintr(acb, intmask_org);
}
static void
arcmsr_polling_hbb_ccbdone(struct ACB *acb, struct CCB *poll_ccb)
{
struct HBB_msgUnit *phbbmu;
struct CCB *ccb;
uint32_t flag_ccb, intmask_org;
boolean_t error;
uint32_t poll_count = 0;
int index;
boolean_t poll_ccb_done = B_FALSE;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
polling_ccb_retry:
/* Use correct offset and size for syncing */
if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS)
return;
intmask_org = arcmsr_disable_allintr(acb);
for (;;) {
index = phbbmu->doneq_index;
if ((flag_ccb = phbbmu->done_qbuffer[index]) == 0) {
if (poll_ccb_done) {
/* chip FIFO no ccb for completion already */
break;
} else {
drv_usecwait(25000);
if ((poll_count > 100) && (poll_ccb != NULL))
break;
if (acb->ccboutstandingcount == 0)
break;
poll_count++;
/* clear doorbell interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell,
ARCMSR_DOORBELL_INT_CLEAR_PATTERN);
}
}
phbbmu->done_qbuffer[index] = 0;
index++;
/* if last index number set it to 0 */
index %= ARCMSR_MAX_HBB_POSTQUEUE;
phbbmu->doneq_index = index;
/* check if command done with no error */
/* frame must be 32 bytes aligned */
ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5)));
/* check if command done with no error */
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ?
B_TRUE : B_FALSE;
if (poll_ccb != NULL)
poll_ccb_done = (ccb == poll_ccb) ? B_TRUE : B_FALSE;
if (ccb->acb != acb) {
arcmsr_warn(acb, "ccb got a wrong acb!");
continue;
}
if (ccb->ccb_state != ARCMSR_CCB_START) {
if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) {
ccb->ccb_state |= ARCMSR_CCB_BACK;
ccb->pkt->pkt_reason = CMD_ABORTED;
ccb->pkt->pkt_statistics |= STAT_ABORTED;
arcmsr_ccb_complete(ccb, 1);
continue;
}
arcmsr_report_ccb_state(acb, ccb, error);
arcmsr_warn(acb,
"polling op got unexpect ccb command done");
continue;
}
arcmsr_report_ccb_state(acb, ccb, error);
} /* drain reply FIFO */
arcmsr_enable_allintr(acb, intmask_org);
}
static void
arcmsr_polling_hbc_ccbdone(struct ACB *acb, struct CCB *poll_ccb)
{
struct HBC_msgUnit *phbcmu;
struct CCB *ccb;
boolean_t error;
uint32_t ccb_cdb_phy;
uint32_t flag_ccb, intmask_org;
boolean_t poll_ccb_done = B_FALSE;
uint32_t poll_count = 0;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
polling_ccb_retry:
/* Use correct offset and size for syncing */
if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS)
return;
intmask_org = arcmsr_disable_allintr(acb);
for (;;) {
if (!(CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->host_int_status) &
ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR)) {
if (poll_ccb_done) {
/* chip FIFO no ccb for completion already */
break;
} else {
drv_usecwait(25000);
if ((poll_count > 100) && (poll_ccb != NULL)) {
break;
}
if (acb->ccboutstandingcount == 0) {
break;
}
poll_count++;
}
}
flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_queueport_low);
/* frame must be 32 bytes aligned */
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
/* the CDB is the first field of the CCB */
ccb = NumToPtr((acb->vir2phy_offset + ccb_cdb_phy));
/* check if command done with no error */
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ?
B_TRUE : B_FALSE;
if (poll_ccb != NULL)
poll_ccb_done = (ccb == poll_ccb) ? B_TRUE : B_FALSE;
if (ccb->acb != acb) {
arcmsr_warn(acb, "ccb got a wrong acb!");
continue;
}
if (ccb->ccb_state != ARCMSR_CCB_START) {
if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) {
ccb->ccb_state |= ARCMSR_CCB_BACK;
ccb->pkt->pkt_reason = CMD_ABORTED;
ccb->pkt->pkt_statistics |= STAT_ABORTED;
arcmsr_ccb_complete(ccb, 1);
continue;
}
arcmsr_report_ccb_state(acb, ccb, error);
arcmsr_warn(acb,
"polling op got unexpected ccb command done");
continue;
}
arcmsr_report_ccb_state(acb, ccb, error);
} /* drain reply FIFO */
arcmsr_enable_allintr(acb, intmask_org);
}
/*
* Function: arcmsr_hba_hardware_reset()
* Bug Fix for Intel IOP cause firmware hang on.
* and kernel panic
*/
static void
arcmsr_hba_hardware_reset(struct ACB *acb)
{
struct HBA_msgUnit *phbamu;
uint8_t value[64];
int i;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/* backup pci config data */
for (i = 0; i < 64; i++) {
value[i] = pci_config_get8(acb->pci_acc_handle, i);
}
/* hardware reset signal */
if ((PCI_DEVICE_ID_ARECA_1680 ==
pci_config_get16(acb->pci_acc_handle, PCI_CONF_DEVID))) {
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->reserved1[0], 0x00000003);
} else {
pci_config_put8(acb->pci_acc_handle, 0x84, 0x20);
}
drv_usecwait(1000000);
/* write back pci config data */
for (i = 0; i < 64; i++) {
pci_config_put8(acb->pci_acc_handle, i, value[i]);
}
drv_usecwait(1000000);
}
/*
* Function: arcmsr_abort_host_command
*/
static uint8_t
arcmsr_abort_host_command(struct ACB *acb)
{
uint8_t rtnval = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
rtnval = arcmsr_abort_hba_allcmd(acb);
break;
case ACB_ADAPTER_TYPE_B:
rtnval = arcmsr_abort_hbb_allcmd(acb);
break;
case ACB_ADAPTER_TYPE_C:
rtnval = arcmsr_abort_hbc_allcmd(acb);
break;
}
return (rtnval);
}
/*
* Function: arcmsr_handle_iop_bus_hold
*/
static void
arcmsr_handle_iop_bus_hold(struct ACB *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
int retry_count = 0;
acb->timeout_count = 0;
phbamu = (struct HBA_msgUnit *)acb->pmu;
arcmsr_hba_hardware_reset(acb);
acb->acb_flags &= ~ACB_F_IOP_INITED;
sleep_again:
drv_usecwait(1000000);
if ((CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_msgaddr1) &
ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0) {
if (retry_count > 60) {
arcmsr_warn(acb,
"waiting for hardware"
"bus reset return, RETRY TERMINATED!!");
return;
}
retry_count++;
goto sleep_again;
}
arcmsr_iop_init(acb);
break;
}
}
}
static void
arcmsr_iop2drv_data_wrote_handle(struct ACB *acb) {
struct QBUFFER *prbuffer;
uint8_t *pQbuffer;
uint8_t *iop_data;
int my_empty_len, iop_len;
int rqbuf_firstidx, rqbuf_lastidx;
/* check this iop data if overflow my rqbuffer */
rqbuf_lastidx = acb->rqbuf_lastidx;
rqbuf_firstidx = acb->rqbuf_firstidx;
prbuffer = arcmsr_get_iop_rqbuffer(acb);
iop_data = (uint8_t *)prbuffer->data;
iop_len = prbuffer->data_len;
my_empty_len = (rqbuf_firstidx-rqbuf_lastidx - 1) &
(ARCMSR_MAX_QBUFFER - 1);
if (my_empty_len >= iop_len) {
while (iop_len > 0) {
pQbuffer = &acb->rqbuffer[rqbuf_lastidx];
(void) memcpy(pQbuffer, iop_data, 1);
rqbuf_lastidx++;
/* if last index number set it to 0 */
rqbuf_lastidx %= ARCMSR_MAX_QBUFFER;
iop_data++;
iop_len--;
}
acb->rqbuf_lastidx = rqbuf_lastidx;
arcmsr_iop_message_read(acb);
/* signature, let IOP know data has been read */
} else {
acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW;
}
}
static void
arcmsr_iop2drv_data_read_handle(struct ACB *acb) {
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READ;
/*
* check if there are any mail packages from user space program
* in my post bag, now is the time to send them into Areca's firmware
*/
if (acb->wqbuf_firstidx != acb->wqbuf_lastidx) {
uint8_t *pQbuffer;
struct QBUFFER *pwbuffer;
uint8_t *iop_data;
int allxfer_len = 0;
acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READ);
pwbuffer = arcmsr_get_iop_wqbuffer(acb);
iop_data = (uint8_t *)pwbuffer->data;
while ((acb->wqbuf_firstidx != acb->wqbuf_lastidx) &&
(allxfer_len < 124)) {
pQbuffer = &acb->wqbuffer[acb->wqbuf_firstidx];
(void) memcpy(iop_data, pQbuffer, 1);
acb->wqbuf_firstidx++;
/* if last index number set it to 0 */
acb->wqbuf_firstidx %= ARCMSR_MAX_QBUFFER;
iop_data++;
allxfer_len++;
}
pwbuffer->data_len = allxfer_len;
/*
* push inbound doorbell, tell iop driver data write ok
* await reply on next hwinterrupt for next Qbuffer post
*/
arcmsr_iop_message_wrote(acb);
}
if (acb->wqbuf_firstidx == acb->wqbuf_lastidx)
acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED;
}
static void
arcmsr_hba_doorbell_isr(struct ACB *acb)
{
uint32_t outbound_doorbell;
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/*
* Maybe here we need to check wrqbuffer_lock is locked or not
* DOORBELL: ding! dong!
* check if there are any mail need to pack from firmware
*/
outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_doorbell);
/* clear doorbell interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_doorbell, outbound_doorbell);
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK)
arcmsr_iop2drv_data_wrote_handle(acb);
if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK)
arcmsr_iop2drv_data_read_handle(acb);
}
static void
arcmsr_hbc_doorbell_isr(struct ACB *acb)
{
uint32_t outbound_doorbell;
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/*
* Maybe here we need to check wrqbuffer_lock is locked or not
* DOORBELL: ding! dong!
* check if there are any mail need to pick from firmware
*/
outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell_clear,
outbound_doorbell); /* clear interrupt */
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK) {
arcmsr_iop2drv_data_wrote_handle(acb);
}
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK) {
arcmsr_iop2drv_data_read_handle(acb);
}
if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) {
/* messenger of "driver to iop commands" */
arcmsr_hbc_message_isr(acb);
}
}
static void
arcmsr_hba_message_isr(struct ACB *acb)
{
struct HBA_msgUnit *phbamu = (struct HBA_msgUnit *)acb->pmu;
uint32_t *signature = (&phbamu->msgcode_rwbuffer[0]);
uint32_t outbound_message;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus, ARCMSR_MU_OUTBOUND_MESSAGE0_INT);
outbound_message = CHIP_REG_READ32(acb->reg_mu_acc_handle0, signature);
if (outbound_message == ARCMSR_SIGNATURE_GET_CONFIG)
if ((ddi_taskq_dispatch(acb->taskq,
(void (*)(void *))arcmsr_dr_handle,
acb, DDI_NOSLEEP)) != DDI_SUCCESS) {
arcmsr_warn(acb, "DR task start failed");
}
}
static void
arcmsr_hbb_message_isr(struct ACB *acb)
{
struct HBB_msgUnit *phbbmu = (struct HBB_msgUnit *)acb->pmu;
uint32_t *signature = (&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[0]);
uint32_t outbound_message;
/* clear interrupts */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell,
ARCMSR_MESSAGE_INT_CLEAR_PATTERN);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_END_OF_INTERRUPT);
outbound_message = CHIP_REG_READ32(acb->reg_mu_acc_handle0, signature);
if (outbound_message == ARCMSR_SIGNATURE_GET_CONFIG)
if ((ddi_taskq_dispatch(acb->taskq,
(void (*)(void *))arcmsr_dr_handle,
acb, DDI_NOSLEEP)) != DDI_SUCCESS) {
arcmsr_warn(acb, "DR task start failed");
}
}
static void
arcmsr_hbc_message_isr(struct ACB *acb)
{
struct HBC_msgUnit *phbcmu = (struct HBC_msgUnit *)acb->pmu;
uint32_t *signature = (&phbcmu->msgcode_rwbuffer[0]);
uint32_t outbound_message;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell_clear,
ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR);
outbound_message = CHIP_REG_READ32(acb->reg_mu_acc_handle0, signature);
if (outbound_message == ARCMSR_SIGNATURE_GET_CONFIG)
if ((ddi_taskq_dispatch(acb->taskq,
(void (*)(void *))arcmsr_dr_handle,
acb, DDI_NOSLEEP)) != DDI_SUCCESS) {
arcmsr_warn(acb, "DR task start failed");
}
}
static void
arcmsr_hba_postqueue_isr(struct ACB *acb)
{
struct HBA_msgUnit *phbamu;
struct CCB *ccb;
uint32_t flag_ccb;
boolean_t error;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/* areca cdb command done */
/* Use correct offset and size for syncing */
(void) ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
while ((flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_queueport)) != 0xFFFFFFFF) {
/* frame must be 32 bytes aligned */
ccb = NumToPtr((acb->vir2phy_offset+(flag_ccb << 5)));
/* check if command done with no error */
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ?
B_TRUE : B_FALSE;
arcmsr_drain_donequeue(acb, ccb, error);
} /* drain reply FIFO */
}
static void
arcmsr_hbb_postqueue_isr(struct ACB *acb)
{
struct HBB_msgUnit *phbbmu;
struct CCB *ccb;
uint32_t flag_ccb;
boolean_t error;
int index;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
/* areca cdb command done */
index = phbbmu->doneq_index;
if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS)
return;
while ((flag_ccb = phbbmu->done_qbuffer[index]) != 0) {
phbbmu->done_qbuffer[index] = 0;
/* frame must be 32 bytes aligned */
/* the CDB is the first field of the CCB */
ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5)));
/* check if command done with no error */
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ?
B_TRUE : B_FALSE;
arcmsr_drain_donequeue(acb, ccb, error);
index++;
/* if last index number set it to 0 */
index %= ARCMSR_MAX_HBB_POSTQUEUE;
phbbmu->doneq_index = index;
} /* drain reply FIFO */
}
static void
arcmsr_hbc_postqueue_isr(struct ACB *acb)
{
struct HBC_msgUnit *phbcmu;
struct CCB *ccb;
uint32_t flag_ccb, ccb_cdb_phy, throttling = 0;
boolean_t error;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/* areca cdb command done */
/* Use correct offset and size for syncing */
(void) ddi_dma_sync(acb->ccbs_pool_handle, 0, 0,
DDI_DMA_SYNC_FORKERNEL);
while (CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->host_int_status) &
ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) {
/* check if command done with no error */
flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_queueport_low);
/* frame must be 32 bytes aligned */
ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0);
/* the CDB is the first field of the CCB */
ccb = NumToPtr((acb->vir2phy_offset + ccb_cdb_phy));
error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ?
B_TRUE : B_FALSE;
/* check if command done with no error */
arcmsr_drain_donequeue(acb, ccb, error);
if (throttling == ARCMSR_HBC_ISR_THROTTLING_LEVEL) {
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_POSTQUEUE_THROTTLING);
break;
}
throttling++;
} /* drain reply FIFO */
}
static uint_t
arcmsr_handle_hba_isr(struct ACB *acb) {
uint32_t outbound_intstatus;
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
outbound_intstatus = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_intstatus) & acb->outbound_int_enable;
if (outbound_intstatus == 0) /* it must be a shared irq */
return (DDI_INTR_UNCLAIMED);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbamu->outbound_intstatus,
outbound_intstatus); /* clear interrupt */
/* MU doorbell interrupts */
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT)
arcmsr_hba_doorbell_isr(acb);
/* MU post queue interrupts */
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT)
arcmsr_hba_postqueue_isr(acb);
if (outbound_intstatus & ARCMSR_MU_OUTBOUND_MESSAGE0_INT) {
arcmsr_hba_message_isr(acb);
}
return (DDI_INTR_CLAIMED);
}
static uint_t
arcmsr_handle_hbb_isr(struct ACB *acb) {
uint32_t outbound_doorbell;
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell) & acb->outbound_int_enable;
if (outbound_doorbell == 0) /* it must be a shared irq */
return (DDI_INTR_UNCLAIMED);
/* clear doorbell interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell, ~outbound_doorbell);
/* wait a cycle */
(void) CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_END_OF_INTERRUPT);
/* MU ioctl transfer doorbell interrupts */
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK)
arcmsr_iop2drv_data_wrote_handle(acb);
if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK)
arcmsr_iop2drv_data_read_handle(acb);
/* MU post queue interrupts */
if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE)
arcmsr_hbb_postqueue_isr(acb);
/* MU message interrupt */
if (outbound_doorbell & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) {
arcmsr_hbb_message_isr(acb);
}
return (DDI_INTR_CLAIMED);
}
static uint_t
arcmsr_handle_hbc_isr(struct ACB *acb)
{
uint32_t host_interrupt_status;
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/* check outbound intstatus */
host_interrupt_status=
CHIP_REG_READ32(acb->reg_mu_acc_handle0, &phbcmu->host_int_status);
if (host_interrupt_status == 0) /* it must be share irq */
return (DDI_INTR_UNCLAIMED);
/* MU ioctl transfer doorbell interrupts */
if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR) {
/* messenger of "ioctl message read write" */
arcmsr_hbc_doorbell_isr(acb);
}
/* MU post queue interrupts */
if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) {
/* messenger of "scsi commands" */
arcmsr_hbc_postqueue_isr(acb);
}
return (DDI_INTR_CLAIMED);
}
static uint_t
arcmsr_intr_handler(caddr_t arg, caddr_t arg2)
{
struct ACB *acb = (void *)arg;
struct CCB *ccb;
uint_t retrn = DDI_INTR_UNCLAIMED;
_NOTE(ARGUNUSED(arg2))
mutex_enter(&acb->isr_mutex);
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
retrn = arcmsr_handle_hba_isr(acb);
break;
case ACB_ADAPTER_TYPE_B:
retrn = arcmsr_handle_hbb_isr(acb);
break;
case ACB_ADAPTER_TYPE_C:
retrn = arcmsr_handle_hbc_isr(acb);
break;
default:
/* We should never be here */
ASSERT(0);
break;
}
mutex_exit(&acb->isr_mutex);
while ((ccb = arcmsr_get_complete_ccb_from_list(acb)) != NULL) {
arcmsr_ccb_complete(ccb, 1);
}
return (retrn);
}
static void
arcmsr_wait_firmware_ready(struct ACB *acb) {
uint32_t firmware_state;
firmware_state = 0;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
{
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
do {
firmware_state =
CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK)
== 0);
break;
}
case ACB_ADAPTER_TYPE_B:
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
do {
firmware_state =
CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell);
} while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_END_OF_INTERRUPT);
break;
}
case ACB_ADAPTER_TYPE_C:
{
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
do {
firmware_state =
CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_msgaddr1);
} while ((firmware_state & ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK)
== 0);
break;
}
}
}
static void
arcmsr_clear_doorbell_queue_buffer(struct ACB *acb)
{
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A: {
struct HBA_msgUnit *phbamu;
uint32_t outbound_doorbell;
phbamu = (struct HBA_msgUnit *)acb->pmu;
/* empty doorbell Qbuffer if door bell rung */
outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbamu->outbound_doorbell);
/* clear doorbell interrupt */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->outbound_doorbell, outbound_doorbell);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_doorbell,
ARCMSR_INBOUND_DRIVER_DATA_READ_OK);
break;
}
case ACB_ADAPTER_TYPE_B: {
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
/* clear interrupt and message state */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->iop2drv_doorbell,
ARCMSR_MESSAGE_INT_CLEAR_PATTERN);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_DRV2IOP_DATA_READ_OK);
/* let IOP know data has been read */
break;
}
case ACB_ADAPTER_TYPE_C: {
struct HBC_msgUnit *phbcmu;
uint32_t outbound_doorbell;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
/* empty doorbell Qbuffer if door bell ringed */
outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell);
/* clear outbound doobell isr */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->outbound_doorbell_clear, outbound_doorbell);
/* let IOP know data has been read */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK);
break;
}
}
}
static uint32_t
arcmsr_iop_confirm(struct ACB *acb) {
uint64_t cdb_phyaddr;
uint32_t cdb_phyaddr_hi32;
/*
* here we need to tell iop 331 about our freeccb.HighPart
* if freeccb.HighPart is non-zero
*/
cdb_phyaddr = acb->ccb_cookie.dmac_laddress;
cdb_phyaddr_hi32 = (uint32_t)((cdb_phyaddr >> 16) >> 16);
acb->cdb_phyaddr_hi32 = cdb_phyaddr_hi32;
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
if (cdb_phyaddr_hi32 != 0) {
struct HBA_msgUnit *phbamu;
phbamu = (struct HBA_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->msgcode_rwbuffer[0],
ARCMSR_SIGNATURE_SET_CONFIG);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->msgcode_rwbuffer[1], cdb_phyaddr_hi32);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbamu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_SET_CONFIG);
if (!arcmsr_hba_wait_msgint_ready(acb)) {
arcmsr_warn(acb,
"timeout setting ccb "
"high physical address");
return (FALSE);
}
}
break;
/* if adapter is type B, set window of "post command queue" */
case ACB_ADAPTER_TYPE_B: {
uint32_t post_queue_phyaddr;
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
phbbmu->postq_index = 0;
phbbmu->doneq_index = 0;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_MESSAGE_SET_POST_WINDOW);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
arcmsr_warn(acb, "timeout setting post command "
"queue window");
return (FALSE);
}
post_queue_phyaddr = (uint32_t)cdb_phyaddr +
ARCMSR_MAX_FREECCB_NUM * P2ROUNDUP(sizeof (struct CCB), 32)
+ offsetof(struct HBB_msgUnit, post_qbuffer);
/* driver "set config" signature */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[0],
ARCMSR_SIGNATURE_SET_CONFIG);
/* normal should be zero */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[1],
cdb_phyaddr_hi32);
/* postQ size (256+8)*4 */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[2],
post_queue_phyaddr);
/* doneQ size (256+8)*4 */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[3],
post_queue_phyaddr+1056);
/* ccb maxQ size must be --> [(256+8)*4] */
CHIP_REG_WRITE32(acb->reg_mu_acc_handle1,
&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[4], 1056);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_MESSAGE_SET_CONFIG);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
arcmsr_warn(acb,
"timeout setting command queue window");
return (FALSE);
}
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_MESSAGE_START_DRIVER_MODE);
if (!arcmsr_hbb_wait_msgint_ready(acb)) {
arcmsr_warn(acb, "timeout in 'start driver mode'");
return (FALSE);
}
break;
}
case ACB_ADAPTER_TYPE_C:
if (cdb_phyaddr_hi32 != 0) {
struct HBC_msgUnit *phbcmu;
phbcmu = (struct HBC_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->msgcode_rwbuffer[0],
ARCMSR_SIGNATURE_SET_CONFIG);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->msgcode_rwbuffer[1], cdb_phyaddr_hi32);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_msgaddr0,
ARCMSR_INBOUND_MESG0_SET_CONFIG);
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbcmu->inbound_doorbell,
ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE);
if (!arcmsr_hbc_wait_msgint_ready(acb)) {
arcmsr_warn(acb, "'set ccb "
"high part physical address' timeout");
return (FALSE);
}
}
break;
}
return (TRUE);
}
/*
* ONLY used for Adapter type B
*/
static void
arcmsr_enable_eoi_mode(struct ACB *acb)
{
struct HBB_msgUnit *phbbmu;
phbbmu = (struct HBB_msgUnit *)acb->pmu;
CHIP_REG_WRITE32(acb->reg_mu_acc_handle0,
&phbbmu->hbb_doorbell->drv2iop_doorbell,
ARCMSR_MESSAGE_ACTIVE_EOI_MODE);
if (!arcmsr_hbb_wait_msgint_ready(acb))
arcmsr_warn(acb, "'iop enable eoi mode' timeout");
}
/* start background rebuild */
static void
arcmsr_iop_init(struct ACB *acb)
{
uint32_t intmask_org;
/* disable all outbound interrupt */
intmask_org = arcmsr_disable_allintr(acb);
arcmsr_wait_firmware_ready(acb);
(void) arcmsr_iop_confirm(acb);
/* start background rebuild */
switch (acb->adapter_type) {
case ACB_ADAPTER_TYPE_A:
arcmsr_get_hba_config(acb);
arcmsr_start_hba_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_B:
arcmsr_get_hbb_config(acb);
arcmsr_start_hbb_bgrb(acb);
break;
case ACB_ADAPTER_TYPE_C:
arcmsr_get_hbc_config(acb);
arcmsr_start_hbc_bgrb(acb);
break;
}
/* empty doorbell Qbuffer if door bell rang */
arcmsr_clear_doorbell_queue_buffer(acb);
if (acb->adapter_type == ACB_ADAPTER_TYPE_B)
arcmsr_enable_eoi_mode(acb);
/* enable outbound Post Queue, outbound doorbell Interrupt */
arcmsr_enable_allintr(acb, intmask_org);
acb->acb_flags |= ACB_F_IOP_INITED;
}