pci_boot.c revision 47310cedf870824837b096885cca62a0f10f5ff1
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/sunndi.h>
#include <sys/pci.h>
#include <sys/pci_impl.h>
#include <sys/pci_cfgspace.h>
#include <sys/memlist.h>
#include <sys/bootconf.h>
#include <io/pci/mps_table.h>
#include <sys/pci_cfgspace.h>
#include <sys/pci_cfgspace_impl.h>
#include <sys/psw.h>
#include "../../../../common/pci/pci_strings.h"
#include <sys/apic.h>
#include <io/pciex/pcie_nvidia.h>
#include <io/hotplug/pciehpc/pciehpc_acpi.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/intel_iommu.h>
#include <sys/iommulib.h>
#include <sys/devcache.h>
#define pci_getb (*pci_getb_func)
#define pci_getw (*pci_getw_func)
#define pci_getl (*pci_getl_func)
#define pci_putb (*pci_putb_func)
#define pci_putw (*pci_putw_func)
#define pci_putl (*pci_putl_func)
#define dcmn_err if (pci_boot_debug) cmn_err
#define CONFIG_INFO 0
#define CONFIG_UPDATE 1
#define CONFIG_NEW 2
#define CONFIG_FIX 3
#define COMPAT_BUFSIZE 512
#define PPB_IO_ALIGNMENT 0x1000 /* 4K aligned */
#define PPB_MEM_ALIGNMENT 0x100000 /* 1M aligned */
/* round down to nearest power of two */
#define P2LE(align) \
{ \
int i = 0; \
while (align >>= 1) \
i ++; \
align = 1 << i; \
} \
/* for is_vga and list_is_vga_only */
enum io_mem {
IO,
MEM
};
/* See AMD-8111 Datasheet Rev 3.03, Page 149: */
#define LPC_IO_CONTROL_REG_1 0x40
#define AMD8111_ENABLENMI (uint8_t)0x80
#define DEVID_AMD8111_LPC 0x7468
struct pci_fixundo {
uint8_t bus;
uint8_t dev;
uint8_t fn;
void (*undofn)(uint8_t, uint8_t, uint8_t);
struct pci_fixundo *next;
};
struct pci_devfunc {
struct pci_devfunc *next;
dev_info_t *dip;
uchar_t dev;
uchar_t func;
boolean_t reprogram; /* this device needs to be reprogrammed */
};
extern int pseudo_isa;
extern int pci_bios_maxbus;
static uchar_t max_dev_pci = 32; /* PCI standard */
int pci_boot_debug = 0;
extern struct memlist *find_bus_res(int, int);
static struct pci_fixundo *undolist = NULL;
static int num_root_bus = 0; /* count of root buses */
extern volatile int acpi_resource_discovery;
/*
* Module prototypes
*/
static void enumerate_bus_devs(uchar_t bus, int config_op);
static void create_root_bus_dip(uchar_t bus);
static void process_devfunc(uchar_t, uchar_t, uchar_t, uchar_t,
ushort_t, int);
static void add_compatible(dev_info_t *, ushort_t, ushort_t,
ushort_t, ushort_t, uchar_t, uint_t, int);
static int add_reg_props(dev_info_t *, uchar_t, uchar_t, uchar_t, int, int);
static void add_ppb_props(dev_info_t *, uchar_t, uchar_t, uchar_t, int,
ushort_t);
static void add_model_prop(dev_info_t *, uint_t);
static void add_bus_range_prop(int);
static void add_bus_slot_names_prop(int);
static void add_ranges_prop(int, int);
static void add_bus_available_prop(int);
static int get_pci_cap(uchar_t bus, uchar_t dev, uchar_t func, uint8_t cap_id);
static void fix_ppb_res(uchar_t, boolean_t);
static void alloc_res_array();
static void create_ioapic_node(int bus, int dev, int fn, ushort_t vendorid,
ushort_t deviceid);
static void pciex_slot_names_prop(dev_info_t *, ushort_t);
static void populate_bus_res(uchar_t bus);
static void memlist_remove_list(struct memlist **list,
struct memlist *remove_list);
static void pci_scan_bbn(void);
static int pci_unitaddr_cache_valid(void);
static int pci_bus_unitaddr(int);
static void pci_unitaddr_cache_create(void);
static int pci_cache_unpack_nvlist(nvf_handle_t, nvlist_t *, char *);
static int pci_cache_pack_nvlist(nvf_handle_t, nvlist_t **);
static void pci_cache_free_list(nvf_handle_t);
extern int pci_slot_names_prop(int, char *, int);
/* set non-zero to force PCI peer-bus renumbering */
int pci_bus_always_renumber = 0;
/*
* used to register ISA resource usage which must not be made
* "available" from other PCI node' resource maps
*/
static struct {
struct memlist *io_used;
struct memlist *mem_used;
} isa_res;
/*
* PCI unit-address cache management
*/
static nvf_ops_t pci_unitaddr_cache_ops = {
"/etc/devices/pci_unitaddr_persistent", /* path to cache */
pci_cache_unpack_nvlist, /* read in nvlist form */
pci_cache_pack_nvlist, /* convert to nvlist form */
pci_cache_free_list, /* free data list */
NULL /* write complete callback */
};
typedef struct {
list_node_t pua_nodes;
int pua_index;
int pua_addr;
} pua_node_t;
nvf_handle_t puafd_handle;
int pua_cache_valid = 0;
/*ARGSUSED*/
static ACPI_STATUS
pci_process_acpi_device(ACPI_HANDLE hdl, UINT32 level, void *ctx, void **rv)
{
ACPI_BUFFER rb;
ACPI_OBJECT ro;
ACPI_DEVICE_INFO *adi;
/*
* Use AcpiGetObjectInfo() to find the device _HID
* If not a PCI root-bus, ignore this device and continue
* the walk
*/
rb.Length = ACPI_ALLOCATE_BUFFER;
if (ACPI_FAILURE(AcpiGetObjectInfo(hdl, &rb)))
return (AE_OK);
adi = rb.Pointer;
if (!(adi->Valid & ACPI_VALID_HID)) {
AcpiOsFree(adi);
return (AE_OK);
}
if (strncmp(adi->HardwareId.Value, PCI_ROOT_HID_STRING,
sizeof (PCI_ROOT_HID_STRING)) &&
strncmp(adi->HardwareId.Value, PCI_EXPRESS_ROOT_HID_STRING,
sizeof (PCI_EXPRESS_ROOT_HID_STRING))) {
AcpiOsFree(adi);
return (AE_OK);
}
AcpiOsFree(adi);
/*
* XXX: ancient Big Bear broken _BBN will result in two
* bus 0 _BBNs being found, so we need to handle duplicate
* bus 0 gracefully. However, broken _BBN does not
* hide a childless root-bridge so no need to work-around it
* here
*/
rb.Pointer = &ro;
rb.Length = sizeof (ro);
if (ACPI_SUCCESS(AcpiEvaluateObjectTyped(hdl, "_BBN",
NULL, &rb, ACPI_TYPE_INTEGER))) {
/* PCI with _BBN, process it, go no deeper */
if (pci_bus_res[ro.Integer.Value].par_bus == (uchar_t)-1 &&
pci_bus_res[ro.Integer.Value].dip == NULL)
create_root_bus_dip((uchar_t)ro.Integer.Value);
return (AE_CTRL_DEPTH);
}
/* PCI and no _BBN, continue walk */
return (AE_OK);
}
/*
* Scan the ACPI namespace for all top-level instances of _BBN
* in order to discover childless root-bridges (which enumeration
* may not find; root-bridges are inferred by the existence of
* children). This scan should find all root-bridges that have
* been enumerated, and any childless root-bridges not enumerated.
* Root-bridge for bus 0 may not have a _BBN object.
*/
static void
pci_scan_bbn()
{
void *rv;
(void) AcpiGetDevices(NULL, pci_process_acpi_device, NULL, &rv);
}
static void
pci_unitaddr_cache_init(void)
{
puafd_handle = nvf_register_file(&pci_unitaddr_cache_ops);
ASSERT(puafd_handle);
list_create(nvf_list(puafd_handle), sizeof (pua_node_t),
offsetof(pua_node_t, pua_nodes));
rw_enter(nvf_lock(puafd_handle), RW_WRITER);
(void) nvf_read_file(puafd_handle);
rw_exit(nvf_lock(puafd_handle));
}
/*
* Format of /etc/devices/pci_unitaddr_persistent:
*
* The persistent record of unit-address assignments contains
* a list of name/value pairs, where name is a string representation
* of the "index value" of the PCI root-bus and the value is
* the assigned unit-address.
*
* The "index value" is simply the zero-based index of the PCI
* root-buses ordered by physical bus number; first PCI bus is 0,
* second is 1, and so on.
*/
/*ARGSUSED*/
static int
pci_cache_unpack_nvlist(nvf_handle_t hdl, nvlist_t *nvl, char *name)
{
long index;
int32_t value;
nvpair_t *np;
pua_node_t *node;
np = NULL;
while ((np = nvlist_next_nvpair(nvl, np)) != NULL) {
/* name of nvpair is index value */
if (ddi_strtol(nvpair_name(np), NULL, 10, &index) != 0)
continue;
if (nvpair_value_int32(np, &value) != 0)
continue;
node = kmem_zalloc(sizeof (pua_node_t), KM_SLEEP);
node->pua_index = index;
node->pua_addr = value;
list_insert_tail(nvf_list(hdl), node);
}
pua_cache_valid = 1;
return (DDI_SUCCESS);
}
static int
pci_cache_pack_nvlist(nvf_handle_t hdl, nvlist_t **ret_nvl)
{
int rval;
nvlist_t *nvl, *sub_nvl;
list_t *listp;
pua_node_t *pua;
char buf[13];
ASSERT(RW_WRITE_HELD(nvf_lock(hdl)));
rval = nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
if (rval != DDI_SUCCESS) {
nvf_error("%s: nvlist alloc error %d\n",
nvf_cache_name(hdl), rval);
return (DDI_FAILURE);
}
sub_nvl = NULL;
rval = nvlist_alloc(&sub_nvl, NV_UNIQUE_NAME, KM_SLEEP);
if (rval != DDI_SUCCESS)
goto error;
listp = nvf_list(hdl);
for (pua = list_head(listp); pua != NULL;
pua = list_next(listp, pua)) {
(void) snprintf(buf, sizeof (buf), "%d", pua->pua_index);
rval = nvlist_add_int32(sub_nvl, buf, pua->pua_addr);
if (rval != DDI_SUCCESS)
goto error;
}
rval = nvlist_add_nvlist(nvl, "table", sub_nvl);
if (rval != DDI_SUCCESS)
goto error;
nvlist_free(sub_nvl);
*ret_nvl = nvl;
return (DDI_SUCCESS);
error:
if (sub_nvl)
nvlist_free(sub_nvl);
ASSERT(nvl);
nvlist_free(nvl);
*ret_nvl = NULL;
return (DDI_FAILURE);
}
static void
pci_cache_free_list(nvf_handle_t hdl)
{
list_t *listp;
pua_node_t *pua;
ASSERT(RW_WRITE_HELD(nvf_lock(hdl)));
listp = nvf_list(hdl);
for (pua = list_head(listp); pua != NULL;
pua = list_next(listp, pua)) {
list_remove(listp, pua);
kmem_free(pua, sizeof (pua_node_t));
}
}
static int
pci_unitaddr_cache_valid(void)
{
/* read only, no need for rw lock */
return (pua_cache_valid);
}
static int
pci_bus_unitaddr(int index)
{
pua_node_t *pua;
list_t *listp;
int addr;
rw_enter(nvf_lock(puafd_handle), RW_READER);
addr = -1; /* default return if no match */
listp = nvf_list(puafd_handle);
for (pua = list_head(listp); pua != NULL;
pua = list_next(listp, pua)) {
if (pua->pua_index == index) {
addr = pua->pua_addr;
break;
}
}
rw_exit(nvf_lock(puafd_handle));
return (addr);
}
static void
pci_unitaddr_cache_create(void)
{
int i, index;
pua_node_t *node;
list_t *listp;
rw_enter(nvf_lock(puafd_handle), RW_WRITER);
index = 0;
listp = nvf_list(puafd_handle);
for (i = 0; i <= pci_bios_maxbus; i++) {
/* skip non-root (peer) PCI busses */
if ((pci_bus_res[i].par_bus != (uchar_t)-1) ||
(pci_bus_res[i].dip == NULL))
continue;
node = kmem_zalloc(sizeof (pua_node_t), KM_SLEEP);
node->pua_index = index++;
node->pua_addr = pci_bus_res[i].root_addr;
list_insert_tail(listp, node);
}
(void) nvf_mark_dirty(puafd_handle);
rw_exit(nvf_lock(puafd_handle));
nvf_wake_daemon();
}
/*
* Enumerate all PCI devices
*/
void
pci_setup_tree(void)
{
uint_t i, root_bus_addr = 0;
alloc_res_array();
for (i = 0; i <= pci_bios_maxbus; i++) {
pci_bus_res[i].par_bus = (uchar_t)-1;
pci_bus_res[i].root_addr = (uchar_t)-1;
pci_bus_res[i].sub_bus = i;
}
pci_bus_res[0].root_addr = root_bus_addr++;
create_root_bus_dip(0);
enumerate_bus_devs(0, CONFIG_INFO);
/*
* Now enumerate peer busses
*
* We loop till pci_bios_maxbus. On most systems, there is
* one more bus at the high end, which implements the ISA
* compatibility bus. We don't care about that.
*
* Note: In the old (bootconf) enumeration, the peer bus
* address did not use the bus number, and there were
* too many peer busses created. The root_bus_addr is
* used to maintain the old peer bus address assignment.
* However, we stop enumerating phantom peers with no
* device below.
*/
for (i = 1; i <= pci_bios_maxbus; i++) {
if (pci_bus_res[i].dip == NULL) {
pci_bus_res[i].root_addr = root_bus_addr++;
}
enumerate_bus_devs(i, CONFIG_INFO);
/* add slot-names property for named pci hot-plug slots */
add_bus_slot_names_prop(i);
}
}
/*
* >0 = present, 0 = not present, <0 = error
*/
static int
pci_bbn_present(int bus)
{
ACPI_HANDLE hdl;
int rv;
/* no dip means no _BBN */
if (pci_bus_res[bus].dip == NULL)
return (0);
rv = -1; /* default return value in case of error below */
if (ACPI_SUCCESS(acpica_get_handle(pci_bus_res[bus].dip, &hdl))) {
switch (AcpiEvaluateObject(hdl, "_BBN", NULL, NULL)) {
case AE_OK:
rv = 1;
break;
case AE_NOT_FOUND:
rv = 0;
break;
default:
break;
}
}
return (rv);
}
/*
* Return non-zero if any PCI bus in the system has an associated
* _BBN object, 0 otherwise.
*/
static int
pci_roots_have_bbn(void)
{
int i;
/*
* Scan the PCI busses and look for at least 1 _BBN
*/
for (i = 0; i <= pci_bios_maxbus; i++) {
/* skip non-root (peer) PCI busses */
if (pci_bus_res[i].par_bus != (uchar_t)-1)
continue;
if (pci_bbn_present(i) > 0)
return (1);
}
return (0);
}
/*
* return non-zero if the machine is one on which we renumber
* the internal pci unit-addresses
*/
static int
pci_bus_renumber()
{
ACPI_TABLE_HEADER *fadt;
if (pci_bus_always_renumber)
return (1);
/* get the FADT */
if (AcpiGetTable(ACPI_SIG_FADT, 1, (ACPI_TABLE_HEADER **)&fadt) !=
AE_OK)
return (0);
/* compare OEM Table ID to "SUNm31" */
if (strncmp("SUNm31", fadt->OemId, 6))
return (0);
else
return (1);
}
/*
* Initial enumeration of the physical PCI bus hierarchy can
* leave 'gaps' in the order of peer PCI bus unit-addresses.
* Systems with more than one peer PCI bus *must* have an ACPI
* _BBN object associated with each peer bus; use the presence
* of this object to remove gaps in the numbering of the peer
* PCI bus unit-addresses - only peer busses with an associated
* _BBN are counted.
*/
static void
pci_renumber_root_busses(void)
{
int pci_regs[] = {0, 0, 0};
int i, root_addr = 0;
/*
* Currently, we only enable the re-numbering on specific
* Sun machines; this is a work-around for the more complicated
* issue of upgrade changing physical device paths
*/
if (!pci_bus_renumber())
return;
/*
* If we find no _BBN objects at all, we either don't need
* to do anything or can't do anything anyway
*/
if (!pci_roots_have_bbn())
return;
for (i = 0; i <= pci_bios_maxbus; i++) {
/* skip non-root (peer) PCI busses */
if (pci_bus_res[i].par_bus != (uchar_t)-1)
continue;
if (pci_bbn_present(i) < 1) {
pci_bus_res[i].root_addr = (uchar_t)-1;
continue;
}
ASSERT(pci_bus_res[i].dip != NULL);
if (pci_bus_res[i].root_addr != root_addr) {
/* update reg property for node */
pci_bus_res[i].root_addr = root_addr;
pci_regs[0] = pci_bus_res[i].root_addr;
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE,
pci_bus_res[i].dip, "reg", (int *)pci_regs, 3);
}
root_addr++;
}
}
void
pci_register_isa_resources(int type, uint32_t base, uint32_t size)
{
(void) memlist_insert(
(type == 1) ? &isa_res.io_used : &isa_res.mem_used,
base, size);
}
/*
* Remove the resources which are already used by devices under a subtractive
* bridge from the bus's resources lists, because they're not available, and
* shouldn't be allocated to other buses. This is necessary because tracking
* resources for subtractive bridges is not complete. (Subtractive bridges only
* track some of their claimed resources, not "the rest of the address space" as
* they should, so that allocation to peer non-subtractive PPBs is easier. We
* need a fully-capable global resource allocator).
*/
static void
remove_subtractive_res()
{
int i, j;
struct memlist *list;
for (i = 0; i <= pci_bios_maxbus; i++) {
if (pci_bus_res[i].subtractive) {
/* remove used io ports */
list = pci_bus_res[i].io_used;
while (list) {
for (j = 0; j <= pci_bios_maxbus; j++)
(void) memlist_remove(
&pci_bus_res[j].io_avail,
list->address, list->size);
list = list->next;
}
/* remove used mem resource */
list = pci_bus_res[i].mem_used;
while (list) {
for (j = 0; j <= pci_bios_maxbus; j++) {
(void) memlist_remove(
&pci_bus_res[j].mem_avail,
list->address, list->size);
(void) memlist_remove(
&pci_bus_res[j].pmem_avail,
list->address, list->size);
}
list = list->next;
}
/* remove used prefetchable mem resource */
list = pci_bus_res[i].pmem_used;
while (list) {
for (j = 0; j <= pci_bios_maxbus; j++) {
(void) memlist_remove(
&pci_bus_res[j].pmem_avail,
list->address, list->size);
(void) memlist_remove(
&pci_bus_res[j].mem_avail,
list->address, list->size);
}
list = list->next;
}
}
}
}
/*
* Set up (or complete the setup of) the bus_avail resource list
*/
static void
setup_bus_res(int bus)
{
uchar_t par_bus;
if (pci_bus_res[bus].dip == NULL) /* unused bus */
return;
/*
* Set up bus_avail if not already filled in by populate_bus_res()
*/
if (pci_bus_res[bus].bus_avail == NULL) {
ASSERT(pci_bus_res[bus].sub_bus >= bus);
memlist_insert(&pci_bus_res[bus].bus_avail, bus,
pci_bus_res[bus].sub_bus - bus + 1);
}
ASSERT(pci_bus_res[bus].bus_avail != NULL);
/*
* Remove resources from parent bus node if this is not a
* root bus.
*/
par_bus = pci_bus_res[bus].par_bus;
if (par_bus != (uchar_t)-1) {
ASSERT(pci_bus_res[par_bus].bus_avail != NULL);
memlist_remove_list(&pci_bus_res[par_bus].bus_avail,
pci_bus_res[bus].bus_avail);
}
/* remove self from bus_avail */;
(void) memlist_remove(&pci_bus_res[bus].bus_avail, bus, 1);
}
static uint64_t
get_parbus_io_res(uchar_t parbus, uchar_t bus, uint64_t size, uint64_t align)
{
uint64_t addr = 0;
uchar_t res_bus;
/*
* Skip root(peer) buses in multiple-root-bus systems when
* ACPI resource discovery was not successfully done.
*/
if ((pci_bus_res[parbus].par_bus == (uchar_t)-1) &&
(num_root_bus > 1) && (acpi_resource_discovery <= 0))
return (0);
res_bus = parbus;
while (pci_bus_res[res_bus].subtractive) {
if (pci_bus_res[res_bus].io_avail)
break;
res_bus = pci_bus_res[res_bus].par_bus;
if (res_bus == (uchar_t)-1)
break; /* root bus already */
}
if (pci_bus_res[res_bus].io_avail) {
addr = memlist_find(&pci_bus_res[res_bus].io_avail,
size, align);
if (addr) {
memlist_insert(&pci_bus_res[res_bus].io_used,
addr, size);
/* free the old resource */
memlist_free_all(&pci_bus_res[bus].io_avail);
memlist_free_all(&pci_bus_res[bus].io_used);
/* add the new resource */
memlist_insert(&pci_bus_res[bus].io_avail, addr, size);
}
}
return (addr);
}
static uint64_t
get_parbus_mem_res(uchar_t parbus, uchar_t bus, uint64_t size, uint64_t align)
{
uint64_t addr = 0;
uchar_t res_bus;
/*
* Skip root(peer) buses in multiple-root-bus systems when
* ACPI resource discovery was not successfully done.
*/
if ((pci_bus_res[parbus].par_bus == (uchar_t)-1) &&
(num_root_bus > 1) && (acpi_resource_discovery <= 0))
return (0);
res_bus = parbus;
while (pci_bus_res[res_bus].subtractive) {
if (pci_bus_res[res_bus].mem_avail)
break;
res_bus = pci_bus_res[res_bus].par_bus;
if (res_bus == (uchar_t)-1)
break; /* root bus already */
}
if (pci_bus_res[res_bus].mem_avail) {
addr = memlist_find(&pci_bus_res[res_bus].mem_avail,
size, align);
if (addr) {
memlist_insert(&pci_bus_res[res_bus].mem_used,
addr, size);
(void) memlist_remove(&pci_bus_res[res_bus].pmem_avail,
addr, size);
/* free the old resource */
memlist_free_all(&pci_bus_res[bus].mem_avail);
memlist_free_all(&pci_bus_res[bus].mem_used);
/* add the new resource */
memlist_insert(&pci_bus_res[bus].mem_avail, addr, size);
}
}
return (addr);
}
/*
* given a cap_id, return its cap_id location in config space
*/
static int
get_pci_cap(uchar_t bus, uchar_t dev, uchar_t func, uint8_t cap_id)
{
uint8_t curcap, cap_id_loc;
uint16_t status;
int location = -1;
/*
* Need to check the Status register for ECP support first.
* Also please note that for type 1 devices, the
* offset could change. Should support type 1 next.
*/
status = pci_getw(bus, dev, func, PCI_CONF_STAT);
if (!(status & PCI_STAT_CAP)) {
return (-1);
}
cap_id_loc = pci_getb(bus, dev, func, PCI_CONF_CAP_PTR);
/* Walk the list of capabilities */
while (cap_id_loc && cap_id_loc != (uint8_t)-1) {
curcap = pci_getb(bus, dev, func, cap_id_loc);
if (curcap == cap_id) {
location = cap_id_loc;
break;
}
cap_id_loc = pci_getb(bus, dev, func, cap_id_loc + 1);
}
return (location);
}
/*
* Does this resource element live in the legacy VGA range?
*/
int
is_vga(struct memlist *elem, enum io_mem io)
{
if (io == IO) {
if ((elem->address == 0x3b0 && elem->size == 0xc) ||
(elem->address == 0x3c0 && elem->size == 0x20))
return (1);
} else {
if (elem->address == 0xa0000 && elem->size == 0x20000)
return (1);
}
return (0);
}
/*
* Does this entire resource list consist only of legacy VGA resources?
*/
int
list_is_vga_only(struct memlist *l, enum io_mem io)
{
do {
if (!is_vga(l, io))
return (0);
} while ((l = l->next) != NULL);
return (1);
}
/*
* Assign valid resources to unconfigured pci(e) bridges. We are trying
* to reprogram the bridge when its
* i) SECBUS == SUBBUS ||
* ii) IOBASE > IOLIM ||
* iii) MEMBASE > MEMLIM
* This must be done after one full pass through the PCI tree to collect
* all BIOS-configured resources, so that we know what resources are
* free and available to assign to the unconfigured PPBs.
*/
static void
fix_ppb_res(uchar_t secbus, boolean_t prog_sub)
{
uchar_t bus, dev, func;
uchar_t parbus, subbus;
uint_t io_base, io_limit, mem_base, mem_limit;
uint_t io_size, mem_size, io_align, mem_align;
uint64_t addr = 0;
int *regp = NULL;
uint_t reglen;
int rv, cap_ptr, physhi;
dev_info_t *dip;
uint16_t cmd_reg;
struct memlist *list, *scratch_list;
/* skip root (peer) PCI busses */
if (pci_bus_res[secbus].par_bus == (uchar_t)-1)
return;
/* skip subtractive PPB when prog_sub is not TRUE */
if (pci_bus_res[secbus].subtractive && !prog_sub)
return;
/* some entries may be empty due to discontiguous bus numbering */
dip = pci_bus_res[secbus].dip;
if (dip == NULL)
return;
rv = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", &regp, &reglen);
if (rv != DDI_PROP_SUCCESS || reglen == 0)
return;
physhi = regp[0];
ddi_prop_free(regp);
func = (uchar_t)PCI_REG_FUNC_G(physhi);
dev = (uchar_t)PCI_REG_DEV_G(physhi);
bus = (uchar_t)PCI_REG_BUS_G(physhi);
/*
* If pcie bridge, check to see if link is enabled
*/
cap_ptr = get_pci_cap(bus, dev, func, PCI_CAP_ID_PCI_E);
if (cap_ptr != -1) {
cmd_reg = pci_getw(bus, dev, func,
(uint16_t)cap_ptr + PCIE_LINKCTL);
if (cmd_reg & PCIE_LINKCTL_LINK_DISABLE) {
dcmn_err(CE_NOTE,
"!fix_ppb_res: ppb[%x/%x/%x] link is disabled.\n",
bus, dev, func);
return;
}
}
subbus = pci_getb(bus, dev, func, PCI_BCNF_SUBBUS);
parbus = pci_bus_res[secbus].par_bus;
ASSERT(parbus == bus);
cmd_reg = pci_getw(bus, dev, func, PCI_CONF_COMM);
/*
* If we have a Cardbus bridge, but no bus space
*/
if (pci_bus_res[secbus].num_cbb != 0 &&
pci_bus_res[secbus].bus_avail == NULL) {
uchar_t range;
/* normally there are 2 buses under a cardbus bridge */
range = pci_bus_res[secbus].num_cbb * 2;
/*
* Try to find and allocate a bus-range starting at subbus+1
* from the parent of the PPB.
*/
for (; range != 0; range--) {
if (memlist_find_with_startaddr(
&pci_bus_res[parbus].bus_avail,
subbus + 1, range, 1) != NULL)
break; /* find bus range resource at parent */
}
if (range != 0) {
memlist_insert(&pci_bus_res[secbus].bus_avail,
subbus + 1, range);
subbus = subbus + range;
pci_bus_res[secbus].sub_bus = subbus;
pci_putb(bus, dev, func, PCI_BCNF_SUBBUS, subbus);
add_bus_range_prop(secbus);
cmn_err(CE_NOTE, "!reprogram bus-range on ppb"
"[%x/%x/%x]: %x ~ %x\n", bus, dev, func,
secbus, subbus);
}
}
/*
* Calculate required IO size and alignment
* If bus io_size is zero, we are going to assign 512 bytes per bus,
* otherwise, we'll choose the maximum value of such calculation and
* bus io_size. The size needs to be 4K aligned.
*
* We calculate alignment as the largest power of two less than the
* the sum of all children's IO size requirements, because this will
* align to the size of the largest child request within that size
* (which is always a power of two).
*/
io_size = (subbus - secbus + 1) * 0x200;
if (io_size < pci_bus_res[secbus].io_size)
io_size = pci_bus_res[secbus].io_size;
io_size = P2ROUNDUP(io_size, PPB_IO_ALIGNMENT);
io_align = io_size;
P2LE(io_align);
/*
* Calculate required MEM size and alignment
* If bus mem_size is zero, we are going to assign 1M bytes per bus,
* otherwise, we'll choose the maximum value of such calculation and
* bus mem_size. The size needs to be 1M aligned.
*
* For the alignment, refer to the I/O comment above.
*/
mem_size = (subbus - secbus + 1) * PPB_MEM_ALIGNMENT;
if (mem_size < pci_bus_res[secbus].mem_size) {
mem_size = pci_bus_res[secbus].mem_size;
mem_size = P2ROUNDUP(mem_size, PPB_MEM_ALIGNMENT);
}
mem_align = mem_size;
P2LE(mem_align);
/* Subtractive bridge */
if (pci_bus_res[secbus].subtractive && prog_sub) {
/*
* We program an arbitrary amount of I/O and memory resource
* for the subtractive bridge so that child dynamic-resource-
* allocating devices (such as Cardbus bridges) have a chance
* of success. Until we have full-tree resource rebalancing,
* dynamic resource allocation (thru busra) only looks at the
* parent bridge, so all PPBs must have some allocatable
* resource. For non-subtractive bridges, the resources come
* from the base/limit register "windows", but subtractive
* bridges often don't program those (since they don't need to).
* If we put all the remaining resources on the subtractive
* bridge, then peer non-subtractive bridges can't allocate
* more space (even though this is probably most correct).
* If we put the resources only on the parent, then allocations
* from children of subtractive bridges will fail without
* special-case code for bypassing the subtractive bridge.
* This solution is the middle-ground temporary solution until
* we have fully-capable resource allocation.
*/
/*
* Add an arbitrary I/O resource to the subtractive PPB
*/
if (pci_bus_res[secbus].io_avail == NULL) {
addr = get_parbus_io_res(parbus, secbus, io_size,
io_align);
if (addr) {
add_ranges_prop(secbus, 1);
pci_bus_res[secbus].io_reprogram =
pci_bus_res[parbus].io_reprogram;
cmn_err(CE_NOTE, "!add io-range on subtractive"
" ppb[%x/%x/%x]: 0x%x ~ 0x%x\n",
bus, dev, func, (uint32_t)addr,
(uint32_t)addr + io_size - 1);
}
}
/*
* Add an arbitrary memory resource to the subtractive PPB
*/
if (pci_bus_res[secbus].mem_avail == NULL) {
addr = get_parbus_mem_res(parbus, secbus, mem_size,
mem_align);
if (addr) {
add_ranges_prop(secbus, 1);
pci_bus_res[secbus].mem_reprogram =
pci_bus_res[parbus].mem_reprogram;
cmn_err(CE_NOTE, "!add mem-range on "
"subtractive ppb[%x/%x/%x]: 0x%x ~ 0x%x\n",
bus, dev, func, (uint32_t)addr,
(uint32_t)addr + mem_size - 1);
}
}
goto cmd_enable;
}
/*
* Check to see if we need to reprogram I/O space, either because the
* parent bus needed reprogramming and so do we, or because I/O space is
* disabled in base/limit or command register.
*/
io_base = pci_getb(bus, dev, func, PCI_BCNF_IO_BASE_LOW);
io_limit = pci_getb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW);
io_base = (io_base & 0xf0) << 8;
io_limit = ((io_limit & 0xf0) << 8) | 0xfff;
/* Form list of all resources passed (avail + used) */
scratch_list = memlist_dup(pci_bus_res[secbus].io_avail);
memlist_merge(&pci_bus_res[secbus].io_used, &scratch_list);
if ((pci_bus_res[parbus].io_reprogram ||
(io_base > io_limit) ||
(!(cmd_reg & PCI_COMM_IO))) &&
!list_is_vga_only(scratch_list, IO)) {
if (pci_bus_res[secbus].io_used) {
memlist_subsume(&pci_bus_res[secbus].io_used,
&pci_bus_res[secbus].io_avail);
}
if (pci_bus_res[secbus].io_avail &&
(!pci_bus_res[parbus].io_reprogram) &&
(!pci_bus_res[parbus].subtractive)) {
/* rechoose old io ports info */
list = pci_bus_res[secbus].io_avail;
io_base = 0;
do {
if (is_vga(list, IO))
continue;
if (!io_base) {
io_base = (uint_t)list->address;
io_limit = (uint_t)
list->address + list->size - 1;
io_base =
P2ALIGN(io_base, PPB_IO_ALIGNMENT);
} else {
if (list->address + list->size >
io_limit) {
io_limit = (uint_t)
(list->address +
list->size - 1);
}
}
} while ((list = list->next) != NULL);
/* 4K aligned */
io_limit = P2ROUNDUP(io_limit, PPB_IO_ALIGNMENT) - 1;
io_size = io_limit - io_base + 1;
ASSERT(io_base <= io_limit);
memlist_free_all(&pci_bus_res[secbus].io_avail);
memlist_insert(&pci_bus_res[secbus].io_avail,
io_base, io_size);
memlist_insert(&pci_bus_res[parbus].io_used,
io_base, io_size);
(void) memlist_remove(&pci_bus_res[parbus].io_avail,
io_base, io_size);
pci_bus_res[secbus].io_reprogram = B_TRUE;
} else {
/* get new io ports from parent bus */
addr = get_parbus_io_res(parbus, secbus, io_size,
io_align);
if (addr) {
io_base = addr;
io_limit = addr + io_size - 1;
pci_bus_res[secbus].io_reprogram = B_TRUE;
}
}
if (pci_bus_res[secbus].io_reprogram) {
/* reprogram PPB regs */
pci_putb(bus, dev, func, PCI_BCNF_IO_BASE_LOW,
(uchar_t)((io_base>>8) & 0xf0));
pci_putb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW,
(uchar_t)((io_limit>>8) & 0xf0));
pci_putb(bus, dev, func, PCI_BCNF_IO_BASE_HI, 0);
pci_putb(bus, dev, func, PCI_BCNF_IO_LIMIT_HI, 0);
add_ranges_prop(secbus, 1);
cmn_err(CE_NOTE, "!reprogram io-range on"
" ppb[%x/%x/%x]: 0x%x ~ 0x%x\n",
bus, dev, func, io_base, io_limit);
}
}
memlist_free_all(&scratch_list);
/*
* Check memory space as we did I/O space.
*/
mem_base = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_BASE);
mem_base = (mem_base & 0xfff0) << 16;
mem_limit = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_LIMIT);
mem_limit = ((mem_limit & 0xfff0) << 16) | 0xfffff;
scratch_list = memlist_dup(pci_bus_res[secbus].mem_avail);
memlist_merge(&pci_bus_res[secbus].mem_used, &scratch_list);
if ((pci_bus_res[parbus].mem_reprogram ||
(mem_base > mem_limit) ||
(!(cmd_reg & PCI_COMM_MAE))) &&
!list_is_vga_only(scratch_list, MEM)) {
if (pci_bus_res[secbus].mem_used) {
memlist_subsume(&pci_bus_res[secbus].mem_used,
&pci_bus_res[secbus].mem_avail);
}
if (pci_bus_res[secbus].mem_avail &&
(!pci_bus_res[parbus].mem_reprogram) &&
(!pci_bus_res[parbus].subtractive)) {
/* rechoose old mem resource */
list = pci_bus_res[secbus].mem_avail;
mem_base = 0;
do {
if (is_vga(list, MEM))
continue;
if (mem_base == 0) {
mem_base = (uint_t)list->address;
mem_base = P2ALIGN(mem_base,
PPB_MEM_ALIGNMENT);
mem_limit = (uint_t)
(list->address + list->size - 1);
} else {
if ((list->address + list->size) >
mem_limit) {
mem_limit = (uint_t)
(list->address +
list->size - 1);
}
}
} while ((list = list->next) != NULL);
mem_limit = P2ROUNDUP(mem_limit, PPB_MEM_ALIGNMENT) - 1;
mem_size = mem_limit + 1 - mem_base;
ASSERT(mem_base <= mem_limit);
memlist_free_all(&pci_bus_res[secbus].mem_avail);
memlist_insert(&pci_bus_res[secbus].mem_avail,
mem_base, mem_size);
memlist_insert(&pci_bus_res[parbus].mem_used,
mem_base, mem_size);
(void) memlist_remove(&pci_bus_res[parbus].mem_avail,
mem_base, mem_size);
pci_bus_res[secbus].mem_reprogram = B_TRUE;
} else {
/* get new mem resource from parent bus */
addr = get_parbus_mem_res(parbus, secbus, mem_size,
mem_align);
if (addr) {
mem_base = addr;
mem_limit = addr + mem_size - 1;
pci_bus_res[secbus].mem_reprogram = B_TRUE;
}
}
if (pci_bus_res[secbus].mem_reprogram) {
/* reprogram PPB MEM regs */
pci_putw(bus, dev, func, PCI_BCNF_MEM_BASE,
(uint16_t)((mem_base>>16) & 0xfff0));
pci_putw(bus, dev, func, PCI_BCNF_MEM_LIMIT,
(uint16_t)((mem_limit>>16) & 0xfff0));
/*
* Disable PMEM window by setting base > limit.
* We currently don't reprogram the PMEM like we've
* done for I/O and MEM. (Devices that support prefetch
* can use non-prefetch MEM.) Anyway, if the MEM access
* bit is initially disabled by BIOS, we disable the
* PMEM window manually by setting PMEM base > PMEM
* limit here, in case there are incorrect values in
* them from BIOS, so that we won't get in trouble once
* the MEM access bit is enabled at the end of this
* function.
*/
if (!(cmd_reg & PCI_COMM_MAE)) {
pci_putw(bus, dev, func, PCI_BCNF_PF_BASE_LOW,
0xfff0);
pci_putw(bus, dev, func, PCI_BCNF_PF_LIMIT_LOW,
0x0);
pci_putl(bus, dev, func, PCI_BCNF_PF_BASE_HIGH,
0xffffffff);
pci_putl(bus, dev, func, PCI_BCNF_PF_LIMIT_HIGH,
0x0);
}
add_ranges_prop(secbus, 1);
cmn_err(CE_NOTE, "!reprogram mem-range on"
" ppb[%x/%x/%x]: 0x%x ~ 0x%x\n",
bus, dev, func, mem_base, mem_limit);
}
}
memlist_free_all(&scratch_list);
cmd_enable:
if (pci_bus_res[secbus].io_avail)
cmd_reg |= PCI_COMM_IO | PCI_COMM_ME;
if (pci_bus_res[secbus].mem_avail)
cmd_reg |= PCI_COMM_MAE | PCI_COMM_ME;
pci_putw(bus, dev, func, PCI_CONF_COMM, cmd_reg);
}
void
pci_reprogram(void)
{
int i, pci_reconfig = 1;
char *onoff;
int bus;
/*
* Scan ACPI namespace for _BBN objects, make sure that
* childless root-bridges appear in devinfo tree
*/
pci_scan_bbn();
pci_unitaddr_cache_init();
/*
* Fix-up unit-address assignments if cache is available
*/
if (pci_unitaddr_cache_valid()) {
int pci_regs[] = {0, 0, 0};
int new_addr;
int index = 0;
for (bus = 0; bus <= pci_bios_maxbus; bus++) {
/* skip non-root (peer) PCI busses */
if ((pci_bus_res[bus].par_bus != (uchar_t)-1) ||
(pci_bus_res[bus].dip == NULL))
continue;
new_addr = pci_bus_unitaddr(index);
if (pci_bus_res[bus].root_addr != new_addr) {
/* update reg property for node */
pci_regs[0] = pci_bus_res[bus].root_addr =
new_addr;
(void) ndi_prop_update_int_array(
DDI_DEV_T_NONE, pci_bus_res[bus].dip,
"reg", (int *)pci_regs, 3);
}
index++;
}
} else {
/* perform legacy processing */
pci_renumber_root_busses();
pci_unitaddr_cache_create();
}
/*
* Do root-bus resource discovery
*/
for (bus = 0; bus <= pci_bios_maxbus; bus++) {
/* skip non-root (peer) PCI busses */
if (pci_bus_res[bus].par_bus != (uchar_t)-1)
continue;
/*
* 1. find resources associated with this root bus
*/
populate_bus_res(bus);
/*
* 2. Remove used PCI and ISA resources from bus resource map
*/
memlist_remove_list(&pci_bus_res[bus].io_avail,
pci_bus_res[bus].io_used);
memlist_remove_list(&pci_bus_res[bus].mem_avail,
pci_bus_res[bus].mem_used);
memlist_remove_list(&pci_bus_res[bus].pmem_avail,
pci_bus_res[bus].pmem_used);
memlist_remove_list(&pci_bus_res[bus].mem_avail,
pci_bus_res[bus].pmem_used);
memlist_remove_list(&pci_bus_res[bus].pmem_avail,
pci_bus_res[bus].mem_used);
memlist_remove_list(&pci_bus_res[bus].io_avail,
isa_res.io_used);
memlist_remove_list(&pci_bus_res[bus].mem_avail,
isa_res.mem_used);
}
memlist_free_all(&isa_res.io_used);
memlist_free_all(&isa_res.mem_used);
/* add bus-range property for root/peer bus nodes */
for (i = 0; i <= pci_bios_maxbus; i++) {
/* create bus-range property on root/peer buses */
if (pci_bus_res[i].par_bus == (uchar_t)-1)
add_bus_range_prop(i);
/* setup bus range resource on each bus */
setup_bus_res(i);
}
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
DDI_PROP_DONTPASS, "pci-reprog", &onoff) == DDI_SUCCESS) {
if (strcmp(onoff, "off") == 0) {
pci_reconfig = 0;
cmn_err(CE_NOTE, "pci device reprogramming disabled");
}
ddi_prop_free(onoff);
}
remove_subtractive_res();
/* reprogram the non-subtractive PPB */
if (pci_reconfig)
for (i = 0; i <= pci_bios_maxbus; i++)
fix_ppb_res(i, B_FALSE);
for (i = 0; i <= pci_bios_maxbus; i++) {
/* configure devices not configured by BIOS */
if (pci_reconfig) {
/*
* Reprogram the subtractive PPB. At this time, all its
* siblings should have got their resources already.
*/
if (pci_bus_res[i].subtractive)
fix_ppb_res(i, B_TRUE);
enumerate_bus_devs(i, CONFIG_NEW);
}
}
/* All dev programmed, so we can create available prop */
for (i = 0; i <= pci_bios_maxbus; i++)
add_bus_available_prop(i);
}
/*
* populate bus resources
*/
static void
populate_bus_res(uchar_t bus)
{
/* scan BIOS structures */
pci_bus_res[bus].pmem_avail = find_bus_res(bus, PREFETCH_TYPE);
pci_bus_res[bus].mem_avail = find_bus_res(bus, MEM_TYPE);
pci_bus_res[bus].io_avail = find_bus_res(bus, IO_TYPE);
pci_bus_res[bus].bus_avail = find_bus_res(bus, BUSRANGE_TYPE);
/*
* attempt to initialize sub_bus from the largest range-end
* in the bus_avail list
*/
if (pci_bus_res[bus].bus_avail != NULL) {
struct memlist *entry;
int current;
entry = pci_bus_res[bus].bus_avail;
while (entry != NULL) {
current = entry->address + entry->size - 1;
if (current > pci_bus_res[bus].sub_bus)
pci_bus_res[bus].sub_bus = current;
entry = entry->next;
}
}
if (bus == 0) {
/*
* Special treatment of bus 0:
* If no IO/MEM resource from ACPI/MPSPEC/HRT, copy
* pcimem from boot and make I/O space the entire range
* starting at 0x100.
*/
if (pci_bus_res[0].mem_avail == NULL)
pci_bus_res[0].mem_avail =
memlist_dup(bootops->boot_mem->pcimem);
/* Exclude 0x00 to 0xff of the I/O space, used by all PCs */
if (pci_bus_res[0].io_avail == NULL)
memlist_insert(&pci_bus_res[0].io_avail, 0x100, 0xffff);
}
/*
* Create 'ranges' property here before any resources are
* removed from the resource lists
*/
add_ranges_prop(bus, 0);
}
/*
* Create top-level bus dips, i.e. /pci@0,0, /pci@1,0...
*/
static void
create_root_bus_dip(uchar_t bus)
{
int pci_regs[] = {0, 0, 0};
dev_info_t *dip;
ASSERT(pci_bus_res[bus].par_bus == (uchar_t)-1);
num_root_bus++;
ndi_devi_alloc_sleep(ddi_root_node(), "pci",
(pnode_t)DEVI_SID_NODEID, &dip);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#address-cells", 3);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#size-cells", 2);
pci_regs[0] = pci_bus_res[bus].root_addr;
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"reg", (int *)pci_regs, 3);
/*
* If system has PCIe bus, then create different properties
*/
if (create_pcie_root_bus(bus, dip) == B_FALSE)
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"device_type", "pci");
(void) ndi_devi_bind_driver(dip, 0);
pci_bus_res[bus].dip = dip;
}
/*
* For any fixed configuration (often compatability) pci devices
* and those with their own expansion rom, create device nodes
* to hold the already configured device details.
*/
void
enumerate_bus_devs(uchar_t bus, int config_op)
{
uchar_t dev, func, nfunc, header;
ushort_t venid;
struct pci_devfunc *devlist = NULL, *entry;
if (config_op == CONFIG_NEW) {
dcmn_err(CE_NOTE, "configuring pci bus 0x%x", bus);
} else if (config_op == CONFIG_FIX) {
dcmn_err(CE_NOTE, "fixing devices on pci bus 0x%x", bus);
} else
dcmn_err(CE_NOTE, "enumerating pci bus 0x%x", bus);
if (config_op == CONFIG_NEW) {
devlist = (struct pci_devfunc *)pci_bus_res[bus].privdata;
while (devlist) {
entry = devlist;
devlist = entry->next;
if (entry->reprogram ||
pci_bus_res[bus].io_reprogram ||
pci_bus_res[bus].mem_reprogram) {
/* reprogram device(s) */
(void) add_reg_props(entry->dip, bus,
entry->dev, entry->func, CONFIG_NEW, 0);
}
kmem_free(entry, sizeof (*entry));
}
pci_bus_res[bus].privdata = NULL;
return;
}
for (dev = 0; dev < max_dev_pci; dev++) {
nfunc = 1;
for (func = 0; func < nfunc; func++) {
dcmn_err(CE_NOTE, "probing dev 0x%x, func 0x%x",
dev, func);
venid = pci_getw(bus, dev, func, PCI_CONF_VENID);
if ((venid == 0xffff) || (venid == 0)) {
/* no function at this address */
continue;
}
header = pci_getb(bus, dev, func, PCI_CONF_HEADER);
if (header == 0xff) {
continue; /* illegal value */
}
/*
* according to some mail from Microsoft posted
* to the pci-drivers alias, their only requirement
* for a multifunction device is for the 1st
* function to have to PCI_HEADER_MULTI bit set.
*/
if ((func == 0) && (header & PCI_HEADER_MULTI)) {
nfunc = 8;
}
if (config_op == CONFIG_FIX ||
config_op == CONFIG_INFO) {
/*
* Create the node, unconditionally, on the
* first pass only. It may still need
* resource assignment, which will be
* done on the second, CONFIG_NEW, pass.
*/
process_devfunc(bus, dev, func, header,
venid, config_op);
}
}
}
/* percolate bus used resources up through parents to root */
if (config_op == CONFIG_INFO) {
int par_bus;
par_bus = pci_bus_res[bus].par_bus;
while (par_bus != (uchar_t)-1) {
pci_bus_res[par_bus].io_size +=
pci_bus_res[bus].io_size;
pci_bus_res[par_bus].mem_size +=
pci_bus_res[bus].mem_size;
if (pci_bus_res[bus].io_used)
memlist_merge(&pci_bus_res[bus].io_used,
&pci_bus_res[par_bus].io_used);
if (pci_bus_res[bus].mem_used)
memlist_merge(&pci_bus_res[bus].mem_used,
&pci_bus_res[par_bus].mem_used);
if (pci_bus_res[bus].pmem_used)
memlist_merge(&pci_bus_res[bus].pmem_used,
&pci_bus_res[par_bus].pmem_used);
bus = par_bus;
par_bus = pci_bus_res[par_bus].par_bus;
}
}
}
static int
check_pciide_prop(uchar_t revid, ushort_t venid, ushort_t devid,
ushort_t subvenid, ushort_t subdevid)
{
static int prop_exist = -1;
static char *pciide_str;
char compat[32];
if (prop_exist == -1) {
prop_exist = (ddi_prop_lookup_string(DDI_DEV_T_ANY,
ddi_root_node(), DDI_PROP_DONTPASS, "pci-ide",
&pciide_str) == DDI_SUCCESS);
}
if (!prop_exist)
return (0);
/* compare property value against various forms of compatible */
if (subvenid) {
(void) snprintf(compat, sizeof (compat), "pci%x,%x.%x.%x.%x",
venid, devid, subvenid, subdevid, revid);
if (strcmp(pciide_str, compat) == 0)
return (1);
(void) snprintf(compat, sizeof (compat), "pci%x,%x.%x.%x",
venid, devid, subvenid, subdevid);
if (strcmp(pciide_str, compat) == 0)
return (1);
(void) snprintf(compat, sizeof (compat), "pci%x,%x",
subvenid, subdevid);
if (strcmp(pciide_str, compat) == 0)
return (1);
}
(void) snprintf(compat, sizeof (compat), "pci%x,%x.%x",
venid, devid, revid);
if (strcmp(pciide_str, compat) == 0)
return (1);
(void) snprintf(compat, sizeof (compat), "pci%x,%x", venid, devid);
if (strcmp(pciide_str, compat) == 0)
return (1);
return (0);
}
static int
is_pciide(uchar_t basecl, uchar_t subcl, uchar_t revid,
ushort_t venid, ushort_t devid, ushort_t subvenid, ushort_t subdevid)
{
struct ide_table { /* table for PCI_MASS_OTHER */
ushort_t venid;
ushort_t devid;
} *entry;
/* XXX SATA and other devices: need a way to add dynamically */
static struct ide_table ide_other[] = {
{0x1095, 0x3112},
{0x1095, 0x3114},
{0x1095, 0x3512},
{0x1095, 0x680}, /* Sil0680 */
{0x1283, 0x8211}, /* ITE 8211F is subcl PCI_MASS_OTHER */
{0, 0}
};
if (basecl != PCI_CLASS_MASS)
return (0);
if (subcl == PCI_MASS_IDE) {
return (1);
}
if (check_pciide_prop(revid, venid, devid, subvenid, subdevid))
return (1);
if (subcl != PCI_MASS_OTHER && subcl != PCI_MASS_SATA) {
return (0);
}
entry = &ide_other[0];
while (entry->venid) {
if (entry->venid == venid && entry->devid == devid)
return (1);
entry++;
}
return (0);
}
static int
is_display(uint_t classcode)
{
static uint_t disp_classes[] = {
0x000100,
0x030000,
0x030001
};
int i, nclasses = sizeof (disp_classes) / sizeof (uint_t);
for (i = 0; i < nclasses; i++) {
if (classcode == disp_classes[i])
return (1);
}
return (0);
}
static void
add_undofix_entry(uint8_t bus, uint8_t dev, uint8_t fn,
void (*undofn)(uint8_t, uint8_t, uint8_t))
{
struct pci_fixundo *newundo;
newundo = kmem_alloc(sizeof (struct pci_fixundo), KM_SLEEP);
/*
* Adding an item to this list means that we must turn its NMIENABLE
* bit back on at a later time.
*/
newundo->bus = bus;
newundo->dev = dev;
newundo->fn = fn;
newundo->undofn = undofn;
newundo->next = undolist;
/* add to the undo list in LIFO order */
undolist = newundo;
}
void
add_pci_fixes(void)
{
int i;
for (i = 0; i <= pci_bios_maxbus; i++) {
/*
* For each bus, apply needed fixes to the appropriate devices.
* This must be done before the main enumeration loop because
* some fixes must be applied to devices normally encountered
* later in the pci scan (e.g. if a fix to device 7 must be
* applied before scanning device 6, applying fixes in the
* normal enumeration loop would obviously be too late).
*/
enumerate_bus_devs(i, CONFIG_FIX);
}
}
void
undo_pci_fixes(void)
{
struct pci_fixundo *nextundo;
uint8_t bus, dev, fn;
/*
* All fixes in the undo list are performed unconditionally. Future
* fixes may require selective undo.
*/
while (undolist != NULL) {
bus = undolist->bus;
dev = undolist->dev;
fn = undolist->fn;
(*(undolist->undofn))(bus, dev, fn);
nextundo = undolist->next;
kmem_free(undolist, sizeof (struct pci_fixundo));
undolist = nextundo;
}
}
static void
undo_amd8111_pci_fix(uint8_t bus, uint8_t dev, uint8_t fn)
{
uint8_t val8;
val8 = pci_getb(bus, dev, fn, LPC_IO_CONTROL_REG_1);
/*
* The NMIONERR bit is turned back on to allow the SMM BIOS
* to handle more critical PCI errors (e.g. PERR#).
*/
val8 |= AMD8111_ENABLENMI;
pci_putb(bus, dev, fn, LPC_IO_CONTROL_REG_1, val8);
}
static void
pci_fix_amd8111(uint8_t bus, uint8_t dev, uint8_t fn)
{
uint8_t val8;
val8 = pci_getb(bus, dev, fn, LPC_IO_CONTROL_REG_1);
if ((val8 & AMD8111_ENABLENMI) == 0)
return;
/*
* We reset NMIONERR in the LPC because master-abort on the PCI
* bridge side of the 8111 will cause NMI, which might cause SMI,
* which sometimes prevents all devices from being enumerated.
*/
val8 &= ~AMD8111_ENABLENMI;
pci_putb(bus, dev, fn, LPC_IO_CONTROL_REG_1, val8);
add_undofix_entry(bus, dev, fn, undo_amd8111_pci_fix);
}
static void
set_devpm_d0(uchar_t bus, uchar_t dev, uchar_t func)
{
uint16_t status;
uint8_t header;
uint8_t cap_ptr;
uint8_t cap_id;
uint16_t pmcsr;
status = pci_getw(bus, dev, func, PCI_CONF_STAT);
if (!(status & PCI_STAT_CAP))
return; /* No capabilities list */
header = pci_getb(bus, dev, func, PCI_CONF_HEADER) & PCI_HEADER_TYPE_M;
if (header == PCI_HEADER_CARDBUS)
cap_ptr = pci_getb(bus, dev, func, PCI_CBUS_CAP_PTR);
else
cap_ptr = pci_getb(bus, dev, func, PCI_CONF_CAP_PTR);
/*
* Walk the capabilities list searching for a PM entry.
*/
while (cap_ptr != PCI_CAP_NEXT_PTR_NULL && cap_ptr >= PCI_CAP_PTR_OFF) {
cap_ptr &= PCI_CAP_PTR_MASK;
cap_id = pci_getb(bus, dev, func, cap_ptr + PCI_CAP_ID);
if (cap_id == PCI_CAP_ID_PM) {
pmcsr = pci_getw(bus, dev, func, cap_ptr + PCI_PMCSR);
pmcsr &= ~(PCI_PMCSR_STATE_MASK);
pmcsr |= PCI_PMCSR_D0; /* D0 state */
pci_putw(bus, dev, func, cap_ptr + PCI_PMCSR, pmcsr);
break;
}
cap_ptr = pci_getb(bus, dev, func, cap_ptr + PCI_CAP_NEXT_PTR);
}
}
#define is_isa(bc, sc) \
(((bc) == PCI_CLASS_BRIDGE) && ((sc) == PCI_BRIDGE_ISA))
static void
process_devfunc(uchar_t bus, uchar_t dev, uchar_t func, uchar_t header,
ushort_t vendorid, int config_op)
{
char nodename[32], unitaddr[5];
dev_info_t *dip;
uchar_t basecl, subcl, progcl, intr, revid;
ushort_t subvenid, subdevid, status;
ushort_t slot_num;
uint_t classcode, revclass;
int reprogram = 0, pciide = 0;
int power[2] = {1, 1};
int pciex = 0;
ushort_t is_pci_bridge = 0;
struct pci_devfunc *devlist = NULL, *entry = NULL;
gfx_entry_t *gfxp;
ushort_t deviceid = pci_getw(bus, dev, func, PCI_CONF_DEVID);
switch (header & PCI_HEADER_TYPE_M) {
case PCI_HEADER_ZERO:
subvenid = pci_getw(bus, dev, func, PCI_CONF_SUBVENID);
subdevid = pci_getw(bus, dev, func, PCI_CONF_SUBSYSID);
break;
case PCI_HEADER_CARDBUS:
subvenid = pci_getw(bus, dev, func, PCI_CBUS_SUBVENID);
subdevid = pci_getw(bus, dev, func, PCI_CBUS_SUBSYSID);
/* Record the # of cardbus bridges found on the bus */
if (config_op == CONFIG_INFO)
pci_bus_res[bus].num_cbb++;
break;
default:
subvenid = 0;
subdevid = 0;
break;
}
if (config_op == CONFIG_FIX) {
if (vendorid == VENID_AMD && deviceid == DEVID_AMD8111_LPC) {
pci_fix_amd8111(bus, dev, func);
}
return;
}
/* XXX should be use generic names? derive from class? */
revclass = pci_getl(bus, dev, func, PCI_CONF_REVID);
classcode = revclass >> 8;
revid = revclass & 0xff;
/* figure out if this is pci-ide */
basecl = classcode >> 16;
subcl = (classcode >> 8) & 0xff;
progcl = classcode & 0xff;
if (is_display(classcode))
(void) snprintf(nodename, sizeof (nodename), "display");
else if (!pseudo_isa && is_isa(basecl, subcl))
(void) snprintf(nodename, sizeof (nodename), "isa");
else if (subvenid != 0)
(void) snprintf(nodename, sizeof (nodename),
"pci%x,%x", subvenid, subdevid);
else
(void) snprintf(nodename, sizeof (nodename),
"pci%x,%x", vendorid, deviceid);
/* make sure parent bus dip has been created */
if (pci_bus_res[bus].dip == NULL)
create_root_bus_dip(bus);
ndi_devi_alloc_sleep(pci_bus_res[bus].dip, nodename,
DEVI_SID_NODEID, &dip);
if (check_if_device_is_pciex(dip, bus, dev, func, &slot_num,
&is_pci_bridge) == B_TRUE)
pciex = 1;
/* add properties */
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "device-id", deviceid);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "vendor-id", vendorid);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "revision-id", revid);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"class-code", classcode);
if (func == 0)
(void) snprintf(unitaddr, sizeof (unitaddr), "%x", dev);
else
(void) snprintf(unitaddr, sizeof (unitaddr),
"%x,%x", dev, func);
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"unit-address", unitaddr);
/* add device_type for display nodes */
if (is_display(classcode)) {
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"device_type", "display");
}
/* add special stuff for header type */
if ((header & PCI_HEADER_TYPE_M) == PCI_HEADER_ZERO) {
uchar_t mingrant = pci_getb(bus, dev, func, PCI_CONF_MIN_G);
uchar_t maxlatency = pci_getb(bus, dev, func, PCI_CONF_MAX_L);
if (subvenid != 0) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"subsystem-id", subdevid);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"subsystem-vendor-id", subvenid);
}
if (!pciex)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"min-grant", mingrant);
if (!pciex)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"max-latency", maxlatency);
}
/* interrupt, record if not 0 */
intr = pci_getb(bus, dev, func, PCI_CONF_IPIN);
if (intr != 0)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"interrupts", intr);
/*
* Add support for 133 mhz pci eventually
*/
status = pci_getw(bus, dev, func, PCI_CONF_STAT);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"devsel-speed", (status & PCI_STAT_DEVSELT) >> 9);
if (!pciex && (status & PCI_STAT_FBBC))
(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
"fast-back-to-back");
if (!pciex && (status & PCI_STAT_66MHZ))
(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
"66mhz-capable");
if (status & PCI_STAT_UDF)
(void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip,
"udf-supported");
if (pciex && slot_num) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"physical-slot#", slot_num);
if (!is_pci_bridge)
pciex_slot_names_prop(dip, slot_num);
}
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"power-consumption", power, 2);
/* Set the device PM state to D0 */
set_devpm_d0(bus, dev, func);
if ((basecl == PCI_CLASS_BRIDGE) && (subcl == PCI_BRIDGE_PCI))
add_ppb_props(dip, bus, dev, func, pciex, is_pci_bridge);
else {
/*
* Record the non-PPB devices on the bus for possible
* reprogramming at 2nd bus enumeration.
* Note: PPB reprogramming is done in fix_ppb_res()
*/
devlist = (struct pci_devfunc *)pci_bus_res[bus].privdata;
entry = kmem_zalloc(sizeof (*entry), KM_SLEEP);
entry->dip = dip;
entry->dev = dev;
entry->func = func;
entry->next = devlist;
pci_bus_res[bus].privdata = entry;
}
if (config_op == CONFIG_INFO &&
IS_CLASS_IOAPIC(basecl, subcl, progcl)) {
create_ioapic_node(bus, dev, func, vendorid, deviceid);
}
/* check for ck8-04 based PCI ISA bridge only */
if (NVIDIA_IS_LPC_BRIDGE(vendorid, deviceid) && (dev == 1) &&
(func == 0))
add_nvidia_isa_bridge_props(dip, bus, dev, func);
if (pciex && is_pci_bridge)
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
(char *)"PCIe-PCI bridge");
else
add_model_prop(dip, classcode);
add_compatible(dip, subvenid, subdevid, vendorid, deviceid,
revid, classcode, pciex);
/*
* See if this device is a controller that advertises
* itself to be a standard ATA task file controller, or one that
* has been hard coded.
*
* If it is, check if any other higher precedence driver listed in
* driver_aliases will claim the node by calling
* ddi_compatibile_driver_major. If so, clear pciide and do not
* create a pci-ide node or any other special handling.
*
* If another driver does not bind, set the node name to pci-ide
* and then let the special pci-ide handling for registers and
* child pci-ide nodes proceed below.
*/
if (is_pciide(basecl, subcl, revid, vendorid, deviceid,
subvenid, subdevid) == 1) {
if (ddi_compatible_driver_major(dip, NULL) == (major_t)-1) {
(void) ndi_devi_set_nodename(dip, "pci-ide", 0);
pciide = 1;
}
}
reprogram = add_reg_props(dip, bus, dev, func, config_op, pciide);
(void) ndi_devi_bind_driver(dip, 0);
/* special handling for pci-ide */
if (pciide) {
dev_info_t *cdip;
/*
* Create properties specified by P1275 Working Group
* Proposal #414 Version 1
*/
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"device_type", "pci-ide");
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#address-cells", 1);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#size-cells", 0);
/* allocate two child nodes */
ndi_devi_alloc_sleep(dip, "ide",
(pnode_t)DEVI_SID_NODEID, &cdip);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cdip,
"reg", 0);
(void) ndi_devi_bind_driver(cdip, 0);
ndi_devi_alloc_sleep(dip, "ide",
(pnode_t)DEVI_SID_NODEID, &cdip);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cdip,
"reg", 1);
(void) ndi_devi_bind_driver(cdip, 0);
reprogram = 0; /* don't reprogram pci-ide bridge */
}
if (is_display(classcode)) {
gfxp = kmem_zalloc(sizeof (*gfxp), KM_SLEEP);
gfxp->g_dip = dip;
gfxp->g_prev = NULL;
gfxp->g_next = gfx_devinfo_list;
gfx_devinfo_list = gfxp;
if (gfxp->g_next)
gfxp->g_next->g_prev = gfxp;
}
/* special handling for isa */
if (!pseudo_isa && is_isa(basecl, subcl)) {
/* add device_type */
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"device_type", "isa");
}
if (reprogram && (entry != NULL))
entry->reprogram = B_TRUE;
}
/*
* Some vendors do not use unique subsystem IDs in their products, which
* makes the use of form 2 compatible names (pciSSSS,ssss) inappropriate.
* Allow for these compatible forms to be excluded on a per-device basis.
*/
/*ARGSUSED*/
static boolean_t
subsys_compat_exclude(ushort_t venid, ushort_t devid, ushort_t subvenid,
ushort_t subdevid, uchar_t revid, uint_t classcode)
{
/* Nvidia display adapters */
if ((venid == 0x10de) && (is_display(classcode)))
return (B_TRUE);
return (B_FALSE);
}
/*
* Set the compatible property to a value compliant with
* rev 2.1 of the IEEE1275 PCI binding.
* (Also used for PCI-Express devices).
*
* pciVVVV,DDDD.SSSS.ssss.RR (0)
* pciVVVV,DDDD.SSSS.ssss (1)
* pciSSSS,ssss (2)
* pciVVVV,DDDD.RR (3)
* pciVVVV,DDDD (4)
* pciclass,CCSSPP (5)
* pciclass,CCSS (6)
*
* The Subsystem (SSSS) forms are not inserted if
* subsystem-vendor-id is 0.
*
* NOTE: For PCI-Express devices "pci" is replaced with "pciex" in 0-6 above
* property 2 is not created as per "1275 bindings for PCI Express Interconnect"
*
* Set with setprop and \x00 between each
* to generate the encoded string array form.
*/
void
add_compatible(dev_info_t *dip, ushort_t subvenid, ushort_t subdevid,
ushort_t vendorid, ushort_t deviceid, uchar_t revid, uint_t classcode,
int pciex)
{
int i = 0;
int size = COMPAT_BUFSIZE;
char *compat[13];
char *buf, *curr;
curr = buf = kmem_alloc(size, KM_SLEEP);
if (pciex) {
if (subvenid) {
compat[i++] = curr; /* form 0 */
(void) snprintf(curr, size, "pciex%x,%x.%x.%x.%x",
vendorid, deviceid, subvenid, subdevid, revid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 1 */
(void) snprintf(curr, size, "pciex%x,%x.%x.%x",
vendorid, deviceid, subvenid, subdevid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
}
compat[i++] = curr; /* form 3 */
(void) snprintf(curr, size, "pciex%x,%x.%x",
vendorid, deviceid, revid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 4 */
(void) snprintf(curr, size, "pciex%x,%x", vendorid, deviceid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 5 */
(void) snprintf(curr, size, "pciexclass,%06x", classcode);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 6 */
(void) snprintf(curr, size, "pciexclass,%04x",
(classcode >> 8));
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
}
if (subvenid) {
compat[i++] = curr; /* form 0 */
(void) snprintf(curr, size, "pci%x,%x.%x.%x.%x",
vendorid, deviceid, subvenid, subdevid, revid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 1 */
(void) snprintf(curr, size, "pci%x,%x.%x.%x",
vendorid, deviceid, subvenid, subdevid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
if (subsys_compat_exclude(vendorid, deviceid, subvenid,
subdevid, revid, classcode) == B_FALSE) {
compat[i++] = curr; /* form 2 */
(void) snprintf(curr, size, "pci%x,%x", subvenid,
subdevid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
}
}
compat[i++] = curr; /* form 3 */
(void) snprintf(curr, size, "pci%x,%x.%x", vendorid, deviceid, revid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 4 */
(void) snprintf(curr, size, "pci%x,%x", vendorid, deviceid);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 5 */
(void) snprintf(curr, size, "pciclass,%06x", classcode);
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
compat[i++] = curr; /* form 6 */
(void) snprintf(curr, size, "pciclass,%04x", (classcode >> 8));
size -= strlen(curr) + 1;
curr += strlen(curr) + 1;
(void) ndi_prop_update_string_array(DDI_DEV_T_NONE, dip,
"compatible", compat, i);
kmem_free(buf, COMPAT_BUFSIZE);
}
/*
* Adjust the reg properties for a dual channel PCI-IDE device.
*
* NOTE: don't do anything that changes the order of the hard-decodes
* and programmed BARs. The kernel driver depends on these values
* being in this order regardless of whether they're for a 'native'
* mode BAR or not.
*/
/*
* config info for pci-ide devices
*/
static struct {
uchar_t native_mask; /* 0 == 'compatibility' mode, 1 == native */
uchar_t bar_offset; /* offset for alt status register */
ushort_t addr; /* compatibility mode base address */
ushort_t length; /* number of ports for this BAR */
} pciide_bar[] = {
{ 0x01, 0, 0x1f0, 8 }, /* primary lower BAR */
{ 0x01, 2, 0x3f6, 1 }, /* primary upper BAR */
{ 0x04, 0, 0x170, 8 }, /* secondary lower BAR */
{ 0x04, 2, 0x376, 1 } /* secondary upper BAR */
};
static int
pciIdeAdjustBAR(uchar_t progcl, int index, uint_t *basep, uint_t *lenp)
{
int hard_decode = 0;
/*
* Adjust the base and len for the BARs of the PCI-IDE
* device's primary and secondary controllers. The first
* two BARs are for the primary controller and the next
* two BARs are for the secondary controller. The fifth
* and sixth bars are never adjusted.
*/
if (index >= 0 && index <= 3) {
*lenp = pciide_bar[index].length;
if (progcl & pciide_bar[index].native_mask) {
*basep += pciide_bar[index].bar_offset;
} else {
*basep = pciide_bar[index].addr;
hard_decode = 1;
}
}
/*
* if either base or len is zero make certain both are zero
*/
if (*basep == 0 || *lenp == 0) {
*basep = 0;
*lenp = 0;
hard_decode = 0;
}
return (hard_decode);
}
/*
* Add the "reg" and "assigned-addresses" property
*/
static int
add_reg_props(dev_info_t *dip, uchar_t bus, uchar_t dev, uchar_t func,
int config_op, int pciide)
{
uchar_t baseclass, subclass, progclass, header;
ushort_t bar_sz;
uint_t value = 0, len, devloc;
uint_t base, base_hi, type;
ushort_t offset, end;
int max_basereg, j, reprogram = 0;
uint_t phys_hi;
struct memlist **io_avail, **io_used;
struct memlist **mem_avail, **mem_used;
struct memlist **pmem_avail, **pmem_used;
uchar_t res_bus;
pci_regspec_t regs[16] = {{0}};
pci_regspec_t assigned[15] = {{0}};
int nreg, nasgn;
io_avail = &pci_bus_res[bus].io_avail;
io_used = &pci_bus_res[bus].io_used;
mem_avail = &pci_bus_res[bus].mem_avail;
mem_used = &pci_bus_res[bus].mem_used;
pmem_avail = &pci_bus_res[bus].pmem_avail;
pmem_used = &pci_bus_res[bus].pmem_used;
devloc = (uint_t)bus << 16 | (uint_t)dev << 11 | (uint_t)func << 8;
regs[0].pci_phys_hi = devloc;
nreg = 1; /* rest of regs[0] is all zero */
nasgn = 0;
baseclass = pci_getb(bus, dev, func, PCI_CONF_BASCLASS);
subclass = pci_getb(bus, dev, func, PCI_CONF_SUBCLASS);
progclass = pci_getb(bus, dev, func, PCI_CONF_PROGCLASS);
header = pci_getb(bus, dev, func, PCI_CONF_HEADER) & PCI_HEADER_TYPE_M;
switch (header) {
case PCI_HEADER_ZERO:
max_basereg = PCI_BASE_NUM;
break;
case PCI_HEADER_PPB:
max_basereg = PCI_BCNF_BASE_NUM;
break;
case PCI_HEADER_CARDBUS:
max_basereg = PCI_CBUS_BASE_NUM;
reprogram = 1;
break;
default:
max_basereg = 0;
break;
}
/*
* Create the register property by saving the current
* value of the base register. Write 0xffffffff to the
* base register. Read the value back to determine the
* required size of the address space. Restore the base
* register contents.
*
* Do not disable I/O and memory access; this isn't necessary
* since no driver is yet attached to this device, and disabling
* I/O and memory access has the side-effect of disabling PCI-PCI
* bridge mappings, which makes the bridge transparent to secondary-
* bus activity (see sections 4.1-4.3 of the PCI-PCI Bridge
* Spec V1.2).
*/
end = PCI_CONF_BASE0 + max_basereg * sizeof (uint_t);
for (j = 0, offset = PCI_CONF_BASE0; offset < end;
j++, offset += bar_sz) {
/* determine the size of the address space */
base = pci_getl(bus, dev, func, offset);
pci_putl(bus, dev, func, offset, 0xffffffff);
value = pci_getl(bus, dev, func, offset);
pci_putl(bus, dev, func, offset, base);
/* construct phys hi,med.lo, size hi, lo */
if ((pciide && j < 4) || (base & PCI_BASE_SPACE_IO)) {
int hard_decode = 0;
/* i/o space */
bar_sz = PCI_BAR_SZ_32;
value &= PCI_BASE_IO_ADDR_M;
len = ((value ^ (value-1)) + 1) >> 1;
/* XXX Adjust first 4 IDE registers */
if (pciide) {
if (subclass != PCI_MASS_IDE)
progclass = (PCI_IDE_IF_NATIVE_PRI |
PCI_IDE_IF_NATIVE_SEC);
hard_decode = pciIdeAdjustBAR(progclass, j,
&base, &len);
} else if (value == 0) {
/* skip base regs with size of 0 */
continue;
}
regs[nreg].pci_phys_hi = PCI_ADDR_IO | devloc |
(hard_decode ? PCI_RELOCAT_B : offset);
regs[nreg].pci_phys_low = hard_decode ?
base & PCI_BASE_IO_ADDR_M : 0;
assigned[nasgn].pci_phys_hi =
PCI_RELOCAT_B | regs[nreg].pci_phys_hi;
regs[nreg].pci_size_low =
assigned[nasgn].pci_size_low = len;
type = base & (~PCI_BASE_IO_ADDR_M);
base &= PCI_BASE_IO_ADDR_M;
/*
* A device under a subtractive PPB can allocate
* resources from its parent bus if there is no resource
* available on its own bus.
*/
if ((config_op == CONFIG_NEW) && (*io_avail == NULL)) {
res_bus = bus;
while (pci_bus_res[res_bus].subtractive) {
res_bus = pci_bus_res[res_bus].par_bus;
if (res_bus == (uchar_t)-1)
break; /* root bus already */
if (pci_bus_res[res_bus].io_avail) {
io_avail = &pci_bus_res
[res_bus].io_avail;
break;
}
}
}
/*
* first pass - gather what's there
* update/second pass - adjust/allocate regions
* config - allocate regions
*/
if (config_op == CONFIG_INFO) { /* first pass */
/* take out of the resource map of the bus */
if (base != 0) {
(void) memlist_remove(io_avail, base,
len);
memlist_insert(io_used, base, len);
} else {
reprogram = 1;
}
pci_bus_res[bus].io_size += len;
} else if ((*io_avail && base == 0) ||
pci_bus_res[bus].io_reprogram) {
base = (uint_t)memlist_find(io_avail, len, len);
if (base != 0) {
memlist_insert(io_used, base, len);
/* XXX need to worry about 64-bit? */
pci_putl(bus, dev, func, offset,
base | type);
base = pci_getl(bus, dev, func, offset);
base &= PCI_BASE_IO_ADDR_M;
}
if (base == 0) {
cmn_err(CE_WARN, "failed to program"
" IO space [%d/%d/%d] BAR@0x%x"
" length 0x%x",
bus, dev, func, offset, len);
}
}
assigned[nasgn].pci_phys_low = base;
nreg++, nasgn++;
} else {
/* memory space */
if ((base & PCI_BASE_TYPE_M) == PCI_BASE_TYPE_ALL) {
bar_sz = PCI_BAR_SZ_64;
base_hi = pci_getl(bus, dev, func, offset + 4);
phys_hi = PCI_ADDR_MEM64;
} else {
bar_sz = PCI_BAR_SZ_32;
base_hi = 0;
phys_hi = PCI_ADDR_MEM32;
}
/* skip base regs with size of 0 */
value &= PCI_BASE_M_ADDR_M;
if (value == 0)
continue;
len = ((value ^ (value-1)) + 1) >> 1;
regs[nreg].pci_size_low =
assigned[nasgn].pci_size_low = len;
phys_hi |= (devloc | offset);
if (base & PCI_BASE_PREF_M)
phys_hi |= PCI_PREFETCH_B;
/*
* A device under a subtractive PPB can allocate
* resources from its parent bus if there is no resource
* available on its own bus.
*/
if ((config_op == CONFIG_NEW) && (*mem_avail == NULL)) {
res_bus = bus;
while (pci_bus_res[res_bus].subtractive) {
res_bus = pci_bus_res[res_bus].par_bus;
if (res_bus == (uchar_t)-1)
break; /* root bus already */
mem_avail =
&pci_bus_res[res_bus].mem_avail;
pmem_avail =
&pci_bus_res [res_bus].pmem_avail;
/*
* Break out as long as at least
* mem_avail is available
*/
if ((*pmem_avail &&
(phys_hi & PCI_PREFETCH_B)) ||
*mem_avail)
break;
}
}
regs[nreg].pci_phys_hi =
assigned[nasgn].pci_phys_hi = phys_hi;
assigned[nasgn].pci_phys_hi |= PCI_RELOCAT_B;
assigned[nasgn].pci_phys_mid = base_hi;
type = base & ~PCI_BASE_M_ADDR_M;
base &= PCI_BASE_M_ADDR_M;
if (config_op == CONFIG_INFO) {
/* take out of the resource map of the bus */
if (base != NULL) {
/* remove from PMEM and MEM space */
(void) memlist_remove(mem_avail,
base, len);
(void) memlist_remove(pmem_avail,
base, len);
/* only note as used in correct map */
if (phys_hi & PCI_PREFETCH_B)
memlist_insert(pmem_used,
base, len);
else
memlist_insert(mem_used,
base, len);
} else {
reprogram = 1;
}
pci_bus_res[bus].mem_size += len;
} else if ((*mem_avail && base == NULL) ||
pci_bus_res[bus].mem_reprogram) {
/*
* When desired, attempt a prefetchable
* allocation first
*/
if (phys_hi & PCI_PREFETCH_B) {
base = (uint_t)memlist_find(pmem_avail,
len, len);
if (base != NULL) {
memlist_insert(pmem_used,
base, len);
(void) memlist_remove(mem_avail,
base, len);
}
}
/*
* If prefetchable allocation was not
* desired, or failed, attempt ordinary
* memory allocation
*/
if (base == NULL) {
base = (uint_t)memlist_find(mem_avail,
len, len);
if (base != NULL) {
memlist_insert(mem_used,
base, len);
(void) memlist_remove(
pmem_avail, base, len);
}
}
if (base != NULL) {
pci_putl(bus, dev, func, offset,
base | type);
base = pci_getl(bus, dev, func, offset);
base &= PCI_BASE_M_ADDR_M;
} else
cmn_err(CE_WARN, "failed to program "
"mem space [%d/%d/%d] BAR@0x%x"
" length 0x%x",
bus, dev, func, offset, len);
}
assigned[nasgn].pci_phys_low = base;
nreg++, nasgn++;
}
}
switch (header) {
case PCI_HEADER_ZERO:
offset = PCI_CONF_ROM;
break;
case PCI_HEADER_PPB:
offset = PCI_BCNF_ROM;
break;
default: /* including PCI_HEADER_CARDBUS */
goto done;
}
/*
* Add the expansion rom memory space
* Determine the size of the ROM base reg; don't write reserved bits
* ROM isn't in the PCI memory space.
*/
base = pci_getl(bus, dev, func, offset);
pci_putl(bus, dev, func, offset, PCI_BASE_ROM_ADDR_M);
value = pci_getl(bus, dev, func, offset);
pci_putl(bus, dev, func, offset, base);
if (value & PCI_BASE_ROM_ENABLE)
value &= PCI_BASE_ROM_ADDR_M;
else
value = 0;
if (value != 0) {
regs[nreg].pci_phys_hi = (PCI_ADDR_MEM32 | devloc) + offset;
assigned[nasgn].pci_phys_hi = (PCI_RELOCAT_B |
PCI_ADDR_MEM32 | devloc) + offset;
base &= PCI_BASE_ROM_ADDR_M;
assigned[nasgn].pci_phys_low = base;
len = ((value ^ (value-1)) + 1) >> 1;
regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = len;
nreg++, nasgn++;
/* take it out of the memory resource */
if (base != NULL) {
(void) memlist_remove(mem_avail, base, len);
memlist_insert(mem_used, base, len);
pci_bus_res[bus].mem_size += len;
}
}
/*
* Account for "legacy" (alias) video adapter resources
*/
/* add the three hard-decode, aliased address spaces for VGA */
if ((baseclass == PCI_CLASS_DISPLAY && subclass == PCI_DISPLAY_VGA) ||
(baseclass == PCI_CLASS_NONE && subclass == PCI_NONE_VGA)) {
/* VGA hard decode 0x3b0-0x3bb */
regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi =
(PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc);
regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x3b0;
regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0xc;
nreg++, nasgn++;
(void) memlist_remove(io_avail, 0x3b0, 0xc);
memlist_insert(io_used, 0x3b0, 0xc);
pci_bus_res[bus].io_size += 0xc;
/* VGA hard decode 0x3c0-0x3df */
regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi =
(PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc);
regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x3c0;
regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0x20;
nreg++, nasgn++;
(void) memlist_remove(io_avail, 0x3c0, 0x20);
memlist_insert(io_used, 0x3c0, 0x20);
pci_bus_res[bus].io_size += 0x20;
/* Video memory */
regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi =
(PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_MEM32 | devloc);
regs[nreg].pci_phys_low =
assigned[nasgn].pci_phys_low = 0xa0000;
regs[nreg].pci_size_low =
assigned[nasgn].pci_size_low = 0x20000;
nreg++, nasgn++;
/* remove from MEM and PMEM space */
(void) memlist_remove(mem_avail, 0xa0000, 0x20000);
(void) memlist_remove(pmem_avail, 0xa0000, 0x20000);
memlist_insert(mem_used, 0xa0000, 0x20000);
pci_bus_res[bus].mem_size += 0x20000;
}
/* add the hard-decode, aliased address spaces for 8514 */
if ((baseclass == PCI_CLASS_DISPLAY) &&
(subclass == PCI_DISPLAY_VGA) &&
(progclass & PCI_DISPLAY_IF_8514)) {
/* hard decode 0x2e8 */
regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi =
(PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc);
regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x2e8;
regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0x1;
nreg++, nasgn++;
(void) memlist_remove(io_avail, 0x2e8, 0x1);
memlist_insert(io_used, 0x2e8, 0x1);
pci_bus_res[bus].io_size += 0x1;
/* hard decode 0x2ea-0x2ef */
regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi =
(PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc);
regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x2ea;
regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0x6;
nreg++, nasgn++;
(void) memlist_remove(io_avail, 0x2ea, 0x6);
memlist_insert(io_used, 0x2ea, 0x6);
pci_bus_res[bus].io_size += 0x6;
}
done:
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "reg",
(int *)regs, nreg * sizeof (pci_regspec_t) / sizeof (int));
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"assigned-addresses",
(int *)assigned, nasgn * sizeof (pci_regspec_t) / sizeof (int));
return (reprogram);
}
static void
add_ppb_props(dev_info_t *dip, uchar_t bus, uchar_t dev, uchar_t func,
int pciex, ushort_t is_pci_bridge)
{
char *dev_type;
int i;
uint_t val, io_range[2], mem_range[2], pmem_range[2];
uchar_t secbus = pci_getb(bus, dev, func, PCI_BCNF_SECBUS);
uchar_t subbus = pci_getb(bus, dev, func, PCI_BCNF_SUBBUS);
uchar_t progclass;
ASSERT(secbus <= subbus);
/*
* Check if it's a subtractive PPB.
*/
progclass = pci_getb(bus, dev, func, PCI_CONF_PROGCLASS);
if (progclass == PCI_BRIDGE_PCI_IF_SUBDECODE)
pci_bus_res[secbus].subtractive = B_TRUE;
/*
* Some BIOSes lie about max pci busses, we allow for
* such mistakes here
*/
if (subbus > pci_bios_maxbus) {
pci_bios_maxbus = subbus;
alloc_res_array();
}
ASSERT(pci_bus_res[secbus].dip == NULL);
pci_bus_res[secbus].dip = dip;
pci_bus_res[secbus].par_bus = bus;
dev_type = (pciex && !is_pci_bridge) ? "pciex" : "pci";
/* setup bus number hierarchy */
pci_bus_res[secbus].sub_bus = subbus;
/*
* Keep track of the largest subordinate bus number (this is essential
* for peer busses because there is no other way of determining its
* subordinate bus number).
*/
if (subbus > pci_bus_res[bus].sub_bus)
pci_bus_res[bus].sub_bus = subbus;
/*
* Loop through subordinate busses, initializing their parent bus
* field to this bridge's parent. The subordinate busses' parent
* fields may very well be further refined later, as child bridges
* are enumerated. (The value is to note that the subordinate busses
* are not peer busses by changing their par_bus fields to anything
* other than -1.)
*/
for (i = secbus + 1; i <= subbus; i++)
pci_bus_res[i].par_bus = bus;
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"device_type", dev_type);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#address-cells", 3);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#size-cells", 2);
/*
* Collect bridge window specifications, and use them to populate
* the "avail" resources for the bus. Not all of those resources will
* end up being available; this is done top-down, and so the initial
* collection of windows populates the 'ranges' property for the
* bus node. Later, as children are found, resources are removed from
* the 'avail' list, so that it becomes the freelist for
* this point in the tree. ranges may be set again after bridge
* reprogramming in fix_ppb_res(), in which case it's set from
* used + avail.
*
* According to PPB spec, the base register should be programmed
* with a value bigger than the limit register when there are
* no resources available. This applies to io, memory, and
* prefetchable memory.
*/
/*
* io range
* We determine i/o windows that are left unconfigured by BIOS
* through its i/o enable bit as Microsoft recommends OEMs to do.
* If it is unset, we disable i/o and mark it for reconfiguration in
* later passes by setting the base > limit
*/
val = (uint_t)pci_getw(bus, dev, func, PCI_CONF_COMM);
if (val & PCI_COMM_IO) {
val = (uint_t)pci_getb(bus, dev, func, PCI_BCNF_IO_BASE_LOW);
io_range[0] = ((val & 0xf0) << 8);
val = (uint_t)pci_getb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW);
io_range[1] = ((val & 0xf0) << 8) | 0xFFF;
} else {
io_range[0] = 0x9fff;
io_range[1] = 0x1000;
pci_putb(bus, dev, func, PCI_BCNF_IO_BASE_LOW,
(uint8_t)((io_range[0] >> 8) & 0xf0));
pci_putb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW,
(uint8_t)((io_range[1] >> 8) & 0xf0));
pci_putw(bus, dev, func, PCI_BCNF_IO_BASE_HI, 0);
pci_putw(bus, dev, func, PCI_BCNF_IO_LIMIT_HI, 0);
}
if (io_range[0] != 0 && io_range[0] < io_range[1]) {
memlist_insert(&pci_bus_res[secbus].io_avail,
(uint64_t)io_range[0],
(uint64_t)(io_range[1] - io_range[0] + 1));
memlist_insert(&pci_bus_res[bus].io_used,
(uint64_t)io_range[0],
(uint64_t)(io_range[1] - io_range[0] + 1));
if (pci_bus_res[bus].io_avail != NULL) {
(void) memlist_remove(&pci_bus_res[bus].io_avail,
(uint64_t)io_range[0],
(uint64_t)(io_range[1] - io_range[0] + 1));
}
dcmn_err(CE_NOTE, "bus %d io-range: 0x%x-%x",
secbus, io_range[0], io_range[1]);
/* if 32-bit supported, make sure upper bits are not set */
if ((val & 0xf) == 1 &&
pci_getw(bus, dev, func, PCI_BCNF_IO_BASE_HI)) {
cmn_err(CE_NOTE, "unsupported 32-bit IO address on"
" pci-pci bridge [%d/%d/%d]", bus, dev, func);
}
}
/* mem range */
val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_BASE);
mem_range[0] = ((val & 0xFFF0) << 16);
val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_LIMIT);
mem_range[1] = ((val & 0xFFF0) << 16) | 0xFFFFF;
if (mem_range[0] != 0 && mem_range[0] < mem_range[1]) {
memlist_insert(&pci_bus_res[secbus].mem_avail,
(uint64_t)mem_range[0],
(uint64_t)(mem_range[1] - mem_range[0] + 1));
memlist_insert(&pci_bus_res[bus].mem_used,
(uint64_t)mem_range[0],
(uint64_t)(mem_range[1] - mem_range[0] + 1));
/* remove from parent resource list */
(void) memlist_remove(&pci_bus_res[bus].mem_avail,
(uint64_t)mem_range[0],
(uint64_t)(mem_range[1] - mem_range[0] + 1));
(void) memlist_remove(&pci_bus_res[bus].pmem_avail,
(uint64_t)mem_range[0],
(uint64_t)(mem_range[1] - mem_range[0] + 1));
dcmn_err(CE_NOTE, "bus %d mem-range: 0x%x-%x",
secbus, mem_range[0], mem_range[1]);
}
/* prefetchable memory range */
val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_PF_BASE_LOW);
pmem_range[0] = ((val & 0xFFF0) << 16);
val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_PF_LIMIT_LOW);
pmem_range[1] = ((val & 0xFFF0) << 16) | 0xFFFFF;
if (pmem_range[0] != 0 && pmem_range[0] < pmem_range[1]) {
memlist_insert(&pci_bus_res[secbus].pmem_avail,
(uint64_t)pmem_range[0],
(uint64_t)(pmem_range[1] - pmem_range[0] + 1));
memlist_insert(&pci_bus_res[bus].pmem_used,
(uint64_t)pmem_range[0],
(uint64_t)(pmem_range[1] - pmem_range[0] + 1));
/* remove from parent resource list */
(void) memlist_remove(&pci_bus_res[bus].pmem_avail,
(uint64_t)pmem_range[0],
(uint64_t)(pmem_range[1] - pmem_range[0] + 1));
(void) memlist_remove(&pci_bus_res[bus].mem_avail,
(uint64_t)pmem_range[0],
(uint64_t)(pmem_range[1] - pmem_range[0] + 1));
dcmn_err(CE_NOTE, "bus %d pmem-range: 0x%x-%x",
secbus, pmem_range[0], pmem_range[1]);
/* if 64-bit supported, make sure upper bits are not set */
if ((val & 0xf) == 1 &&
pci_getl(bus, dev, func, PCI_BCNF_PF_BASE_HIGH)) {
cmn_err(CE_NOTE, "unsupported 64-bit prefetch memory on"
" pci-pci bridge [%d/%d/%d]", bus, dev, func);
}
}
/*
* Add VGA legacy resources to the bridge's pci_bus_res if it
* has VGA_ENABLE set. Note that we put them in 'avail',
* because that's used to populate the ranges prop; they'll be
* removed from there by the VGA device once it's found. Also,
* remove them from the parent's available list and note them as
* used in the parent.
*/
if (pci_getw(bus, dev, func, PCI_BCNF_BCNTRL) &
PCI_BCNF_BCNTRL_VGA_ENABLE) {
memlist_insert(&pci_bus_res[secbus].io_avail, 0x3b0, 0xc);
memlist_insert(&pci_bus_res[bus].io_used, 0x3b0, 0xc);
if (pci_bus_res[bus].io_avail != NULL) {
(void) memlist_remove(&pci_bus_res[bus].io_avail,
0x3b0, 0xc);
}
memlist_insert(&pci_bus_res[secbus].io_avail, 0x3c0, 0x20);
memlist_insert(&pci_bus_res[bus].io_used, 0x3c0, 0x20);
if (pci_bus_res[bus].io_avail != NULL) {
(void) memlist_remove(&pci_bus_res[bus].io_avail,
0x3c0, 0x20);
}
memlist_insert(&pci_bus_res[secbus].mem_avail, 0xa0000,
0x20000);
memlist_insert(&pci_bus_res[bus].mem_used, 0xa0000, 0x20000);
if (pci_bus_res[bus].mem_avail != NULL) {
(void) memlist_remove(&pci_bus_res[bus].mem_avail,
0xa0000, 0x20000);
}
}
add_bus_range_prop(secbus);
add_ranges_prop(secbus, 1);
}
extern const struct pci_class_strings_s class_pci[];
extern int class_pci_items;
static void
add_model_prop(dev_info_t *dip, uint_t classcode)
{
const char *desc;
int i;
uchar_t baseclass = classcode >> 16;
uchar_t subclass = (classcode >> 8) & 0xff;
uchar_t progclass = classcode & 0xff;
if ((baseclass == PCI_CLASS_MASS) && (subclass == PCI_MASS_IDE)) {
desc = "IDE controller";
} else {
for (desc = 0, i = 0; i < class_pci_items; i++) {
if ((baseclass == class_pci[i].base_class) &&
(subclass == class_pci[i].sub_class) &&
(progclass == class_pci[i].prog_class)) {
desc = class_pci[i].actual_desc;
break;
}
}
if (i == class_pci_items)
desc = "Unknown class of pci/pnpbios device";
}
(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
(char *)desc);
}
static void
add_bus_range_prop(int bus)
{
int bus_range[2];
if (pci_bus_res[bus].dip == NULL)
return;
bus_range[0] = bus;
bus_range[1] = pci_bus_res[bus].sub_bus;
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[bus].dip,
"bus-range", (int *)bus_range, 2);
}
/*
* Add slot-names property for any named pci hot-plug slots
*/
static void
add_bus_slot_names_prop(int bus)
{
char slotprop[256];
int len;
if (pci_bus_res[bus].dip != NULL) {
/* simply return if the property is already defined */
if (ddi_prop_exists(DDI_DEV_T_ANY, pci_bus_res[bus].dip,
DDI_PROP_DONTPASS, "slot-names"))
return;
}
len = pci_slot_names_prop(bus, slotprop, sizeof (slotprop));
if (len > 0) {
/*
* Only create a peer bus node if this bus may be a peer bus.
* It may be a peer bus if the dip is NULL and if par_bus is
* -1 (par_bus is -1 if this bus was not found to be
* subordinate to any PCI-PCI bridge).
* If it's not a peer bus, then the ACPI BBN-handling code
* will remove it later.
*/
if (pci_bus_res[bus].par_bus == (uchar_t)-1 &&
pci_bus_res[bus].dip == NULL) {
create_root_bus_dip(bus);
}
if (pci_bus_res[bus].dip != NULL) {
ASSERT((len % sizeof (int)) == 0);
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE,
pci_bus_res[bus].dip, "slot-names",
(int *)slotprop, len / sizeof (int));
} else {
cmn_err(CE_NOTE, "!BIOS BUG: Invalid bus number in PCI "
"IRQ routing table; Not adding slot-names "
"property for incorrect bus %d", bus);
}
}
}
/*
* Handle both PCI root and PCI-PCI bridge range properties;
* non-zero 'ppb' argument select PCI-PCI bridges versus root.
*/
static void
memlist_to_ranges(void **rp, struct memlist *entry, int type, int ppb)
{
ppb_ranges_t *ppb_rp = *rp;
pci_ranges_t *pci_rp = *rp;
while (entry != NULL) {
if (ppb) {
ppb_rp->child_high = ppb_rp->parent_high = type;
ppb_rp->child_mid = ppb_rp->parent_mid =
(uint32_t)(entry->address >> 32); /* XXX */
ppb_rp->child_low = ppb_rp->parent_low =
(uint32_t)entry->address;
ppb_rp->size_high =
(uint32_t)(entry->size >> 32); /* XXX */
ppb_rp->size_low = (uint32_t)entry->size;
*rp = ++ppb_rp;
} else {
pci_rp->child_high = type;
pci_rp->child_mid = pci_rp->parent_high =
(uint32_t)(entry->address >> 32); /* XXX */
pci_rp->child_low = pci_rp->parent_low =
(uint32_t)entry->address;
pci_rp->size_high =
(uint32_t)(entry->size >> 32); /* XXX */
pci_rp->size_low = (uint32_t)entry->size;
*rp = ++pci_rp;
}
entry = entry->next;
}
}
static void
add_ranges_prop(int bus, int ppb)
{
int total, alloc_size;
void *rp, *next_rp;
struct memlist *iolist, *memlist, *pmemlist;
/* no devinfo node - unused bus, return */
if (pci_bus_res[bus].dip == NULL)
return;
iolist = memlist = pmemlist = (struct memlist *)NULL;
memlist_merge(&pci_bus_res[bus].io_avail, &iolist);
memlist_merge(&pci_bus_res[bus].io_used, &iolist);
memlist_merge(&pci_bus_res[bus].mem_avail, &memlist);
memlist_merge(&pci_bus_res[bus].mem_used, &memlist);
memlist_merge(&pci_bus_res[bus].pmem_avail, &pmemlist);
memlist_merge(&pci_bus_res[bus].pmem_used, &pmemlist);
total = memlist_count(iolist);
total += memlist_count(memlist);
total += memlist_count(pmemlist);
/* no property is created if no ranges are present */
if (total == 0)
return;
alloc_size = total *
(ppb ? sizeof (ppb_ranges_t) : sizeof (pci_ranges_t));
next_rp = rp = kmem_alloc(alloc_size, KM_SLEEP);
memlist_to_ranges(&next_rp, iolist, PCI_ADDR_IO | PCI_REG_REL_M, ppb);
memlist_to_ranges(&next_rp, memlist,
PCI_ADDR_MEM32 | PCI_REG_REL_M, ppb);
memlist_to_ranges(&next_rp, pmemlist,
PCI_ADDR_MEM32 | PCI_REG_REL_M | PCI_REG_PF_M, ppb);
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[bus].dip,
"ranges", (int *)rp, alloc_size / sizeof (int));
kmem_free(rp, alloc_size);
memlist_free_all(&iolist);
memlist_free_all(&memlist);
memlist_free_all(&pmemlist);
}
static void
memlist_remove_list(struct memlist **list, struct memlist *remove_list)
{
while (list && *list && remove_list) {
(void) memlist_remove(list, remove_list->address,
remove_list->size);
remove_list = remove_list->next;
}
}
static int
memlist_to_spec(struct pci_phys_spec *sp, struct memlist *list, int type)
{
int i = 0;
while (list) {
/* assume 32-bit addresses */
sp->pci_phys_hi = type;
sp->pci_phys_mid = 0;
sp->pci_phys_low = (uint32_t)list->address;
sp->pci_size_hi = 0;
sp->pci_size_low = (uint32_t)list->size;
list = list->next;
sp++, i++;
}
return (i);
}
static void
add_bus_available_prop(int bus)
{
int i, count;
struct pci_phys_spec *sp;
/* no devinfo node - unused bus, return */
if (pci_bus_res[bus].dip == NULL)
return;
count = memlist_count(pci_bus_res[bus].io_avail) +
memlist_count(pci_bus_res[bus].mem_avail) +
memlist_count(pci_bus_res[bus].pmem_avail);
if (count == 0) /* nothing available */
return;
sp = kmem_alloc(count * sizeof (*sp), KM_SLEEP);
i = memlist_to_spec(&sp[0], pci_bus_res[bus].io_avail,
PCI_ADDR_IO | PCI_REG_REL_M);
i += memlist_to_spec(&sp[i], pci_bus_res[bus].mem_avail,
PCI_ADDR_MEM32 | PCI_REG_REL_M);
i += memlist_to_spec(&sp[i], pci_bus_res[bus].pmem_avail,
PCI_ADDR_MEM32 | PCI_REG_REL_M | PCI_REG_PF_M);
ASSERT(i == count);
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[bus].dip,
"available", (int *)sp,
i * sizeof (struct pci_phys_spec) / sizeof (int));
kmem_free(sp, count * sizeof (*sp));
}
static void
alloc_res_array(void)
{
static int array_max = 0;
int old_max;
void *old_res;
if (array_max > pci_bios_maxbus + 1)
return; /* array is big enough */
old_max = array_max;
old_res = pci_bus_res;
if (array_max == 0)
array_max = 16; /* start with a reasonable number */
while (array_max < pci_bios_maxbus + 1)
array_max <<= 1;
pci_bus_res = (struct pci_bus_resource *)kmem_zalloc(
array_max * sizeof (struct pci_bus_resource), KM_SLEEP);
if (old_res) { /* copy content and free old array */
bcopy(old_res, pci_bus_res,
old_max * sizeof (struct pci_bus_resource));
kmem_free(old_res, old_max * sizeof (struct pci_bus_resource));
}
}
static void
create_ioapic_node(int bus, int dev, int fn, ushort_t vendorid,
ushort_t deviceid)
{
static dev_info_t *ioapicsnode = NULL;
static int numioapics = 0;
dev_info_t *ioapic_node;
uint64_t physaddr;
uint32_t lobase, hibase = 0;
/* BAR 0 contains the IOAPIC's memory-mapped I/O address */
lobase = (*pci_getl_func)(bus, dev, fn, PCI_CONF_BASE0);
/* We (and the rest of the world) only support memory-mapped IOAPICs */
if ((lobase & PCI_BASE_SPACE_M) != PCI_BASE_SPACE_MEM)
return;
if ((lobase & PCI_BASE_TYPE_M) == PCI_BASE_TYPE_ALL)
hibase = (*pci_getl_func)(bus, dev, fn, PCI_CONF_BASE0 + 4);
lobase &= PCI_BASE_M_ADDR_M;
physaddr = (((uint64_t)hibase) << 32) | lobase;
/*
* Create a nexus node for all IOAPICs under the root node.
*/
if (ioapicsnode == NULL) {
if (ndi_devi_alloc(ddi_root_node(), IOAPICS_NODE_NAME,
(pnode_t)DEVI_SID_NODEID, &ioapicsnode) != NDI_SUCCESS) {
return;
}
(void) ndi_devi_online(ioapicsnode, 0);
}
/*
* Create a child node for this IOAPIC
*/
ioapic_node = ddi_add_child(ioapicsnode, IOAPICS_CHILD_NAME,
DEVI_SID_NODEID, numioapics++);
if (ioapic_node == NULL) {
return;
}
/* Vendor and Device ID */
(void) ndi_prop_update_int(DDI_DEV_T_NONE, ioapic_node,
IOAPICS_PROP_VENID, vendorid);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, ioapic_node,
IOAPICS_PROP_DEVID, deviceid);
/* device_type */
(void) ndi_prop_update_string(DDI_DEV_T_NONE, ioapic_node,
"device_type", IOAPICS_DEV_TYPE);
/* reg */
(void) ndi_prop_update_int64(DDI_DEV_T_NONE, ioapic_node,
"reg", physaddr);
}
/*
* NOTE: For PCIe slots, the name is generated from the slot number
* information obtained from Slot Capabilities register.
* For non-PCIe slots, it is generated based on the slot number
* information in the PCI IRQ table.
*/
static void
pciex_slot_names_prop(dev_info_t *dip, ushort_t slot_num)
{
char slotprop[256];
int len;
bzero(slotprop, sizeof (slotprop));
/* set mask to 1 as there is only one slot (i.e dev 0) */
*(uint32_t *)slotprop = 1;
len = 4;
(void) snprintf(slotprop + len, sizeof (slotprop) - len, "pcie%d",
slot_num);
len += strlen(slotprop + len) + 1;
len += len % 4;
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "slot-names",
(int *)slotprop, len / sizeof (int));
}