/* BEGIN CSTYLED */
/*
* Copyright (c) 2009, Intel Corporation.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/x86_archext.h>
#include <sys/vfs_opreg.h>
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#ifndef roundup
#define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
#endif /* !roundup */
#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
static timeout_id_t worktimer_id = NULL;
extern int drm_mm_init(struct drm_mm *mm,
unsigned long start, unsigned long size);
extern void drm_mm_put_block(struct drm_mm_node *cur);
extern int choose_addr(struct as *as, caddr_t *addrp, size_t len, offset_t off,
int vacalign, uint_t flags);
static void
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
uint32_t read_domains,
uint32_t write_domain);
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj,
int write);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
uint64_t offset,
uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
static void
i915_gem_cleanup_ringbuffer(struct drm_device *dev);
/*ARGSUSED*/
int
i915_gem_init_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_init args;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_init *) data, sizeof(args));
spin_lock(&dev->struct_mutex);
if ((args.gtt_start >= args.gtt_end) ||
((args.gtt_start & (PAGE_SIZE - 1)) != 0) ||
((args.gtt_end & (PAGE_SIZE - 1)) != 0)) {
spin_unlock(&dev->struct_mutex);
DRM_ERROR("i915_gem_init_ioctel invalid arg 0x%lx args.start 0x%lx end 0x%lx", &args, args.gtt_start, args.gtt_end);
return EINVAL;
}
dev->gtt_total = (uint32_t) (args.gtt_end - args.gtt_start);
(void) drm_mm_init(&dev_priv->mm.gtt_space,
(unsigned long) args.gtt_start, dev->gtt_total);
DRM_DEBUG("i915_gem_init_ioctl dev->gtt_total %x, dev_priv->mm.gtt_space 0x%x gtt_start 0x%lx", dev->gtt_total, dev_priv->mm.gtt_space, args.gtt_start);
ASSERT(dev->gtt_total != 0);
spin_unlock(&dev->struct_mutex);
return 0;
}
/*ARGSUSED*/
int
i915_gem_get_aperture_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_get_aperture args;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
args.aper_size = (uint64_t)dev->gtt_total;
args.aper_available_size = (args.aper_size -
atomic_read(&dev->pin_memory));
ret = DRM_COPY_TO_USER((struct drm_i915_gem_get_aperture __user *) data, &args, sizeof(args));
if ( ret != 0)
DRM_ERROR(" i915_gem_get_aperture_ioctl error! %d", ret);
DRM_DEBUG("i915_gem_get_aaperture_ioctl called sizeof %d, aper_size 0x%x, aper_available_size 0x%x\n", sizeof(args), dev->gtt_total, args.aper_available_size);
return 0;
}
/**
* Creates a new mm object and returns a handle to it.
*/
/*ARGSUSED*/
int
i915_gem_create_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_create args;
struct drm_gem_object *obj;
int handlep;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_create *) data, sizeof(args));
args.size = (uint64_t) roundup(args.size, PAGE_SIZE);
if (args.size == 0) {
DRM_ERROR("Invalid obj size %d", args.size);
return EINVAL;
}
/* Allocate the new object */
obj = drm_gem_object_alloc(dev, args.size);
if (obj == NULL) {
DRM_ERROR("Failed to alloc obj");
return ENOMEM;
}
ret = drm_gem_handle_create(fpriv, obj, &handlep);
spin_lock(&dev->struct_mutex);
drm_gem_object_handle_unreference(obj);
spin_unlock(&dev->struct_mutex);
if (ret)
return ret;
args.handle = handlep;
ret = DRM_COPY_TO_USER((struct drm_i915_gem_create *) data, &args, sizeof(args));
if ( ret != 0)
DRM_ERROR(" gem create error! %d", ret);
DRM_DEBUG("i915_gem_create_ioctl object name %d, size 0x%lx, list 0x%lx, obj 0x%lx",handlep, args.size, &fpriv->object_idr, obj);
return 0;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
/*ARGSUSED*/
int
i915_gem_pread_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_pread args;
struct drm_gem_object *obj;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_pread __user *) data, sizeof(args));
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL)
return EBADF;
/* Bounds check source.
*
* XXX: This could use review for overflow issues...
*/
if (args.offset > obj->size || args.size > obj->size ||
args.offset + args.size > obj->size) {
drm_gem_object_unreference(obj);
DRM_ERROR("i915_gem_pread_ioctl invalid args");
return EINVAL;
}
spin_lock(&dev->struct_mutex);
ret = i915_gem_object_set_cpu_read_domain_range(obj, args.offset, args.size);
if (ret != 0) {
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
DRM_ERROR("pread failed to read domain range ret %d!!!", ret);
return EFAULT;
}
unsigned long unwritten = 0;
uint32_t *user_data;
user_data = (uint32_t *) (uintptr_t) args.data_ptr;
unwritten = DRM_COPY_TO_USER(user_data, obj->kaddr + args.offset, args.size);
if (unwritten) {
ret = EFAULT;
DRM_ERROR("i915_gem_pread error!!! unwritten %d", unwritten);
}
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return ret;
}
/*ARGSUSED*/
static int
i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
uint32_t *user_data;
int ret = 0;
unsigned long unwritten = 0;
user_data = (uint32_t *) (uintptr_t) args->data_ptr;
spin_lock(&dev->struct_mutex);
ret = i915_gem_object_pin(obj, 0);
if (ret) {
spin_unlock(&dev->struct_mutex);
DRM_ERROR("i915_gem_gtt_pwrite failed to pin ret %d", ret);
return ret;
}
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret)
goto err;
DRM_DEBUG("obj %d write domain 0x%x read domain 0x%x", obj->name, obj->write_domain, obj->read_domains);
unwritten = DRM_COPY_FROM_USER(obj->kaddr + args->offset, user_data, args->size);
if (unwritten) {
ret = EFAULT;
DRM_ERROR("i915_gem_gtt_pwrite error!!! unwritten %d", unwritten);
goto err;
}
err:
i915_gem_object_unpin(obj);
spin_unlock(&dev->struct_mutex);
if (ret)
DRM_ERROR("i915_gem_gtt_pwrite error %d", ret);
return ret;
}
/*ARGSUSED*/
int
i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
DRM_ERROR(" i915_gem_shmem_pwrite Not support");
return -1;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
/*ARGSUSED*/
int
i915_gem_pwrite_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_pwrite args;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
if (dev->driver->use_gem != 1)
return ENODEV;
ret = DRM_COPY_FROM_USER(&args,
(struct drm_i915_gem_pwrite __user *) data, sizeof(args));
if (ret)
DRM_ERROR("i915_gem_pwrite_ioctl failed to copy from user");
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL)
return EBADF;
obj_priv = obj->driver_private;
DRM_DEBUG("i915_gem_pwrite_ioctl, obj->name %d",obj->name);
/* Bounds check destination.
*
* XXX: This could use review for overflow issues...
*/
if (args.offset > obj->size || args.size > obj->size ||
args.offset + args.size > obj->size) {
drm_gem_object_unreference(obj);
DRM_ERROR("i915_gem_pwrite_ioctl invalid arg");
return EINVAL;
}
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj_priv->tiling_mode == I915_TILING_NONE &&
dev->gtt_total != 0)
ret = i915_gem_gtt_pwrite(dev, obj, &args, fpriv);
else
ret = i915_gem_shmem_pwrite(dev, obj, &args, fpriv);
if (ret)
DRM_ERROR("pwrite failed %d\n", ret);
drm_gem_object_unreference(obj);
return ret;
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
*/
/*ARGSUSED*/
int
i915_gem_set_domain_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_set_domain args;
struct drm_gem_object *obj;
int ret = 0;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_set_domain __user *) data, sizeof(args));
uint32_t read_domains = args.read_domains;
uint32_t write_domain = args.write_domain;
/* Only handle setting domains to types used by the CPU. */
if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
ret = EINVAL;
if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
ret = EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
ret = EINVAL;
if (ret) {
DRM_ERROR("set_domain invalid read or write");
return EINVAL;
}
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL)
return EBADF;
spin_lock(&dev->struct_mutex);
DRM_DEBUG("set_domain_ioctl %p(name %d size 0x%x), %08x %08x\n",
obj, obj->name, obj->size, args.read_domains, args.write_domain);
if (read_domains & I915_GEM_DOMAIN_GTT) {
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
/* Silently promote "you're not bound, there was nothing to do"
* to success, since the client was just asking us to
* make sure everything was done.
*/
if (ret == EINVAL)
ret = 0;
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
}
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
if (ret)
DRM_ERROR("i915_set_domain_ioctl ret %d", ret);
return ret;
}
/**
* Called when user space has done writes to this buffer
*/
/*ARGSUSED*/
int
i915_gem_sw_finish_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_sw_finish args;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_sw_finish __user *) data, sizeof(args));
spin_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL) {
spin_unlock(&dev->struct_mutex);
return EBADF;
}
DRM_DEBUG("%s: sw_finish %d (%p name %d size 0x%x)\n",
__func__, args.handle, obj, obj->name, obj->size);
obj_priv = obj->driver_private;
/* Pinned buffers may be scanout, so flush the cache */
if (obj_priv->pin_count)
{
i915_gem_object_flush_cpu_write_domain(obj);
}
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return ret;
}
/**
* Maps the contents of an object, returning the address it is mapped
* into.
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*/
/*ARGSUSED*/
int
i915_gem_mmap_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_mmap args;
struct drm_gem_object *obj;
caddr_t vvaddr = NULL;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(
&args, (struct drm_i915_gem_mmap __user *)data,
sizeof (struct drm_i915_gem_mmap));
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL)
return EBADF;
ret = ddi_devmap_segmap(fpriv->dev, (off_t)obj->map->handle,
ttoproc(curthread)->p_as, &vvaddr, obj->map->size,
PROT_ALL, PROT_ALL, MAP_SHARED, fpriv->credp);
if (ret)
return ret;
spin_lock(&dev->struct_mutex);
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
args.addr_ptr = (uint64_t)(uintptr_t)vvaddr;
DRM_COPYTO_WITH_RETURN(
(struct drm_i915_gem_mmap __user *)data,
&args, sizeof (struct drm_i915_gem_mmap));
return 0;
}
static void
i915_gem_object_free_page_list(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
if (obj_priv->page_list == NULL)
return;
kmem_free(obj_priv->page_list,
btop(obj->size) * sizeof(caddr_t));
obj_priv->page_list = NULL;
}
static void
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
/* Add a reference if we're newly entering the active list. */
if (!obj_priv->active) {
drm_gem_object_reference(obj);
obj_priv->active = 1;
}
/* Move from whatever list we were on to the tail of execution. */
list_move_tail(&obj_priv->list,
&dev_priv->mm.active_list, (caddr_t)obj_priv);
obj_priv->last_rendering_seqno = seqno;
}
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list, (caddr_t)obj_priv);
obj_priv->last_rendering_seqno = 0;
}
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
if (obj_priv->pin_count != 0)
{
list_del_init(&obj_priv->list);
} else {
list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list, (caddr_t)obj_priv);
}
obj_priv->last_rendering_seqno = 0;
if (obj_priv->active) {
obj_priv->active = 0;
drm_gem_object_unreference(obj);
}
}
/**
* Creates a new sequence number, emitting a write of it to the status page
* plus an interrupt, which will trigger i915_user_interrupt_handler.
*
* Must be called with struct_lock held.
*
* Returned sequence numbers are nonzero on success.
*/
static uint32_t
i915_add_request(struct drm_device *dev, uint32_t flush_domains)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_request *request;
uint32_t seqno;
int was_empty;
RING_LOCALS;
request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
if (request == NULL) {
DRM_ERROR("Failed to alloc request");
return 0;
}
/* Grab the seqno we're going to make this request be, and bump the
* next (skipping 0 so it can be the reserved no-seqno value).
*/
seqno = dev_priv->mm.next_gem_seqno;
dev_priv->mm.next_gem_seqno++;
if (dev_priv->mm.next_gem_seqno == 0)
dev_priv->mm.next_gem_seqno++;
DRM_DEBUG("add_request seqno = %d dev 0x%lx", seqno, dev);
BEGIN_LP_RING(4);
OUT_RING(MI_STORE_DWORD_INDEX);
OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
OUT_RING(seqno);
OUT_RING(0);
ADVANCE_LP_RING();
BEGIN_LP_RING(2);
OUT_RING(0);
OUT_RING(MI_USER_INTERRUPT);
ADVANCE_LP_RING();
request->seqno = seqno;
request->emitted_jiffies = jiffies;
was_empty = list_empty(&dev_priv->mm.request_list);
list_add_tail(&request->list, &dev_priv->mm.request_list, (caddr_t)request);
/* Associate any objects on the flushing list matching the write
* domain we're flushing with our flush.
*/
if (flush_domains != 0) {
struct drm_i915_gem_object *obj_priv, *next;
obj_priv = list_entry(dev_priv->mm.flushing_list.next, struct drm_i915_gem_object, list),
next = list_entry(obj_priv->list.next, struct drm_i915_gem_object, list);
for(; &obj_priv->list != &dev_priv->mm.flushing_list;
obj_priv = next,
next = list_entry(next->list.next, struct drm_i915_gem_object, list)) {
struct drm_gem_object *obj = obj_priv->obj;
if ((obj->write_domain & flush_domains) ==
obj->write_domain) {
obj->write_domain = 0;
i915_gem_object_move_to_active(obj, seqno);
}
}
}
if (was_empty && !dev_priv->mm.suspended)
{
/* change to delay HZ and then run work (not insert to workqueue of Linux) */
worktimer_id = timeout(i915_gem_retire_work_handler, (void *) dev, DRM_HZ);
DRM_DEBUG("i915_gem: schedule_delayed_work");
}
return seqno;
}
/**
* Command execution barrier
*
* Ensures that all commands in the ring are finished
* before signalling the CPU
*/
uint32_t
i915_retire_commands(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
uint32_t flush_domains = 0;
RING_LOCALS;
/* The sampler always gets flushed on i965 (sigh) */
if (IS_I965G(dev))
flush_domains |= I915_GEM_DOMAIN_SAMPLER;
BEGIN_LP_RING(2);
OUT_RING(cmd);
OUT_RING(0); /* noop */
ADVANCE_LP_RING();
return flush_domains;
}
/**
* Moves buffers associated only with the given active seqno from the active
* to inactive list, potentially freeing them.
*/
static void
i915_gem_retire_request(struct drm_device *dev,
struct drm_i915_gem_request *request)
{
drm_i915_private_t *dev_priv = dev->dev_private;
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate.
*/
while (!list_empty(&dev_priv->mm.active_list)) {
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
obj_priv = list_entry(dev_priv->mm.active_list.next,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
/* If the seqno being retired doesn't match the oldest in the
* list, then the oldest in the list must still be newer than
* this seqno.
*/
if (obj_priv->last_rendering_seqno != request->seqno)
return;
DRM_DEBUG("%s: retire %d moves to inactive list %p\n",
__func__, request->seqno, obj);
if (obj->write_domain != 0) {
i915_gem_object_move_to_flushing(obj);
} else {
i915_gem_object_move_to_inactive(obj);
}
}
}
/**
* Returns true if seq1 is later than seq2.
*/
static int
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
return (int32_t)(seq1 - seq2) >= 0;
}
uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}
/**
* This function clears the request list as sequence numbers are passed.
*/
void
i915_gem_retire_requests(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t seqno;
seqno = i915_get_gem_seqno(dev);
while (!list_empty(&dev_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
uint32_t retiring_seqno;
request = (struct drm_i915_gem_request *)(uintptr_t)(dev_priv->mm.request_list.next->contain_ptr);
retiring_seqno = request->seqno;
if (i915_seqno_passed(seqno, retiring_seqno) ||
dev_priv->mm.wedged) {
i915_gem_retire_request(dev, request);
list_del(&request->list);
drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
} else
break;
}
}
void
i915_gem_retire_work_handler(void *device)
{
struct drm_device *dev = (struct drm_device *)device;
drm_i915_private_t *dev_priv = dev->dev_private;
spin_lock(&dev->struct_mutex);
/* Return if gem idle */
if (worktimer_id == NULL) {
spin_unlock(&dev->struct_mutex);
return;
}
i915_gem_retire_requests(dev);
if (!dev_priv->mm.suspended && !list_empty(&dev_priv->mm.request_list))
{
DRM_DEBUG("i915_gem: schedule_delayed_work");
worktimer_id = timeout(i915_gem_retire_work_handler, (void *) dev, DRM_HZ);
}
spin_unlock(&dev->struct_mutex);
}
/**
* i965_reset - reset chip after a hang
* @dev: drm device to reset
* @flags: reset domains
*
* Reset the chip. Useful if a hang is detected.
*
* Procedure is fairly simple:
* - reset the chip using the reset reg
* - re-init context state
* - re-init hardware status page
* - re-init ring buffer
* - re-init interrupt state
* - re-init display
*/
void i965_reset(struct drm_device *dev, u8 flags)
{
ddi_acc_handle_t conf_hdl;
drm_i915_private_t *dev_priv = dev->dev_private;
int timeout = 0;
uint8_t gdrst;
if (flags & GDRST_FULL)
i915_save_display(dev);
if (pci_config_setup(dev->dip, &conf_hdl) != DDI_SUCCESS) {
DRM_ERROR(("i915_reset: pci_config_setup fail"));
return;
}
/*
* Set the reset bit, wait for reset, then clear it. Hardware
* will clear the status bit (bit 1) when it's actually ready
* for action again.
*/
gdrst = pci_config_get8(conf_hdl, GDRST);
pci_config_put8(conf_hdl, GDRST, gdrst | flags);
drv_usecwait(50);
pci_config_put8(conf_hdl, GDRST, gdrst | 0xfe);
/* ...we don't want to loop forever though, 500ms should be plenty */
do {
drv_usecwait(100);
gdrst = pci_config_get8(conf_hdl, GDRST);
} while ((gdrst & 2) && (timeout++ < 5));
/* Ok now get things going again... */
/*
* Everything depends on having the GTT running, so we need to start
* there. Fortunately we don't need to do this unless we reset the
* chip at a PCI level.
*
* Next we need to restore the context, but we don't use those
* yet either...
*
* Ring buffer needs to be re-initialized in the KMS case, or if X
* was running at the time of the reset (i.e. we weren't VT
* switched away).
*/
if (!dev_priv->mm.suspended) {
drm_i915_ring_buffer_t *ring = &dev_priv->ring;
struct drm_gem_object *obj = ring->ring_obj;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
dev_priv->mm.suspended = 0;
/* Stop the ring if it's running. */
I915_WRITE(PRB0_CTL, 0);
I915_WRITE(PRB0_TAIL, 0);
I915_WRITE(PRB0_HEAD, 0);
/* Initialize the ring. */
I915_WRITE(PRB0_START, obj_priv->gtt_offset);
I915_WRITE(PRB0_CTL,
((obj->size - 4096) & RING_NR_PAGES) |
RING_NO_REPORT |
RING_VALID);
i915_kernel_lost_context(dev);
(void) drm_irq_install(dev);
}
/*
* Display needs restore too...
*/
if (flags & GDRST_FULL)
i915_restore_display(dev);
}
/**
* Waits for a sequence number to be signaled, and cleans up the
* request and object lists appropriately for that event.
*/
int
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 ier;
int ret = 0;
ASSERT(seqno != 0);
if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
if (IS_IGDNG(dev))
ier = I915_READ(DEIER) | I915_READ(GTIER);
else
ier = I915_READ(IER);
if (!ier) {
DRM_ERROR("something (likely vbetool) disabled "
"interrupts, re-enabling\n");
(void) i915_driver_irq_preinstall(dev);
i915_driver_irq_postinstall(dev);
}
dev_priv->mm.waiting_gem_seqno = seqno;
i915_user_irq_on(dev);
DRM_WAIT(ret, &dev_priv->irq_queue,
(i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
dev_priv->mm.wedged));
i915_user_irq_off(dev);
dev_priv->mm.waiting_gem_seqno = 0;
}
if (dev_priv->mm.wedged) {
ret = EIO;
}
/* GPU maybe hang, reset needed*/
if (ret == -2 && (seqno > i915_get_gem_seqno(dev))) {
if (IS_I965G(dev)) {
DRM_ERROR("GPU hang detected try to reset ... wait for irq_queue seqno %d, now seqno %d", seqno, i915_get_gem_seqno(dev));
dev_priv->mm.wedged = 1;
i965_reset(dev, GDRST_RENDER);
i915_gem_retire_requests(dev);
dev_priv->mm.wedged = 0;
}
else
DRM_ERROR("GPU hang detected.... reboot required");
return 0;
}
/* Directly dispatch request retiring. While we have the work queue
* to handle this, the waiter on a request often wants an associated
* buffer to have made it to the inactive list, and we would need
* a separate wait queue to handle that.
*/
if (ret == 0)
i915_gem_retire_requests(dev);
return ret;
}
static void
i915_gem_flush(struct drm_device *dev,
uint32_t invalidate_domains,
uint32_t flush_domains)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t cmd;
RING_LOCALS;
DRM_DEBUG("%s: invalidate %08x flush %08x\n", __func__,
invalidate_domains, flush_domains);
if (flush_domains & I915_GEM_DOMAIN_CPU)
drm_agp_chipset_flush(dev);
if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT)) {
/*
* read/write caches:
*
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
* also flushed at 2d versus 3d pipeline switches.
*
* read-only caches:
*
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
* MI_READ_FLUSH is set, and is always flushed on 965.
*
* I915_GEM_DOMAIN_COMMAND may not exist?
*
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
* invalidated when MI_EXE_FLUSH is set.
*
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
* invalidated with every MI_FLUSH.
*
* TLBs:
*
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
* are flushed at any MI_FLUSH.
*/
cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
if ((invalidate_domains|flush_domains) &
I915_GEM_DOMAIN_RENDER)
cmd &= ~MI_NO_WRITE_FLUSH;
if (!IS_I965G(dev)) {
/*
* On the 965, the sampler cache always gets flushed
* and this bit is reserved.
*/
if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
cmd |= MI_READ_FLUSH;
}
if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
cmd |= MI_EXE_FLUSH;
DRM_DEBUG("%s: queue flush %08x to ring\n", __func__, cmd);
BEGIN_LP_RING(2);
OUT_RING(cmd);
OUT_RING(0); /* noop */
ADVANCE_LP_RING();
}
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
*/
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret, seqno;
/* This function only exists to support waiting for existing rendering,
* not for emitting required flushes.
*/
if((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0) {
DRM_ERROR("write domain should not be GPU DOMAIN %d", obj_priv->active);
return 0;
}
/* If there is rendering queued on the buffer being evicted, wait for
* it.
*/
if (obj_priv->active) {
DRM_DEBUG("%s: object %d %p wait for seqno %08x\n",
__func__, obj->name, obj, obj_priv->last_rendering_seqno);
seqno = obj_priv->last_rendering_seqno;
if (seqno == 0) {
DRM_DEBUG("last rendering maybe finished");
return 0;
}
ret = i915_wait_request(dev, seqno);
if (ret != 0) {
DRM_ERROR("%s: i915_wait_request request->seqno %d now %d\n", __func__, seqno, i915_get_gem_seqno(dev));
return ret;
}
}
return 0;
}
/**
* Unbinds an object from the GTT aperture.
*/
int
i915_gem_object_unbind(struct drm_gem_object *obj, uint32_t type)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret = 0;
if (obj_priv->gtt_space == NULL)
return 0;
if (obj_priv->pin_count != 0) {
DRM_ERROR("Attempting to unbind pinned buffer\n");
return EINVAL;
}
/* Wait for any rendering to complete
*/
ret = i915_gem_object_wait_rendering(obj);
if (ret) {
DRM_ERROR("wait_rendering failed: %d\n", ret);
return ret;
}
/* Move the object to the CPU domain to ensure that
* any possible CPU writes while it's not in the GTT
* are flushed when we go to remap it. This will
* also ensure that all pending GPU writes are finished
* before we unbind.
*/
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret) {
DRM_ERROR("set_domain failed: %d\n", ret);
return ret;
}
if (!obj_priv->agp_mem) {
(void) drm_agp_unbind_pages(dev, obj->size / PAGE_SIZE,
obj_priv->gtt_offset, type);
obj_priv->agp_mem = -1;
}
ASSERT(!obj_priv->active);
i915_gem_object_free_page_list(obj);
if (obj_priv->gtt_space) {
atomic_dec(&dev->gtt_count);
atomic_sub(obj->size, &dev->gtt_memory);
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
}
/* Remove ourselves from the LRU list if present. */
if (!list_empty(&obj_priv->list))
list_del_init(&obj_priv->list);
return 0;
}
static int
i915_gem_evict_something(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
for (;;) {
/* If there's an inactive buffer available now, grab it
* and be done.
*/
if (!list_empty(&dev_priv->mm.inactive_list)) {
obj_priv = list_entry(dev_priv->mm.inactive_list.next,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
ASSERT(!(obj_priv->pin_count != 0));
DRM_DEBUG("%s: evicting %d\n", __func__, obj->name);
ASSERT(!(obj_priv->active));
/* Wait on the rendering and unbind the buffer. */
ret = i915_gem_object_unbind(obj, 1);
break;
}
/* If we didn't get anything, but the ring is still processing
* things, wait for one of those things to finish and hopefully
* leave us a buffer to evict.
*/
if (!list_empty(&dev_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
request = list_entry(dev_priv->mm.request_list.next,
struct drm_i915_gem_request,
list);
ret = i915_wait_request(dev, request->seqno);
if (ret) {
break;
}
/* if waiting caused an object to become inactive,
* then loop around and wait for it. Otherwise, we
* assume that waiting freed and unbound something,
* so there should now be some space in the GTT
*/
if (!list_empty(&dev_priv->mm.inactive_list))
continue;
break;
}
/* If we didn't have anything on the request list but there
* are buffers awaiting a flush, emit one and try again.
* When we wait on it, those buffers waiting for that flush
* will get moved to inactive.
*/
if (!list_empty(&dev_priv->mm.flushing_list)) {
obj_priv = list_entry(dev_priv->mm.flushing_list.next,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
i915_gem_flush(dev,
obj->write_domain,
obj->write_domain);
(void) i915_add_request(dev, obj->write_domain);
obj = NULL;
continue;
}
DRM_ERROR("inactive empty %d request empty %d "
"flushing empty %d\n",
list_empty(&dev_priv->mm.inactive_list),
list_empty(&dev_priv->mm.request_list),
list_empty(&dev_priv->mm.flushing_list));
/* If we didn't do any of the above, there's nothing to be done
* and we just can't fit it in.
*/
return ENOMEM;
}
return ret;
}
static int
i915_gem_evict_everything(struct drm_device *dev)
{
int ret;
for (;;) {
ret = i915_gem_evict_something(dev);
if (ret != 0)
break;
}
if (ret == ENOMEM)
return 0;
else
DRM_ERROR("evict_everything ret %d", ret);
return ret;
}
/**
* Finds free space in the GTT aperture and binds the object there.
*/
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, uint32_t alignment)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
struct drm_mm_node *free_space;
int page_count, ret;
if (dev_priv->mm.suspended)
return EBUSY;
if (alignment == 0)
alignment = PAGE_SIZE;
if (alignment & (PAGE_SIZE - 1)) {
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
return EINVAL;
}
if (obj_priv->gtt_space) {
DRM_ERROR("Already bind!!");
return 0;
}
search_free:
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
(unsigned long) obj->size, alignment, 0);
if (free_space != NULL) {
obj_priv->gtt_space = drm_mm_get_block(free_space, (unsigned long) obj->size,
alignment);
if (obj_priv->gtt_space != NULL) {
obj_priv->gtt_space->private = obj;
obj_priv->gtt_offset = obj_priv->gtt_space->start;
}
}
if (obj_priv->gtt_space == NULL) {
/* If the gtt is empty and we're still having trouble
* fitting our object in, we're out of memory.
*/
if (list_empty(&dev_priv->mm.inactive_list) &&
list_empty(&dev_priv->mm.flushing_list) &&
list_empty(&dev_priv->mm.active_list)) {
DRM_ERROR("GTT full, but LRU list empty\n");
return ENOMEM;
}
ret = i915_gem_evict_something(dev);
if (ret != 0) {
DRM_ERROR("Failed to evict a buffer %d\n", ret);
return ret;
}
goto search_free;
}
ret = i915_gem_object_get_page_list(obj);
if (ret) {
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
DRM_ERROR("bind to gtt failed to get page list");
return ret;
}
page_count = obj->size / PAGE_SIZE;
/* Create an AGP memory structure pointing at our pages, and bind it
* into the GTT.
*/
DRM_DEBUG("Binding object %d of page_count %d at gtt_offset 0x%x obj->pfnarray = 0x%lx",
obj->name, page_count, obj_priv->gtt_offset, obj->pfnarray);
obj_priv->agp_mem = drm_agp_bind_pages(dev,
obj->pfnarray,
page_count,
obj_priv->gtt_offset);
if (obj_priv->agp_mem) {
i915_gem_object_free_page_list(obj);
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
DRM_ERROR("Failed to bind pages obj %d, obj 0x%lx", obj->name, obj);
return ENOMEM;
}
atomic_inc(&dev->gtt_count);
atomic_add(obj->size, &dev->gtt_memory);
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
ASSERT(!(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)));
ASSERT(!(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)));
return 0;
}
void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj_priv->page_list == NULL)
return;
drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
}
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
uint32_t seqno;
if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
return;
/* Queue the GPU write cache flushing we need. */
i915_gem_flush(dev, 0, obj->write_domain);
seqno = i915_add_request(dev, obj->write_domain);
DRM_DEBUG("flush_gpu_write_domain seqno = %d", seqno);
obj->write_domain = 0;
i915_gem_object_move_to_active(obj, seqno);
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
if (obj->write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it immediately go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*/
obj->write_domain = 0;
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
if (obj->write_domain != I915_GEM_DOMAIN_CPU)
return;
i915_gem_clflush_object(obj);
drm_agp_chipset_flush(dev);
obj->write_domain = 0;
}
/**
* Moves a single object to the GTT read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret;
/* Not valid to be called on unbound objects. */
if (obj_priv->gtt_space == NULL)
return EINVAL;
i915_gem_object_flush_gpu_write_domain(obj);
/* Wait on any GPU rendering and flushing to occur. */
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0) {
DRM_ERROR("set_to_gtt_domain wait_rendering ret %d", ret);
return ret;
}
/* If we're writing through the GTT domain, then CPU and GPU caches
* will need to be invalidated at next use.
*/
if (write)
obj->read_domains &= I915_GEM_DOMAIN_GTT;
i915_gem_object_flush_cpu_write_domain(obj);
DRM_DEBUG("i915_gem_object_set_to_gtt_domain obj->read_domains %x ", obj->read_domains);
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
ASSERT(!((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0));
obj->read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->write_domain = I915_GEM_DOMAIN_GTT;
obj_priv->dirty = 1;
}
return 0;
}
/**
* Moves a single object to the CPU read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
struct drm_device *dev = obj->dev;
int ret;
i915_gem_object_flush_gpu_write_domain(obj);
/* Wait on any GPU rendering and flushing to occur. */
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we have a partially-valid cache of the object in the CPU,
* finish invalidating it and free the per-page flags.
*/
i915_gem_object_set_to_full_cpu_read_domain(obj);
/* Flush the CPU cache if it's still invalid. */
if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj);
drm_agp_chipset_flush(dev);
obj->read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
ASSERT(!((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0));
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->read_domains &= I915_GEM_DOMAIN_CPU;
obj->write_domain = I915_GEM_DOMAIN_CPU;
}
return 0;
}
/*
* Set the next domain for the specified object. This
* may not actually perform the necessary flushing/invaliding though,
* as that may want to be batched with other set_domain operations
*
* This is (we hope) the only really tricky part of gem. The goal
* is fairly simple -- track which caches hold bits of the object
* and make sure they remain coherent. A few concrete examples may
* help to explain how it works. For shorthand, we use the notation
* (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
* a pair of read and write domain masks.
*
* Case 1: the batch buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Mapped to GTT
* 4. Read by GPU
* 5. Unmapped from GTT
* 6. Freed
*
* Let's take these a step at a time
*
* 1. Allocated
* Pages allocated from the kernel may still have
* cache contents, so we set them to (CPU, CPU) always.
* 2. Written by CPU (using pwrite)
* The pwrite function calls set_domain (CPU, CPU) and
* this function does nothing (as nothing changes)
* 3. Mapped by GTT
* This function asserts that the object is not
* currently in any GPU-based read or write domains
* 4. Read by GPU
* i915_gem_execbuffer calls set_domain (COMMAND, 0).
* As write_domain is zero, this function adds in the
* current read domains (CPU+COMMAND, 0).
* flush_domains is set to CPU.
* invalidate_domains is set to COMMAND
* clflush is run to get data out of the CPU caches
* then i915_dev_set_domain calls i915_gem_flush to
* emit an MI_FLUSH and drm_agp_chipset_flush
* 5. Unmapped from GTT
* i915_gem_object_unbind calls set_domain (CPU, CPU)
* flush_domains and invalidate_domains end up both zero
* so no flushing/invalidating happens
* 6. Freed
* yay, done
*
* Case 2: The shared render buffer
*
* 1. Allocated
* 2. Mapped to GTT
* 3. Read/written by GPU
* 4. set_domain to (CPU,CPU)
* 5. Read/written by CPU
* 6. Read/written by GPU
*
* 1. Allocated
* Same as last example, (CPU, CPU)
* 2. Mapped to GTT
* Nothing changes (assertions find that it is not in the GPU)
* 3. Read/written by GPU
* execbuffer calls set_domain (RENDER, RENDER)
* flush_domains gets CPU
* invalidate_domains gets GPU
* clflush (obj)
* MI_FLUSH and drm_agp_chipset_flush
* 4. set_domain (CPU, CPU)
* flush_domains gets GPU
* invalidate_domains gets CPU
* wait_rendering (obj) to make sure all drawing is complete.
* This will include an MI_FLUSH to get the data from GPU
* to memory
* clflush (obj) to invalidate the CPU cache
* Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
* 5. Read/written by CPU
* cache lines are loaded and dirtied
* 6. Read written by GPU
* Same as last GPU access
*
* Case 3: The constant buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Read by GPU
* 4. Updated (written) by CPU again
* 5. Read by GPU
*
* 1. Allocated
* (CPU, CPU)
* 2. Written by CPU
* (CPU, CPU)
* 3. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
* 4. Updated (written) by CPU again
* (CPU, CPU)
* flush_domains = 0 (no previous write domain)
* invalidate_domains = 0 (no new read domains)
* 5. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
*/
static void
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
uint32_t read_domains,
uint32_t write_domain)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
uint32_t invalidate_domains = 0;
uint32_t flush_domains = 0;
DRM_DEBUG("%s: object %p read %08x -> %08x write %08x -> %08x\n",
__func__, obj,
obj->read_domains, read_domains,
obj->write_domain, write_domain);
/*
* If the object isn't moving to a new write domain,
* let the object stay in multiple read domains
*/
if (write_domain == 0)
read_domains |= obj->read_domains;
else
obj_priv->dirty = 1;
/*
* Flush the current write domain if
* the new read domains don't match. Invalidate
* any read domains which differ from the old
* write domain
*/
if (obj->write_domain && obj->write_domain != read_domains) {
flush_domains |= obj->write_domain;
invalidate_domains |= read_domains & ~obj->write_domain;
}
/*
* Invalidate any read caches which may have
* stale data. That is, any new read domains.
*/
invalidate_domains |= read_domains & ~obj->read_domains;
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
DRM_DEBUG("%s: CPU domain flush %08x invalidate %08x\n",
__func__, flush_domains, invalidate_domains);
i915_gem_clflush_object(obj);
}
if ((write_domain | flush_domains) != 0)
obj->write_domain = write_domain;
obj->read_domains = read_domains;
dev->invalidate_domains |= invalidate_domains;
dev->flush_domains |= flush_domains;
DRM_DEBUG("%s: read %08x write %08x invalidate %08x flush %08x\n",
__func__,
obj->read_domains, obj->write_domain,
dev->invalidate_domains, dev->flush_domains);
}
/**
* Moves the object from a partially CPU read to a full one.
*
* Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
* and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
*/
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
if (!obj_priv->page_cpu_valid)
return;
/* If we're partially in the CPU read domain, finish moving it in.
*/
if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
int i;
for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
if (obj_priv->page_cpu_valid[i])
continue;
drm_clflush_pages(obj_priv->page_list + i, 1);
}
drm_agp_chipset_flush(dev);
}
/* Free the page_cpu_valid mappings which are now stale, whether
* or not we've got I915_GEM_DOMAIN_CPU.
*/
drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
DRM_MEM_DRIVER);
obj_priv->page_cpu_valid = NULL;
}
/**
* Set the CPU read domain on a range of the object.
*
* The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
* not entirely valid. The page_cpu_valid member of the object flags which
* pages have been flushed, and will be respected by
* i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
* of the whole object.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
uint64_t offset, uint64_t size)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int i, ret;
if (offset == 0 && size == obj->size)
return i915_gem_object_set_to_cpu_domain(obj, 0);
i915_gem_object_flush_gpu_write_domain(obj);
/* Wait on any GPU rendering and flushing to occur. */
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we're already fully in the CPU read domain, we're done. */
if (obj_priv->page_cpu_valid == NULL &&
(obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
return 0;
/* Otherwise, create/clear the per-page CPU read domain flag if we're
* newly adding I915_GEM_DOMAIN_CPU
*/
if (obj_priv->page_cpu_valid == NULL) {
obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
DRM_MEM_DRIVER);
if (obj_priv->page_cpu_valid == NULL)
return ENOMEM;
} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
(void) memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
/* Flush the cache on any pages that are still invalid from the CPU's
* perspective.
*/
for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
i++) {
if (obj_priv->page_cpu_valid[i])
continue;
drm_clflush_pages(obj_priv->page_list + i, 1);
obj_priv->page_cpu_valid[i] = 1;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
ASSERT(!((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0));
obj->read_domains |= I915_GEM_DOMAIN_CPU;
return 0;
}
/**
* Pin an object to the GTT and evaluate the relocations landing in it.
*/
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
struct drm_file *file_priv,
struct drm_i915_gem_exec_object *entry)
{
struct drm_i915_gem_relocation_entry reloc;
struct drm_i915_gem_relocation_entry __user *relocs;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int i, ret;
/* Choose the GTT offset for our buffer and put it there. */
ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
if (ret) {
DRM_ERROR("failed to pin");
return ret;
}
entry->offset = obj_priv->gtt_offset;
relocs = (struct drm_i915_gem_relocation_entry __user *)
(uintptr_t) entry->relocs_ptr;
/* Apply the relocations, using the GTT aperture to avoid cache
* flushing requirements.
*/
for (i = 0; i < entry->relocation_count; i++) {
struct drm_gem_object *target_obj;
struct drm_i915_gem_object *target_obj_priv;
uint32_t reloc_val, reloc_offset, *reloc_entry;
ret = DRM_COPY_FROM_USER(&reloc, relocs + i, sizeof(reloc));
if (ret != 0) {
i915_gem_object_unpin(obj);
DRM_ERROR("failed to copy from user");
return ret;
}
target_obj = drm_gem_object_lookup(file_priv,
reloc.target_handle);
if (target_obj == NULL) {
i915_gem_object_unpin(obj);
return EBADF;
}
target_obj_priv = target_obj->driver_private;
/* The target buffer should have appeared before us in the
* exec_object list, so it should have a GTT space bound by now.
*/
if (target_obj_priv->gtt_space == NULL) {
DRM_ERROR("No GTT space found for object %d\n",
reloc.target_handle);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return EINVAL;
}
if (reloc.offset > obj->size - 4) {
DRM_ERROR("Relocation beyond object bounds: "
"obj %p target %d offset %d size %d.\n",
obj, reloc.target_handle,
(int) reloc.offset, (int) obj->size);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return EINVAL;
}
if (reloc.offset & 3) {
DRM_ERROR("Relocation not 4-byte aligned: "
"obj %p target %d offset %d.\n",
obj, reloc.target_handle,
(int) reloc.offset);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return EINVAL;
}
if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
reloc.read_domains & I915_GEM_DOMAIN_CPU) {
DRM_ERROR("reloc with read/write CPU domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc.target_handle,
(int) reloc.offset,
reloc.read_domains,
reloc.write_domain);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return EINVAL;
}
if (reloc.write_domain && target_obj->pending_write_domain &&
reloc.write_domain != target_obj->pending_write_domain) {
DRM_ERROR("Write domain conflict: "
"obj %p target %d offset %d "
"new %08x old %08x\n",
obj, reloc.target_handle,
(int) reloc.offset,
reloc.write_domain,
target_obj->pending_write_domain);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return EINVAL;
}
DRM_DEBUG("%s: obj %p offset %08x target %d "
"read %08x write %08x gtt %08x "
"presumed %08x delta %08x\n",
__func__,
obj,
(int) reloc.offset,
(int) reloc.target_handle,
(int) reloc.read_domains,
(int) reloc.write_domain,
(int) target_obj_priv->gtt_offset,
(int) reloc.presumed_offset,
reloc.delta);
target_obj->pending_read_domains |= reloc.read_domains;
target_obj->pending_write_domain |= reloc.write_domain;
/* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
drm_gem_object_unreference(target_obj);
continue;
}
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret != 0) {
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return EINVAL;
}
/* Map the page containing the relocation we're going to
* perform.
*/
int reloc_base = (reloc.offset & ~(PAGE_SIZE-1));
reloc_offset = reloc.offset & (PAGE_SIZE-1);
reloc_entry = (uint32_t *)(uintptr_t)(obj_priv->page_list[reloc_base/PAGE_SIZE] + reloc_offset);
reloc_val = target_obj_priv->gtt_offset + reloc.delta;
*reloc_entry = reloc_val;
/* Write the updated presumed offset for this entry back out
* to the user.
*/
reloc.presumed_offset = target_obj_priv->gtt_offset;
ret = DRM_COPY_TO_USER(relocs + i, &reloc, sizeof(reloc));
if (ret != 0) {
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
DRM_ERROR("%s: Failed to copy to user ret %d", __func__, ret);
return ret;
}
drm_gem_object_unreference(target_obj);
}
return 0;
}
/** Dispatch a batchbuffer to the ring
*/
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
struct drm_i915_gem_execbuffer *exec,
uint64_t exec_offset)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
(uintptr_t) exec->cliprects_ptr;
int nbox = exec->num_cliprects;
int i = 0, count;
uint64_t exec_start, exec_len;
RING_LOCALS;
exec_start = exec_offset + exec->batch_start_offset;
exec_len = exec->batch_len;
if ((exec_start | exec_len) & 0x7) {
DRM_ERROR("alignment\n");
return EINVAL;
}
if (!exec_start) {
DRM_ERROR("wrong arg");
return EINVAL;
}
count = nbox ? nbox : 1;
for (i = 0; i < count; i++) {
if (i < nbox) {
int ret = i915_emit_box(dev, boxes, i,
exec->DR1, exec->DR4);
if (ret) {
DRM_ERROR("i915_emit_box %d DR1 0x%lx DRI2 0x%lx", ret, exec->DR1, exec->DR4);
return ret;
}
}
if (IS_I830(dev) || IS_845G(dev)) {
BEGIN_LP_RING(4);
OUT_RING(MI_BATCH_BUFFER);
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
OUT_RING(exec_start + exec_len - 4);
OUT_RING(0);
ADVANCE_LP_RING();
} else {
BEGIN_LP_RING(2);
if (IS_I965G(dev)) {
OUT_RING(MI_BATCH_BUFFER_START |
(2 << 6) |
(3 << 9) |
MI_BATCH_NON_SECURE_I965);
OUT_RING(exec_start);
} else {
OUT_RING(MI_BATCH_BUFFER_START |
(2 << 6));
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
}
ADVANCE_LP_RING();
}
}
/* XXX breadcrumb */
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
int ret = 0;
uint32_t seqno;
spin_lock(&dev->struct_mutex);
seqno = i915_file_priv->mm.last_gem_throttle_seqno;
i915_file_priv->mm.last_gem_throttle_seqno =
i915_file_priv->mm.last_gem_seqno;
if (seqno) {
ret = i915_wait_request(dev, seqno);
if (ret != 0)
DRM_ERROR("%s: i915_wait_request request->seqno %d now %d\n", __func__, seqno, i915_get_gem_seqno(dev));
}
spin_unlock(&dev->struct_mutex);
return ret;
}
/*ARGSUSED*/
int
i915_gem_execbuffer(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_file_private *i915_file_priv = fpriv->driver_priv;
struct drm_i915_gem_execbuffer args;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_gem_object **object_list = NULL;
struct drm_gem_object *batch_obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0, i, pinned = 0;
uint64_t exec_offset;
uint32_t seqno, flush_domains;
int pin_tries;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_execbuffer __user *) data, sizeof(args));
DRM_DEBUG("buffer_count %d len %x\n", args.buffer_count, args.batch_len);
if (args.buffer_count < 1) {
DRM_ERROR("execbuf with %d buffers\n", args.buffer_count);
return EINVAL;
}
/* Copy in the exec list from userland */
exec_list = drm_calloc(sizeof(*exec_list), args.buffer_count,
DRM_MEM_DRIVER);
object_list = drm_calloc(sizeof(*object_list), args.buffer_count,
DRM_MEM_DRIVER);
if (exec_list == NULL || object_list == NULL) {
DRM_ERROR("Failed to allocate exec or object list "
"for %d buffers\n",
args.buffer_count);
ret = ENOMEM;
goto pre_mutex_err;
}
ret = DRM_COPY_FROM_USER(exec_list,
(struct drm_i915_gem_exec_object __user *)
(uintptr_t) args.buffers_ptr,
sizeof(*exec_list) * args.buffer_count);
if (ret != 0) {
DRM_ERROR("copy %d exec entries failed %d\n",
args.buffer_count, ret);
goto pre_mutex_err;
}
spin_lock(&dev->struct_mutex);
if (dev_priv->mm.wedged) {
DRM_ERROR("Execbuf while wedged\n");
spin_unlock(&dev->struct_mutex);
return EIO;
}
if (dev_priv->mm.suspended) {
DRM_ERROR("Execbuf while VT-switched.\n");
spin_unlock(&dev->struct_mutex);
return EBUSY;
}
/* Look up object handles */
for (i = 0; i < args.buffer_count; i++) {
object_list[i] = drm_gem_object_lookup(fpriv,
exec_list[i].handle);
if (object_list[i] == NULL) {
DRM_ERROR("Invalid object handle %d at index %d\n",
exec_list[i].handle, i);
ret = EBADF;
goto err;
}
obj_priv = object_list[i]->driver_private;
if (obj_priv->in_execbuffer) {
DRM_ERROR("Object[%d] (%d) %p appears more than once in object list in args.buffer_count %d \n",
i, object_list[i]->name, object_list[i], args.buffer_count);
ret = EBADF;
goto err;
}
obj_priv->in_execbuffer = 1;
}
/* Pin and relocate */
for (pin_tries = 0; ; pin_tries++) {
ret = 0;
for (i = 0; i < args.buffer_count; i++) {
object_list[i]->pending_read_domains = 0;
object_list[i]->pending_write_domain = 0;
ret = i915_gem_object_pin_and_relocate(object_list[i],
fpriv,
&exec_list[i]);
if (ret) {
DRM_ERROR("Not all object pinned");
break;
}
pinned = i + 1;
}
/* success */
if (ret == 0)
{
DRM_DEBUG("gem_execbuffer pin_relocate success");
break;
}
/* error other than GTT full, or we've already tried again */
if (ret != ENOMEM || pin_tries >= 1) {
if (ret != ERESTART)
DRM_ERROR("Failed to pin buffers %d\n", ret);
goto err;
}
/* unpin all of our buffers */
for (i = 0; i < pinned; i++)
i915_gem_object_unpin(object_list[i]);
pinned = 0;
/* evict everyone we can from the aperture */
ret = i915_gem_evict_everything(dev);
if (ret)
goto err;
}
/* Set the pending read domains for the batch buffer to COMMAND */
batch_obj = object_list[args.buffer_count-1];
batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
batch_obj->pending_write_domain = 0;
/* Zero the gloabl flush/invalidate flags. These
* will be modified as each object is bound to the
* gtt
*/
dev->invalidate_domains = 0;
dev->flush_domains = 0;
for (i = 0; i < args.buffer_count; i++) {
struct drm_gem_object *obj = object_list[i];
/* Compute new gpu domains and update invalidate/flush */
i915_gem_object_set_to_gpu_domain(obj,
obj->pending_read_domains,
obj->pending_write_domain);
}
if (dev->invalidate_domains | dev->flush_domains) {
DRM_DEBUG("%s: invalidate_domains %08x flush_domains %08x Then flush\n",
__func__,
dev->invalidate_domains,
dev->flush_domains);
i915_gem_flush(dev,
dev->invalidate_domains,
dev->flush_domains);
if (dev->flush_domains) {
(void) i915_add_request(dev, dev->flush_domains);
}
}
for (i = 0; i < args.buffer_count; i++) {
struct drm_gem_object *obj = object_list[i];
obj->write_domain = obj->pending_write_domain;
}
exec_offset = exec_list[args.buffer_count - 1].offset;
/* Exec the batchbuffer */
ret = i915_dispatch_gem_execbuffer(dev, &args, exec_offset);
if (ret) {
DRM_ERROR("dispatch failed %d\n", ret);
goto err;
}
/*
* Ensure that the commands in the batch buffer are
* finished before the interrupt fires
*/
flush_domains = i915_retire_commands(dev);
/*
* Get a seqno representing the execution of the current buffer,
* which we can wait on. We would like to mitigate these interrupts,
* likely by only creating seqnos occasionally (so that we have
* *some* interrupts representing completion of buffers that we can
* wait on when trying to clear up gtt space).
*/
seqno = i915_add_request(dev, flush_domains);
ASSERT(!(seqno == 0));
i915_file_priv->mm.last_gem_seqno = seqno;
for (i = 0; i < args.buffer_count; i++) {
struct drm_gem_object *obj = object_list[i];
i915_gem_object_move_to_active(obj, seqno);
DRM_DEBUG("%s: move to exec list %p\n", __func__, obj);
}
err:
if (object_list != NULL) {
for (i = 0; i < pinned; i++)
i915_gem_object_unpin(object_list[i]);
for (i = 0; i < args.buffer_count; i++) {
if (object_list[i]) {
obj_priv = object_list[i]->driver_private;
obj_priv->in_execbuffer = 0;
}
drm_gem_object_unreference(object_list[i]);
}
}
spin_unlock(&dev->struct_mutex);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
ret = DRM_COPY_TO_USER((struct drm_i915_relocation_entry __user *)
(uintptr_t) args.buffers_ptr,
exec_list,
sizeof(*exec_list) * args.buffer_count);
if (ret)
DRM_ERROR("failed to copy %d exec entries "
"back to user (%d)\n",
args.buffer_count, ret);
}
pre_mutex_err:
drm_free(object_list, sizeof(*object_list) * args.buffer_count,
DRM_MEM_DRIVER);
drm_free(exec_list, sizeof(*exec_list) * args.buffer_count,
DRM_MEM_DRIVER);
return ret;
}
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret;
if (obj_priv->gtt_space == NULL) {
ret = i915_gem_object_bind_to_gtt(obj, alignment);
if (ret != 0) {
DRM_ERROR("Failure to bind: %d", ret);
return ret;
}
}
obj_priv->pin_count++;
/* If the object is not active and not pending a flush,
* remove it from the inactive list
*/
if (obj_priv->pin_count == 1) {
atomic_inc(&dev->pin_count);
atomic_add(obj->size, &dev->pin_memory);
if (!obj_priv->active &&
(obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT)) == 0 &&
!list_empty(&obj_priv->list))
list_del_init(&obj_priv->list);
}
return 0;
}
void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
obj_priv->pin_count--;
ASSERT(!(obj_priv->pin_count < 0));
ASSERT(!(obj_priv->gtt_space == NULL));
/* If the object is no longer pinned, and is
* neither active nor being flushed, then stick it on
* the inactive list
*/
if (obj_priv->pin_count == 0) {
if (!obj_priv->active &&
(obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT)) == 0)
list_move_tail(&obj_priv->list,
&dev_priv->mm.inactive_list, (caddr_t)obj_priv);
atomic_dec(&dev->pin_count);
atomic_sub(obj->size, &dev->pin_memory);
}
}
/*ARGSUSED*/
int
i915_gem_pin_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_pin args;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_pin __user *) data, sizeof(args));
spin_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL) {
DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
args.handle);
spin_unlock(&dev->struct_mutex);
return EBADF;
}
DRM_DEBUG("i915_gem_pin_ioctl obj->name %d", obj->name);
obj_priv = obj->driver_private;
if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != fpriv) {
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
args.handle);
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return EINVAL;
}
obj_priv->user_pin_count++;
obj_priv->pin_filp = fpriv;
if (obj_priv->user_pin_count == 1) {
ret = i915_gem_object_pin(obj, args.alignment);
if (ret != 0) {
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return ret;
}
}
/* XXX - flush the CPU caches for pinned objects
* as the X server doesn't manage domains yet
*/
i915_gem_object_flush_cpu_write_domain(obj);
args.offset = obj_priv->gtt_offset;
ret = DRM_COPY_TO_USER((struct drm_i915_gem_pin __user *) data, &args, sizeof(args));
if ( ret != 0)
DRM_ERROR(" gem pin ioctl error! %d", ret);
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return 0;
}
/*ARGSUSED*/
int
i915_gem_unpin_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_pin args;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_pin __user *) data, sizeof(args));
spin_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL) {
DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
args.handle);
spin_unlock(&dev->struct_mutex);
return EBADF;
}
obj_priv = obj->driver_private;
DRM_DEBUG("i915_gem_unpin_ioctl, obj->name %d", obj->name);
if (obj_priv->pin_filp != fpriv) {
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
args.handle);
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return EINVAL;
}
obj_priv->user_pin_count--;
if (obj_priv->user_pin_count == 0) {
obj_priv->pin_filp = NULL;
i915_gem_object_unpin(obj);
}
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return 0;
}
/*ARGSUSED*/
int
i915_gem_busy_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
struct drm_i915_gem_busy args;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
DRM_COPYFROM_WITH_RETURN(&args,
(struct drm_i915_gem_busy __user *) data, sizeof(args));
spin_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(fpriv, args.handle);
if (obj == NULL) {
DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
args.handle);
spin_unlock(&dev->struct_mutex);
return EBADF;
}
obj_priv = obj->driver_private;
/* Don't count being on the flushing list against the object being
* done. Otherwise, a buffer left on the flushing list but not getting
* flushed (because nobody's flushing that domain) won't ever return
* unbusy and get reused by libdrm's bo cache. The other expected
* consumer of this interface, OpenGL's occlusion queries, also specs
* that the objects get unbusy "eventually" without any interference.
*/
args.busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
DRM_DEBUG("i915_gem_busy_ioctl call obj->name %d busy %d", obj->name, args.busy);
ret = DRM_COPY_TO_USER((struct drm_i915_gem_busy __user *) data, &args, sizeof(args));
if ( ret != 0)
DRM_ERROR(" gem busy error! %d", ret);
drm_gem_object_unreference(obj);
spin_unlock(&dev->struct_mutex);
return 0;
}
/*ARGSUSED*/
int
i915_gem_throttle_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
if (dev->driver->use_gem != 1)
return ENODEV;
return i915_gem_ring_throttle(dev, fpriv);
}
static int
i915_gem_object_get_page_list(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
caddr_t va;
long i;
if (obj_priv->page_list)
return 0;
pgcnt_t np = btop(obj->size);
obj_priv->page_list = kmem_zalloc(np * sizeof(caddr_t), KM_SLEEP);
if (obj_priv->page_list == NULL) {
DRM_ERROR("Faled to allocate page list\n");
return ENOMEM;
}
for (i = 0, va = obj->kaddr; i < np; i++, va += PAGESIZE) {
obj_priv->page_list[i] = va;
}
return 0;
}
int i915_gem_init_object(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv;
obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
if (obj_priv == NULL)
return ENOMEM;
/*
* We've just allocated pages from the kernel,
* so they've just been written by the CPU with
* zeros. They'll need to be clflushed before we
* use them with the GPU.
*/
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
obj->driver_private = obj_priv;
obj_priv->obj = obj;
INIT_LIST_HEAD(&obj_priv->list);
return 0;
}
void i915_gem_free_object(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
while (obj_priv->pin_count > 0)
i915_gem_object_unpin(obj);
DRM_DEBUG("%s: obj %d",__func__, obj->name);
(void) i915_gem_object_unbind(obj, 1);
if (obj_priv->page_cpu_valid != NULL)
drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE, DRM_MEM_DRIVER);
drm_free(obj->driver_private, sizeof(*obj_priv), DRM_MEM_DRIVER);
}
/** Unbinds all objects that are on the given buffer list. */
static int
i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head, uint32_t type)
{
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
while (!list_empty(head)) {
obj_priv = list_entry(head->next,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
if (obj_priv->pin_count != 0) {
DRM_ERROR("Pinned object in unbind list\n");
spin_unlock(&dev->struct_mutex);
return EINVAL;
}
DRM_DEBUG("%s: obj %d type %d",__func__, obj->name, type);
ret = i915_gem_object_unbind(obj, type);
if (ret != 0) {
DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
ret);
spin_unlock(&dev->struct_mutex);
return ret;
}
}
return 0;
}
static int
i915_gem_idle(struct drm_device *dev, uint32_t type)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t seqno, cur_seqno, last_seqno;
int stuck, ret;
spin_lock(&dev->struct_mutex);
if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
spin_unlock(&dev->struct_mutex);
return 0;
}
/* Hack! Don't let anybody do execbuf while we don't control the chip.
* We need to replace this with a semaphore, or something.
*/
dev_priv->mm.suspended = 1;
/* Cancel the retire work handler, wait for it to finish if running
*/
if (worktimer_id != NULL) {
(void) untimeout(worktimer_id);
worktimer_id = NULL;
}
i915_kernel_lost_context(dev);
/* Flush the GPU along with all non-CPU write domains
*/
i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT));
if (seqno == 0) {
spin_unlock(&dev->struct_mutex);
return ENOMEM;
}
dev_priv->mm.waiting_gem_seqno = seqno;
last_seqno = 0;
stuck = 0;
for (;;) {
cur_seqno = i915_get_gem_seqno(dev);
if (i915_seqno_passed(cur_seqno, seqno))
break;
if (last_seqno == cur_seqno) {
if (stuck++ > 100) {
DRM_ERROR("hardware wedged\n");
dev_priv->mm.wedged = 1;
DRM_WAKEUP(&dev_priv->irq_queue);
break;
}
}
DRM_UDELAY(10);
last_seqno = cur_seqno;
}
dev_priv->mm.waiting_gem_seqno = 0;
i915_gem_retire_requests(dev);
/* Empty the active and flushing lists to inactive. If there's
* anything left at this point, it means that we're wedged and
* nothing good's going to happen by leaving them there. So strip
* the GPU domains and just stuff them onto inactive.
*/
while (!list_empty(&dev_priv->mm.active_list)) {
struct drm_i915_gem_object *obj_priv;
obj_priv = list_entry(dev_priv->mm.active_list.next,
struct drm_i915_gem_object,
list);
obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
i915_gem_object_move_to_inactive(obj_priv->obj);
}
while (!list_empty(&dev_priv->mm.flushing_list)) {
struct drm_i915_gem_object *obj_priv;
obj_priv = list_entry(dev_priv->mm.flushing_list.next,
struct drm_i915_gem_object,
list);
obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
i915_gem_object_move_to_inactive(obj_priv->obj);
}
/* Move all inactive buffers out of the GTT. */
ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list, type);
ASSERT(list_empty(&dev_priv->mm.inactive_list));
if (ret) {
spin_unlock(&dev->struct_mutex);
return ret;
}
i915_gem_cleanup_ringbuffer(dev);
spin_unlock(&dev->struct_mutex);
return 0;
}
static int
i915_gem_init_hws(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
/* If we need a physical address for the status page, it's already
* initialized at driver load time.
*/
if (!I915_NEED_GFX_HWS(dev))
return 0;
obj = drm_gem_object_alloc(dev, 4096);
if (obj == NULL) {
DRM_ERROR("Failed to allocate status page\n");
return ENOMEM;
}
obj_priv = obj->driver_private;
ret = i915_gem_object_pin(obj, 4096);
if (ret != 0) {
drm_gem_object_unreference(obj);
return ret;
}
dev_priv->status_gfx_addr = obj_priv->gtt_offset;
dev_priv->hws_map.offset = dev->agp->agp_info.agpi_aperbase + obj_priv->gtt_offset;
dev_priv->hws_map.size = 4096;
dev_priv->hws_map.type = 0;
dev_priv->hws_map.flags = 0;
dev_priv->hws_map.mtrr = 0;
drm_core_ioremap(&dev_priv->hws_map, dev);
if (dev_priv->hws_map.handle == NULL) {
DRM_ERROR("Failed to map status page.\n");
(void) memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
drm_gem_object_unreference(obj);
return EINVAL;
}
dev_priv->hws_obj = obj;
dev_priv->hw_status_page = dev_priv->hws_map.handle;
(void) memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
(void) I915_READ(HWS_PGA); /* posting read */
DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
return 0;
}
static void
i915_gem_cleanup_hws(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
if (dev_priv->hws_obj == NULL)
return;
obj = dev_priv->hws_obj;
drm_core_ioremapfree(&dev_priv->hws_map, dev);
i915_gem_object_unpin(obj);
drm_gem_object_unreference(obj);
dev_priv->hws_obj = NULL;
(void) memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
dev_priv->hw_status_page = NULL;
/* Write high address into HWS_PGA when disabling. */
I915_WRITE(HWS_PGA, 0x1ffff000);
}
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
u32 head;
ret = i915_gem_init_hws(dev);
if (ret != 0)
return ret;
obj = drm_gem_object_alloc(dev, 128 * 1024);
if (obj == NULL) {
DRM_ERROR("Failed to allocate ringbuffer\n");
i915_gem_cleanup_hws(dev);
return ENOMEM;
}
obj_priv = obj->driver_private;
ret = i915_gem_object_pin(obj, 4096);
if (ret != 0) {
drm_gem_object_unreference(obj);
i915_gem_cleanup_hws(dev);
return ret;
}
/* Set up the kernel mapping for the ring. */
dev_priv->ring.Size = obj->size;
dev_priv->ring.tail_mask = obj->size - 1;
dev_priv->ring.map.offset = dev->agp->agp_info.agpi_aperbase + obj_priv->gtt_offset;
dev_priv->ring.map.size = obj->size;
dev_priv->ring.map.type = 0;
dev_priv->ring.map.flags = 0;
dev_priv->ring.map.mtrr = 0;
drm_core_ioremap(&dev_priv->ring.map, dev);
if (dev_priv->ring.map.handle == NULL) {
DRM_ERROR("Failed to map ringbuffer.\n");
(void) memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
drm_gem_object_unreference(obj);
i915_gem_cleanup_hws(dev);
return EINVAL;
}
dev_priv->ring.ring_obj = obj;
dev_priv->ring.virtual_start = (u8 *) dev_priv->ring.map.handle;
/* Stop the ring if it's running. */
I915_WRITE(PRB0_CTL, 0);
I915_WRITE(PRB0_HEAD, 0);
I915_WRITE(PRB0_TAIL, 0);
/* Initialize the ring. */
I915_WRITE(PRB0_START, obj_priv->gtt_offset);
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
/* G45 ring initialization fails to reset head to zero */
if (head != 0) {
DRM_ERROR("Ring head not reset to zero "
"ctl %08x head %08x tail %08x start %08x\n",
I915_READ(PRB0_CTL),
I915_READ(PRB0_HEAD),
I915_READ(PRB0_TAIL),
I915_READ(PRB0_START));
I915_WRITE(PRB0_HEAD, 0);
DRM_ERROR("Ring head forced to zero "
"ctl %08x head %08x tail %08x start %08x\n",
I915_READ(PRB0_CTL),
I915_READ(PRB0_HEAD),
I915_READ(PRB0_TAIL),
I915_READ(PRB0_START));
}
I915_WRITE(PRB0_CTL,
((obj->size - 4096) & RING_NR_PAGES) |
RING_NO_REPORT |
RING_VALID);
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
/* If the head is still not zero, the ring is dead */
if (head != 0) {
DRM_ERROR("Ring initialization failed "
"ctl %08x head %08x tail %08x start %08x\n",
I915_READ(PRB0_CTL),
I915_READ(PRB0_HEAD),
I915_READ(PRB0_TAIL),
I915_READ(PRB0_START));
return EIO;
}
/* Update our cache of the ring state */
i915_kernel_lost_context(dev);
return 0;
}
static void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (dev_priv->ring.ring_obj == NULL)
return;
drm_core_ioremapfree(&dev_priv->ring.map, dev);
i915_gem_object_unpin(dev_priv->ring.ring_obj);
drm_gem_object_unreference(dev_priv->ring.ring_obj);
dev_priv->ring.ring_obj = NULL;
(void) memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
i915_gem_cleanup_hws(dev);
}
/*ARGSUSED*/
int
i915_gem_entervt_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
if (dev_priv->mm.wedged) {
DRM_ERROR("Reenabling wedged hardware, good luck\n");
dev_priv->mm.wedged = 0;
}
/* Set up the kernel mapping for the ring. */
dev_priv->mm.gtt_mapping.offset = dev->agp->agp_info.agpi_aperbase;
dev_priv->mm.gtt_mapping.size = dev->agp->agp_info.agpi_apersize;
dev_priv->mm.gtt_mapping.type = 0;
dev_priv->mm.gtt_mapping.flags = 0;
dev_priv->mm.gtt_mapping.mtrr = 0;
drm_core_ioremap(&dev_priv->mm.gtt_mapping, dev);
spin_lock(&dev->struct_mutex);
dev_priv->mm.suspended = 0;
ret = i915_gem_init_ringbuffer(dev);
if (ret != 0)
return ret;
spin_unlock(&dev->struct_mutex);
(void) drm_irq_install(dev);
return 0;
}
/*ARGSUSED*/
int
i915_gem_leavevt_ioctl(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (dev->driver->use_gem != 1)
return ENODEV;
ret = i915_gem_idle(dev, 0);
(void) drm_irq_uninstall(dev);
drm_core_ioremapfree(&dev_priv->mm.gtt_mapping, dev);
return ret;
}
void
i915_gem_lastclose(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = i915_gem_idle(dev, 1);
if (ret)
DRM_ERROR("failed to idle hardware: %d\n", ret);
drm_mm_clean_ml(&dev_priv->mm.gtt_space);
}
void
i915_gem_load(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
INIT_LIST_HEAD(&dev_priv->mm.active_list);
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
INIT_LIST_HEAD(&dev_priv->mm.request_list);
dev_priv->mm.next_gem_seqno = 1;
i915_gem_detect_bit_6_swizzle(dev);
}