/******************************************************************************
*
* Module Name: tbfadt - FADT table utilities
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2016, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include "acpi.h"
#include "accommon.h"
#include "actables.h"
ACPI_MODULE_NAME ("tbfadt")
/* Local prototypes */
static void
const char *RegisterName,
static void
void);
static void
void);
static UINT64
char *RegisterName,
/* Table for conversion of FADT to common internal format and FADT validation */
typedef struct acpi_fadt_info
{
const char *Name;
#define ACPI_FADT_OPTIONAL 0
{
{"Pm1aEventBlock",
{"Pm1bEventBlock",
{"Pm1aControlBlock",
{"Pm1bControlBlock",
{"Pm2ControlBlock",
{"PmTimerBlock",
ACPI_FADT_SEPARATE_LENGTH}, /* ACPI 5.0A: Timer is optional */
{"Gpe0Block",
0,
{"Gpe1Block",
0,
};
#define ACPI_FADT_INFO_ENTRIES \
(sizeof (FadtInfoTable) / sizeof (ACPI_FADT_INFO))
typedef struct acpi_fadt_pm_info
{
{
0},
1},
0},
1}
};
#define ACPI_FADT_PM_INFO_ENTRIES \
(sizeof (FadtPmInfoTable) / sizeof (ACPI_FADT_PM_INFO))
/*******************************************************************************
*
* FUNCTION: AcpiTbInitGenericAddress
*
* PARAMETERS: GenericAddress - GAS struct to be initialized
* SpaceId - ACPI Space ID for this register
* ByteWidth - Width of this register
* Address - Address of the register
* RegisterName - ASCII name of the ACPI register
*
* RETURN: None
*
* DESCRIPTION: Initialize a Generic Address Structure (GAS)
* See the ACPI specification for a full description and
* definition of this structure.
*
******************************************************************************/
static void
const char *RegisterName,
{
/*
* Bit width field in the GAS is only one byte long, 255 max.
* Check for BitWidth overflow in GAS.
*/
{
/*
* No error for GPE blocks, because we do not use the BitWidth
* for GPEs, the legacy length (ByteWidth) is used instead to
* allow for a large number of GPEs.
*/
if (!(Flags & ACPI_FADT_GPE_REGISTER))
{
"%s - 32-bit FADT register is too long (%u bytes, %u bits) "
"to convert to GAS struct - 255 bits max, truncating",
}
BitWidth = 255;
}
/*
* The 64-bit Address field is non-aligned in the byte packed
* GAS struct.
*/
/* All other fields are byte-wide */
GenericAddress->BitOffset = 0;
}
/*******************************************************************************
*
* FUNCTION: AcpiTbSelectAddress
*
* PARAMETERS: RegisterName - ASCII name of the ACPI register
* Address32 - 32-bit address of the register
* Address64 - 64-bit address of the register
*
* RETURN: The resolved 64-bit address
*
* DESCRIPTION: Select between 32-bit and 64-bit versions of addresses within
* the FADT. Used for the FACS and DSDT addresses.
*
* NOTES:
*
* Check for FACS and DSDT address mismatches. An address mismatch between
* the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and
* the presence of two FACS or two DSDT tables.
*
* November 2013:
* By default, as per the ACPICA specification, a valid 64-bit address is
* used regardless of the value of the 32-bit address. However, this
* behavior can be overridden via the AcpiGbl_Use32BitFadtAddresses flag.
*
******************************************************************************/
static UINT64
char *RegisterName,
{
if (!Address64)
{
/* 64-bit address is zero, use 32-bit address */
}
if (Address32 &&
{
/* Address mismatch between 32-bit and 64-bit versions */
"32/64X %s address mismatch in FADT: "
"0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
/* 32-bit address override */
{
}
}
/* Default is to use the 64-bit address */
return (Address64);
}
/*******************************************************************************
*
* FUNCTION: AcpiTbParseFadt
*
* PARAMETERS: None
*
* RETURN: None
*
* DESCRIPTION: Initialize the FADT, DSDT and FACS tables
* (FADT contains the addresses of the DSDT and FACS)
*
******************************************************************************/
void
void)
{
/*
* The FADT has multiple versions with different lengths,
* and it contains pointers to both the DSDT and FACS tables.
*
* Get a local copy of the FADT and convert it to a common format
* Map entire FADT, assumed to be smaller than one page.
*/
Table = AcpiOsMapMemory (
if (!Table)
{
return;
}
/*
* Validate the FADT checksum before we copy the table. Ignore
* checksum error as we want to try to get the DSDT and FACS.
*/
/* Create a local copy of the FADT in common ACPI 2.0+ format */
/* All done with the real FADT, unmap it */
/* Obtain the DSDT and FACS tables via their addresses within the FADT */
/* If Hardware Reduced flag is set, there is no FACS */
if (!AcpiGbl_ReducedHardware)
{
if (AcpiGbl_FADT.Facs)
{
}
if (AcpiGbl_FADT.XFacs)
{
}
}
}
/*******************************************************************************
*
* FUNCTION: AcpiTbCreateLocalFadt
*
* PARAMETERS: Table - Pointer to BIOS FADT
* Length - Length of the table
*
* RETURN: None
*
* DESCRIPTION: Get a local copy of the FADT and convert it to a common format.
* Performs validation on some important FADT fields.
*
* NOTE: We create a local copy of the FADT regardless of the version.
*
******************************************************************************/
void
{
/*
* Check if the FADT is larger than the largest table that we expect
* (typically the current ACPI specification version). If so, truncate
* the table, and issue a warning.
*/
if (Length > sizeof (ACPI_TABLE_FADT))
{
"FADT (revision %u) is longer than %s length, "
"truncating length %u to %u",
(UINT32) sizeof (ACPI_TABLE_FADT)));
}
/* Clear the entire local FADT */
/* Copy the original FADT, up to sizeof (ACPI_TABLE_FADT) */
/* Take a copy of the Hardware Reduced flag */
{
}
/* Convert the local copy of the FADT to the common internal format */
/* Initialize the global ACPI register structures */
}
/*******************************************************************************
*
* FUNCTION: AcpiTbConvertFadt
*
* PARAMETERS: None - AcpiGbl_FADT is used.
*
* RETURN: None
*
* DESCRIPTION: Converts all versions of the FADT to a common internal format.
* Expand 32-bit addresses to 64-bit as necessary. Also validate
* important fields within the FADT.
*
* NOTE: AcpiGbl_FADT must be of size (ACPI_TABLE_FADT), and must
* contain a copy of the actual BIOS-provided FADT.
*
* Notes on 64-bit register addresses:
*
* After this FADT conversion, later ACPICA code will only use the 64-bit "X"
* fields of the FADT for all ACPI register addresses.
*
* The 64-bit X fields are optional extensions to the original 32-bit FADT
* V1.0 fields. Even if they are present in the FADT, they are optional and
* 32-bit V1.0 fields to the 64-bit X fields if the the 64-bit X field is
* originally zero.
*
* For ACPI 1.0 FADTs (that contain no 64-bit addresses), all 32-bit address
* fields are expanded to the corresponding 64-bit X fields in the internal
* common FADT.
*
* For ACPI 2.0+ FADTs, all valid (non-zero) 32-bit address fields are expanded
* to the corresponding 64-bit X fields, if the 64-bit field is originally
* zero. Adhering to the ACPI specification, we completely ignore the 32-bit
* field if the 64-bit field is valid, regardless of whether the host OS is
* 32-bit or 64-bit.
*
* Possible additional checks:
* (AcpiGbl_FADT.Pm1EventLength >= 4)
* (AcpiGbl_FADT.Pm1ControlLength >= 2)
* (AcpiGbl_FADT.PmTimerLength >= 4)
* Gpe block lengths must be multiple of 2
*
******************************************************************************/
static void
void)
{
const char *Name;
UINT32 i;
/*
* For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which
* should be zero are indeed zero. This will workaround BIOSs that
* inadvertently place values in these fields.
*
* The ACPI 1.0 reserved fields that will be zeroed are the bytes located
* at offset 45, 55, 95, and the word located at offset 109, 110.
*
* Note: The FADT revision value is unreliable. Only the length can be
* trusted.
*/
{
AcpiGbl_FADT.CstControl = 0;
AcpiGbl_FADT.BootFlags = 0;
}
/*
* Now we can update the local FADT length to the length of the
* current FADT version as defined by the ACPI specification.
* Thus, we will have a common FADT internally.
*/
/*
* Expand the 32-bit DSDT addresses to 64-bit as necessary.
* Later ACPICA code will always use the X 64-bit field.
*/
/* If Hardware Reduced flag is set, we are all done */
{
return;
}
/* Examine all of the 64-bit extended address fields (X fields) */
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
{
/*
* Get the 32-bit and 64-bit addresses, as well as the register
* length and register name.
*/
/*
* Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X"
* generic address structures as necessary. Later code will always use
* the 64-bit address structures.
*
* November 2013:
* Now always use the 64-bit address if it is valid (non-zero), in
* accordance with the ACPI specification which states that a 64-bit
* address supersedes the 32-bit version. This behavior can be
* overridden by the AcpiGbl_Use32BitFadtAddresses flag.
*
* During 64-bit address construction and verification,
* these cases are handled:
*
* Address32 zero, Address64 [don't care] - Use Address64
*
* Address32 non-zero == Address64 non-zero - Use Address64
* Address32 non-zero != Address64 non-zero - Warning, use Address64
*
* Override: if AcpiGbl_Use32BitFadtAddresses is TRUE, and:
*
* Note: SpaceId is always I/O for 32-bit legacy address fields
*/
if (Address32)
{
{
/* 64-bit address is zero, use 32-bit address */
FadtInfoTable[i].Length),
}
{
/* Address mismatch */
"32/64X address mismatch in FADT/%s: "
"0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
{
/* 32-bit address override */
FadtInfoTable[i].Length),
}
}
}
/*
* For each extended field, check for length mismatch between the
* legacy length field and the corresponding 64-bit X length field.
* Note: If the legacy length field is > 0xFF bits, ignore this
* check. (GPE registers can be larger than the 64-bit GAS structure
* can accomodate, 0xFF bits).
*/
{
"32/64X length mismatch in FADT/%s: %u/%u",
}
{
/*
* Field is required (PM1aEvent, PM1aControl).
* Both the address and length must be non-zero.
*/
{
"0x%8.8X%8.8X/0x%X",
}
}
{
/*
* Field is optional (PM2Control, GPE0, GPE1) AND has its own
* length field. If present, both the address and length must
* be valid.
*/
{
"Optional FADT field %s has valid %s but zero %s: "
"0x%8.8X%8.8X/0x%X", Name,
}
}
}
}
/*******************************************************************************
*
* FUNCTION: AcpiTbSetupFadtRegisters
*
* PARAMETERS: None, uses AcpiGbl_FADT.
*
* RETURN: None
*
* DESCRIPTION: Initialize global ACPI PM1 register definitions. Optionally,
* force FADT register definitions to their default lengths.
*
******************************************************************************/
static void
void)
{
UINT32 i;
/*
* Optionally check all register lengths against the default values and
* update them if they are incorrect.
*/
{
for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
{
FadtInfoTable[i].Address64);
/*
* If a valid register (Address != 0) and the (DefaultLength > 0)
* (Not a GPE register), then check the width against the default.
*/
(FadtInfoTable[i].DefaultLength > 0) &&
{
"Invalid length for FADT/%s: %u, using default %u",
FadtInfoTable[i].DefaultLength));
/* Incorrect size, set width to the default */
}
}
}
/*
* Get the length of the individual PM1 registers (enable and status).
* Each register is defined to be (event block length / 2). Extra divide
* by 8 converts bits to bytes.
*/
/*
* Calculate separate GAS structs for the PM1x (A/B) Status and Enable
* registers. These addresses do not appear (directly) in the FADT, so it
* is useful to pre-calculate them from the PM1 Event Block definitions.
*
* The PM event blocks are split into two register blocks, first is the
* PM Status Register block, followed immediately by the PM Enable
* Register block. Each is of length (Pm1EventLength/2)
*
* Note: The PM1A event block is required by the ACPI specification.
* However, the PM1B event block is optional and is rarely, if ever,
* used.
*/
for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++)
{
FadtPmInfoTable[i].Source);
{
"PmRegisters", 0);
}
}
}