/******************************************************************************
*
* Module Name: hwxface - Public ACPICA hardware interfaces
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2016, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#define EXPORT_ACPI_INTERFACES
#include "acpi.h"
#include "accommon.h"
#include "acnamesp.h"
ACPI_MODULE_NAME ("hwxface")
/******************************************************************************
*
* FUNCTION: AcpiReset
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Set reset register in memory or IO space. Note: Does not
* support reset register in PCI config space, this must be
* handled separately.
*
******************************************************************************/
void)
{
/* Check if the reset register is supported */
{
}
{
/*
* For I/O space, write directly to the OSL. This bypasses the port
* validation mechanism, which may block a valid write to the reset
* register.
*
* NOTE:
* The ACPI spec requires the reset register width to be 8, so we
* hardcode it here and ignore the FADT value. This maintains
* compatibility with other ACPI implementations that have allowed
* BIOS code with bad register width values to go unnoticed.
*/
}
else
{
/* Write the reset value to the reset register */
}
}
/******************************************************************************
*
* FUNCTION: AcpiRead
*
* PARAMETERS: Value - Where the value is returned
* Reg - GAS register structure
*
* RETURN: Status
*
* DESCRIPTION: Read from either memory or IO space.
*
* LIMITATIONS: <These limitations also apply to AcpiWrite>
* BitWidth must be exactly 8, 16, 32, or 64.
* SpaceID must be SystemMemory or SystemIO.
* BitOffset and AccessWidth are currently ignored, as there has
* not been a need to implement these.
*
******************************************************************************/
AcpiRead (
{
if (!ReturnValue)
{
return (AE_BAD_PARAMETER);
}
/* Validate contents of the GAS register. Allow 64-bit transfers */
if (ACPI_FAILURE (Status))
{
return (Status);
}
/*
* Two address spaces supported: Memory or I/O. PCI_Config is
* not supported here because the GAS structure is insufficient
*/
{
if (ACPI_FAILURE (Status))
{
return (Status);
}
}
else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
{
ValueLo = 0;
ValueHi = 0;
if (Width == 64)
{
}
if (ACPI_FAILURE (Status))
{
return (Status);
}
{
/* Read the top 32 bits */
if (ACPI_FAILURE (Status))
{
return (Status);
}
}
/* Set the return value only if status is AE_OK */
}
"Read: %8.8X%8.8X width %2d from %8.8X%8.8X (%s)\n",
return (AE_OK);
}
/******************************************************************************
*
* FUNCTION: AcpiWrite
*
* PARAMETERS: Value - Value to be written
* Reg - GAS register structure
*
* RETURN: Status
*
* DESCRIPTION: Write to either memory or IO space.
*
******************************************************************************/
{
/* Validate contents of the GAS register. Allow 64-bit transfers */
if (ACPI_FAILURE (Status))
{
return (Status);
}
/*
* Two address spaces supported: Memory or IO. PCI_Config is
* not supported here because the GAS structure is insufficient
*/
{
if (ACPI_FAILURE (Status))
{
return (Status);
}
}
else /* ACPI_ADR_SPACE_SYSTEM_IO, validated earlier */
{
if (Width == 64)
{
}
if (ACPI_FAILURE (Status))
{
return (Status);
}
{
if (ACPI_FAILURE (Status))
{
return (Status);
}
}
}
"Wrote: %8.8X%8.8X width %2d to %8.8X%8.8X (%s)\n",
return (Status);
}
#if (!ACPI_REDUCED_HARDWARE)
/*******************************************************************************
*
* FUNCTION: AcpiReadBitRegister
*
* PARAMETERS: RegisterId - ID of ACPI Bit Register to access
* ReturnValue - Value that was read from the register,
* normalized to bit position zero.
*
* RETURN: Status and the value read from the specified Register. Value
* returned is normalized to bit0 (is shifted all the way right)
*
* DESCRIPTION: ACPI BitRegister read function. Does not acquire the HW lock.
*
* SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
* PM2 Control.
*
* Note: The hardware lock is not required when reading the ACPI bit registers
* since almost all of them are single bit and it does not matter that
* the parent hardware register can be split across two physical
* registers. The only multi-bit field is SLP_TYP in the PM1 control
* register, but this field does not cross an 8-bit boundary (nor does
* it make much sense to actually read this field.)
*
******************************************************************************/
{
/* Get the info structure corresponding to the requested ACPI Register */
if (!BitRegInfo)
{
}
/* Read the entire parent register */
if (ACPI_FAILURE (Status))
{
}
/* Normalize the value that was read, mask off other bits */
>> BitRegInfo->BitPosition);
"BitReg %X, ParentReg %X, Actual %8.8X, ReturnValue %8.8X\n",
*ReturnValue = Value;
}
/*******************************************************************************
*
* FUNCTION: AcpiWriteBitRegister
*
* PARAMETERS: RegisterId - ID of ACPI Bit Register to access
* Value - Value to write to the register, in bit
* position zero. The bit is automatically
* shifted to the correct position.
*
* RETURN: Status
*
* DESCRIPTION: ACPI Bit Register write function. Acquires the hardware lock
*
* SUPPORTS: Bit fields in PM1 Status, PM1 Enable, PM1 Control, and
* PM2 Control.
*
* Note that at this level, the fact that there may be actually two
* hardware registers (A and B - and B may not exist) is abstracted.
*
******************************************************************************/
{
/* Get the info structure corresponding to the requested ACPI Register */
if (!BitRegInfo)
{
}
/*
* At this point, we know that the parent register is one of the
* following: PM1 Status, PM1 Enable, PM1 Control, or PM2 Control
*/
{
/*
* 1) Case for PM1 Enable, PM1 Control, and PM2 Control
*
* Perform a register read to preserve the bits that we are not
* interested in
*/
if (ACPI_FAILURE (Status))
{
goto UnlockAndExit;
}
/*
* Insert the input bit into the value that was just read
* and write the register
*/
}
else
{
/*
* 2) Case for PM1 Status
*
* The Status register is different from the rest. Clear an event
* by writing 1, writing 0 has no effect. So, the only relevant
* information is the single bit we're interested in, all others
* should be written as 0 so they will be left unchanged.
*/
/* No need to write the register if value is all zeros */
if (RegisterValue)
{
}
}
"BitReg %X, ParentReg %X, Value %8.8X, Actual %8.8X\n",
}
#endif /* !ACPI_REDUCED_HARDWARE */
/*******************************************************************************
*
* FUNCTION: AcpiGetSleepTypeData
*
* PARAMETERS: SleepState - Numeric sleep state
* *SleepTypeA - Where SLP_TYPa is returned
* *SleepTypeB - Where SLP_TYPb is returned
*
* RETURN: Status
*
* DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested
* sleep state via the appropriate \_Sx object.
*
* The sleep state package returned from the corresponding \_Sx_ object
* must contain at least one integer.
*
* March 2005:
* Added support for a package that contains two integers. This
* goes against the ACPI specification which defines this object as a
* package with one encoded DWORD integer. However, existing practice
* by many BIOS vendors is to return a package with 2 or more integer
* elements, at least one per sleep type (A/B).
*
* January 2013:
* Therefore, we must be prepared to accept a package with either a
* single integer or multiple integers.
*
* The single integer DWORD format is as follows:
* BYTE 0 - Value for the PM1A SLP_TYP register
* BYTE 1 - Value for the PM1B SLP_TYP register
* BYTE 2-3 - Reserved
*
* The dual integer format is as follows:
* Integer 0 - Value for the PM1A SLP_TYP register
* Integer 1 - Value for the PM1A SLP_TYP register
*
******************************************************************************/
{
/* Validate parameters */
if ((SleepState > ACPI_S_STATES_MAX) ||
!SleepTypeA || !SleepTypeB)
{
}
/* Allocate the evaluation information block */
if (!Info)
{
}
/*
* Evaluate the \_Sx namespace object containing the register values
* for this state
*/
if (ACPI_FAILURE (Status))
{
if (Status == AE_NOT_FOUND)
{
/* The _Sx states are optional, ignore NOT_FOUND */
goto FinalCleanup;
}
goto WarningCleanup;
}
/* Must have a return object */
if (!Info->ReturnObject)
{
Info->RelativePathname));
goto WarningCleanup;
}
/* Return object must be of type Package */
{
goto ReturnValueCleanup;
}
/*
* Any warnings about the package length or the object types have
* already been issued by the predefined name module -- there is no
* need to repeat them here.
*/
{
case 0:
break;
case 1:
{
break;
}
/* A valid _Sx_ package with one integer */
break;
case 2:
default:
{
break;
}
/* A valid _Sx_ package with two integers */
break;
}
if (ACPI_FAILURE (Status))
{
"While evaluating Sleep State [%s]",
Info->RelativePathname));
}
}