/******************************************************************************
*
* Module Name: exfield - ACPI AML (p-code) execution - field manipulation
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2016, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#include "acpi.h"
#include "accommon.h"
#include "acdispat.h"
#include "acinterp.h"
#include "amlcode.h"
ACPI_MODULE_NAME ("exfield")
/* Local prototypes */
static UINT32
/*******************************************************************************
*
* FUNCTION: AcpiExGetSerialAccessLength
*
* PARAMETERS: AccessorType - The type of the protocol indicated by region
* field access attributes
* AccessLength - The access length of the region field
*
* RETURN: Decoded access length
*
* DESCRIPTION: This routine returns the length of the GenericSerialBus
* protocol bytes
*
******************************************************************************/
static UINT32
{
switch (AccessorType)
{
case AML_FIELD_ATTRIB_QUICK:
Length = 0;
break;
case AML_FIELD_ATTRIB_BYTE:
Length = 1;
break;
case AML_FIELD_ATTRIB_WORD:
Length = 2;
break;
break;
case AML_FIELD_ATTRIB_BLOCK:
default:
break;
}
return (Length);
}
/*******************************************************************************
*
* FUNCTION: AcpiExReadDataFromField
*
* PARAMETERS: WalkState - Current execution state
* ObjDesc - The named field
* RetBufferDesc - Where the return data object is stored
*
* RETURN: Status
*
* DESCRIPTION: Read from a named field. Returns either an Integer or a
* Buffer, depending on the size of the field.
*
******************************************************************************/
{
void *Buffer;
/* Parameter validation */
if (!ObjDesc)
{
}
if (!RetBufferDesc)
{
}
{
/*
* If the BufferField arguments have not been previously evaluated,
* evaluate them now and save the results.
*/
{
if (ACPI_FAILURE (Status))
{
}
}
}
{
/*
* This is an SMBus, GSBus or IPMI read. We must create a buffer to
* hold the data and then directly access the region handler.
*
* Note: SMBus and GSBus protocol value is passed in upper 16-bits
* of Function
*/
{
}
{
/*
* Add additional 2 bytes for the GenericSerialBus data buffer:
*
* Status; (Byte 0 of the data buffer)
* Length; (Byte 1 of the data buffer)
* Data[x-1]: (Bytes 2-x of the arbitrary length data buffer)
*/
Length += 2;
}
else /* IPMI */
{
}
if (!BufferDesc)
{
}
/* Lock entire transaction if requested */
/* Call the region handler for the read */
goto Exit;
}
/*
* Allocate a buffer for the contents of the field.
*
* If the field is larger than the current integer width, create
* a BUFFER to hold it. Otherwise, use an INTEGER. This allows
* the use of arithmetic operators on the returned value if the
* field size is equal or smaller than an Integer.
*
* Note: Field.length is in bits.
*/
if (Length > AcpiGbl_IntegerByteWidth)
{
/* Field is too large for an Integer, create a Buffer instead */
if (!BufferDesc)
{
}
}
else
{
/* Field will fit within an Integer (normal case) */
if (!BufferDesc)
{
}
}
{
/*
* For GPIO (GeneralPurposeIo), the Address will be the bit offset
* from the previous Connection() operator, making it effectively a
* pin number index. The BitLength is the length of the field, which
* is thus the number of pins.
*/
"GPIO FieldRead [FROM]: Pin %u Bits %u\n",
/* Lock entire transaction if requested */
/* Perform the write */
if (ACPI_FAILURE (Status))
{
}
else
{
}
}
"FieldRead [TO]: Obj %p, Type %X, Buf %p, ByteLen %X\n",
"FieldRead [FROM]: BitLen %X, BitOff %X, ByteOff %X\n",
/* Lock entire transaction if requested */
/* Read from the field */
Exit:
if (ACPI_FAILURE (Status))
{
}
else
{
}
}
/*******************************************************************************
*
* FUNCTION: AcpiExWriteDataToField
*
* PARAMETERS: SourceDesc - Contains data to write
* ObjDesc - The named field
* ResultDesc - Where the return value is returned, if any
*
* RETURN: Status
*
* DESCRIPTION: Write to a named field
*
******************************************************************************/
{
void *Buffer;
/* Parameter validation */
if (!SourceDesc || !ObjDesc)
{
}
{
/*
* If the BufferField arguments have not been previously evaluated,
* evaluate them now and save the results.
*/
{
if (ACPI_FAILURE (Status))
{
}
}
}
{
/*
* This is an SMBus, GSBus or IPMI write. We will bypass the entire
* field mechanism and handoff the buffer directly to the handler.
* For these address spaces, the buffer is bi-directional; on a
* write, return data is returned in the same buffer.
*
* Source must be a buffer of sufficient size:
* ACPI_SMBUS_BUFFER_SIZE, ACPI_GSBUS_BUFFER_SIZE, or
* ACPI_IPMI_BUFFER_SIZE.
*
* Note: SMBus and GSBus protocol type is passed in upper 16-bits
* of Function
*/
{
"SMBus/IPMI/GenericSerialBus write requires "
"Buffer, found type %s",
}
{
}
{
/*
* Add additional 2 bytes for the GenericSerialBus data buffer:
*
* Status; (Byte 0 of the data buffer)
* Length; (Byte 1 of the data buffer)
* Data[x-1]: (Bytes 2-x of the arbitrary length data buffer)
*/
Length += 2;
}
else /* IPMI */
{
}
{
"SMBus/IPMI/GenericSerialBus write requires "
"Buffer of length %u, found length %u",
}
/* Create the bi-directional buffer */
if (!BufferDesc)
{
}
/* Lock entire transaction if requested */
/*
* Perform the write (returns status and perhaps data in the
* same buffer)
*/
*ResultDesc = BufferDesc;
}
{
/*
* For GPIO (GeneralPurposeIo), we will bypass the entire field
* mechanism and handoff the bit address and bit width directly to
* the handler. The Address will be the bit offset
* from the previous Connection() operator, making it effectively a
* pin number index. The BitLength is the length of the field, which
* is thus the number of pins.
*/
{
}
"GPIO FieldWrite [FROM]: (%s:%X), Val %.8X [TO]: Pin %u Bits %u\n",
/* Lock entire transaction if requested */
/* Perform the write */
}
/* Get a pointer to the data to be written */
{
case ACPI_TYPE_INTEGER:
break;
case ACPI_TYPE_BUFFER:
break;
case ACPI_TYPE_STRING:
break;
default:
}
"FieldWrite [FROM]: Obj %p (%s:%X), Buf %p, ByteLen %X\n",
"FieldWrite [TO]: Obj %p (%s:%X), BitLen %X, BitOff %X, ByteOff %X\n",
/* Lock entire transaction if requested */
/* Write to the field */
}