/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, 2014 by Delphix. All rights reserved.
*/
#include <sys/dtrace_impl.h>
#include <sys/stack.h>
#include <sys/frame.h>
#include <sys/cmn_err.h>
#include <sys/privregs.h>
#include <sys/sysmacros.h>
extern uintptr_t kernelbase;
int dtrace_ustackdepth_max = 2048;
void
dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes,
uint32_t *intrpc)
{
struct frame *fp = (struct frame *)dtrace_getfp();
struct frame *nextfp, *minfp, *stacktop;
int depth = 0;
int on_intr, last = 0;
uintptr_t pc;
uintptr_t caller = CPU->cpu_dtrace_caller;
if ((on_intr = CPU_ON_INTR(CPU)) != 0)
stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
else
stacktop = (struct frame *)curthread->t_stk;
minfp = fp;
aframes++;
if (intrpc != NULL && depth < pcstack_limit)
pcstack[depth++] = (pc_t)intrpc;
while (depth < pcstack_limit) {
nextfp = (struct frame *)fp->fr_savfp;
pc = fp->fr_savpc;
if (nextfp <= minfp || nextfp >= stacktop) {
if (on_intr) {
/*
* Hop from interrupt stack to thread stack.
*/
stacktop = (struct frame *)curthread->t_stk;
minfp = (struct frame *)curthread->t_stkbase;
on_intr = 0;
continue;
}
/*
* This is the last frame we can process; indicate
* that we should return after processing this frame.
*/
last = 1;
}
if (aframes > 0) {
if (--aframes == 0 && caller != NULL) {
/*
* We've just run out of artificial frames,
* and we have a valid caller -- fill it in
* now.
*/
ASSERT(depth < pcstack_limit);
pcstack[depth++] = (pc_t)caller;
caller = NULL;
}
} else {
if (depth < pcstack_limit)
pcstack[depth++] = (pc_t)pc;
}
if (last) {
while (depth < pcstack_limit)
pcstack[depth++] = NULL;
return;
}
fp = nextfp;
minfp = fp;
}
}
static int
dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc,
uintptr_t sp)
{
klwp_t *lwp = ttolwp(curthread);
proc_t *p = curproc;
uintptr_t oldcontext = lwp->lwp_oldcontext;
uintptr_t oldsp;
volatile uint16_t *flags =
(volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
size_t s1, s2;
int ret = 0;
ASSERT(pcstack == NULL || pcstack_limit > 0);
ASSERT(dtrace_ustackdepth_max > 0);
if (p->p_model == DATAMODEL_NATIVE) {
s1 = sizeof (struct frame) + 2 * sizeof (long);
s2 = s1 + sizeof (siginfo_t);
} else {
s1 = sizeof (struct frame32) + 3 * sizeof (int);
s2 = s1 + sizeof (siginfo32_t);
}
while (pc != 0) {
/*
* We limit the number of times we can go around this
* loop to account for a circular stack.
*/
if (ret++ >= dtrace_ustackdepth_max) {
*flags |= CPU_DTRACE_BADSTACK;
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp;
break;
}
if (pcstack != NULL) {
*pcstack++ = (uint64_t)pc;
pcstack_limit--;
if (pcstack_limit <= 0)
break;
}
if (sp == 0)
break;
oldsp = sp;
if (oldcontext == sp + s1 || oldcontext == sp + s2) {
if (p->p_model == DATAMODEL_NATIVE) {
ucontext_t *ucp = (ucontext_t *)oldcontext;
greg_t *gregs = ucp->uc_mcontext.gregs;
sp = dtrace_fulword(&gregs[REG_FP]);
pc = dtrace_fulword(&gregs[REG_PC]);
oldcontext = dtrace_fulword(&ucp->uc_link);
} else {
ucontext32_t *ucp = (ucontext32_t *)oldcontext;
greg32_t *gregs = ucp->uc_mcontext.gregs;
sp = dtrace_fuword32(&gregs[EBP]);
pc = dtrace_fuword32(&gregs[EIP]);
oldcontext = dtrace_fuword32(&ucp->uc_link);
}
} else {
if (p->p_model == DATAMODEL_NATIVE) {
struct frame *fr = (struct frame *)sp;
pc = dtrace_fulword(&fr->fr_savpc);
sp = dtrace_fulword(&fr->fr_savfp);
} else {
struct frame32 *fr = (struct frame32 *)sp;
pc = dtrace_fuword32(&fr->fr_savpc);
sp = dtrace_fuword32(&fr->fr_savfp);
}
}
if (sp == oldsp) {
*flags |= CPU_DTRACE_BADSTACK;
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp;
break;
}
/*
* This is totally bogus: if we faulted, we're going to clear
* the fault and break. This is to deal with the apparently
* broken Java stacks on x86.
*/
if (*flags & CPU_DTRACE_FAULT) {
*flags &= ~CPU_DTRACE_FAULT;
break;
}
}
return (ret);
}
void
dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit)
{
klwp_t *lwp = ttolwp(curthread);
proc_t *p = curproc;
struct regs *rp;
uintptr_t pc, sp;
int n;
ASSERT(DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT));
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
return;
if (pcstack_limit <= 0)
return;
/*
* If there's no user context we still need to zero the stack.
*/
if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL)
goto zero;
*pcstack++ = (uint64_t)p->p_pid;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
pc = rp->r_pc;
sp = rp->r_fp;
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
*pcstack++ = (uint64_t)pc;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
if (p->p_model == DATAMODEL_NATIVE)
pc = dtrace_fulword((void *)rp->r_sp);
else
pc = dtrace_fuword32((void *)rp->r_sp);
}
n = dtrace_getustack_common(pcstack, pcstack_limit, pc, sp);
ASSERT(n >= 0);
ASSERT(n <= pcstack_limit);
pcstack += n;
pcstack_limit -= n;
zero:
while (pcstack_limit-- > 0)
*pcstack++ = NULL;
}
int
dtrace_getustackdepth(void)
{
klwp_t *lwp = ttolwp(curthread);
proc_t *p = curproc;
struct regs *rp;
uintptr_t pc, sp;
int n = 0;
if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL)
return (0);
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
return (-1);
pc = rp->r_pc;
sp = rp->r_fp;
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
n++;
if (p->p_model == DATAMODEL_NATIVE)
pc = dtrace_fulword((void *)rp->r_sp);
else
pc = dtrace_fuword32((void *)rp->r_sp);
}
n += dtrace_getustack_common(NULL, 0, pc, sp);
return (n);
}
void
dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit)
{
klwp_t *lwp = ttolwp(curthread);
proc_t *p = curproc;
struct regs *rp;
uintptr_t pc, sp, oldcontext;
volatile uint16_t *flags =
(volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
size_t s1, s2;
if (*flags & CPU_DTRACE_FAULT)
return;
if (pcstack_limit <= 0)
return;
/*
* If there's no user context we still need to zero the stack.
*/
if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL)
goto zero;
*pcstack++ = (uint64_t)p->p_pid;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
pc = rp->r_pc;
sp = rp->r_fp;
oldcontext = lwp->lwp_oldcontext;
if (p->p_model == DATAMODEL_NATIVE) {
s1 = sizeof (struct frame) + 2 * sizeof (long);
s2 = s1 + sizeof (siginfo_t);
} else {
s1 = sizeof (struct frame32) + 3 * sizeof (int);
s2 = s1 + sizeof (siginfo32_t);
}
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
*pcstack++ = (uint64_t)pc;
*fpstack++ = 0;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
if (p->p_model == DATAMODEL_NATIVE)
pc = dtrace_fulword((void *)rp->r_sp);
else
pc = dtrace_fuword32((void *)rp->r_sp);
}
while (pc != 0) {
*pcstack++ = (uint64_t)pc;
*fpstack++ = sp;
pcstack_limit--;
if (pcstack_limit <= 0)
break;
if (sp == 0)
break;
if (oldcontext == sp + s1 || oldcontext == sp + s2) {
if (p->p_model == DATAMODEL_NATIVE) {
ucontext_t *ucp = (ucontext_t *)oldcontext;
greg_t *gregs = ucp->uc_mcontext.gregs;
sp = dtrace_fulword(&gregs[REG_FP]);
pc = dtrace_fulword(&gregs[REG_PC]);
oldcontext = dtrace_fulword(&ucp->uc_link);
} else {
ucontext_t *ucp = (ucontext_t *)oldcontext;
greg_t *gregs = ucp->uc_mcontext.gregs;
sp = dtrace_fuword32(&gregs[EBP]);
pc = dtrace_fuword32(&gregs[EIP]);
oldcontext = dtrace_fuword32(&ucp->uc_link);
}
} else {
if (p->p_model == DATAMODEL_NATIVE) {
struct frame *fr = (struct frame *)sp;
pc = dtrace_fulword(&fr->fr_savpc);
sp = dtrace_fulword(&fr->fr_savfp);
} else {
struct frame32 *fr = (struct frame32 *)sp;
pc = dtrace_fuword32(&fr->fr_savpc);
sp = dtrace_fuword32(&fr->fr_savfp);
}
}
/*
* This is totally bogus: if we faulted, we're going to clear
* the fault and break. This is to deal with the apparently
* broken Java stacks on x86.
*/
if (*flags & CPU_DTRACE_FAULT) {
*flags &= ~CPU_DTRACE_FAULT;
break;
}
}
zero:
while (pcstack_limit-- > 0)
*pcstack++ = NULL;
}
/*ARGSUSED*/
uint64_t
dtrace_getarg(int arg, int aframes)
{
uintptr_t val;
struct frame *fp = (struct frame *)dtrace_getfp();
uintptr_t *stack;
int i;
#if defined(__amd64)
/*
* A total of 6 arguments are passed via registers; any argument with
* index of 5 or lower is therefore in a register.
*/
int inreg = 5;
#endif
for (i = 1; i <= aframes; i++) {
fp = (struct frame *)(fp->fr_savfp);
if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) {
#if !defined(__amd64)
/*
* If we pass through the invalid op handler, we will
* use the pointer that it passed to the stack as the
* second argument to dtrace_invop() as the pointer to
* the stack. When using this stack, we must step
* beyond the EIP that was pushed when the trap was
* taken -- hence the "+ 1" below.
*/
stack = ((uintptr_t **)&fp[1])[1] + 1;
#else
/*
* In the case of amd64, we will use the pointer to the
* regs structure that was pushed when we took the
* trap. To get this structure, we must increment
* beyond the frame structure, the calling RIP, and
* padding stored in dtrace_invop(). If the argument
* that we're seeking is passed on the stack, we'll
* pull the true stack pointer out of the saved
* registers and decrement our argument by the number
* of arguments passed in registers; if the argument
* we're seeking is passed in regsiters, we can just
* load it directly.
*/
struct regs *rp = (struct regs *)((uintptr_t)&fp[1] +
sizeof (uintptr_t) * 2);
if (arg <= inreg) {
stack = (uintptr_t *)&rp->r_rdi;
} else {
stack = (uintptr_t *)(rp->r_rsp);
arg -= inreg;
}
#endif
goto load;
}
}
/*
* We know that we did not come through a trap to get into
* dtrace_probe() -- the provider simply called dtrace_probe()
* directly. As this is the case, we need to shift the argument
* that we're looking for: the probe ID is the first argument to
* dtrace_probe(), so the argument n will actually be found where
* one would expect to find argument (n + 1).
*/
arg++;
#if defined(__amd64)
if (arg <= inreg) {
/*
* This shouldn't happen. If the argument is passed in a
* register then it should have been, well, passed in a
* register...
*/
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return (0);
}
arg -= (inreg + 1);
#endif
stack = (uintptr_t *)&fp[1];
load:
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
val = stack[arg];
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
return (val);
}
/*ARGSUSED*/
int
dtrace_getstackdepth(int aframes)
{
struct frame *fp = (struct frame *)dtrace_getfp();
struct frame *nextfp, *minfp, *stacktop;
int depth = 0;
int on_intr;
if ((on_intr = CPU_ON_INTR(CPU)) != 0)
stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
else
stacktop = (struct frame *)curthread->t_stk;
minfp = fp;
aframes++;
for (;;) {
depth++;
nextfp = (struct frame *)fp->fr_savfp;
if (nextfp <= minfp || nextfp >= stacktop) {
if (on_intr) {
/*
* Hop from interrupt stack to thread stack.
*/
stacktop = (struct frame *)curthread->t_stk;
minfp = (struct frame *)curthread->t_stkbase;
on_intr = 0;
continue;
}
break;
}
fp = nextfp;
minfp = fp;
}
if (depth <= aframes)
return (0);
return (depth - aframes);
}
ulong_t
dtrace_getreg(struct regs *rp, uint_t reg)
{
#if defined(__amd64)
int regmap[] = {
REG_GS, /* GS */
REG_FS, /* FS */
REG_ES, /* ES */
REG_DS, /* DS */
REG_RDI, /* EDI */
REG_RSI, /* ESI */
REG_RBP, /* EBP */
REG_RSP, /* ESP */
REG_RBX, /* EBX */
REG_RDX, /* EDX */
REG_RCX, /* ECX */
REG_RAX, /* EAX */
REG_TRAPNO, /* TRAPNO */
REG_ERR, /* ERR */
REG_RIP, /* EIP */
REG_CS, /* CS */
REG_RFL, /* EFL */
REG_RSP, /* UESP */
REG_SS /* SS */
};
if (reg <= SS) {
if (reg >= sizeof (regmap) / sizeof (int)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return (0);
}
reg = regmap[reg];
} else {
reg -= SS + 1;
}
switch (reg) {
case REG_RDI:
return (rp->r_rdi);
case REG_RSI:
return (rp->r_rsi);
case REG_RDX:
return (rp->r_rdx);
case REG_RCX:
return (rp->r_rcx);
case REG_R8:
return (rp->r_r8);
case REG_R9:
return (rp->r_r9);
case REG_RAX:
return (rp->r_rax);
case REG_RBX:
return (rp->r_rbx);
case REG_RBP:
return (rp->r_rbp);
case REG_R10:
return (rp->r_r10);
case REG_R11:
return (rp->r_r11);
case REG_R12:
return (rp->r_r12);
case REG_R13:
return (rp->r_r13);
case REG_R14:
return (rp->r_r14);
case REG_R15:
return (rp->r_r15);
case REG_DS:
return (rp->r_ds);
case REG_ES:
return (rp->r_es);
case REG_FS:
return (rp->r_fs);
case REG_GS:
return (rp->r_gs);
case REG_TRAPNO:
return (rp->r_trapno);
case REG_ERR:
return (rp->r_err);
case REG_RIP:
return (rp->r_rip);
case REG_CS:
return (rp->r_cs);
case REG_SS:
return (rp->r_ss);
case REG_RFL:
return (rp->r_rfl);
case REG_RSP:
return (rp->r_rsp);
default:
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return (0);
}
#else
if (reg > SS) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return (0);
}
return ((&rp->r_gs)[reg]);
#endif
}
static int
dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size)
{
ASSERT(kaddr >= kernelbase && kaddr + size >= kaddr);
if (uaddr + size >= kernelbase || uaddr + size < uaddr) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
return (0);
}
return (1);
}
/*ARGSUSED*/
void
dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size,
volatile uint16_t *flags)
{
if (dtrace_copycheck(uaddr, kaddr, size))
dtrace_copy(uaddr, kaddr, size);
}
/*ARGSUSED*/
void
dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size,
volatile uint16_t *flags)
{
if (dtrace_copycheck(uaddr, kaddr, size))
dtrace_copy(kaddr, uaddr, size);
}
void
dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size,
volatile uint16_t *flags)
{
if (dtrace_copycheck(uaddr, kaddr, size))
dtrace_copystr(uaddr, kaddr, size, flags);
}
void
dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size,
volatile uint16_t *flags)
{
if (dtrace_copycheck(uaddr, kaddr, size))
dtrace_copystr(kaddr, uaddr, size, flags);
}
uint8_t
dtrace_fuword8(void *uaddr)
{
extern uint8_t dtrace_fuword8_nocheck(void *);
if ((uintptr_t)uaddr >= _userlimit) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr;
return (0);
}
return (dtrace_fuword8_nocheck(uaddr));
}
uint16_t
dtrace_fuword16(void *uaddr)
{
extern uint16_t dtrace_fuword16_nocheck(void *);
if ((uintptr_t)uaddr >= _userlimit) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr;
return (0);
}
return (dtrace_fuword16_nocheck(uaddr));
}
uint32_t
dtrace_fuword32(void *uaddr)
{
extern uint32_t dtrace_fuword32_nocheck(void *);
if ((uintptr_t)uaddr >= _userlimit) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr;
return (0);
}
return (dtrace_fuword32_nocheck(uaddr));
}
uint64_t
dtrace_fuword64(void *uaddr)
{
extern uint64_t dtrace_fuword64_nocheck(void *);
if ((uintptr_t)uaddr >= _userlimit) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr;
return (0);
}
return (dtrace_fuword64_nocheck(uaddr));
}