mp_startup.c revision 5cff782560a1c3cf913ba5574a5123a299f3315e
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/cpuvar.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/disp.h>
#include <sys/class.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/asm_linkage.h>
#include <sys/x_call.h>
#include <sys/systm.h>
#include <sys/var.h>
#include <sys/vtrace.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kp.h>
#include <sys/segments.h>
#include <sys/kmem.h>
#include <sys/stack.h>
#include <sys/smp_impldefs.h>
#include <sys/x86_archext.h>
#include <sys/machsystm.h>
#include <sys/traptrace.h>
#include <sys/clock.h>
#include <sys/cpc_impl.h>
#include <sys/pg.h>
#include <sys/cmt.h>
#include <sys/dtrace.h>
#include <sys/archsystm.h>
#include <sys/fp.h>
#include <sys/reboot.h>
#include <sys/kdi_machimpl.h>
#include <vm/hat_i86.h>
#include <sys/memnode.h>
#include <sys/pci_cfgspace.h>
#include <sys/mach_mmu.h>
#include <sys/sysmacros.h>
#include <sys/cpu_module.h>
struct cpu cpus[1]; /* CPU data */
struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */
cpu_core_t cpu_core[NCPU]; /* cpu_core structures */
/*
* Useful for disabling MP bring-up on a MP capable system.
*/
int use_mp = 1;
/*
* to be set by a PSM to indicate what cpus
* are sitting around on the system.
*/
cpuset_t mp_cpus;
/*
* This variable is used by the hat layer to decide whether or not
* critical sections are needed to prevent race conditions. For sun4m,
* this variable is set once enough MP initialization has been done in
* order to allow cross calls.
*/
int flushes_require_xcalls;
cpuset_t cpu_ready_set = 1;
static void mp_startup(void);
static void cpu_sep_enable(void);
static void cpu_sep_disable(void);
static void cpu_asysc_enable(void);
static void cpu_asysc_disable(void);
extern int tsc_gethrtime_enable;
/*
* Init CPU info - get CPU type info for processor_info system call.
*/
void
init_cpu_info(struct cpu *cp)
{
processor_info_t *pi = &cp->cpu_type_info;
char buf[CPU_IDSTRLEN];
/*
* Get clock-frequency property for the CPU.
*/
pi->pi_clock = cpu_freq;
/*
* Current frequency in Hz.
*/
pi->pi_curr_clock = cpu_freq_hz;
(void) strcpy(pi->pi_processor_type, "i386");
if (fpu_exists)
(void) strcpy(pi->pi_fputypes, "i387 compatible");
(void) cpuid_getidstr(cp, buf, sizeof (buf));
cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
(void) strcpy(cp->cpu_idstr, buf);
cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
(void) strcpy(cp->cpu_brandstr, buf);
cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
}
/*
* Configure syscall support on this CPU.
*/
/*ARGSUSED*/
static void
init_cpu_syscall(struct cpu *cp)
{
kpreempt_disable();
#if defined(__amd64)
if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) {
#if !defined(__lint)
/*
* The syscall instruction imposes a certain ordering on
* segment selectors, so we double-check that ordering
* here.
*/
ASSERT(KDS_SEL == KCS_SEL + 8);
ASSERT(UDS_SEL == U32CS_SEL + 8);
ASSERT(UCS_SEL == U32CS_SEL + 16);
#endif
/*
* Turn syscall/sysret extensions on.
*/
cpu_asysc_enable();
/*
* Program the magic registers ..
*/
wrmsr(MSR_AMD_STAR,
((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
/*
* This list of flags is masked off the incoming
* %rfl when we enter the kernel.
*/
wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
}
#endif
/*
* On 32-bit kernels, we use sysenter/sysexit because it's too
* hard to use syscall/sysret, and it is more portable anyway.
*
* On 64-bit kernels on Nocona machines, the 32-bit syscall
* variant isn't available to 32-bit applications, but sysenter is.
*/
if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) {
#if !defined(__lint)
/*
* The sysenter instruction imposes a certain ordering on
* segment selectors, so we double-check that ordering
* here. See "sysenter" in Intel document 245471-012, "IA-32
* Intel Architecture Software Developer's Manual Volume 2:
* Instruction Set Reference"
*/
ASSERT(KDS_SEL == KCS_SEL + 8);
ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
ASSERT32(UDS_SEL == UCS_SEL + 8);
ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
ASSERT64(UDS_SEL == U32CS_SEL + 8);
#endif
cpu_sep_enable();
/*
* resume() sets this value to the base of the threads stack
* via a context handler.
*/
wrmsr(MSR_INTC_SEP_ESP, 0);
wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
}
kpreempt_enable();
}
/*
* Multiprocessor initialization.
*
* Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
* startup and idle threads for the specified CPU.
*/
struct cpu *
mp_startup_init(int cpun)
{
struct cpu *cp;
kthread_id_t tp;
caddr_t sp;
proc_t *procp;
extern void idle();
#ifdef TRAPTRACE
trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
#endif
ASSERT(cpun < NCPU && cpu[cpun] == NULL);
cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
if (x86_feature & X86_MWAIT)
cp->cpu_m.mcpu_mwait = mach_alloc_mwait(CPU);
procp = curthread->t_procp;
mutex_enter(&cpu_lock);
/*
* Initialize the dispatcher first.
*/
disp_cpu_init(cp);
mutex_exit(&cpu_lock);
cpu_vm_data_init(cp);
/*
* Allocate and initialize the startup thread for this CPU.
* Interrupt and process switch stacks get allocated later
* when the CPU starts running.
*/
tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
TS_STOPPED, maxclsyspri);
/*
* Set state to TS_ONPROC since this thread will start running
* as soon as the CPU comes online.
*
* All the other fields of the thread structure are setup by
* thread_create().
*/
THREAD_ONPROC(tp, cp);
tp->t_preempt = 1;
tp->t_bound_cpu = cp;
tp->t_affinitycnt = 1;
tp->t_cpu = cp;
tp->t_disp_queue = cp->cpu_disp;
/*
* Setup thread to start in mp_startup.
*/
sp = tp->t_stk;
tp->t_pc = (uintptr_t)mp_startup;
tp->t_sp = (uintptr_t)(sp - MINFRAME);
#if defined(__amd64)
tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */
#endif
cp->cpu_id = cpun;
cp->cpu_self = cp;
cp->cpu_thread = tp;
cp->cpu_lwp = NULL;
cp->cpu_dispthread = tp;
cp->cpu_dispatch_pri = DISP_PRIO(tp);
/*
* cpu_base_spl must be set explicitly here to prevent any blocking
* operations in mp_startup from causing the spl of the cpu to drop
* to 0 (allowing device interrupts before we're ready) in resume().
* cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
* As an extra bit of security on DEBUG kernels, this is enforced with
* an assertion in mp_startup() -- before cpu_base_spl is set to its
* proper value.
*/
cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
/*
* Now, initialize per-CPU idle thread for this CPU.
*/
tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
cp->cpu_idle_thread = tp;
tp->t_preempt = 1;
tp->t_bound_cpu = cp;
tp->t_affinitycnt = 1;
tp->t_cpu = cp;
tp->t_disp_queue = cp->cpu_disp;
/*
* Bootstrap the CPU's PG data
*/
pg_cpu_bootstrap(cp);
/*
* Perform CPC initialization on the new CPU.
*/
kcpc_hw_init(cp);
/*
* Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
* for each CPU.
*/
setup_vaddr_for_ppcopy(cp);
/*
* Allocate page for new GDT and initialize from current GDT.
*/
#if !defined(__lint)
ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
#endif
cp->cpu_m.mcpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
bcopy(CPU->cpu_m.mcpu_gdt, cp->cpu_m.mcpu_gdt,
(sizeof (*cp->cpu_m.mcpu_gdt) * NGDT));
#if defined(__i386)
/*
* setup kernel %gs.
*/
set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
SEL_KPL, 0, 1);
#endif
/*
* If we have more than one node, each cpu gets a copy of IDT
* local to its node. If this is a Pentium box, we use cpu 0's
* IDT. cpu 0's IDT has been made read-only to workaround the
* cmpxchgl register bug
*/
if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
struct machcpu *mcpu = &cp->cpu_m;
mcpu->mcpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP);
bcopy(idt0, mcpu->mcpu_idt, sizeof (idt0));
} else {
cp->cpu_m.mcpu_idt = CPU->cpu_m.mcpu_idt;
}
/*
* Get interrupt priority data from cpu 0.
*/
cp->cpu_pri_data = CPU->cpu_pri_data;
/*
* alloc space for cpuid info
*/
cpuid_alloc_space(cp);
/*
* alloc space for ucode_info
*/
ucode_alloc_space(cp);
hat_cpu_online(cp);
#ifdef TRAPTRACE
/*
* If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
*/
ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
ttc->ttc_next = ttc->ttc_first;
ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
#endif
/*
* Record that we have another CPU.
*/
mutex_enter(&cpu_lock);
/*
* Initialize the interrupt threads for this CPU
*/
cpu_intr_alloc(cp, NINTR_THREADS);
/*
* Add CPU to list of available CPUs. It'll be on the active list
* after mp_startup().
*/
cpu_add_unit(cp);
mutex_exit(&cpu_lock);
return (cp);
}
/*
* Undo what was done in mp_startup_init
*/
static void
mp_startup_fini(struct cpu *cp, int error)
{
mutex_enter(&cpu_lock);
/*
* Remove the CPU from the list of available CPUs.
*/
cpu_del_unit(cp->cpu_id);
if (error == ETIMEDOUT) {
/*
* The cpu was started, but never *seemed* to run any
* code in the kernel; it's probably off spinning in its
* own private world, though with potential references to
* our kmem-allocated IDTs and GDTs (for example).
*
* Worse still, it may actually wake up some time later,
* so rather than guess what it might or might not do, we
* leave the fundamental data structures intact.
*/
cp->cpu_flags = 0;
mutex_exit(&cpu_lock);
return;
}
/*
* At this point, the only threads bound to this CPU should
* special per-cpu threads: it's idle thread, it's pause threads,
* and it's interrupt threads. Clean these up.
*/
cpu_destroy_bound_threads(cp);
cp->cpu_idle_thread = NULL;
/*
* Free the interrupt stack.
*/
segkp_release(segkp,
cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
mutex_exit(&cpu_lock);
#ifdef TRAPTRACE
/*
* Discard the trap trace buffer
*/
{
trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
ttc->ttc_first = NULL;
}
#endif
hat_cpu_offline(cp);
cpuid_free_space(cp);
ucode_free_space(cp);
if (cp->cpu_m.mcpu_idt != CPU->cpu_m.mcpu_idt)
kmem_free(cp->cpu_m.mcpu_idt, sizeof (idt0));
cp->cpu_m.mcpu_idt = NULL;
kmem_free(cp->cpu_m.mcpu_gdt, PAGESIZE);
cp->cpu_m.mcpu_gdt = NULL;
teardown_vaddr_for_ppcopy(cp);
kcpc_hw_fini(cp);
cp->cpu_dispthread = NULL;
cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */
cpu_vm_data_destroy(cp);
mutex_enter(&cpu_lock);
disp_cpu_fini(cp);
mutex_exit(&cpu_lock);
kmem_free(cp, sizeof (*cp));
}
/*
* Apply workarounds for known errata, and warn about those that are absent.
*
* System vendors occasionally create configurations which contain different
* revisions of the CPUs that are almost but not exactly the same. At the
* time of writing, this meant that their clock rates were the same, their
* feature sets were the same, but the required workaround were -not-
* necessarily the same. So, this routine is invoked on -every- CPU soon
* after starting to make sure that the resulting system contains the most
* pessimal set of workarounds needed to cope with *any* of the CPUs in the
* system.
*
* workaround_errata is invoked early in mlsetup() for CPU 0, and in
* mp_startup() for all slave CPUs. Slaves process workaround_errata prior
* to acknowledging their readiness to the master, so this routine will
* never be executed by multiple CPUs in parallel, thus making updates to
* global data safe.
*
* These workarounds are based on Rev 3.57 of the Revision Guide for
* AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
*/
#if defined(OPTERON_ERRATUM_88)
int opteron_erratum_88; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_91)
int opteron_erratum_91; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_93)
int opteron_erratum_93; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_95)
int opteron_erratum_95; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_100)
int opteron_erratum_100; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_108)
int opteron_erratum_108; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_109)
int opteron_erratum_109; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_121)
int opteron_erratum_121; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_122)
int opteron_erratum_122; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_123)
int opteron_erratum_123; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_131)
int opteron_erratum_131; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_WORKAROUND_6336786)
int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */
int opteron_workaround_6336786_UP = 0; /* Not needed for UP */
#endif
#if defined(OPTERON_WORKAROUND_6323525)
int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */
#endif
static void
workaround_warning(cpu_t *cp, uint_t erratum)
{
cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
cp->cpu_id, erratum);
}
static void
workaround_applied(uint_t erratum)
{
if (erratum > 1000000)
cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
erratum);
else
cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
erratum);
}
static void
msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
{
cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
cp->cpu_id, rw, msr, error);
}
uint_t
workaround_errata(struct cpu *cpu)
{
uint_t missing = 0;
ASSERT(cpu == CPU);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 88) > 0) {
/*
* SWAPGS May Fail To Read Correct GS Base
*/
#if defined(OPTERON_ERRATUM_88)
/*
* The workaround is an mfence in the relevant assembler code
*/
opteron_erratum_88++;
#else
workaround_warning(cpu, 88);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 91) > 0) {
/*
* Software Prefetches May Report A Page Fault
*/
#if defined(OPTERON_ERRATUM_91)
/*
* fix is in trap.c
*/
opteron_erratum_91++;
#else
workaround_warning(cpu, 91);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 93) > 0) {
/*
* RSM Auto-Halt Restart Returns to Incorrect RIP
*/
#if defined(OPTERON_ERRATUM_93)
/*
* fix is in trap.c
*/
opteron_erratum_93++;
#else
workaround_warning(cpu, 93);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 95) > 0) {
/*
* RET Instruction May Return to Incorrect EIP
*/
#if defined(OPTERON_ERRATUM_95)
#if defined(_LP64)
/*
* Workaround this by ensuring that 32-bit user code and
* 64-bit kernel code never occupy the same address
* range mod 4G.
*/
if (_userlimit32 > 0xc0000000ul)
*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
/*LINTED*/
ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
opteron_erratum_95++;
#endif /* _LP64 */
#else
workaround_warning(cpu, 95);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 100) > 0) {
/*
* Compatibility Mode Branches Transfer to Illegal Address
*/
#if defined(OPTERON_ERRATUM_100)
/*
* fix is in trap.c
*/
opteron_erratum_100++;
#else
workaround_warning(cpu, 100);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 108) > 0) {
/*
* CPUID Instruction May Return Incorrect Model Number In
* Some Processors
*/
#if defined(OPTERON_ERRATUM_108)
/*
* (Our cpuid-handling code corrects the model number on
* those processors)
*/
#else
workaround_warning(cpu, 108);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 109) > 0) do {
/*
* Certain Reverse REP MOVS May Produce Unpredictable Behaviour
*/
#if defined(OPTERON_ERRATUM_109)
/*
* The "workaround" is to print a warning to upgrade the BIOS
*/
uint64_t value;
const uint_t msr = MSR_AMD_PATCHLEVEL;
int err;
if ((err = checked_rdmsr(msr, &value)) != 0) {
msr_warning(cpu, "rd", msr, err);
workaround_warning(cpu, 109);
missing++;
}
if (value == 0)
opteron_erratum_109++;
#else
workaround_warning(cpu, 109);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 121) > 0) {
/*
* Sequential Execution Across Non_Canonical Boundary Caused
* Processor Hang
*/
#if defined(OPTERON_ERRATUM_121)
#if defined(_LP64)
/*
* Erratum 121 is only present in long (64 bit) mode.
* Workaround is to include the page immediately before the
* va hole to eliminate the possibility of system hangs due to
* sequential execution across the va hole boundary.
*/
if (opteron_erratum_121)
opteron_erratum_121++;
else {
if (hole_start) {
hole_start -= PAGESIZE;
} else {
/*
* hole_start not yet initialized by
* mmu_init. Initialize hole_start
* with value to be subtracted.
*/
hole_start = PAGESIZE;
}
opteron_erratum_121++;
}
#endif /* _LP64 */
#else
workaround_warning(cpu, 121);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 122) > 0) do {
/*
* TLB Flush Filter May Cause Coherency Problem in
* Multiprocessor Systems
*/
#if defined(OPTERON_ERRATUM_122)
uint64_t value;
const uint_t msr = MSR_AMD_HWCR;
int error;
/*
* Erratum 122 is only present in MP configurations (multi-core
* or multi-processor).
*/
if (!opteron_erratum_122 && lgrp_plat_node_cnt == 1 &&
cpuid_get_ncpu_per_chip(cpu) == 1)
break;
/* disable TLB Flush Filter */
if ((error = checked_rdmsr(msr, &value)) != 0) {
msr_warning(cpu, "rd", msr, error);
workaround_warning(cpu, 122);
missing++;
} else {
value |= (uint64_t)AMD_HWCR_FFDIS;
if ((error = checked_wrmsr(msr, value)) != 0) {
msr_warning(cpu, "wr", msr, error);
workaround_warning(cpu, 122);
missing++;
}
}
opteron_erratum_122++;
#else
workaround_warning(cpu, 122);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 123) > 0) do {
/*
* Bypassed Reads May Cause Data Corruption of System Hang in
* Dual Core Processors
*/
#if defined(OPTERON_ERRATUM_123)
uint64_t value;
const uint_t msr = MSR_AMD_PATCHLEVEL;
int err;
/*
* Erratum 123 applies only to multi-core cpus.
*/
if (cpuid_get_ncpu_per_chip(cpu) < 2)
break;
/*
* The "workaround" is to print a warning to upgrade the BIOS
*/
if ((err = checked_rdmsr(msr, &value)) != 0) {
msr_warning(cpu, "rd", msr, err);
workaround_warning(cpu, 123);
missing++;
}
if (value == 0)
opteron_erratum_123++;
#else
workaround_warning(cpu, 123);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 131) > 0) do {
/*
* Multiprocessor Systems with Four or More Cores May Deadlock
* Waiting for a Probe Response
*/
#if defined(OPTERON_ERRATUM_131)
uint64_t nbcfg;
const uint_t msr = MSR_AMD_NB_CFG;
const uint64_t wabits =
AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
int error;
/*
* Erratum 131 applies to any system with four or more cores.
*/
if (opteron_erratum_131)
break;
if (lgrp_plat_node_cnt * cpuid_get_ncpu_per_chip(cpu) < 4)
break;
/*
* Print a warning if neither of the workarounds for
* erratum 131 is present.
*/
if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
msr_warning(cpu, "rd", msr, error);
workaround_warning(cpu, 131);
missing++;
} else if ((nbcfg & wabits) == 0) {
opteron_erratum_131++;
} else {
/* cannot have both workarounds set */
ASSERT((nbcfg & wabits) != wabits);
}
#else
workaround_warning(cpu, 131);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*
* This isn't really an erratum, but for convenience the
* detection/workaround code lives here and in cpuid_opteron_erratum.
*/
if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
#if defined(OPTERON_WORKAROUND_6336786)
/*
* Disable C1-Clock ramping on multi-core/multi-processor
* K8 platforms to guard against TSC drift.
*/
if (opteron_workaround_6336786) {
opteron_workaround_6336786++;
} else if ((lgrp_plat_node_cnt *
cpuid_get_ncpu_per_chip(cpu) > 1) ||
opteron_workaround_6336786_UP) {
int node;
uint8_t data;
for (node = 0; node < lgrp_plat_node_cnt; node++) {
/*
* Clear PMM7[1:0] (function 3, offset 0x87)
* Northbridge device is the node id + 24.
*/
data = pci_getb_func(0, node + 24, 3, 0x87);
data &= 0xFC;
pci_putb_func(0, node + 24, 3, 0x87, data);
}
opteron_workaround_6336786++;
}
#else
workaround_warning(cpu, 6336786);
missing++;
#endif
}
/*LINTED*/
/*
* Mutex primitives don't work as expected.
*/
if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
#if defined(OPTERON_WORKAROUND_6323525)
/*
* This problem only occurs with 2 or more cores. If bit in
* MSR_BU_CFG set, then not applicable. The workaround
* is to patch the semaphone routines with the lfence
* instruction to provide necessary load memory barrier with
* possible subsequent read-modify-write ops.
*
* It is too early in boot to call the patch routine so
* set erratum variable to be done in startup_end().
*/
if (opteron_workaround_6323525) {
opteron_workaround_6323525++;
} else if ((x86_feature & X86_SSE2) && ((lgrp_plat_node_cnt *
cpuid_get_ncpu_per_chip(cpu)) > 1)) {
if ((xrdmsr(MSR_BU_CFG) & 0x02) == 0)
opteron_workaround_6323525++;
}
#else
workaround_warning(cpu, 6323525);
missing++;
#endif
}
return (missing);
}
void
workaround_errata_end()
{
#if defined(OPTERON_ERRATUM_88)
if (opteron_erratum_88)
workaround_applied(88);
#endif
#if defined(OPTERON_ERRATUM_91)
if (opteron_erratum_91)
workaround_applied(91);
#endif
#if defined(OPTERON_ERRATUM_93)
if (opteron_erratum_93)
workaround_applied(93);
#endif
#if defined(OPTERON_ERRATUM_95)
if (opteron_erratum_95)
workaround_applied(95);
#endif
#if defined(OPTERON_ERRATUM_100)
if (opteron_erratum_100)
workaround_applied(100);
#endif
#if defined(OPTERON_ERRATUM_108)
if (opteron_erratum_108)
workaround_applied(108);
#endif
#if defined(OPTERON_ERRATUM_109)
if (opteron_erratum_109) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 109 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif
#if defined(OPTERON_ERRATUM_121)
if (opteron_erratum_121)
workaround_applied(121);
#endif
#if defined(OPTERON_ERRATUM_122)
if (opteron_erratum_122)
workaround_applied(122);
#endif
#if defined(OPTERON_ERRATUM_123)
if (opteron_erratum_123) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 123 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif
#if defined(OPTERON_ERRATUM_131)
if (opteron_erratum_131) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 131 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif
#if defined(OPTERON_WORKAROUND_6336786)
if (opteron_workaround_6336786)
workaround_applied(6336786);
#endif
#if defined(OPTERON_WORKAROUND_6323525)
if (opteron_workaround_6323525)
workaround_applied(6323525);
#endif
}
static cpuset_t procset;
/*
* Start a single cpu, assuming that the kernel context is available
* to successfully start another cpu.
*
* (For example, real mode code is mapped into the right place
* in memory and is ready to be run.)
*/
int
start_cpu(processorid_t who)
{
void *ctx;
cpu_t *cp;
int delays;
int error = 0;
ASSERT(who != 0);
/*
* Check if there's at least a Mbyte of kmem available
* before attempting to start the cpu.
*/
if (kmem_avail() < 1024 * 1024) {
/*
* Kick off a reap in case that helps us with
* later attempts ..
*/
kmem_reap();
return (ENOMEM);
}
cp = mp_startup_init(who);
if ((ctx = mach_cpucontext_alloc(cp)) == NULL ||
(error = mach_cpu_start(cp, ctx)) != 0) {
/*
* Something went wrong before we even started it
*/
if (ctx)
cmn_err(CE_WARN,
"cpu%d: failed to start error %d",
cp->cpu_id, error);
else
cmn_err(CE_WARN,
"cpu%d: failed to allocate context", cp->cpu_id);
if (ctx)
mach_cpucontext_free(cp, ctx, error);
else
error = EAGAIN; /* hmm. */
mp_startup_fini(cp, error);
return (error);
}
for (delays = 0; !CPU_IN_SET(procset, who); delays++) {
if (delays == 500) {
/*
* After five seconds, things are probably looking
* a bit bleak - explain the hang.
*/
cmn_err(CE_NOTE, "cpu%d: started, "
"but not running in the kernel yet", who);
} else if (delays > 2000) {
/*
* We waited at least 20 seconds, bail ..
*/
error = ETIMEDOUT;
cmn_err(CE_WARN, "cpu%d: timed out", who);
mach_cpucontext_free(cp, ctx, error);
mp_startup_fini(cp, error);
return (error);
}
/*
* wait at least 10ms, then check again..
*/
delay(USEC_TO_TICK_ROUNDUP(10000));
}
mach_cpucontext_free(cp, ctx, 0);
if (tsc_gethrtime_enable)
tsc_sync_master(who);
if (dtrace_cpu_init != NULL) {
/*
* DTrace CPU initialization expects cpu_lock to be held.
*/
mutex_enter(&cpu_lock);
(*dtrace_cpu_init)(who);
mutex_exit(&cpu_lock);
}
while (!CPU_IN_SET(cpu_ready_set, who))
delay(1);
return (0);
}
/*ARGSUSED*/
void
start_other_cpus(int cprboot)
{
uint_t who;
uint_t skipped = 0;
uint_t bootcpuid = 0;
/*
* Initialize our own cpu_info.
*/
init_cpu_info(CPU);
/*
* Initialize our syscall handlers
*/
init_cpu_syscall(CPU);
/*
* Take the boot cpu out of the mp_cpus set because we know
* it's already running. Add it to the cpu_ready_set for
* precisely the same reason.
*/
CPUSET_DEL(mp_cpus, bootcpuid);
CPUSET_ADD(cpu_ready_set, bootcpuid);
/*
* if only 1 cpu or not using MP, skip the rest of this
*/
if (CPUSET_ISNULL(mp_cpus) || use_mp == 0) {
if (use_mp == 0)
cmn_err(CE_CONT, "?***** Not in MP mode\n");
goto done;
}
/*
* perform such initialization as is needed
* to be able to take CPUs on- and off-line.
*/
cpu_pause_init();
xc_init(); /* initialize processor crosscalls */
if (mach_cpucontext_init() != 0)
goto done;
flushes_require_xcalls = 1;
/*
* We lock our affinity to the master CPU to ensure that all slave CPUs
* do their TSC syncs with the same CPU.
*/
affinity_set(CPU_CURRENT);
for (who = 0; who < NCPU; who++) {
if (!CPU_IN_SET(mp_cpus, who))
continue;
ASSERT(who != bootcpuid);
if (ncpus >= max_ncpus) {
skipped = who;
continue;
}
if (start_cpu(who) != 0)
CPUSET_DEL(mp_cpus, who);
}
/* Free the space allocated to hold the microcode file */
ucode_free();
affinity_clear();
if (skipped) {
cmn_err(CE_NOTE,
"System detected %d cpus, but "
"only %d cpu(s) were enabled during boot.",
skipped + 1, ncpus);
cmn_err(CE_NOTE,
"Use \"boot-ncpus\" parameter to enable more CPU(s). "
"See eeprom(1M).");
}
done:
workaround_errata_end();
mach_cpucontext_fini();
cmi_post_mpstartup();
}
/*
* Dummy functions - no i86pc platforms support dynamic cpu allocation.
*/
/*ARGSUSED*/
int
mp_cpu_configure(int cpuid)
{
return (ENOTSUP); /* not supported */
}
/*ARGSUSED*/
int
mp_cpu_unconfigure(int cpuid)
{
return (ENOTSUP); /* not supported */
}
/*
* Startup function for 'other' CPUs (besides boot cpu).
* Called from real_mode_start.
*
* WARNING: until CPU_READY is set, mp_startup and routines called by
* mp_startup should not call routines (e.g. kmem_free) that could call
* hat_unload which requires CPU_READY to be set.
*/
void
mp_startup(void)
{
struct cpu *cp = CPU;
uint_t new_x86_feature;
/*
* We need to get TSC on this proc synced (i.e., any delta
* from cpu0 accounted for) as soon as we can, because many
* many things use gethrtime/pc_gethrestime, including
* interrupts, cmn_err, etc.
*/
/* Let cpu0 continue into tsc_sync_master() */
CPUSET_ATOMIC_ADD(procset, cp->cpu_id);
if (tsc_gethrtime_enable)
tsc_sync_slave();
/*
* Once this was done from assembly, but it's safer here; if
* it blocks, we need to be able to swtch() to and from, and
* since we get here by calling t_pc, we need to do that call
* before swtch() overwrites it.
*/
(void) (*ap_mlsetup)();
new_x86_feature = cpuid_pass1(cp);
/*
* We need to Sync MTRR with cpu0's MTRR. We have to do
* this with interrupts disabled.
*/
if (x86_feature & X86_MTRR)
mtrr_sync();
/*
* Set up TSC_AUX to contain the cpuid for this processor
* for the rdtscp instruction.
*/
if (x86_feature & X86_TSCP)
(void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
/*
* Initialize this CPU's syscall handlers
*/
init_cpu_syscall(cp);
/*
* Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
* highest level at which a routine is permitted to block on
* an adaptive mutex (allows for cpu poke interrupt in case
* the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
* device interrupts that may end up in the hat layer issuing cross
* calls before CPU_READY is set.
*/
splx(ipltospl(LOCK_LEVEL));
sti();
/*
* Do a sanity check to make sure this new CPU is a sane thing
* to add to the collection of processors running this system.
*
* XXX Clearly this needs to get more sophisticated, if x86
* systems start to get built out of heterogenous CPUs; as is
* likely to happen once the number of processors in a configuration
* gets large enough.
*/
if ((x86_feature & new_x86_feature) != x86_feature) {
cmn_err(CE_CONT, "?cpu%d: %b\n",
cp->cpu_id, new_x86_feature, FMT_X86_FEATURE);
cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
}
/*
* We do not support cpus with mixed monitor/mwait support if the
* boot cpu supports monitor/mwait.
*/
if ((x86_feature & ~new_x86_feature) & X86_MWAIT)
panic("unsupported mixed cpu monitor/mwait support detected");
/*
* We could be more sophisticated here, and just mark the CPU
* as "faulted" but at this point we'll opt for the easier
* answer of dieing horribly. Provided the boot cpu is ok,
* the system can be recovered by booting with use_mp set to zero.
*/
if (workaround_errata(cp) != 0)
panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
cpuid_pass2(cp);
cpuid_pass3(cp);
(void) cpuid_pass4(cp);
init_cpu_info(cp);
mutex_enter(&cpu_lock);
/*
* Processor group initialization for this CPU is dependent on the
* cpuid probing, which must be done in the context of the current
* CPU.
*/
pghw_physid_create(cp);
pg_cpu_init(cp);
pg_cmt_cpu_startup(cp);
cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS;
cpu_add_active(cp);
if (dtrace_cpu_init != NULL) {
(*dtrace_cpu_init)(cp->cpu_id);
}
/*
* Fill out cpu_ucode_info. Update microcode if necessary.
*/
ucode_check(cp);
mutex_exit(&cpu_lock);
/*
* Enable preemption here so that contention for any locks acquired
* later in mp_startup may be preempted if the thread owning those
* locks is continously executing on other CPUs (for example, this
* CPU must be preemptible to allow other CPUs to pause it during their
* startup phases). It's safe to enable preemption here because the
* CPU state is pretty-much fully constructed.
*/
curthread->t_preempt = 0;
add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi);
/* The base spl should still be at LOCK LEVEL here */
ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
set_base_spl(); /* Restore the spl to its proper value */
(void) spl0(); /* enable interrupts */
/*
* Set up the CPU module for this CPU. This can't be done before
* this CPU is made CPU_READY, because we may (in heterogeneous systems)
* need to go load another CPU module. The act of attempting to load
* a module may trigger a cross-call, which will ASSERT unless this
* cpu is CPU_READY.
*/
cmi_init();
if (x86_feature & X86_MCA)
cmi_mca_init();
if (boothowto & RB_DEBUG)
kdi_cpu_init();
/*
* Setting the bit in cpu_ready_set must be the last operation in
* processor initialization; the boot CPU will continue to boot once
* it sees this bit set for all active CPUs.
*/
CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
/*
* Because mp_startup() gets fired off after init() starts, we
* can't use the '?' trick to do 'boot -v' printing - so we
* always direct the 'cpu .. online' messages to the log.
*/
cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
cp->cpu_id);
/*
* Now we are done with the startup thread, so free it up.
*/
thread_exit();
panic("mp_startup: cannot return");
/*NOTREACHED*/
}
/*
* Start CPU on user request.
*/
/* ARGSUSED */
int
mp_cpu_start(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
return (0);
}
/*
* Stop CPU on user request.
*/
/* ARGSUSED */
int
mp_cpu_stop(struct cpu *cp)
{
extern int cbe_psm_timer_mode;
ASSERT(MUTEX_HELD(&cpu_lock));
/*
* If TIMER_PERIODIC mode is used, CPU0 is the one running it;
* can't stop it. (This is true only for machines with no TSC.)
*/
if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
return (1);
return (0);
}
/*
* Take the specified CPU out of participation in interrupts.
*/
int
cpu_disable_intr(struct cpu *cp)
{
if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
return (EBUSY);
cp->cpu_flags &= ~CPU_ENABLE;
return (0);
}
/*
* Allow the specified CPU to participate in interrupts.
*/
void
cpu_enable_intr(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
cp->cpu_flags |= CPU_ENABLE;
psm_enable_intr(cp->cpu_id);
}
void
mp_cpu_faulted_enter(struct cpu *cp)
{
cmi_faulted_enter(cp);
}
void
mp_cpu_faulted_exit(struct cpu *cp)
{
cmi_faulted_exit(cp);
}
/*
* The following two routines are used as context operators on threads belonging
* to processes with a private LDT (see sysi86). Due to the rarity of such
* processes, these routines are currently written for best code readability and
* organization rather than speed. We could avoid checking x86_feature at every
* context switch by installing different context ops, depending on the
* x86_feature flags, at LDT creation time -- one for each combination of fast
* syscall feature flags.
*/
/*ARGSUSED*/
void
cpu_fast_syscall_disable(void *arg)
{
if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP))
cpu_sep_disable();
if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC))
cpu_asysc_disable();
}
/*ARGSUSED*/
void
cpu_fast_syscall_enable(void *arg)
{
if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP))
cpu_sep_enable();
if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC))
cpu_asysc_enable();
}
static void
cpu_sep_enable(void)
{
ASSERT(x86_feature & X86_SEP);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
}
static void
cpu_sep_disable(void)
{
ASSERT(x86_feature & X86_SEP);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
/*
* Setting the SYSENTER_CS_MSR register to 0 causes software executing
* the sysenter or sysexit instruction to trigger a #gp fault.
*/
wrmsr(MSR_INTC_SEP_CS, 0);
}
static void
cpu_asysc_enable(void)
{
ASSERT(x86_feature & X86_ASYSC);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
(uint64_t)(uintptr_t)AMD_EFER_SCE);
}
static void
cpu_asysc_disable(void)
{
ASSERT(x86_feature & X86_ASYSC);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
/*
* Turn off the SCE (syscall enable) bit in the EFER register. Software
* executing syscall or sysret with this bit off will incur a #ud trap.
*/
wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
~((uint64_t)(uintptr_t)AMD_EFER_SCE));
}