/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 2010, Intel Corporation.
* All rights reserved.
*/
/*
* Copyright 2015 Joyent, Inc.
* Copyright 2013 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/cpuvar.h>
#include <sys/cpu.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/disp.h>
#include <sys/class.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/note.h>
#include <sys/asm_linkage.h>
#include <sys/x_call.h>
#include <sys/systm.h>
#include <sys/var.h>
#include <sys/vtrace.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kp.h>
#include <sys/segments.h>
#include <sys/kmem.h>
#include <sys/stack.h>
#include <sys/smp_impldefs.h>
#include <sys/x86_archext.h>
#include <sys/machsystm.h>
#include <sys/traptrace.h>
#include <sys/clock.h>
#include <sys/cpc_impl.h>
#include <sys/pg.h>
#include <sys/cmt.h>
#include <sys/dtrace.h>
#include <sys/archsystm.h>
#include <sys/fp.h>
#include <sys/reboot.h>
#include <sys/kdi_machimpl.h>
#include <vm/hat_i86.h>
#include <vm/vm_dep.h>
#include <sys/memnode.h>
#include <sys/pci_cfgspace.h>
#include <sys/mach_mmu.h>
#include <sys/sysmacros.h>
#if defined(__xpv)
#include <sys/hypervisor.h>
#endif
#include <sys/cpu_module.h>
#include <sys/ontrap.h>
struct cpu cpus[1]; /* CPU data */
struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */
struct cpu *cpu_free_list; /* list for released CPUs */
cpu_core_t cpu_core[NCPU]; /* cpu_core structures */
#define cpu_next_free cpu_prev
/*
* Useful for disabling MP bring-up on a MP capable system.
*/
int use_mp = 1;
/*
* to be set by a PSM to indicate what cpus
* are sitting around on the system.
*/
cpuset_t mp_cpus;
/*
* This variable is used by the hat layer to decide whether or not
* critical sections are needed to prevent race conditions. For sun4m,
* this variable is set once enough MP initialization has been done in
* order to allow cross calls.
*/
int flushes_require_xcalls;
cpuset_t cpu_ready_set; /* initialized in startup() */
static void mp_startup_boot(void);
static void mp_startup_hotplug(void);
static void cpu_sep_enable(void);
static void cpu_sep_disable(void);
static void cpu_asysc_enable(void);
static void cpu_asysc_disable(void);
/*
* Init CPU info - get CPU type info for processor_info system call.
*/
void
init_cpu_info(struct cpu *cp)
{
processor_info_t *pi = &cp->cpu_type_info;
/*
* Get clock-frequency property for the CPU.
*/
pi->pi_clock = cpu_freq;
/*
* Current frequency in Hz.
*/
cp->cpu_curr_clock = cpu_freq_hz;
/*
* Supported frequencies.
*/
if (cp->cpu_supp_freqs == NULL) {
cpu_set_supp_freqs(cp, NULL);
}
(void) strcpy(pi->pi_processor_type, "i386");
if (fpu_exists)
(void) strcpy(pi->pi_fputypes, "i387 compatible");
cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
/*
* If called for the BSP, cp is equal to current CPU.
* For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info
* of current CPU as default values for cpu_idstr and cpu_brandstr.
* They will be corrected in mp_startup_common() after cpuid_pass1()
* has been invoked on target CPU.
*/
(void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN);
(void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN);
}
/*
* Configure syscall support on this CPU.
*/
/*ARGSUSED*/
void
init_cpu_syscall(struct cpu *cp)
{
kpreempt_disable();
#if defined(__amd64)
if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
uint64_t flags;
#if !defined(__lint)
/*
* The syscall instruction imposes a certain ordering on
* segment selectors, so we double-check that ordering
* here.
*/
ASSERT(KDS_SEL == KCS_SEL + 8);
ASSERT(UDS_SEL == U32CS_SEL + 8);
ASSERT(UCS_SEL == U32CS_SEL + 16);
#endif
/*
* Turn syscall/sysret extensions on.
*/
cpu_asysc_enable();
/*
* Program the magic registers ..
*/
wrmsr(MSR_AMD_STAR,
((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
/*
* This list of flags is masked off the incoming
* %rfl when we enter the kernel.
*/
flags = PS_IE | PS_T;
if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE)
flags |= PS_ACHK;
wrmsr(MSR_AMD_SFMASK, flags);
}
#endif
/*
* On 32-bit kernels, we use sysenter/sysexit because it's too
* hard to use syscall/sysret, and it is more portable anyway.
*
* On 64-bit kernels on Nocona machines, the 32-bit syscall
* variant isn't available to 32-bit applications, but sysenter is.
*/
if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
is_x86_feature(x86_featureset, X86FSET_SEP)) {
#if !defined(__lint)
/*
* The sysenter instruction imposes a certain ordering on
* segment selectors, so we double-check that ordering
* here. See "sysenter" in Intel document 245471-012, "IA-32
* Intel Architecture Software Developer's Manual Volume 2:
* Instruction Set Reference"
*/
ASSERT(KDS_SEL == KCS_SEL + 8);
ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
ASSERT32(UDS_SEL == UCS_SEL + 8);
ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
ASSERT64(UDS_SEL == U32CS_SEL + 8);
#endif
cpu_sep_enable();
/*
* resume() sets this value to the base of the threads stack
* via a context handler.
*/
wrmsr(MSR_INTC_SEP_ESP, 0);
wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
}
kpreempt_enable();
}
/*
* Multiprocessor initialization.
*
* Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
* startup and idle threads for the specified CPU.
* Parameter boot is true for boot time operations and is false for CPU
* DR operations.
*/
static struct cpu *
mp_cpu_configure_common(int cpun, boolean_t boot)
{
struct cpu *cp;
kthread_id_t tp;
caddr_t sp;
proc_t *procp;
#if !defined(__xpv)
extern int idle_cpu_prefer_mwait;
extern void cpu_idle_mwait();
#endif
extern void idle();
extern void cpu_idle();
#ifdef TRAPTRACE
trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
#endif
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(cpun < NCPU && cpu[cpun] == NULL);
if (cpu_free_list == NULL) {
cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
} else {
cp = cpu_free_list;
cpu_free_list = cp->cpu_next_free;
}
cp->cpu_m.mcpu_istamp = cpun << 16;
/* Create per CPU specific threads in the process p0. */
procp = &p0;
/*
* Initialize the dispatcher first.
*/
disp_cpu_init(cp);
cpu_vm_data_init(cp);
/*
* Allocate and initialize the startup thread for this CPU.
* Interrupt and process switch stacks get allocated later
* when the CPU starts running.
*/
tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
TS_STOPPED, maxclsyspri);
/*
* Set state to TS_ONPROC since this thread will start running
* as soon as the CPU comes online.
*
* All the other fields of the thread structure are setup by
* thread_create().
*/
THREAD_ONPROC(tp, cp);
tp->t_preempt = 1;
tp->t_bound_cpu = cp;
tp->t_affinitycnt = 1;
tp->t_cpu = cp;
tp->t_disp_queue = cp->cpu_disp;
/*
* Setup thread to start in mp_startup_common.
*/
sp = tp->t_stk;
tp->t_sp = (uintptr_t)(sp - MINFRAME);
#if defined(__amd64)
tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */
#endif
/*
* Setup thread start entry point for boot or hotplug.
*/
if (boot) {
tp->t_pc = (uintptr_t)mp_startup_boot;
} else {
tp->t_pc = (uintptr_t)mp_startup_hotplug;
}
cp->cpu_id = cpun;
cp->cpu_self = cp;
cp->cpu_thread = tp;
cp->cpu_lwp = NULL;
cp->cpu_dispthread = tp;
cp->cpu_dispatch_pri = DISP_PRIO(tp);
/*
* cpu_base_spl must be set explicitly here to prevent any blocking
* operations in mp_startup_common from causing the spl of the cpu
* to drop to 0 (allowing device interrupts before we're ready) in
* resume().
* cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
* As an extra bit of security on DEBUG kernels, this is enforced with
* an assertion in mp_startup_common() -- before cpu_base_spl is set
* to its proper value.
*/
cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
/*
* Now, initialize per-CPU idle thread for this CPU.
*/
tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
cp->cpu_idle_thread = tp;
tp->t_preempt = 1;
tp->t_bound_cpu = cp;
tp->t_affinitycnt = 1;
tp->t_cpu = cp;
tp->t_disp_queue = cp->cpu_disp;
/*
* Bootstrap the CPU's PG data
*/
pg_cpu_bootstrap(cp);
/*
* Perform CPC initialization on the new CPU.
*/
kcpc_hw_init(cp);
/*
* Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
* for each CPU.
*/
setup_vaddr_for_ppcopy(cp);
/*
* Allocate page for new GDT and initialize from current GDT.
*/
#if !defined(__lint)
ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
#endif
cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
#if defined(__i386)
/*
* setup kernel %gs.
*/
set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
SEL_KPL, 0, 1);
#endif
/*
* If we have more than one node, each cpu gets a copy of IDT
* local to its node. If this is a Pentium box, we use cpu 0's
* IDT. cpu 0's IDT has been made read-only to workaround the
* cmpxchgl register bug
*/
if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
#if !defined(__lint)
ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
#endif
cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP);
bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
} else {
cp->cpu_idt = CPU->cpu_idt;
}
/*
* alloc space for cpuid info
*/
cpuid_alloc_space(cp);
#if !defined(__xpv)
if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
idle_cpu_prefer_mwait) {
cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp);
cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
} else
#endif
cp->cpu_m.mcpu_idle_cpu = cpu_idle;
init_cpu_info(cp);
/*
* alloc space for ucode_info
*/
ucode_alloc_space(cp);
xc_init_cpu(cp);
hat_cpu_online(cp);
#ifdef TRAPTRACE
/*
* If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
*/
ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
ttc->ttc_next = ttc->ttc_first;
ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
#endif
/*
* Record that we have another CPU.
*/
/*
* Initialize the interrupt threads for this CPU
*/
cpu_intr_alloc(cp, NINTR_THREADS);
cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
cpu_set_state(cp);
/*
* Add CPU to list of available CPUs. It'll be on the active list
* after mp_startup_common().
*/
cpu_add_unit(cp);
return (cp);
}
/*
* Undo what was done in mp_cpu_configure_common
*/
static void
mp_cpu_unconfigure_common(struct cpu *cp, int error)
{
ASSERT(MUTEX_HELD(&cpu_lock));
/*
* Remove the CPU from the list of available CPUs.
*/
cpu_del_unit(cp->cpu_id);
if (error == ETIMEDOUT) {
/*
* The cpu was started, but never *seemed* to run any
* code in the kernel; it's probably off spinning in its
* own private world, though with potential references to
* our kmem-allocated IDTs and GDTs (for example).
*
* Worse still, it may actually wake up some time later,
* so rather than guess what it might or might not do, we
* leave the fundamental data structures intact.
*/
cp->cpu_flags = 0;
return;
}
/*
* At this point, the only threads bound to this CPU should
* special per-cpu threads: it's idle thread, it's pause threads,
* and it's interrupt threads. Clean these up.
*/
cpu_destroy_bound_threads(cp);
cp->cpu_idle_thread = NULL;
/*
* Free the interrupt stack.
*/
segkp_release(segkp,
cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
cp->cpu_intr_stack = NULL;
#ifdef TRAPTRACE
/*
* Discard the trap trace buffer
*/
{
trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
ttc->ttc_first = NULL;
}
#endif
hat_cpu_offline(cp);
ucode_free_space(cp);
/* Free CPU ID string and brand string. */
if (cp->cpu_idstr) {
kmem_free(cp->cpu_idstr, CPU_IDSTRLEN);
cp->cpu_idstr = NULL;
}
if (cp->cpu_brandstr) {
kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN);
cp->cpu_brandstr = NULL;
}
#if !defined(__xpv)
if (cp->cpu_m.mcpu_mwait != NULL) {
cpuid_mwait_free(cp);
cp->cpu_m.mcpu_mwait = NULL;
}
#endif
cpuid_free_space(cp);
if (cp->cpu_idt != CPU->cpu_idt)
kmem_free(cp->cpu_idt, PAGESIZE);
cp->cpu_idt = NULL;
kmem_free(cp->cpu_gdt, PAGESIZE);
cp->cpu_gdt = NULL;
if (cp->cpu_supp_freqs != NULL) {
size_t len = strlen(cp->cpu_supp_freqs) + 1;
kmem_free(cp->cpu_supp_freqs, len);
cp->cpu_supp_freqs = NULL;
}
teardown_vaddr_for_ppcopy(cp);
kcpc_hw_fini(cp);
cp->cpu_dispthread = NULL;
cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */
cpu_vm_data_destroy(cp);
xc_fini_cpu(cp);
disp_cpu_fini(cp);
ASSERT(cp != CPU0);
bzero(cp, sizeof (*cp));
cp->cpu_next_free = cpu_free_list;
cpu_free_list = cp;
}
/*
* Apply workarounds for known errata, and warn about those that are absent.
*
* System vendors occasionally create configurations which contain different
* revisions of the CPUs that are almost but not exactly the same. At the
* time of writing, this meant that their clock rates were the same, their
* feature sets were the same, but the required workaround were -not-
* necessarily the same. So, this routine is invoked on -every- CPU soon
* after starting to make sure that the resulting system contains the most
* pessimal set of workarounds needed to cope with *any* of the CPUs in the
* system.
*
* workaround_errata is invoked early in mlsetup() for CPU 0, and in
* mp_startup_common() for all slave CPUs. Slaves process workaround_errata
* prior to acknowledging their readiness to the master, so this routine will
* never be executed by multiple CPUs in parallel, thus making updates to
* global data safe.
*
* These workarounds are based on Rev 3.57 of the Revision Guide for
* AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
*/
#if defined(OPTERON_ERRATUM_88)
int opteron_erratum_88; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_91)
int opteron_erratum_91; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_93)
int opteron_erratum_93; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_95)
int opteron_erratum_95; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_100)
int opteron_erratum_100; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_108)
int opteron_erratum_108; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_109)
int opteron_erratum_109; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_121)
int opteron_erratum_121; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_122)
int opteron_erratum_122; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_123)
int opteron_erratum_123; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_131)
int opteron_erratum_131; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_WORKAROUND_6336786)
int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */
int opteron_workaround_6336786_UP = 0; /* Not needed for UP */
#endif
#if defined(OPTERON_WORKAROUND_6323525)
int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_298)
int opteron_erratum_298;
#endif
#if defined(OPTERON_ERRATUM_721)
int opteron_erratum_721;
#endif
static void
workaround_warning(cpu_t *cp, uint_t erratum)
{
cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
cp->cpu_id, erratum);
}
static void
workaround_applied(uint_t erratum)
{
if (erratum > 1000000)
cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
erratum);
else
cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
erratum);
}
static void
msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
{
cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
cp->cpu_id, rw, msr, error);
}
/*
* Determine the number of nodes in a Hammer / Greyhound / Griffin family
* system.
*/
static uint_t
opteron_get_nnodes(void)
{
static uint_t nnodes = 0;
if (nnodes == 0) {
#ifdef DEBUG
uint_t family;
/*
* This routine uses a PCI config space based mechanism
* for retrieving the number of nodes in the system.
* Device 24, function 0, offset 0x60 as used here is not
* AMD processor architectural, and may not work on processor
* families other than those listed below.
*
* Callers of this routine must ensure that we're running on
* a processor which supports this mechanism.
* The assertion below is meant to catch calls on unsupported
* processors.
*/
family = cpuid_getfamily(CPU);
ASSERT(family == 0xf || family == 0x10 || family == 0x11);
#endif /* DEBUG */
/*
* Obtain the number of nodes in the system from
* bits [6:4] of the Node ID register on node 0.
*
* The actual node count is NodeID[6:4] + 1
*
* The Node ID register is accessed via function 0,
* offset 0x60. Node 0 is device 24.
*/
nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
}
return (nnodes);
}
uint_t
do_erratum_298(struct cpu *cpu)
{
static int osvwrc = -3;
extern int osvw_opteron_erratum(cpu_t *, uint_t);
/*
* L2 Eviction May Occur During Processor Operation To Set
* Accessed or Dirty Bit.
*/
if (osvwrc == -3) {
osvwrc = osvw_opteron_erratum(cpu, 298);
} else {
/* osvw return codes should be consistent for all cpus */
ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
}
switch (osvwrc) {
case 0: /* erratum is not present: do nothing */
break;
case 1: /* erratum is present: BIOS workaround applied */
/*
* check if workaround is actually in place and issue warning
* if not.
*/
if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
#if defined(OPTERON_ERRATUM_298)
opteron_erratum_298++;
#else
workaround_warning(cpu, 298);
return (1);
#endif
}
break;
case -1: /* cannot determine via osvw: check cpuid */
if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
(((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
#if defined(OPTERON_ERRATUM_298)
opteron_erratum_298++;
#else
workaround_warning(cpu, 298);
return (1);
#endif
}
break;
}
return (0);
}
uint_t
workaround_errata(struct cpu *cpu)
{
uint_t missing = 0;
ASSERT(cpu == CPU);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 88) > 0) {
/*
* SWAPGS May Fail To Read Correct GS Base
*/
#if defined(OPTERON_ERRATUM_88)
/*
* The workaround is an mfence in the relevant assembler code
*/
opteron_erratum_88++;
#else
workaround_warning(cpu, 88);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 91) > 0) {
/*
* Software Prefetches May Report A Page Fault
*/
#if defined(OPTERON_ERRATUM_91)
/*
* fix is in trap.c
*/
opteron_erratum_91++;
#else
workaround_warning(cpu, 91);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 93) > 0) {
/*
* RSM Auto-Halt Restart Returns to Incorrect RIP
*/
#if defined(OPTERON_ERRATUM_93)
/*
* fix is in trap.c
*/
opteron_erratum_93++;
#else
workaround_warning(cpu, 93);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 95) > 0) {
/*
* RET Instruction May Return to Incorrect EIP
*/
#if defined(OPTERON_ERRATUM_95)
#if defined(_LP64)
/*
* Workaround this by ensuring that 32-bit user code and
* 64-bit kernel code never occupy the same address
* range mod 4G.
*/
if (_userlimit32 > 0xc0000000ul)
*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
/*LINTED*/
ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
opteron_erratum_95++;
#endif /* _LP64 */
#else
workaround_warning(cpu, 95);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 100) > 0) {
/*
* Compatibility Mode Branches Transfer to Illegal Address
*/
#if defined(OPTERON_ERRATUM_100)
/*
* fix is in trap.c
*/
opteron_erratum_100++;
#else
workaround_warning(cpu, 100);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 108) > 0) {
/*
* CPUID Instruction May Return Incorrect Model Number In
* Some Processors
*/
#if defined(OPTERON_ERRATUM_108)
/*
* (Our cpuid-handling code corrects the model number on
* those processors)
*/
#else
workaround_warning(cpu, 108);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 109) > 0) do {
/*
* Certain Reverse REP MOVS May Produce Unpredictable Behavior
*/
#if defined(OPTERON_ERRATUM_109)
/*
* The "workaround" is to print a warning to upgrade the BIOS
*/
uint64_t value;
const uint_t msr = MSR_AMD_PATCHLEVEL;
int err;
if ((err = checked_rdmsr(msr, &value)) != 0) {
msr_warning(cpu, "rd", msr, err);
workaround_warning(cpu, 109);
missing++;
}
if (value == 0)
opteron_erratum_109++;
#else
workaround_warning(cpu, 109);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 121) > 0) {
/*
* Sequential Execution Across Non_Canonical Boundary Caused
* Processor Hang
*/
#if defined(OPTERON_ERRATUM_121)
#if defined(_LP64)
/*
* Erratum 121 is only present in long (64 bit) mode.
* Workaround is to include the page immediately before the
* va hole to eliminate the possibility of system hangs due to
* sequential execution across the va hole boundary.
*/
if (opteron_erratum_121)
opteron_erratum_121++;
else {
if (hole_start) {
hole_start -= PAGESIZE;
} else {
/*
* hole_start not yet initialized by
* mmu_init. Initialize hole_start
* with value to be subtracted.
*/
hole_start = PAGESIZE;
}
opteron_erratum_121++;
}
#endif /* _LP64 */
#else
workaround_warning(cpu, 121);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 122) > 0) do {
/*
* TLB Flush Filter May Cause Coherency Problem in
* Multiprocessor Systems
*/
#if defined(OPTERON_ERRATUM_122)
uint64_t value;
const uint_t msr = MSR_AMD_HWCR;
int error;
/*
* Erratum 122 is only present in MP configurations (multi-core
* or multi-processor).
*/
#if defined(__xpv)
if (!DOMAIN_IS_INITDOMAIN(xen_info))
break;
if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1)
break;
#else
if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
cpuid_get_ncpu_per_chip(cpu) == 1)
break;
#endif
/* disable TLB Flush Filter */
if ((error = checked_rdmsr(msr, &value)) != 0) {
msr_warning(cpu, "rd", msr, error);
workaround_warning(cpu, 122);
missing++;
} else {
value |= (uint64_t)AMD_HWCR_FFDIS;
if ((error = checked_wrmsr(msr, value)) != 0) {
msr_warning(cpu, "wr", msr, error);
workaround_warning(cpu, 122);
missing++;
}
}
opteron_erratum_122++;
#else
workaround_warning(cpu, 122);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 123) > 0) do {
/*
* Bypassed Reads May Cause Data Corruption of System Hang in
* Dual Core Processors
*/
#if defined(OPTERON_ERRATUM_123)
uint64_t value;
const uint_t msr = MSR_AMD_PATCHLEVEL;
int err;
/*
* Erratum 123 applies only to multi-core cpus.
*/
if (cpuid_get_ncpu_per_chip(cpu) < 2)
break;
#if defined(__xpv)
if (!DOMAIN_IS_INITDOMAIN(xen_info))
break;
#endif
/*
* The "workaround" is to print a warning to upgrade the BIOS
*/
if ((err = checked_rdmsr(msr, &value)) != 0) {
msr_warning(cpu, "rd", msr, err);
workaround_warning(cpu, 123);
missing++;
}
if (value == 0)
opteron_erratum_123++;
#else
workaround_warning(cpu, 123);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 131) > 0) do {
/*
* Multiprocessor Systems with Four or More Cores May Deadlock
* Waiting for a Probe Response
*/
#if defined(OPTERON_ERRATUM_131)
uint64_t nbcfg;
const uint_t msr = MSR_AMD_NB_CFG;
const uint64_t wabits =
AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
int error;
/*
* Erratum 131 applies to any system with four or more cores.
*/
if (opteron_erratum_131)
break;
#if defined(__xpv)
if (!DOMAIN_IS_INITDOMAIN(xen_info))
break;
if (xpv_nr_phys_cpus() < 4)
break;
#else
if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
break;
#endif
/*
* Print a warning if neither of the workarounds for
* erratum 131 is present.
*/
if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
msr_warning(cpu, "rd", msr, error);
workaround_warning(cpu, 131);
missing++;
} else if ((nbcfg & wabits) == 0) {
opteron_erratum_131++;
} else {
/* cannot have both workarounds set */
ASSERT((nbcfg & wabits) != wabits);
}
#else
workaround_warning(cpu, 131);
missing++;
#endif
/*CONSTANTCONDITION*/
} while (0);
/*
* This isn't really an erratum, but for convenience the
* detection/workaround code lives here and in cpuid_opteron_erratum.
*/
if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
#if defined(OPTERON_WORKAROUND_6336786)
/*
* Disable C1-Clock ramping on multi-core/multi-processor
* K8 platforms to guard against TSC drift.
*/
if (opteron_workaround_6336786) {
opteron_workaround_6336786++;
#if defined(__xpv)
} else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
xpv_nr_phys_cpus() > 1) ||
opteron_workaround_6336786_UP) {
/*
* XXPV Hmm. We can't walk the Northbridges on
* the hypervisor; so just complain and drive
* on. This probably needs to be fixed in
* the hypervisor itself.
*/
opteron_workaround_6336786++;
workaround_warning(cpu, 6336786);
#else /* __xpv */
} else if ((opteron_get_nnodes() *
cpuid_get_ncpu_per_chip(cpu) > 1) ||
opteron_workaround_6336786_UP) {
uint_t node, nnodes;
uint8_t data;
nnodes = opteron_get_nnodes();
for (node = 0; node < nnodes; node++) {
/*
* Clear PMM7[1:0] (function 3, offset 0x87)
* Northbridge device is the node id + 24.
*/
data = pci_getb_func(0, node + 24, 3, 0x87);
data &= 0xFC;
pci_putb_func(0, node + 24, 3, 0x87, data);
}
opteron_workaround_6336786++;
#endif /* __xpv */
}
#else
workaround_warning(cpu, 6336786);
missing++;
#endif
}
/*LINTED*/
/*
* Mutex primitives don't work as expected.
*/
if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
#if defined(OPTERON_WORKAROUND_6323525)
/*
* This problem only occurs with 2 or more cores. If bit in
* MSR_AMD_BU_CFG set, then not applicable. The workaround
* is to patch the semaphone routines with the lfence
* instruction to provide necessary load memory barrier with
* possible subsequent read-modify-write ops.
*
* It is too early in boot to call the patch routine so
* set erratum variable to be done in startup_end().
*/
if (opteron_workaround_6323525) {
opteron_workaround_6323525++;
#if defined(__xpv)
} else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) {
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
/*
* XXPV Use dom0_msr here when extended
* operations are supported?
*/
if (xpv_nr_phys_cpus() > 1)
opteron_workaround_6323525++;
} else {
/*
* We have no way to tell how many physical
* cpus there are, or even if this processor
* has the problem, so enable the workaround
* unconditionally (at some performance cost).
*/
opteron_workaround_6323525++;
}
#else /* __xpv */
} else if (is_x86_feature(x86_featureset, X86FSET_SSE2) &&
((opteron_get_nnodes() *
cpuid_get_ncpu_per_chip(cpu)) > 1)) {
if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0)
opteron_workaround_6323525++;
#endif /* __xpv */
}
#else
workaround_warning(cpu, 6323525);
missing++;
#endif
}
missing += do_erratum_298(cpu);
if (cpuid_opteron_erratum(cpu, 721) > 0) {
#if defined(OPTERON_ERRATUM_721)
on_trap_data_t otd;
if (!on_trap(&otd, OT_DATA_ACCESS))
wrmsr(MSR_AMD_DE_CFG,
rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721);
no_trap();
opteron_erratum_721++;
#else
workaround_warning(cpu, 721);
missing++;
#endif
}
#ifdef __xpv
return (0);
#else
return (missing);
#endif
}
void
workaround_errata_end()
{
#if defined(OPTERON_ERRATUM_88)
if (opteron_erratum_88)
workaround_applied(88);
#endif
#if defined(OPTERON_ERRATUM_91)
if (opteron_erratum_91)
workaround_applied(91);
#endif
#if defined(OPTERON_ERRATUM_93)
if (opteron_erratum_93)
workaround_applied(93);
#endif
#if defined(OPTERON_ERRATUM_95)
if (opteron_erratum_95)
workaround_applied(95);
#endif
#if defined(OPTERON_ERRATUM_100)
if (opteron_erratum_100)
workaround_applied(100);
#endif
#if defined(OPTERON_ERRATUM_108)
if (opteron_erratum_108)
workaround_applied(108);
#endif
#if defined(OPTERON_ERRATUM_109)
if (opteron_erratum_109) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 109 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif
#if defined(OPTERON_ERRATUM_121)
if (opteron_erratum_121)
workaround_applied(121);
#endif
#if defined(OPTERON_ERRATUM_122)
if (opteron_erratum_122)
workaround_applied(122);
#endif
#if defined(OPTERON_ERRATUM_123)
if (opteron_erratum_123) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 123 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif
#if defined(OPTERON_ERRATUM_131)
if (opteron_erratum_131) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 131 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif
#if defined(OPTERON_WORKAROUND_6336786)
if (opteron_workaround_6336786)
workaround_applied(6336786);
#endif
#if defined(OPTERON_WORKAROUND_6323525)
if (opteron_workaround_6323525)
workaround_applied(6323525);
#endif
#if defined(OPTERON_ERRATUM_298)
if (opteron_erratum_298) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD 64/Opteron(tm)"
" processor\nerratum 298 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif
#if defined(OPTERON_ERRATUM_721)
if (opteron_erratum_721)
workaround_applied(721);
#endif
}
/*
* The procset_slave and procset_master are used to synchronize
* between the control CPU and the target CPU when starting CPUs.
*/
static cpuset_t procset_slave, procset_master;
static void
mp_startup_wait(cpuset_t *sp, processorid_t cpuid)
{
cpuset_t tempset;
for (tempset = *sp; !CPU_IN_SET(tempset, cpuid);
tempset = *(volatile cpuset_t *)sp) {
SMT_PAUSE();
}
CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid);
}
static void
mp_startup_signal(cpuset_t *sp, processorid_t cpuid)
{
cpuset_t tempset;
CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid);
for (tempset = *sp; CPU_IN_SET(tempset, cpuid);
tempset = *(volatile cpuset_t *)sp) {
SMT_PAUSE();
}
}
int
mp_start_cpu_common(cpu_t *cp, boolean_t boot)
{
_NOTE(ARGUNUSED(boot));
void *ctx;
int delays;
int error = 0;
cpuset_t tempset;
processorid_t cpuid;
#ifndef __xpv
extern void cpupm_init(cpu_t *);
#endif
ASSERT(cp != NULL);
cpuid = cp->cpu_id;
ctx = mach_cpucontext_alloc(cp);
if (ctx == NULL) {
cmn_err(CE_WARN,
"cpu%d: failed to allocate context", cp->cpu_id);
return (EAGAIN);
}
error = mach_cpu_start(cp, ctx);
if (error != 0) {
cmn_err(CE_WARN,
"cpu%d: failed to start, error %d", cp->cpu_id, error);
mach_cpucontext_free(cp, ctx, error);
return (error);
}
for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid);
delays++) {
if (delays == 500) {
/*
* After five seconds, things are probably looking
* a bit bleak - explain the hang.
*/
cmn_err(CE_NOTE, "cpu%d: started, "
"but not running in the kernel yet", cpuid);
} else if (delays > 2000) {
/*
* We waited at least 20 seconds, bail ..
*/
error = ETIMEDOUT;
cmn_err(CE_WARN, "cpu%d: timed out", cpuid);
mach_cpucontext_free(cp, ctx, error);
return (error);
}
/*
* wait at least 10ms, then check again..
*/
delay(USEC_TO_TICK_ROUNDUP(10000));
tempset = *((volatile cpuset_t *)&procset_slave);
}
CPUSET_ATOMIC_DEL(procset_slave, cpuid);
mach_cpucontext_free(cp, ctx, 0);
#ifndef __xpv
if (tsc_gethrtime_enable)
tsc_sync_master(cpuid);
#endif
if (dtrace_cpu_init != NULL) {
(*dtrace_cpu_init)(cpuid);
}
/*
* During CPU DR operations, the cpu_lock is held by current
* (the control) thread. We can't release the cpu_lock here
* because that will break the CPU DR logic.
* On the other hand, CPUPM and processor group initialization
* routines need to access the cpu_lock. So we invoke those
* routines here on behalf of mp_startup_common().
*
* CPUPM and processor group initialization routines depend
* on the cpuid probing results. Wait for mp_startup_common()
* to signal that cpuid probing is done.
*/
mp_startup_wait(&procset_slave, cpuid);
#ifndef __xpv
cpupm_init(cp);
#endif
(void) pg_cpu_init(cp, B_FALSE);
cpu_set_state(cp);
mp_startup_signal(&procset_master, cpuid);
return (0);
}
/*
* Start a single cpu, assuming that the kernel context is available
* to successfully start another cpu.
*
* (For example, real mode code is mapped into the right place
* in memory and is ready to be run.)
*/
int
start_cpu(processorid_t who)
{
cpu_t *cp;
int error = 0;
cpuset_t tempset;
ASSERT(who != 0);
/*
* Check if there's at least a Mbyte of kmem available
* before attempting to start the cpu.
*/
if (kmem_avail() < 1024 * 1024) {
/*
* Kick off a reap in case that helps us with
* later attempts ..
*/
kmem_reap();
return (ENOMEM);
}
/*
* First configure cpu.
*/
cp = mp_cpu_configure_common(who, B_TRUE);
ASSERT(cp != NULL);
/*
* Then start cpu.
*/
error = mp_start_cpu_common(cp, B_TRUE);
if (error != 0) {
mp_cpu_unconfigure_common(cp, error);
return (error);
}
mutex_exit(&cpu_lock);
tempset = cpu_ready_set;
while (!CPU_IN_SET(tempset, who)) {
drv_usecwait(1);
tempset = *((volatile cpuset_t *)&cpu_ready_set);
}
mutex_enter(&cpu_lock);
return (0);
}
void
start_other_cpus(int cprboot)
{
_NOTE(ARGUNUSED(cprboot));
uint_t who;
uint_t bootcpuid = 0;
/*
* Initialize our own cpu_info.
*/
init_cpu_info(CPU);
cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
/*
* Initialize our syscall handlers
*/
init_cpu_syscall(CPU);
/*
* Take the boot cpu out of the mp_cpus set because we know
* it's already running. Add it to the cpu_ready_set for
* precisely the same reason.
*/
CPUSET_DEL(mp_cpus, bootcpuid);
CPUSET_ADD(cpu_ready_set, bootcpuid);
/*
* skip the rest of this if
* . only 1 cpu dectected and system isn't hotplug-capable
* . not using MP
*/
if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) ||
use_mp == 0) {
if (use_mp == 0)
cmn_err(CE_CONT, "?***** Not in MP mode\n");
goto done;
}
/*
* perform such initialization as is needed
* to be able to take CPUs on- and off-line.
*/
cpu_pause_init();
xc_init_cpu(CPU); /* initialize processor crosscalls */
if (mach_cpucontext_init() != 0)
goto done;
flushes_require_xcalls = 1;
/*
* We lock our affinity to the master CPU to ensure that all slave CPUs
* do their TSC syncs with the same CPU.
*/
affinity_set(CPU_CURRENT);
for (who = 0; who < NCPU; who++) {
if (!CPU_IN_SET(mp_cpus, who))
continue;
ASSERT(who != bootcpuid);
mutex_enter(&cpu_lock);
if (start_cpu(who) != 0)
CPUSET_DEL(mp_cpus, who);
cpu_state_change_notify(who, CPU_SETUP);
mutex_exit(&cpu_lock);
}
/* Free the space allocated to hold the microcode file */
ucode_cleanup();
affinity_clear();
mach_cpucontext_fini();
done:
if (get_hwenv() == HW_NATIVE)
workaround_errata_end();
cmi_post_mpstartup();
if (use_mp && ncpus != boot_max_ncpus) {
cmn_err(CE_NOTE,
"System detected %d cpus, but "
"only %d cpu(s) were enabled during boot.",
boot_max_ncpus, ncpus);
cmn_err(CE_NOTE,
"Use \"boot-ncpus\" parameter to enable more CPU(s). "
"See eeprom(1M).");
}
}
int
mp_cpu_configure(int cpuid)
{
cpu_t *cp;
if (use_mp == 0 || plat_dr_support_cpu() == 0) {
return (ENOTSUP);
}
cp = cpu_get(cpuid);
if (cp != NULL) {
return (EALREADY);
}
/*
* Check if there's at least a Mbyte of kmem available
* before attempting to start the cpu.
*/
if (kmem_avail() < 1024 * 1024) {
/*
* Kick off a reap in case that helps us with
* later attempts ..
*/
kmem_reap();
return (ENOMEM);
}
cp = mp_cpu_configure_common(cpuid, B_FALSE);
ASSERT(cp != NULL && cpu_get(cpuid) == cp);
return (cp != NULL ? 0 : EAGAIN);
}
int
mp_cpu_unconfigure(int cpuid)
{
cpu_t *cp;
if (use_mp == 0 || plat_dr_support_cpu() == 0) {
return (ENOTSUP);
} else if (cpuid < 0 || cpuid >= max_ncpus) {
return (EINVAL);
}
cp = cpu_get(cpuid);
if (cp == NULL) {
return (ENODEV);
}
mp_cpu_unconfigure_common(cp, 0);
return (0);
}
/*
* Startup function for 'other' CPUs (besides boot cpu).
* Called from real_mode_start.
*
* WARNING: until CPU_READY is set, mp_startup_common and routines called by
* mp_startup_common should not call routines (e.g. kmem_free) that could call
* hat_unload which requires CPU_READY to be set.
*/
static void
mp_startup_common(boolean_t boot)
{
cpu_t *cp = CPU;
uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)];
extern void cpu_event_init_cpu(cpu_t *);
/*
* We need to get TSC on this proc synced (i.e., any delta
* from cpu0 accounted for) as soon as we can, because many
* many things use gethrtime/pc_gethrestime, including
* interrupts, cmn_err, etc. Before we can do that, we want to
* clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that
* right away.
*/
bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES));
cpuid_pass1(cp, new_x86_featureset);
if (boot && get_hwenv() == HW_NATIVE &&
cpuid_getvendor(CPU) == X86_VENDOR_Intel &&
cpuid_getfamily(CPU) == 6 &&
(cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) &&
is_x86_feature(new_x86_featureset, X86FSET_TSC)) {
(void) wrmsr(REG_TSC, 0UL);
}
/* Let the control CPU continue into tsc_sync_master() */
mp_startup_signal(&procset_slave, cp->cpu_id);
#ifndef __xpv
if (tsc_gethrtime_enable)
tsc_sync_slave();
#endif
/*
* Once this was done from assembly, but it's safer here; if
* it blocks, we need to be able to swtch() to and from, and
* since we get here by calling t_pc, we need to do that call
* before swtch() overwrites it.
*/
(void) (*ap_mlsetup)();
#ifndef __xpv
/*
* Program this cpu's PAT
*/
pat_sync();
#endif
/*
* Set up TSC_AUX to contain the cpuid for this processor
* for the rdtscp instruction.
*/
if (is_x86_feature(x86_featureset, X86FSET_TSCP))
(void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
/*
* Initialize this CPU's syscall handlers
*/
init_cpu_syscall(cp);
/*
* Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
* highest level at which a routine is permitted to block on
* an adaptive mutex (allows for cpu poke interrupt in case
* the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
* device interrupts that may end up in the hat layer issuing cross
* calls before CPU_READY is set.
*/
splx(ipltospl(LOCK_LEVEL));
sti();
/*
* Do a sanity check to make sure this new CPU is a sane thing
* to add to the collection of processors running this system.
*
* XXX Clearly this needs to get more sophisticated, if x86
* systems start to get built out of heterogenous CPUs; as is
* likely to happen once the number of processors in a configuration
* gets large enough.
*/
if (compare_x86_featureset(x86_featureset, new_x86_featureset) ==
B_FALSE) {
cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id);
print_x86_featureset(new_x86_featureset);
cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
}
/*
* There exists a small subset of systems which expose differing
* MWAIT/MONITOR support between CPUs. If MWAIT support is absent from
* the boot CPU, but is found on a later CPU, the system continues to
* operate as if no MWAIT support is available.
*
* The reverse case, where MWAIT is available on the boot CPU but not
* on a subsequently initialized CPU, is not presently allowed and will
* result in a panic.
*/
if (is_x86_feature(x86_featureset, X86FSET_MWAIT) !=
is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) {
if (!is_x86_feature(x86_featureset, X86FSET_MWAIT)) {
remove_x86_feature(new_x86_featureset, X86FSET_MWAIT);
} else {
panic("unsupported mixed cpu mwait support detected");
}
}
/*
* We could be more sophisticated here, and just mark the CPU
* as "faulted" but at this point we'll opt for the easier
* answer of dying horribly. Provided the boot cpu is ok,
* the system can be recovered by booting with use_mp set to zero.
*/
if (workaround_errata(cp) != 0)
panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
/*
* We can touch cpu_flags here without acquiring the cpu_lock here
* because the cpu_lock is held by the control CPU which is running
* mp_start_cpu_common().
* Need to clear CPU_QUIESCED flag before calling any function which
* may cause thread context switching, such as kmem_alloc() etc.
* The idle thread checks for CPU_QUIESCED flag and loops for ever if
* it's set. So the startup thread may have no chance to switch back
* again if it's switched away with CPU_QUIESCED set.
*/
cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED);
/*
* Setup this processor for XSAVE.
*/
if (fp_save_mech == FP_XSAVE) {
xsave_setup_msr(cp);
}
cpuid_pass2(cp);
cpuid_pass3(cp);
cpuid_pass4(cp, NULL);
/*
* Correct cpu_idstr and cpu_brandstr on target CPU after
* cpuid_pass1() is done.
*/
(void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN);
(void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN);
cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
post_startup_cpu_fixups();
cpu_event_init_cpu(cp);
/*
* Enable preemption here so that contention for any locks acquired
* later in mp_startup_common may be preempted if the thread owning
* those locks is continuously executing on other CPUs (for example,
* this CPU must be preemptible to allow other CPUs to pause it during
* their startup phases). It's safe to enable preemption here because
* the CPU state is pretty-much fully constructed.
*/
curthread->t_preempt = 0;
/* The base spl should still be at LOCK LEVEL here */
ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
set_base_spl(); /* Restore the spl to its proper value */
pghw_physid_create(cp);
/*
* Delegate initialization tasks, which need to access the cpu_lock,
* to mp_start_cpu_common() because we can't acquire the cpu_lock here
* during CPU DR operations.
*/
mp_startup_signal(&procset_slave, cp->cpu_id);
mp_startup_wait(&procset_master, cp->cpu_id);
pg_cmt_cpu_startup(cp);
if (boot) {
mutex_enter(&cpu_lock);
cp->cpu_flags &= ~CPU_OFFLINE;
cpu_enable_intr(cp);
cpu_add_active(cp);
mutex_exit(&cpu_lock);
}
/* Enable interrupts */
(void) spl0();
/*
* Fill out cpu_ucode_info. Update microcode if necessary.
*/
ucode_check(cp);
#ifndef __xpv
{
/*
* Set up the CPU module for this CPU. This can't be done
* before this CPU is made CPU_READY, because we may (in
* heterogeneous systems) need to go load another CPU module.
* The act of attempting to load a module may trigger a
* cross-call, which will ASSERT unless this cpu is CPU_READY.
*/
cmi_hdl_t hdl;
if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
if (is_x86_feature(x86_featureset, X86FSET_MCA))
cmi_mca_init(hdl);
cp->cpu_m.mcpu_cmi_hdl = hdl;
}
}
#endif /* __xpv */
if (boothowto & RB_DEBUG)
kdi_cpu_init();
/*
* Setting the bit in cpu_ready_set must be the last operation in
* processor initialization; the boot CPU will continue to boot once
* it sees this bit set for all active CPUs.
*/
CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
(void) mach_cpu_create_device_node(cp, NULL);
cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
cmn_err(CE_CONT, "?cpu%d initialization complete - online\n",
cp->cpu_id);
/*
* Now we are done with the startup thread, so free it up.
*/
thread_exit();
panic("mp_startup: cannot return");
/*NOTREACHED*/
}
/*
* Startup function for 'other' CPUs at boot time (besides boot cpu).
*/
static void
mp_startup_boot(void)
{
mp_startup_common(B_TRUE);
}
/*
* Startup function for hotplug CPUs at runtime.
*/
void
mp_startup_hotplug(void)
{
mp_startup_common(B_FALSE);
}
/*
* Start CPU on user request.
*/
/* ARGSUSED */
int
mp_cpu_start(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
return (0);
}
/*
* Stop CPU on user request.
*/
int
mp_cpu_stop(struct cpu *cp)
{
extern int cbe_psm_timer_mode;
ASSERT(MUTEX_HELD(&cpu_lock));
#ifdef __xpv
/*
* We can't offline vcpu0.
*/
if (cp->cpu_id == 0)
return (EBUSY);
#endif
/*
* If TIMER_PERIODIC mode is used, CPU0 is the one running it;
* can't stop it. (This is true only for machines with no TSC.)
*/
if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
return (EBUSY);
return (0);
}
/*
* Take the specified CPU out of participation in interrupts.
*/
int
cpu_disable_intr(struct cpu *cp)
{
if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
return (EBUSY);
cp->cpu_flags &= ~CPU_ENABLE;
return (0);
}
/*
* Allow the specified CPU to participate in interrupts.
*/
void
cpu_enable_intr(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
cp->cpu_flags |= CPU_ENABLE;
psm_enable_intr(cp->cpu_id);
}
void
mp_cpu_faulted_enter(struct cpu *cp)
{
#ifdef __xpv
_NOTE(ARGUNUSED(cp));
#else
cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
if (hdl != NULL) {
cmi_hdl_hold(hdl);
} else {
hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
}
if (hdl != NULL) {
cmi_faulted_enter(hdl);
cmi_hdl_rele(hdl);
}
#endif
}
void
mp_cpu_faulted_exit(struct cpu *cp)
{
#ifdef __xpv
_NOTE(ARGUNUSED(cp));
#else
cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
if (hdl != NULL) {
cmi_hdl_hold(hdl);
} else {
hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
}
if (hdl != NULL) {
cmi_faulted_exit(hdl);
cmi_hdl_rele(hdl);
}
#endif
}
/*
* The following two routines are used as context operators on threads belonging
* to processes with a private LDT (see sysi86). Due to the rarity of such
* processes, these routines are currently written for best code readability and
* organization rather than speed. We could avoid checking x86_featureset at
* every context switch by installing different context ops, depending on
* x86_featureset, at LDT creation time -- one for each combination of fast
* syscall features.
*/
/*ARGSUSED*/
void
cpu_fast_syscall_disable(void *arg)
{
if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
is_x86_feature(x86_featureset, X86FSET_SEP))
cpu_sep_disable();
if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
is_x86_feature(x86_featureset, X86FSET_ASYSC))
cpu_asysc_disable();
}
/*ARGSUSED*/
void
cpu_fast_syscall_enable(void *arg)
{
if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
is_x86_feature(x86_featureset, X86FSET_SEP))
cpu_sep_enable();
if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
is_x86_feature(x86_featureset, X86FSET_ASYSC))
cpu_asysc_enable();
}
static void
cpu_sep_enable(void)
{
ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
}
static void
cpu_sep_disable(void)
{
ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
/*
* Setting the SYSENTER_CS_MSR register to 0 causes software executing
* the sysenter or sysexit instruction to trigger a #gp fault.
*/
wrmsr(MSR_INTC_SEP_CS, 0);
}
static void
cpu_asysc_enable(void)
{
ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
(uint64_t)(uintptr_t)AMD_EFER_SCE);
}
static void
cpu_asysc_disable(void)
{
ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
/*
* Turn off the SCE (syscall enable) bit in the EFER register. Software
* executing syscall or sysret with this bit off will incur a #ud trap.
*/
wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
~((uint64_t)(uintptr_t)AMD_EFER_SCE));
}