mp_startup.c revision 0ac7d7d81ec0313c4dbc45930710481fe618f5f9
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/cpuvar.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/disp.h>
#include <sys/mmu.h>
#include <sys/class.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/asm_linkage.h>
#include <sys/x_call.h>
#include <sys/systm.h>
#include <sys/var.h>
#include <sys/vtrace.h>
#include <vm/hat.h>
#include <sys/mmu.h>
#include <vm/as.h>
#include <vm/seg_kmem.h>
#include <sys/segments.h>
#include <sys/kmem.h>
#include <sys/stack.h>
#include <sys/smp_impldefs.h>
#include <sys/x86_archext.h>
#include <sys/machsystm.h>
#include <sys/traptrace.h>
#include <sys/clock.h>
#include <sys/cpc_impl.h>
#include <sys/chip.h>
#include <sys/dtrace.h>
#include <sys/archsystm.h>
#include <sys/fp.h>
#include <sys/reboot.h>
#include <sys/kdi.h>
#include <vm/hat_i86.h>
#include <sys/memnode.h>
struct cpu cpus[1]; /* CPU data */
struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */
cpu_core_t cpu_core[NCPU]; /* cpu_core structures */
/*
* Useful for disabling MP bring-up for an MP capable kernel
* (a kernel that was built with MP defined)
*/
int use_mp = 1;
int mp_cpus = 0x1; /* to be set by platform specific module */
/*
* This variable is used by the hat layer to decide whether or not
* critical sections are needed to prevent race conditions. For sun4m,
* this variable is set once enough MP initialization has been done in
* order to allow cross calls.
*/
int flushes_require_xcalls = 0;
ulong_t cpu_ready_set = 1;
extern void real_mode_start(void);
extern void real_mode_end(void);
static void mp_startup(void);
static void cpu_sep_enable(void);
static void cpu_sep_disable(void);
static void cpu_asysc_enable(void);
static void cpu_asysc_disable(void);
extern int tsc_gethrtime_enable;
/*
* Init CPU info - get CPU type info for processor_info system call.
*/
void
init_cpu_info(struct cpu *cp)
{
processor_info_t *pi = &cp->cpu_type_info;
char buf[CPU_IDSTRLEN];
/*
* Get clock-frequency property for the CPU.
*/
pi->pi_clock = cpu_freq;
(void) strcpy(pi->pi_processor_type, "i386");
if (fpu_exists)
(void) strcpy(pi->pi_fputypes, "i387 compatible");
(void) cpuid_getidstr(cp, buf, sizeof (buf));
cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
(void) strcpy(cp->cpu_idstr, buf);
cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
(void) strcpy(cp->cpu_brandstr, buf);
cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
}
/*
* Configure syscall support on this CPU.
*/
/*ARGSUSED*/
static void
init_cpu_syscall(struct cpu *cp)
{
kpreempt_disable();
#if defined(__amd64)
if (x86_feature & X86_ASYSC) {
#if !defined(__lint)
/*
* The syscall instruction imposes a certain ordering on
* segment selectors, so we double-check that ordering
* here.
*/
ASSERT(KDS_SEL == KCS_SEL + 8);
ASSERT(UDS_SEL == U32CS_SEL + 8);
ASSERT(UCS_SEL == U32CS_SEL + 16);
#endif
/*
* Turn syscall/sysret extensions on.
*/
cpu_asysc_enable();
/*
* Program the magic registers ..
*/
wrmsr(MSR_AMD_STAR, ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) <<
32);
wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
/*
* This list of flags is masked off the incoming
* %rfl when we enter the kernel.
*/
wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
}
#endif
/*
* On 32-bit kernels, we use sysenter/sysexit because it's too
* hard to use syscall/sysret, and it is more portable anyway.
*
* On 64-bit kernels on Nocona machines, the 32-bit syscall
* variant isn't available to 32-bit applications, but sysenter is.
*/
if (x86_feature & X86_SEP) {
#if !defined(__lint)
/*
* The sysenter instruction imposes a certain ordering on
* segment selectors, so we double-check that ordering
* here. See "sysenter" in Intel document 245471-012, "IA-32
* Intel Architecture Software Developer's Manual Volume 2:
* Instruction Set Reference"
*/
ASSERT(KDS_SEL == KCS_SEL + 8);
ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
ASSERT32(UDS_SEL == UCS_SEL + 8);
ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
ASSERT64(UDS_SEL == U32CS_SEL + 8);
#endif
cpu_sep_enable();
/*
* resume() sets this value to the base of the threads stack
* via a context handler.
*/
wrmsr(MSR_INTC_SEP_ESP, 0ULL);
wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
}
kpreempt_enable();
}
/*
* Multiprocessor initialization.
*
* Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
* startup and idle threads for the specified CPU.
*/
static void
mp_startup_init(int cpun)
{
#if defined(__amd64)
extern void *long_mode_64(void);
#endif /* __amd64 */
struct cpu *cp;
struct tss *ntss;
kthread_id_t tp;
caddr_t sp;
int size;
proc_t *procp;
extern void idle();
extern void init_intr_threads(struct cpu *);
struct cpu_tables *tablesp;
rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
#ifdef TRAPTRACE
trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
#endif
ASSERT(cpun < NCPU && cpu[cpun] == NULL);
if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) {
panic("mp_startup_init: cpu%d: "
"no memory for cpu structure", cpun);
/*NOTREACHED*/
}
procp = curthread->t_procp;
mutex_enter(&cpu_lock);
/*
* Initialize the dispatcher first.
*/
disp_cpu_init(cp);
mutex_exit(&cpu_lock);
cpu_vm_data_init(cp);
/*
* Allocate and initialize the startup thread for this CPU.
* Interrupt and process switch stacks get allocated later
* when the CPU starts running.
*/
tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
TS_STOPPED, maxclsyspri);
/*
* Set state to TS_ONPROC since this thread will start running
* as soon as the CPU comes online.
*
* All the other fields of the thread structure are setup by
* thread_create().
*/
THREAD_ONPROC(tp, cp);
tp->t_preempt = 1;
tp->t_bound_cpu = cp;
tp->t_affinitycnt = 1;
tp->t_cpu = cp;
tp->t_disp_queue = cp->cpu_disp;
/*
* Setup thread to start in mp_startup.
*/
sp = tp->t_stk;
tp->t_pc = (uintptr_t)mp_startup;
tp->t_sp = (uintptr_t)(sp - MINFRAME);
cp->cpu_id = cpun;
cp->cpu_self = cp;
cp->cpu_mask = 1 << cpun;
cp->cpu_thread = tp;
cp->cpu_lwp = NULL;
cp->cpu_dispthread = tp;
cp->cpu_dispatch_pri = DISP_PRIO(tp);
/*
* Now, initialize per-CPU idle thread for this CPU.
*/
tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
cp->cpu_idle_thread = tp;
tp->t_preempt = 1;
tp->t_bound_cpu = cp;
tp->t_affinitycnt = 1;
tp->t_cpu = cp;
tp->t_disp_queue = cp->cpu_disp;
/*
* Bootstrap the CPU for CMT aware scheduling
* The rest of the initialization will happen from
* mp_startup()
*/
chip_bootstrap_cpu(cp);
/*
* Perform CPC intialization on the new CPU.
*/
kcpc_hw_init(cp);
/*
* Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
* for each CPU.
*/
setup_vaddr_for_ppcopy(cp);
/*
* Allocate space for page directory, stack, tss, gdt and idt.
* This assumes that kmem_alloc will return memory which is aligned
* to the next higher power of 2 or a page(if size > MAXABIG)
* If this assumption goes wrong at any time due to change in
* kmem alloc, things may not work as the page directory has to be
* page aligned
*/
if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL)
panic("mp_startup_init: cpu%d cannot allocate tables", cpun);
if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) {
kmem_free(tablesp, sizeof (struct cpu_tables));
size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE;
tablesp = kmem_zalloc(size, KM_NOSLEEP);
tablesp = (struct cpu_tables *)
(((uintptr_t)tablesp + MMU_STD_PAGESIZE) &
MMU_STD_PAGEMASK);
}
ntss = cp->cpu_tss = &tablesp->ct_tss;
cp->cpu_gdt = tablesp->ct_gdt;
bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t)));
#if defined(__amd64)
/*
* #DF (double fault).
*/
ntss->tss_ist1 =
(uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
#elif defined(__i386)
ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
(uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
ntss->tss_eip = (uint32_t)mp_startup;
ntss->tss_cs = KCS_SEL;
ntss->tss_fs = KFS_SEL;
ntss->tss_gs = KGS_SEL;
/*
* setup kernel %gs.
*/
set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
SEL_KPL, 0, 1);
#endif /* __i386 */
/*
* Set I/O bit map offset equal to size of TSS segment limit
* for no I/O permission map. This will cause all user I/O
* instructions to generate #gp fault.
*/
ntss->tss_bitmapbase = sizeof (*ntss);
/*
* setup kernel tss.
*/
set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL);
/*
* If we have more than one node, each cpu gets a copy of IDT
* local to its node. If this is a Pentium box, we use cpu 0's
* IDT. cpu 0's IDT has been made read-only to workaround the
* cmpxchgl register bug
*/
cp->cpu_idt = CPU->cpu_idt;
if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP);
bcopy(idt0, cp->cpu_idt, sizeof (idt0));
}
/*
* Get interrupt priority data from cpu 0
*/
cp->cpu_pri_data = CPU->cpu_pri_data;
hat_cpu_online(cp);
/* Should remove all entries for the current process/thread here */
/*
* Fill up the real mode platter to make it easy for real mode code to
* kick it off. This area should really be one passed by boot to kernel
* and guaranteed to be below 1MB and aligned to 16 bytes. Should also
* have identical physical and virtual address in paged mode.
*/
real_mode_platter->rm_idt_base = cp->cpu_idt;
real_mode_platter->rm_idt_lim = sizeof (idt0) - 1;
real_mode_platter->rm_gdt_base = cp->cpu_gdt;
real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1;
real_mode_platter->rm_pdbr = getcr3();
real_mode_platter->rm_cpu = cpun;
real_mode_platter->rm_x86feature = x86_feature;
real_mode_platter->rm_cr4 = cr4_value;
#if defined(__amd64)
if (getcr3() > 0xffffffffUL)
panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
"located above 4G in physical memory (@ 0x%llx).",
(unsigned long long)getcr3());
/*
* Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
* by code in real_mode_start():
*
* GDT[0]: NULL selector
* GDT[1]: 64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
*
* Clear the IDT as interrupts will be off and a limit of 0 will cause
* the CPU to triple fault and reset on an NMI, seemingly as reasonable
* a course of action as any other, though it may cause the entire
* platform to reset in some cases...
*/
real_mode_platter->rm_temp_gdt[0] = 0ULL;
real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
real_mode_platter->rm_temp_gdt_lim = (ushort_t)
(sizeof (real_mode_platter->rm_temp_gdt) - 1);
real_mode_platter->rm_temp_gdt_base = rm_platter_pa +
(uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt);
real_mode_platter->rm_temp_idt_lim = 0;
real_mode_platter->rm_temp_idt_base = 0;
/*
* Since the CPU needs to jump to protected mode using an identity
* mapped address, we need to calculate it here.
*/
real_mode_platter->rm_longmode64_addr = rm_platter_pa +
((uint32_t)long_mode_64 - (uint32_t)real_mode_start);
#endif /* __amd64 */
#ifdef TRAPTRACE
/*
* If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this
* CPU.
*/
ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
ttc->ttc_next = ttc->ttc_first;
ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
#endif
/*
* Record that we have another CPU.
*/
mutex_enter(&cpu_lock);
/*
* Initialize the interrupt threads for this CPU
*/
init_intr_threads(cp);
/*
* Add CPU to list of available CPUs. It'll be on the active list
* after mp_startup().
*/
cpu_add_unit(cp);
mutex_exit(&cpu_lock);
}
/*
* Apply workarounds for known errata, and warn about those that are absent.
*
* System vendors occasionally create configurations which contain different
* revisions of the CPUs that are almost but not exactly the same. At the
* time of writing, this meant that their clock rates were the same, their
* feature sets were the same, but the required workaround were -not-
* necessarily the same. So, this routine is invoked on -every- CPU soon
* after starting to make sure that the resulting system contains the most
* pessimal set of workarounds needed to cope with *any* of the CPUs in the
* system.
*
* These workarounds are based on Rev 3.57 of the Revision Guide for
* AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
*/
#if defined(OPTERON_ERRATUM_91)
int opteron_erratum_91; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_93)
int opteron_erratum_93; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_100)
int opteron_erratum_100; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_109)
int opteron_erratum_109; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_121)
int opteron_erratum_121; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_122)
int opteron_erratum_122; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_123)
int opteron_erratum_123; /* if non-zero -> at least one cpu has it */
#endif
#if defined(OPTERON_ERRATUM_131)
int opteron_erratum_131; /* if non-zero -> at least one cpu has it */
#endif
#define WARNING(cpu, n) \
cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d", \
(cpu)->cpu_id, (n))
uint_t
workaround_errata(struct cpu *cpu)
{
uint_t missing = 0;
ASSERT(cpu == CPU);
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 88) > 0) {
/*
* SWAPGS May Fail To Read Correct GS Base
*/
#if defined(OPTERON_ERRATUM_88)
/*
* The workaround is an mfence in the relevant assembler code
*/
#else
WARNING(cpu, 88);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 91) > 0) {
/*
* Software Prefetches May Report A Page Fault
*/
#if defined(OPTERON_ERRATUM_91)
/*
* fix is in trap.c
*/
opteron_erratum_91++;
#else
WARNING(cpu, 91);
missing++;
#endif
}
if (cpuid_opteron_erratum(cpu, 93) > 0) {
/*
* RSM Auto-Halt Restart Returns to Incorrect RIP
*/
#if defined(OPTERON_ERRATUM_93)
/*
* fix is in trap.c
*/
opteron_erratum_93++;
#else
WARNING(cpu, 93);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 95) > 0) {
/*
* RET Instruction May Return to Incorrect EIP
*/
#if defined(OPTERON_ERRATUM_95)
#if defined(_LP64)
/*
* Workaround this by ensuring that 32-bit user code and
* 64-bit kernel code never occupy the same address
* range mod 4G.
*/
if (_userlimit32 > 0xc0000000ul)
*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
/*LINTED*/
ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
#endif /* _LP64 */
#else
WARNING(cpu, 95);
missing++;
#endif /* OPTERON_ERRATUM_95 */
}
if (cpuid_opteron_erratum(cpu, 100) > 0) {
/*
* Compatibility Mode Branches Transfer to Illegal Address
*/
#if defined(OPTERON_ERRATUM_100)
/*
* fix is in trap.c
*/
opteron_erratum_100++;
#else
WARNING(cpu, 100);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 108) > 0) {
/*
* CPUID Instruction May Return Incorrect Model Number In
* Some Processors
*/
#if defined(OPTERON_ERRATUM_108)
/*
* (Our cpuid-handling code corrects the model number on
* those processors)
*/
#else
WARNING(cpu, 108);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 109) > 0) {
/*
* Certain Reverse REP MOVS May Produce Unpredictable Behaviour
*/
#if defined(OPTERON_ERRATUM_109)
/* workaround is to print a warning to upgrade BIOS */
if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
opteron_erratum_109++;
#else
WARNING(cpu, 109);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 121) > 0) {
/*
* Sequential Execution Across Non_Canonical Boundary Caused
* Processor Hang
*/
#if defined(OPTERON_ERRATUM_121)
static int lma;
if (opteron_erratum_121)
opteron_erratum_121++;
/*
* Erratum 121 is only present in long (64 bit) mode.
* Workaround is to include the page immediately before the
* va hole to eliminate the possibility of system hangs due to
* sequential execution across the va hole boundary.
*/
if (lma == 0) {
/*
* check LMA once: assume all cpus are in long mode
* or not.
*/
lma = 1;
if (rdmsr(MSR_AMD_EFER) & AMD_EFER_LMA) {
if (hole_start) {
hole_start -= PAGESIZE;
} else {
/*
* hole_start not yet initialized by
* mmu_init. Initialize hole_start
* with value to be subtracted.
*/
hole_start = PAGESIZE;
}
opteron_erratum_121++;
}
}
#else
WARNING(cpu, 121);
missing++;
#endif
}
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 122) > 0) {
/*
* TLB Flush Filter May Cause Cohenrency Problem in
* Multiprocessor Systems
*/
#if defined(OPTERON_ERRATUM_122)
/*
* Erratum 122 is only present in MP configurations (multi-core
* or multi-processor).
*/
if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 ||
cpuid_get_ncpu_per_chip(cpu) > 1) {
/* disable TLB Flush Filter */
wrmsr(MSR_AMD_HWCR, rdmsr(MSR_AMD_HWCR) |
(uint64_t)(uintptr_t)AMD_HWCR_FFDIS);
opteron_erratum_122++;
}
#else
WARNING(cpu, 122);
missing++;
#endif
}
#if defined(OPTERON_ERRATUM_123)
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 123) > 0) {
/*
* Bypassed Reads May Cause Data Corruption of System Hang in
* Dual Core Processors
*/
/*
* Erratum 123 applies only to multi-core cpus.
*/
if (cpuid_get_ncpu_per_chip(cpu) > 1) {
/* workaround is to print a warning to upgrade BIOS */
if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
opteron_erratum_123++;
}
}
#endif
#if defined(OPTERON_ERRATUM_131)
/*LINTED*/
if (cpuid_opteron_erratum(cpu, 131) > 0) {
/*
* Multiprocessor Systems with Four or More Cores May Deadlock
* Waiting for a Probe Response
*/
/*
* Erratum 131 applies to any system with four or more cores.
*/
if ((opteron_erratum_131 == 0) && ((lgrp_plat_node_cnt *
cpuid_get_ncpu_per_chip(cpu)) >= 4)) {
/*
* Workaround is to print a warning to upgrade
* the BIOS
*/
if (!(rdmsr(MSR_AMD_NB_CFG) & AMD_NB_CFG_SRQ_HEARTBEAT))
opteron_erratum_131++;
}
#endif
}
return (missing);
}
void
workaround_errata_end()
{
#if defined(OPTERON_ERRATUM_109)
if (opteron_erratum_109) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 109 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif /* OPTERON_ERRATUM_109 */
#if defined(OPTERON_ERRATUM_123)
if (opteron_erratum_123) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 123 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif /* OPTERON_ERRATUM_123 */
#if defined(OPTERON_ERRATUM_131)
if (opteron_erratum_131) {
cmn_err(CE_WARN,
"BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
" processor\nerratum 131 was not detected; updating your"
" system's BIOS to a version\ncontaining this"
" microcode patch is HIGHLY recommended or erroneous"
" system\noperation may occur.\n");
}
#endif /* OPTERON_ERRATUM_131 */
}
static ushort_t *mp_map_warm_reset_vector();
static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector);
/*ARGSUSED*/
void
start_other_cpus(int cprboot)
{
unsigned who;
int cpuid = getbootcpuid();
int delays = 0;
int started_cpu;
ushort_t *warm_reset_vector = NULL;
extern int procset;
/*
* Initialize our own cpu_info.
*/
init_cpu_info(CPU);
/*
* Initialize our syscall handlers
*/
init_cpu_syscall(CPU);
/*
* if only 1 cpu or not using MP, skip the rest of this
*/
if (!(mp_cpus & ~(1 << cpuid)) || use_mp == 0) {
if (use_mp == 0)
cmn_err(CE_CONT, "?***** Not in MP mode\n");
goto done;
}
/*
* perform such initialization as is needed
* to be able to take CPUs on- and off-line.
*/
cpu_pause_init();
xc_init(); /* initialize processor crosscalls */
/*
* Copy the real mode code at "real_mode_start" to the
* page at rm_platter_va.
*/
warm_reset_vector = mp_map_warm_reset_vector();
if (warm_reset_vector == NULL)
goto done;
bcopy((caddr_t)real_mode_start,
(caddr_t)((rm_platter_t *)rm_platter_va)->rm_code,
(size_t)real_mode_end - (size_t)real_mode_start);
flushes_require_xcalls = 1;
affinity_set(CPU_CURRENT);
for (who = 0; who < NCPU; who++) {
if (who == cpuid)
continue;
if ((mp_cpus & (1 << who)) == 0)
continue;
mp_startup_init(who);
started_cpu = 1;
(*cpu_startf)(who, rm_platter_pa);
while ((procset & (1 << who)) == 0) {
delay(1);
if (++delays > (20 * hz)) {
cmn_err(CE_WARN,
"cpu%d failed to start", who);
mutex_enter(&cpu_lock);
cpu[who]->cpu_flags = 0;
cpu_vm_data_destroy(cpu[who]);
cpu_del_unit(who);
mutex_exit(&cpu_lock);
started_cpu = 0;
break;
}
}
if (!started_cpu)
continue;
if (tsc_gethrtime_enable)
tsc_sync_master(who);
if (dtrace_cpu_init != NULL) {
/*
* DTrace CPU initialization expects cpu_lock
* to be held.
*/
mutex_enter(&cpu_lock);
(*dtrace_cpu_init)(who);
mutex_exit(&cpu_lock);
}
}
affinity_clear();
for (who = 0; who < NCPU; who++) {
if (who == cpuid)
continue;
if (!(procset & (1 << who)))
continue;
while (!(cpu_ready_set & (1 << who)))
delay(1);
}
done:
workaround_errata_end();
if (warm_reset_vector != NULL)
mp_unmap_warm_reset_vector(warm_reset_vector);
hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
HAT_UNLOAD);
}
/*
* Dummy functions - no i86pc platforms support dynamic cpu allocation.
*/
/*ARGSUSED*/
int
mp_cpu_configure(int cpuid)
{
return (ENOTSUP); /* not supported */
}
/*ARGSUSED*/
int
mp_cpu_unconfigure(int cpuid)
{
return (ENOTSUP); /* not supported */
}
/*
* Startup function for 'other' CPUs (besides boot cpu).
* Resumed from cpu_startup.
*/
void
mp_startup(void)
{
struct cpu *cp = CPU;
extern int procset;
uint_t new_x86_feature;
new_x86_feature = cpuid_pass1(cp);
/*
* We need to Sync MTRR with cpu0's MTRR. We have to do
* this with interrupts disabled.
*/
if (x86_feature & X86_MTRR)
mtrr_sync();
/*
* Enable machine check architecture
*/
if (x86_feature & X86_MCA)
setup_mca();
/*
* Initialize this CPU's syscall handlers
*/
init_cpu_syscall(cp);
/*
* Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
* highest level at which a routine is permitted to block on
* an adaptive mutex (allows for cpu poke interrupt in case
* the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
* device interrupts that may end up in the hat layer issuing cross
* calls before CPU_READY is set.
*/
(void) splx(ipltospl(LOCK_LEVEL));
/*
* Do a sanity check to make sure this new CPU is a sane thing
* to add to the collection of processors running this system.
*
* XXX Clearly this needs to get more sophisticated, if x86
* systems start to get built out of heterogenous CPUs; as is
* likely to happen once the number of processors in a configuration
* gets large enough.
*/
if ((x86_feature & new_x86_feature) != x86_feature) {
cmn_err(CE_CONT, "?cpu%d: %b\n",
cp->cpu_id, new_x86_feature, FMT_X86_FEATURE);
cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
}
/*
* We could be more sophisticated here, and just mark the CPU
* as "faulted" but at this point we'll opt for the easier
* answer of dieing horribly. Provided the boot cpu is ok,
* the system can be recovered by booting with use_mp set to zero.
*/
if (workaround_errata(cp) != 0)
panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
cpuid_pass2(cp);
cpuid_pass3(cp);
(void) cpuid_pass4(cp);
init_cpu_info(cp);
add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi);
mutex_enter(&cpu_lock);
procset |= 1 << cp->cpu_id;
mutex_exit(&cpu_lock);
if (tsc_gethrtime_enable)
tsc_sync_slave();
mutex_enter(&cpu_lock);
/*
* It's unfortunate that chip_cpu_init() has to be called here.
* It really belongs in cpu_add_unit(), but unfortunately it is
* dependent on the cpuid probing, which must be done in the
* context of the current CPU. Care must be taken on x86 to ensure
* that mp_startup can safely block even though chip_cpu_init() and
* cpu_add_active() have not yet been called.
*/
chip_cpu_init(cp);
chip_cpu_startup(cp);
cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS;
cpu_add_active(cp);
mutex_exit(&cpu_lock);
(void) spl0(); /* enable interrupts */
if (boothowto & RB_DEBUG)
kdi_dvec_cpu_init(cp);
/*
* Setting the bit in cpu_ready_set must be the last operation in
* processor initialization; the boot CPU will continue to boot once
* it sees this bit set for all active CPUs.
*/
CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
/*
* Because mp_startup() gets fired off after init() starts, we
* can't use the '?' trick to do 'boot -v' printing - so we
* always direct the 'cpu .. online' messages to the log.
*/
cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
cp->cpu_id);
/*
* Now we are done with the startup thread, so free it up.
*/
thread_exit();
panic("mp_startup: cannot return");
/*NOTREACHED*/
}
/*
* Start CPU on user request.
*/
/* ARGSUSED */
int
mp_cpu_start(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
if (cp->cpu_id == getbootcpuid())
return (EBUSY); /* Cannot start boot CPU */
return (0);
}
/*
* Stop CPU on user request.
*/
/* ARGSUSED */
int
mp_cpu_stop(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
if (cp->cpu_id == getbootcpuid())
return (EBUSY); /* Cannot stop boot CPU */
return (0);
}
/*
* Power on CPU.
*/
/* ARGSUSED */
int
mp_cpu_poweron(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
return (ENOTSUP); /* not supported */
}
/*
* Power off CPU.
*/
/* ARGSUSED */
int
mp_cpu_poweroff(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
return (ENOTSUP); /* not supported */
}
/*
* Take the specified CPU out of participation in interrupts.
*/
int
cpu_disable_intr(struct cpu *cp)
{
/*
* cannot disable interrupts on boot cpu
*/
if (cp == cpu[getbootcpuid()])
return (EBUSY);
if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
return (EBUSY);
cp->cpu_flags &= ~CPU_ENABLE;
return (0);
}
/*
* Allow the specified CPU to participate in interrupts.
*/
void
cpu_enable_intr(struct cpu *cp)
{
ASSERT(MUTEX_HELD(&cpu_lock));
if (cp == cpu[getbootcpuid()])
return;
cp->cpu_flags |= CPU_ENABLE;
psm_enable_intr(cp->cpu_id);
}
/*
* return the cpu id of the initial startup cpu
*/
processorid_t
getbootcpuid(void)
{
return (0);
}
static ushort_t *
mp_map_warm_reset_vector()
{
ushort_t *warm_reset_vector;
if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
sizeof (ushort_t *), PROT_READ|PROT_WRITE)))
return (NULL);
/*
* setup secondary cpu bios boot up vector
*/
*warm_reset_vector = (ushort_t)((caddr_t)
((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va
+ ((ulong_t)rm_platter_va & 0xf));
warm_reset_vector++;
*warm_reset_vector = (ushort_t)(rm_platter_pa >> 4);
--warm_reset_vector;
return (warm_reset_vector);
}
static void
mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector)
{
psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *));
}
/*ARGSUSED*/
void
mp_cpu_faulted_enter(struct cpu *cp)
{}
/*ARGSUSED*/
void
mp_cpu_faulted_exit(struct cpu *cp)
{}
/*
* The following two routines are used as context operators on threads belonging
* to processes with a private LDT (see sysi86). Due to the rarity of such
* processes, these routines are currently written for best code readability and
* organization rather than speed. We could avoid checking x86_feature at every
* context switch by installing different context ops, depending on the
* x86_feature flags, at LDT creation time -- one for each combination of fast
* syscall feature flags.
*/
/*ARGSUSED*/
void
cpu_fast_syscall_disable(void *arg)
{
if (x86_feature & X86_SEP)
cpu_sep_disable();
if (x86_feature & X86_ASYSC)
cpu_asysc_disable();
}
/*ARGSUSED*/
void
cpu_fast_syscall_enable(void *arg)
{
if (x86_feature & X86_SEP)
cpu_sep_enable();
if (x86_feature & X86_ASYSC)
cpu_asysc_enable();
}
static void
cpu_sep_enable(void)
{
ASSERT(x86_feature & X86_SEP);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
}
static void
cpu_sep_disable(void)
{
ASSERT(x86_feature & X86_SEP);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
/*
* Setting the SYSENTER_CS_MSR register to 0 causes software executing
* the sysenter or sysexit instruction to trigger a #gp fault.
*/
wrmsr(MSR_INTC_SEP_CS, 0ULL);
}
static void
cpu_asysc_enable(void)
{
ASSERT(x86_feature & X86_ASYSC);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
(uint64_t)(uintptr_t)AMD_EFER_SCE);
}
static void
cpu_asysc_disable(void)
{
ASSERT(x86_feature & X86_ASYSC);
ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
/*
* Turn off the SCE (syscall enable) bit in the EFER register. Software
* executing syscall or sysret with this bit off will incur a #ud trap.
*/
wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
~((uint64_t)(uintptr_t)AMD_EFER_SCE));
}