/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2011, Joyent, Inc. All rights reserved.
*/
#include <sys/dtrace.h>
#include <sys/fasttrap.h>
#include <sys/x_call.h>
#include <sys/cmn_err.h>
#include <sys/trap.h>
#include <sys/psw.h>
#include <sys/privregs.h>
#include <sys/machsystm.h>
#include <vm/seg_kmem.h>
typedef struct dtrace_invop_hdlr {
int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
struct dtrace_invop_hdlr *dtih_next;
} dtrace_invop_hdlr_t;
dtrace_invop_hdlr_t *dtrace_invop_hdlr;
int
dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
{
dtrace_invop_hdlr_t *hdlr;
int rval;
for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) {
if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
return (rval);
}
return (0);
}
void
dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
{
dtrace_invop_hdlr_t *hdlr;
hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
hdlr->dtih_func = func;
hdlr->dtih_next = dtrace_invop_hdlr;
dtrace_invop_hdlr = hdlr;
}
void
dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
{
dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
for (;;) {
if (hdlr == NULL)
panic("attempt to remove non-existent invop handler");
if (hdlr->dtih_func == func)
break;
prev = hdlr;
hdlr = hdlr->dtih_next;
}
if (prev == NULL) {
ASSERT(dtrace_invop_hdlr == hdlr);
dtrace_invop_hdlr = hdlr->dtih_next;
} else {
ASSERT(dtrace_invop_hdlr != hdlr);
prev->dtih_next = hdlr->dtih_next;
}
kmem_free(hdlr, sizeof (dtrace_invop_hdlr_t));
}
int
dtrace_getipl(void)
{
return (CPU->cpu_pri);
}
/*ARGSUSED*/
void
dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
{
#ifdef __amd64
extern uintptr_t toxic_addr;
extern size_t toxic_size;
(*func)(0, _userlimit);
if (hole_end > hole_start)
(*func)(hole_start, hole_end);
(*func)(toxic_addr, toxic_addr + toxic_size);
#else
extern void *device_arena_contains(void *, size_t, size_t *);
caddr_t vaddr;
size_t len;
for (vaddr = (caddr_t)kernelbase; vaddr < (caddr_t)KERNEL_TEXT;
vaddr += len) {
len = (caddr_t)KERNEL_TEXT - vaddr;
vaddr = device_arena_contains(vaddr, len, &len);
if (vaddr == NULL)
break;
(*func)((uintptr_t)vaddr, (uintptr_t)vaddr + len);
}
#endif
(*func)(0, _userlimit);
}
static int
dtrace_xcall_func(dtrace_xcall_t func, void *arg)
{
(*func)(arg);
return (0);
}
/*ARGSUSED*/
void
dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
{
cpuset_t set;
CPUSET_ZERO(set);
if (cpu == DTRACE_CPUALL) {
CPUSET_ALL(set);
} else {
CPUSET_ADD(set, cpu);
}
kpreempt_disable();
xc_sync((xc_arg_t)func, (xc_arg_t)arg, 0, CPUSET2BV(set),
(xc_func_t)dtrace_xcall_func);
kpreempt_enable();
}
void
dtrace_sync_func(void)
{}
void
dtrace_sync(void)
{
dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
}
int (*dtrace_pid_probe_ptr)(struct regs *);
int (*dtrace_return_probe_ptr)(struct regs *);
void
dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
{
krwlock_t *rwp;
proc_t *p = curproc;
extern void trap(struct regs *, caddr_t, processorid_t);
if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
if (curthread->t_cred != p->p_cred) {
cred_t *oldcred = curthread->t_cred;
/*
* DTrace accesses t_cred in probe context. t_cred
* must always be either NULL, or point to a valid,
* allocated cred structure.
*/
curthread->t_cred = crgetcred();
crfree(oldcred);
}
}
if (rp->r_trapno == T_DTRACE_RET) {
uint8_t step = curthread->t_dtrace_step;
uint8_t ret = curthread->t_dtrace_ret;
uintptr_t npc = curthread->t_dtrace_npc;
if (curthread->t_dtrace_ast) {
aston(curthread);
curthread->t_sig_check = 1;
}
/*
* Clear all user tracing flags.
*/
curthread->t_dtrace_ft = 0;
/*
* If we weren't expecting to take a return probe trap, kill
* the process as though it had just executed an unassigned
* trap instruction.
*/
if (step == 0) {
tsignal(curthread, SIGILL);
return;
}
/*
* If we hit this trap unrelated to a return probe, we're
* just here to reset the AST flag since we deferred a signal
* until after we logically single-stepped the instruction we
* copied out.
*/
if (ret == 0) {
rp->r_pc = npc;
return;
}
/*
* We need to wait until after we've called the
* dtrace_return_probe_ptr function pointer to set %pc.
*/
rwp = &CPU->cpu_ft_lock;
rw_enter(rwp, RW_READER);
if (dtrace_return_probe_ptr != NULL)
(void) (*dtrace_return_probe_ptr)(rp);
rw_exit(rwp);
rp->r_pc = npc;
} else if (rp->r_trapno == T_BPTFLT) {
uint8_t instr, instr2;
caddr_t linearpc;
rwp = &CPU->cpu_ft_lock;
/*
* The DTrace fasttrap provider uses the breakpoint trap
* (int 3). We let DTrace take the first crack at handling
* this trap; if it's not a probe that DTrace knowns about,
* we call into the trap() routine to handle it like a
* breakpoint placed by a conventional debugger.
*/
rw_enter(rwp, RW_READER);
if (dtrace_pid_probe_ptr != NULL &&
(*dtrace_pid_probe_ptr)(rp) == 0) {
rw_exit(rwp);
return;
}
rw_exit(rwp);
if (dtrace_linear_pc(rp, p, &linearpc) != 0) {
trap(rp, addr, cpuid);
return;
}
/*
* If the instruction that caused the breakpoint trap doesn't
* look like an int 3 anymore, it may be that this tracepoint
* was removed just after the user thread executed it. In
* that case, return to user land to retry the instuction.
* Note that we assume the length of the instruction to retry
* is 1 byte because that's the length of FASTTRAP_INSTR.
* We check for r_pc > 0 and > 2 so that we don't have to
* deal with segment wraparound.
*/
if (rp->r_pc > 0 && fuword8(linearpc - 1, &instr) == 0 &&
instr != FASTTRAP_INSTR &&
(instr != 3 || (rp->r_pc >= 2 &&
(fuword8(linearpc - 2, &instr2) != 0 || instr2 != 0xCD)))) {
rp->r_pc--;
return;
}
trap(rp, addr, cpuid);
} else {
trap(rp, addr, cpuid);
}
}
void
dtrace_safe_synchronous_signal(void)
{
kthread_t *t = curthread;
struct regs *rp = lwptoregs(ttolwp(t));
size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
ASSERT(t->t_dtrace_on);
/*
* If we're not in the range of scratch addresses, we're not actually
* tracing user instructions so turn off the flags. If the instruction
* we copied out caused a synchonous trap, reset the pc back to its
* original value and turn off the flags.
*/
if (rp->r_pc < t->t_dtrace_scrpc ||
rp->r_pc > t->t_dtrace_astpc + isz) {
t->t_dtrace_ft = 0;
} else if (rp->r_pc == t->t_dtrace_scrpc ||
rp->r_pc == t->t_dtrace_astpc) {
rp->r_pc = t->t_dtrace_pc;
t->t_dtrace_ft = 0;
}
}
int
dtrace_safe_defer_signal(void)
{
kthread_t *t = curthread;
struct regs *rp = lwptoregs(ttolwp(t));
size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
ASSERT(t->t_dtrace_on);
/*
* If we're not in the range of scratch addresses, we're not actually
* tracing user instructions so turn off the flags.
*/
if (rp->r_pc < t->t_dtrace_scrpc ||
rp->r_pc > t->t_dtrace_astpc + isz) {
t->t_dtrace_ft = 0;
return (0);
}
/*
* If we have executed the original instruction, but we have performed
* neither the jmp back to t->t_dtrace_npc nor the clean up of any
* registers used to emulate %rip-relative instructions in 64-bit mode,
* we'll save ourselves some effort by doing that here and taking the
* signal right away. We detect this condition by seeing if the program
* counter is the range [scrpc + isz, astpc).
*/
if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
rp->r_pc < t->t_dtrace_astpc) {
#ifdef __amd64
/*
* If there is a scratch register and we're on the
* instruction immediately after the modified instruction,
* restore the value of that scratch register.
*/
if (t->t_dtrace_reg != 0 &&
rp->r_pc == t->t_dtrace_scrpc + isz) {
switch (t->t_dtrace_reg) {
case REG_RAX:
rp->r_rax = t->t_dtrace_regv;
break;
case REG_RCX:
rp->r_rcx = t->t_dtrace_regv;
break;
case REG_R8:
rp->r_r8 = t->t_dtrace_regv;
break;
case REG_R9:
rp->r_r9 = t->t_dtrace_regv;
break;
}
}
#endif
rp->r_pc = t->t_dtrace_npc;
t->t_dtrace_ft = 0;
return (0);
}
/*
* Otherwise, make sure we'll return to the kernel after executing
* the copied out instruction and defer the signal.
*/
if (!t->t_dtrace_step) {
ASSERT(rp->r_pc < t->t_dtrace_astpc);
rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
t->t_dtrace_step = 1;
}
t->t_dtrace_ast = 1;
return (1);
}
/*
* Additional artificial frames for the machine type. For i86pc, we're already
* accounted for, so return 0. On the hypervisor, we have an additional frame
* (xen_callback_handler).
*/
int
dtrace_mach_aframes(void)
{
#ifdef __xpv
return (1);
#else
return (0);
#endif
}