/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012 Garrett D'Amore <garrett@damore.org>
* Copyright 2014 Pluribus Networks, Inc.
*/
/*
* PC specific DDI implementation
*/
#include <sys/types.h>
#include <sys/autoconf.h>
#include <sys/avintr.h>
#include <sys/bootconf.h>
#include <sys/conf.h>
#include <sys/cpuvar.h>
#include <sys/ddi_impldefs.h>
#include <sys/ddi_subrdefs.h>
#include <sys/ethernet.h>
#include <sys/fp.h>
#include <sys/instance.h>
#include <sys/kmem.h>
#include <sys/machsystm.h>
#include <sys/modctl.h>
#include <sys/promif.h>
#include <sys/prom_plat.h>
#include <sys/sunndi.h>
#include <sys/ndi_impldefs.h>
#include <sys/ddi_impldefs.h>
#include <sys/sysmacros.h>
#include <sys/systeminfo.h>
#include <sys/utsname.h>
#include <sys/atomic.h>
#include <sys/spl.h>
#include <sys/archsystm.h>
#include <vm/seg_kmem.h>
#include <sys/ontrap.h>
#include <sys/fm/protocol.h>
#include <sys/ramdisk.h>
#include <sys/sunndi.h>
#include <sys/vmem.h>
#include <sys/pci_impl.h>
#if defined(__xpv)
#include <sys/hypervisor.h>
#endif
#include <sys/mach_intr.h>
#include <vm/hat_i86.h>
#include <sys/x86_archext.h>
#include <sys/avl.h>
/*
* DDI Boot Configuration
*/
/*
* Platform drivers on this platform
*/
char *platform_module_list[] = {
"acpippm",
"ppm",
(char *)0
};
/* pci bus resource maps */
struct pci_bus_resource *pci_bus_res;
size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */
uint64_t ramdisk_start, ramdisk_end;
int pseudo_isa = 0;
/*
* Forward declarations
*/
static int getlongprop_buf();
static void get_boot_properties(void);
static void impl_bus_initialprobe(void);
static void impl_bus_reprobe(void);
static int poke_mem(peekpoke_ctlops_t *in_args);
static int peek_mem(peekpoke_ctlops_t *in_args);
static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
#if defined(__amd64) && !defined(__xpv)
extern void immu_init(void);
#endif
/*
* We use an AVL tree to store contiguous address allocations made with the
* kalloca() routine, so that we can return the size to free with kfreea().
* Note that in the future it would be vastly faster if we could eliminate
* this lookup by insisting that all callers keep track of their own sizes,
* just as for kmem_alloc().
*/
struct ctgas {
avl_node_t ctg_link;
void *ctg_addr;
size_t ctg_size;
};
static avl_tree_t ctgtree;
static kmutex_t ctgmutex;
#define CTGLOCK() mutex_enter(&ctgmutex)
#define CTGUNLOCK() mutex_exit(&ctgmutex)
/*
* Minimum pfn value of page_t's put on the free list. This is to simplify
* support of ddi dma memory requests which specify small, non-zero addr_lo
* values.
*
* The default value of 2, which corresponds to the only known non-zero addr_lo
* value used, means a single page will be sacrificed (pfn typically starts
* at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
* otherwise mp startup panics.
*/
pfn_t ddiphysmin = 2;
static void
check_driver_disable(void)
{
int proplen = 128;
char *prop_name;
char *drv_name, *propval;
major_t major;
prop_name = kmem_alloc(proplen, KM_SLEEP);
for (major = 0; major < devcnt; major++) {
drv_name = ddi_major_to_name(major);
if (drv_name == NULL)
continue;
(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
if (strcmp(propval, "true") == 0) {
devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
cmn_err(CE_NOTE, "driver %s disabled",
drv_name);
}
ddi_prop_free(propval);
}
}
kmem_free(prop_name, proplen);
}
/*
* Configure the hardware on the system.
* Called before the rootfs is mounted
*/
void
configure(void)
{
extern void i_ddi_init_root();
#if defined(__i386)
extern int fpu_pentium_fdivbug;
#endif /* __i386 */
extern int fpu_ignored;
/*
* Determine if an FPU is attached
*/
fpu_probe();
#if defined(__i386)
if (fpu_pentium_fdivbug) {
printf("\
FP hardware exhibits Pentium floating point divide problem\n");
}
#endif /* __i386 */
if (fpu_ignored) {
printf("FP hardware will not be used\n");
} else if (!fpu_exists) {
printf("No FPU in configuration\n");
}
/*
* Initialize devices on the machine.
* Uses configuration tree built by the PROMs to determine what
* is present, and builds a tree of prototype dev_info nodes
* corresponding to the hardware which identified itself.
*/
/*
* Initialize root node.
*/
i_ddi_init_root();
/* reprogram devices not set up by firmware (BIOS) */
impl_bus_reprobe();
#if defined(__amd64) && !defined(__xpv)
/*
* Setup but don't startup the IOMMU
* Startup happens later via a direct call
* to IOMMU code by boot code.
* At this point, all PCI bus renumbering
* is done, so safe to init the IMMU
* AKA Intel IOMMU.
*/
immu_init();
#endif
/*
* attach the isa nexus to get ACPI resource usage
* isa is "kind of" a pseudo node
*/
#if defined(__xpv)
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
if (pseudo_isa)
(void) i_ddi_attach_pseudo_node("isa");
else
(void) i_ddi_attach_hw_nodes("isa");
}
#else
if (pseudo_isa)
(void) i_ddi_attach_pseudo_node("isa");
else
(void) i_ddi_attach_hw_nodes("isa");
#endif
}
/*
* The "status" property indicates the operational status of a device.
* If this property is present, the value is a string indicating the
* status of the device as follows:
*
* "okay" operational.
* "disabled" not operational, but might become operational.
* "fail" not operational because a fault has been detected,
* and it is unlikely that the device will become
* operational without repair. no additional details
* are available.
* "fail-xxx" not operational because a fault has been detected,
* and it is unlikely that the device will become
* operational without repair. "xxx" is additional
* human-readable information about the particular
* fault condition that was detected.
*
* The absence of this property means that the operational status is
* unknown or okay.
*
* This routine checks the status property of the specified device node
* and returns 0 if the operational status indicates failure, and 1 otherwise.
*
* The property may exist on plug-in cards the existed before IEEE 1275-1994.
* And, in that case, the property may not even be a string. So we carefully
* check for the value "fail", in the beginning of the string, noting
* the property length.
*/
int
status_okay(int id, char *buf, int buflen)
{
char status_buf[OBP_MAXPROPNAME];
char *bufp = buf;
int len = buflen;
int proplen;
static const char *status = "status";
static const char *fail = "fail";
int fail_len = (int)strlen(fail);
/*
* Get the proplen ... if it's smaller than "fail",
* or doesn't exist ... then we don't care, since
* the value can't begin with the char string "fail".
*
* NB: proplen, if it's a string, includes the NULL in the
* the size of the property, and fail_len does not.
*/
proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
if (proplen <= fail_len) /* nonexistant or uninteresting len */
return (1);
/*
* if a buffer was provided, use it
*/
if ((buf == (char *)NULL) || (buflen <= 0)) {
bufp = status_buf;
len = sizeof (status_buf);
}
*bufp = (char)0;
/*
* Get the property into the buffer, to the extent of the buffer,
* and in case the buffer is smaller than the property size,
* NULL terminate the buffer. (This handles the case where
* a buffer was passed in and the caller wants to print the
* value, but the buffer was too small).
*/
(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
(caddr_t)bufp, len);
*(bufp + len - 1) = (char)0;
/*
* If the value begins with the char string "fail",
* then it means the node is failed. We don't care
* about any other values. We assume the node is ok
* although it might be 'disabled'.
*/
if (strncmp(bufp, fail, fail_len) == 0)
return (0);
return (1);
}
/*
* Check the status of the device node passed as an argument.
*
* if ((status is OKAY) || (status is DISABLED))
* return DDI_SUCCESS
* else
* print a warning and return DDI_FAILURE
*/
/*ARGSUSED1*/
int
check_status(int id, char *name, dev_info_t *parent)
{
char status_buf[64];
char devtype_buf[OBP_MAXPROPNAME];
int retval = DDI_FAILURE;
/*
* is the status okay?
*/
if (status_okay(id, status_buf, sizeof (status_buf)))
return (DDI_SUCCESS);
/*
* a status property indicating bad memory will be associated
* with a node which has a "device_type" property with a value of
* "memory-controller". in this situation, return DDI_SUCCESS
*/
if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
sizeof (devtype_buf)) > 0) {
if (strcmp(devtype_buf, "memory-controller") == 0)
retval = DDI_SUCCESS;
}
/*
* print the status property information
*/
cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
return (retval);
}
/*ARGSUSED*/
uint_t
softlevel1(caddr_t arg1, caddr_t arg2)
{
softint();
return (1);
}
/*
* Allow for implementation specific correction of PROM property values.
*/
/*ARGSUSED*/
void
impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
caddr_t buffer)
{
/*
* There are no adjustments needed in this implementation.
*/
}
static int
getlongprop_buf(int id, char *name, char *buf, int maxlen)
{
int size;
size = prom_getproplen((pnode_t)id, name);
if (size <= 0 || (size > maxlen - 1))
return (-1);
if (-1 == prom_getprop((pnode_t)id, name, buf))
return (-1);
if (strcmp("name", name) == 0) {
if (buf[size - 1] != '\0') {
buf[size] = '\0';
size += 1;
}
}
return (size);
}
static int
get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
{
int ret;
if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
DDI_PROP_DONTPASS, pname, pval, plen))
== DDI_PROP_SUCCESS) {
*plen = (*plen) * (sizeof (int));
}
return (ret);
}
/*
* Node Configuration
*/
struct prop_ispec {
uint_t pri, vec;
};
/*
* For the x86, we're prepared to claim that the interrupt string
* is in the form of a list of <ipl,vec> specifications.
*/
#define VEC_MIN 1
#define VEC_MAX 255
static int
impl_xlate_intrs(dev_info_t *child, int *in,
struct ddi_parent_private_data *pdptr)
{
size_t size;
int n;
struct intrspec *new;
caddr_t got_prop;
int *inpri;
int got_len;
extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */
static char bad_intr_fmt[] =
"bad interrupt spec from %s%d - ipl %d, irq %d\n";
/*
* determine if the driver is expecting the new style "interrupts"
* property which just contains the IRQ, or the old style which
* contains pairs of <IPL,IRQ>. if it is the new style, we always
* assign IPL 5 unless an "interrupt-priorities" property exists.
* in that case, the "interrupt-priorities" property contains the
* IPL values that match, one for one, the IRQ values in the
* "interrupts" property.
*/
inpri = NULL;
if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
"ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
/* the old style "interrupts" property... */
/*
* The list consists of <ipl,vec> elements
*/
if ((n = (*in++ >> 1)) < 1)
return (DDI_FAILURE);
pdptr->par_nintr = n;
size = n * sizeof (struct intrspec);
new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
while (n--) {
int level = *in++;
int vec = *in++;
if (level < 1 || level > MAXIPL ||
vec < VEC_MIN || vec > VEC_MAX) {
cmn_err(CE_CONT, bad_intr_fmt,
DEVI(child)->devi_name,
DEVI(child)->devi_instance, level, vec);
goto broken;
}
new->intrspec_pri = level;
if (vec != 2)
new->intrspec_vec = vec;
else
/*
* irq 2 on the PC bus is tied to irq 9
* on ISA, EISA and MicroChannel
*/
new->intrspec_vec = 9;
new++;
}
return (DDI_SUCCESS);
} else {
/* the new style "interrupts" property... */
/*
* The list consists of <vec> elements
*/
if ((n = (*in++)) < 1)
return (DDI_FAILURE);
pdptr->par_nintr = n;
size = n * sizeof (struct intrspec);
new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
/* XXX check for "interrupt-priorities" property... */
if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
"interrupt-priorities", (caddr_t)&got_prop, &got_len)
== DDI_PROP_SUCCESS) {
if (n != (got_len / sizeof (int))) {
cmn_err(CE_CONT,
"bad interrupt-priorities length"
" from %s%d: expected %d, got %d\n",
DEVI(child)->devi_name,
DEVI(child)->devi_instance, n,
(int)(got_len / sizeof (int)));
goto broken;
}
inpri = (int *)got_prop;
}
while (n--) {
int level;
int vec = *in++;
if (inpri == NULL)
level = 5;
else
level = *inpri++;
if (level < 1 || level > MAXIPL ||
vec < VEC_MIN || vec > VEC_MAX) {
cmn_err(CE_CONT, bad_intr_fmt,
DEVI(child)->devi_name,
DEVI(child)->devi_instance, level, vec);
goto broken;
}
new->intrspec_pri = level;
if (vec != 2)
new->intrspec_vec = vec;
else
/*
* irq 2 on the PC bus is tied to irq 9
* on ISA, EISA and MicroChannel
*/
new->intrspec_vec = 9;
new++;
}
if (inpri != NULL)
kmem_free(got_prop, got_len);
return (DDI_SUCCESS);
}
broken:
kmem_free(pdptr->par_intr, size);
pdptr->par_intr = NULL;
pdptr->par_nintr = 0;
if (inpri != NULL)
kmem_free(got_prop, got_len);
return (DDI_FAILURE);
}
/*
* Create a ddi_parent_private_data structure from the ddi properties of
* the dev_info node.
*
* The "reg" and either an "intr" or "interrupts" properties are required
* if the driver wishes to create mappings or field interrupts on behalf
* of the device.
*
* The "reg" property is assumed to be a list of at least one triple
*
* <bustype, address, size>*1
*
* The "intr" property is assumed to be a list of at least one duple
*
* <SPARC ipl, vector#>*1
*
* The "interrupts" property is assumed to be a list of at least one
* n-tuples that describes the interrupt capabilities of the bus the device
* is connected to. For SBus, this looks like
*
* <SBus-level>*1
*
* (This property obsoletes the 'intr' property).
*
* The "ranges" property is optional.
*/
void
make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
{
struct ddi_parent_private_data *pdptr;
int n;
int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
uint_t reg_len, rng_len, intr_len, irupts_len;
*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
/*
* Handle the 'reg' property.
*/
if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
DDI_PROP_SUCCESS) && (reg_len != 0)) {
pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
pdptr->par_reg = (struct regspec *)reg_prop;
}
/*
* See if I have a range (adding one where needed - this
* means to add one for sbus node in sun4c, when romvec > 0,
* if no range is already defined in the PROM node.
* (Currently no sun4c PROMS define range properties,
* but they should and may in the future.) For the SBus
* node, the range is defined by the SBus reg property.
*/
if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
== DDI_PROP_SUCCESS) {
pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
pdptr->par_rng = (struct rangespec *)rng_prop;
}
/*
* Handle the 'intr' and 'interrupts' properties
*/
/*
* For backwards compatibility
* we first look for the 'intr' property for the device.
*/
if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
!= DDI_PROP_SUCCESS) {
intr_len = 0;
}
/*
* If we're to support bus adapters and future platforms cleanly,
* we need to support the generalized 'interrupts' property.
*/
if (get_prop_int_array(child, "interrupts", &irupts_prop,
&irupts_len) != DDI_PROP_SUCCESS) {
irupts_len = 0;
} else if (intr_len != 0) {
/*
* If both 'intr' and 'interrupts' are defined,
* then 'interrupts' wins and we toss the 'intr' away.
*/
ddi_prop_free((void *)intr_prop);
intr_len = 0;
}
if (intr_len != 0) {
/*
* Translate the 'intr' property into an array
* an array of struct intrspec's. There's not really
* very much to do here except copy what's out there.
*/
struct intrspec *new;
struct prop_ispec *l;
n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
l = (struct prop_ispec *)intr_prop;
pdptr->par_intr =
new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
while (n--) {
new->intrspec_pri = l->pri;
new->intrspec_vec = l->vec;
new++;
l++;
}
ddi_prop_free((void *)intr_prop);
} else if ((n = irupts_len) != 0) {
size_t size;
int *out;
/*
* Translate the 'interrupts' property into an array
* of intrspecs for the rest of the DDI framework to
* toy with. Only our ancestors really know how to
* do this, so ask 'em. We massage the 'interrupts'
* property so that it is pre-pended by a count of
* the number of integers in the argument.
*/
size = sizeof (int) + n;
out = kmem_alloc(size, KM_SLEEP);
*out = n / sizeof (int);
bcopy(irupts_prop, out + 1, (size_t)n);
ddi_prop_free((void *)irupts_prop);
if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
cmn_err(CE_CONT,
"Unable to translate 'interrupts' for %s%d\n",
DEVI(child)->devi_binding_name,
DEVI(child)->devi_instance);
}
kmem_free(out, size);
}
}
/*
* Name a child
*/
static int
impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
{
/*
* Fill in parent-private data and this function returns to us
* an indication if it used "registers" to fill in the data.
*/
if (ddi_get_parent_data(child) == NULL) {
struct ddi_parent_private_data *pdptr;
make_ddi_ppd(child, &pdptr);
ddi_set_parent_data(child, pdptr);
}
name[0] = '\0';
if (sparc_pd_getnreg(child) > 0) {
(void) snprintf(name, namelen, "%x,%x",
(uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
(uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
}
return (DDI_SUCCESS);
}
/*
* Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
* to implement the DDI_CTLOPS_INITCHILD operation. That is, it names
* the children of sun busses based on the reg spec.
*
* Handles the following properties (in make_ddi_ppd):
* Property value
* Name type
* reg register spec
* intr old-form interrupt spec
* interrupts new (bus-oriented) interrupt spec
* ranges range spec
*/
int
impl_ddi_sunbus_initchild(dev_info_t *child)
{
char name[MAXNAMELEN];
void impl_ddi_sunbus_removechild(dev_info_t *);
/*
* Name the child, also makes parent private data
*/
(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
ddi_set_name_addr(child, name);
/*
* Attempt to merge a .conf node; if successful, remove the
* .conf node.
*/
if ((ndi_dev_is_persistent_node(child) == 0) &&
(ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
/*
* Return failure to remove node
*/
impl_ddi_sunbus_removechild(child);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
void
impl_free_ddi_ppd(dev_info_t *dip)
{
struct ddi_parent_private_data *pdptr;
size_t n;
if ((pdptr = ddi_get_parent_data(dip)) == NULL)
return;
if ((n = (size_t)pdptr->par_nintr) != 0)
/*
* Note that kmem_free is used here (instead of
* ddi_prop_free) because the contents of the
* property were placed into a separate buffer and
* mucked with a bit before being stored in par_intr.
* The actual return value from the prop lookup
* was freed with ddi_prop_free previously.
*/
kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
if ((n = (size_t)pdptr->par_nrng) != 0)
ddi_prop_free((void *)pdptr->par_rng);
if ((n = pdptr->par_nreg) != 0)
ddi_prop_free((void *)pdptr->par_reg);
kmem_free(pdptr, sizeof (*pdptr));
ddi_set_parent_data(dip, NULL);
}
void
impl_ddi_sunbus_removechild(dev_info_t *dip)
{
impl_free_ddi_ppd(dip);
ddi_set_name_addr(dip, NULL);
/*
* Strip the node to properly convert it back to prototype form
*/
impl_rem_dev_props(dip);
}
/*
* DDI Interrupt
*/
/*
* turn this on to force isa, eisa, and mca device to ignore the new
* hardware nodes in the device tree (normally turned on only for
* drivers that need it by setting the property "ignore-hardware-nodes"
* in their driver.conf file).
*
* 7/31/96 -- Turned off globally. Leaving variable in for the moment
* as safety valve.
*/
int ignore_hardware_nodes = 0;
/*
* Local data
*/
static struct impl_bus_promops *impl_busp;
/*
* New DDI interrupt framework
*/
/*
* i_ddi_intr_ops:
*
* This is the interrupt operator function wrapper for the bus function
* bus_intr_op.
*/
int
i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
ddi_intr_handle_impl_t *hdlp, void * result)
{
dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
int ret = DDI_FAILURE;
/* request parent to process this interrupt op */
if (NEXUS_HAS_INTR_OP(pdip))
ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
pdip, rdip, op, hdlp, result);
else
cmn_err(CE_WARN, "Failed to process interrupt "
"for %s%d due to down-rev nexus driver %s%d",
ddi_get_name(rdip), ddi_get_instance(rdip),
ddi_get_name(pdip), ddi_get_instance(pdip));
return (ret);
}
/*
* i_ddi_add_softint - allocate and add a soft interrupt to the system
*/
int
i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
{
int ret;
/* add soft interrupt handler */
ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
return (ret ? DDI_SUCCESS : DDI_FAILURE);
}
void
i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
{
(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
}
extern void (*setsoftint)(int, struct av_softinfo *);
extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
int
i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
{
if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
return (DDI_EPENDING);
update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
(*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
return (DDI_SUCCESS);
}
/*
* i_ddi_set_softint_pri:
*
* The way this works is that it first tries to add a softint vector
* at the new priority in hdlp. If that succeeds; then it removes the
* existing softint vector at the old priority.
*/
int
i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
{
int ret;
/*
* If a softint is pending at the old priority then fail the request.
*/
if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
return (DDI_FAILURE);
ret = av_softint_movepri((void *)hdlp, old_pri);
return (ret ? DDI_SUCCESS : DDI_FAILURE);
}
void
i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
{
hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
}
void
i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
{
kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
hdlp->ih_private = NULL;
}
int
i_ddi_get_intx_nintrs(dev_info_t *dip)
{
struct ddi_parent_private_data *pdp;
if ((pdp = ddi_get_parent_data(dip)) == NULL)
return (0);
return (pdp->par_nintr);
}
/*
* DDI Memory/DMA
*/
/*
* Support for allocating DMAable memory to implement
* ddi_dma_mem_alloc(9F) interface.
*/
#define KA_ALIGN_SHIFT 7
#define KA_ALIGN (1 << KA_ALIGN_SHIFT)
#define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT)
/*
* Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only
* care about addr_lo, addr_hi, and align. addr_hi will be dynamically set.
*/
static ddi_dma_attr_t kmem_io_attr = {
DMA_ATTR_V0,
0x0000000000000000ULL, /* dma_attr_addr_lo */
0x0000000000000000ULL, /* dma_attr_addr_hi */
0x00ffffff,
0x1000, /* dma_attr_align */
1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
};
/* kmem io memory ranges and indices */
enum {
IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
};
static struct {
vmem_t *kmem_io_arena;
kmem_cache_t *kmem_io_cache[KA_NCACHE];
ddi_dma_attr_t kmem_io_attr;
} kmem_io[MAX_MEM_RANGES];
static int kmem_io_idx; /* index of first populated kmem_io[] */
static page_t *
page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
{
extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
}
#ifdef __xpv
static void
segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
{
extern void page_destroy_io(page_t *);
segkmem_xfree(vmp, ptr, size, page_destroy_io);
}
#endif
static void *
segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
}
static void *
segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
}
static void *
segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
}
static void *
segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
}
static void *
segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
}
static void *
segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
}
static void *
segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
}
static void *
segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
}
static void *
segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
}
static void *
segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
}
static void *
segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
{
return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
}
struct {
uint64_t io_limit;
char *io_name;
void *(*io_alloc)(vmem_t *, size_t, int);
int io_initial; /* kmem_io_init during startup */
} io_arena_params[MAX_MEM_RANGES] = {
{0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1},
{0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0},
{0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1},
{0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1},
{0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0},
{0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0},
{0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0},
{0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0},
{0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0},
{0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0},
{0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1}
};
void
kmem_io_init(int a)
{
int c;
char name[40];
kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
#ifdef __xpv
segkmem_free_io,
#else
segkmem_free,
#endif
heap_arena, 0, VM_SLEEP);
for (c = 0; c < KA_NCACHE; c++) {
size_t size = KA_ALIGN << c;
(void) sprintf(name, "%s_%lu",
io_arena_params[a].io_name, size);
kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
size, size, NULL, NULL, NULL, NULL,
kmem_io[a].kmem_io_arena, 0);
}
}
/*
* Return the index of the highest memory range for addr.
*/
static int
kmem_io_index(uint64_t addr)
{
int n;
for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
if (kmem_io[n].kmem_io_arena == NULL)
kmem_io_init(n);
return (n);
}
}
panic("kmem_io_index: invalid addr - must be at least 16m");
/*NOTREACHED*/
}
/*
* Return the index of the next kmem_io populated memory range
* after curindex.
*/
static int
kmem_io_index_next(int curindex)
{
int n;
for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
if (kmem_io[n].kmem_io_arena)
return (n);
}
return (-1);
}
/*
* allow kmem to be mapped in with different PTE cache attribute settings.
* Used by i_ddi_mem_alloc()
*/
int
kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
{
uint_t hat_flags;
caddr_t kva_end;
uint_t hat_attr;
pfn_t pfn;
if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
return (-1);
}
hat_attr &= ~HAT_ORDER_MASK;
hat_attr |= order | HAT_NOSYNC;
hat_flags = HAT_LOAD_LOCK;
kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
(uintptr_t)PAGEMASK);
kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
while (kva < kva_end) {
pfn = hat_getpfnum(kas.a_hat, kva);
hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
kva += MMU_PAGESIZE;
}
return (0);
}
static int
ctgcompare(const void *a1, const void *a2)
{
/* we just want to compare virtual addresses */
a1 = ((struct ctgas *)a1)->ctg_addr;
a2 = ((struct ctgas *)a2)->ctg_addr;
return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1));
}
void
ka_init(void)
{
int a;
paddr_t maxphysaddr;
#if !defined(__xpv)
extern pfn_t physmax;
maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
#else
maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
#endif
ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
for (a = 0; a < MAX_MEM_RANGES; a++) {
if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
if (maxphysaddr > io_arena_params[a + 1].io_limit)
io_arena_params[a].io_limit = maxphysaddr;
else
a++;
break;
}
}
kmem_io_idx = a;
for (; a < MAX_MEM_RANGES; a++) {
kmem_io[a].kmem_io_attr = kmem_io_attr;
kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
io_arena_params[a].io_limit;
/*
* initialize kmem_io[] arena/cache corresponding to
* maxphysaddr and to the "common" io memory ranges that
* have io_initial set to a non-zero value.
*/
if (io_arena_params[a].io_initial || a == kmem_io_idx)
kmem_io_init(a);
}
/* initialize ctgtree */
avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas),
offsetof(struct ctgas, ctg_link));
}
/*
* put contig address/size
*/
static void *
putctgas(void *addr, size_t size)
{
struct ctgas *ctgp;
if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) {
ctgp->ctg_addr = addr;
ctgp->ctg_size = size;
CTGLOCK();
avl_add(&ctgtree, ctgp);
CTGUNLOCK();
}
return (ctgp);
}
/*
* get contig size by addr
*/
static size_t
getctgsz(void *addr)
{
struct ctgas *ctgp;
struct ctgas find;
size_t sz = 0;
find.ctg_addr = addr;
CTGLOCK();
if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) {
avl_remove(&ctgtree, ctgp);
}
CTGUNLOCK();
if (ctgp != NULL) {
sz = ctgp->ctg_size;
kmem_free(ctgp, sizeof (*ctgp));
}
return (sz);
}
/*
* contig_alloc:
*
* allocates contiguous memory to satisfy the 'size' and dma attributes
* specified in 'attr'.
*
* Not all of memory need to be physically contiguous if the
* scatter-gather list length is greater than 1.
*/
/*ARGSUSED*/
void *
contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
{
pgcnt_t pgcnt = btopr(size);
size_t asize = pgcnt * PAGESIZE;
page_t *ppl;
int pflag;
void *addr;
extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
/* segkmem_xalloc */
if (align <= PAGESIZE)
addr = vmem_alloc(heap_arena, asize,
(cansleep) ? VM_SLEEP : VM_NOSLEEP);
else
addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
(cansleep) ? VM_SLEEP : VM_NOSLEEP);
if (addr) {
ASSERT(!((uintptr_t)addr & (align - 1)));
if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
vmem_free(heap_arena, addr, asize);
return (NULL);
}
pflag = PG_EXCL;
if (cansleep)
pflag |= PG_WAIT;
/* 4k req gets from freelists rather than pfn search */
if (pgcnt > 1 || align > PAGESIZE)
pflag |= PG_PHYSCONTIG;
ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
asize, pflag, &kas, (caddr_t)addr, attr);
if (!ppl) {
vmem_free(heap_arena, addr, asize);
page_unresv(pgcnt);
return (NULL);
}
while (ppl != NULL) {
page_t *pp = ppl;
page_sub(&ppl, pp);
ASSERT(page_iolock_assert(pp));
page_io_unlock(pp);
page_downgrade(pp);
hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
pp, (PROT_ALL & ~PROT_USER) |
HAT_NOSYNC, HAT_LOAD_LOCK);
}
}
return (addr);
}
void
contig_free(void *addr, size_t size)
{
pgcnt_t pgcnt = btopr(size);
size_t asize = pgcnt * PAGESIZE;
caddr_t a, ea;
page_t *pp;
hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
if (!pp)
panic("contig_free: contig pp not found");
if (!page_tryupgrade(pp)) {
page_unlock(pp);
pp = page_lookup(&kvp,
(u_offset_t)(uintptr_t)a, SE_EXCL);
if (pp == NULL)
panic("contig_free: page freed");
}
page_destroy(pp, 0);
}
page_unresv(pgcnt);
vmem_free(heap_arena, addr, asize);
}
/*
* Allocate from the system, aligned on a specific boundary.
* The alignment, if non-zero, must be a power of 2.
*/
static void *
kalloca(size_t size, size_t align, int cansleep, int physcontig,
ddi_dma_attr_t *attr)
{
size_t *addr, *raddr, rsize;
size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */
int a, i, c;
vmem_t *vmp;
kmem_cache_t *cp = NULL;
if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
return (NULL);
align = MAX(align, hdrsize);
ASSERT((align & (align - 1)) == 0);
/*
* All of our allocators guarantee 16-byte alignment, so we don't
* need to reserve additional space for the header.
* To simplify picking the correct kmem_io_cache, we round up to
* a multiple of KA_ALIGN.
*/
rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
if (physcontig && rsize > PAGESIZE) {
if (addr = contig_alloc(size, attr, align, cansleep)) {
if (!putctgas(addr, size))
contig_free(addr, size);
else
return (addr);
}
return (NULL);
}
a = kmem_io_index(attr->dma_attr_addr_hi);
if (rsize > PAGESIZE) {
vmp = kmem_io[a].kmem_io_arena;
raddr = vmem_alloc(vmp, rsize,
(cansleep) ? VM_SLEEP : VM_NOSLEEP);
} else {
c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
cp = kmem_io[a].kmem_io_cache[c];
raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
KM_NOSLEEP);
}
if (raddr == NULL) {
int na;
ASSERT(cansleep == 0);
if (rsize > PAGESIZE)
return (NULL);
/*
* System does not have memory in the requested range.
* Try smaller kmem io ranges and larger cache sizes
* to see if there might be memory available in
* these other caches.
*/
for (na = kmem_io_index_next(a); na >= 0;
na = kmem_io_index_next(na)) {
ASSERT(kmem_io[na].kmem_io_arena);
cp = kmem_io[na].kmem_io_cache[c];
raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
if (raddr)
goto kallocdone;
}
/* now try the larger kmem io cache sizes */
for (na = a; na >= 0; na = kmem_io_index_next(na)) {
for (i = c + 1; i < KA_NCACHE; i++) {
cp = kmem_io[na].kmem_io_cache[i];
raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
if (raddr)
goto kallocdone;
}
}
return (NULL);
}
kallocdone:
ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
rsize > PAGESIZE);
addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
addr[-4] = (size_t)cp;
addr[-3] = (size_t)vmp;
addr[-2] = (size_t)raddr;
addr[-1] = rsize;
return (addr);
}
static void
kfreea(void *addr)
{
size_t size;
if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
contig_free(addr, size);
} else {
size_t *saddr = addr;
if (saddr[-4] == 0)
vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
saddr[-1]);
else
kmem_cache_free((kmem_cache_t *)saddr[-4],
(void *)saddr[-2]);
}
}
/*ARGSUSED*/
void
i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
{
}
/*
* Check if the specified cache attribute is supported on the platform.
* This function must be called before i_ddi_cacheattr_to_hatacc().
*/
boolean_t
i_ddi_check_cache_attr(uint_t flags)
{
/*
* The cache attributes are mutually exclusive. Any combination of
* the attributes leads to a failure.
*/
uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
if ((cache_attr != 0) && !ISP2(cache_attr))
return (B_FALSE);
/* All cache attributes are supported on X86/X64 */
if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
IOMEM_DATA_UC_WR_COMBINE))
return (B_TRUE);
/* undefined attributes */
return (B_FALSE);
}
/* set HAT cache attributes from the cache attributes */
void
i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
{
uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
static char *fname = "i_ddi_cacheattr_to_hatacc";
/*
* If write-combining is not supported, then it falls back
* to uncacheable.
*/
if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
!is_x86_feature(x86_featureset, X86FSET_PAT))
cache_attr = IOMEM_DATA_UNCACHED;
/*
* set HAT attrs according to the cache attrs.
*/
switch (cache_attr) {
case IOMEM_DATA_UNCACHED:
*hataccp &= ~HAT_ORDER_MASK;
*hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
break;
case IOMEM_DATA_UC_WR_COMBINE:
*hataccp &= ~HAT_ORDER_MASK;
*hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
break;
case IOMEM_DATA_CACHED:
*hataccp &= ~HAT_ORDER_MASK;
*hataccp |= HAT_UNORDERED_OK;
break;
/*
* This case must not occur because the cache attribute is scrutinized
* before this function is called.
*/
default:
/*
* set cacheable to hat attrs.
*/
*hataccp &= ~HAT_ORDER_MASK;
*hataccp |= HAT_UNORDERED_OK;
cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
fname, cache_attr);
}
}
/*
* This should actually be called i_ddi_dma_mem_alloc. There should
* also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
* through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
* get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
* should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
* so far which is used for both, DMA and PIO, we have to use the DMA
* ctl ops to make everybody happy.
*/
/*ARGSUSED*/
int
i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
size_t length, int cansleep, int flags,
ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
size_t *real_length, ddi_acc_hdl_t *ap)
{
caddr_t a;
int iomin;
ddi_acc_impl_t *iap;
int physcontig = 0;
pgcnt_t npages;
pgcnt_t minctg;
uint_t order;
int e;
/*
* Check legality of arguments
*/
if (length == 0 || kaddrp == NULL || attr == NULL) {
return (DDI_FAILURE);
}
if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
!ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) {
return (DDI_FAILURE);
}
/*
* figure out most restrictive alignment requirement
*/
iomin = attr->dma_attr_minxfer;
iomin = maxbit(iomin, attr->dma_attr_align);
if (iomin == 0)
return (DDI_FAILURE);
ASSERT((iomin & (iomin - 1)) == 0);
/*
* if we allocate memory with IOMEM_DATA_UNCACHED or
* IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
* memory that ends on a page boundry.
* Don't want to have to different cache mappings to the same
* physical page.
*/
if (OVERRIDE_CACHE_ATTR(flags)) {
iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
}
/*
* Determine if we need to satisfy the request for physically
* contiguous memory or alignments larger than pagesize.
*/
npages = btopr(length + attr->dma_attr_align);
minctg = howmany(npages, attr->dma_attr_sgllen);
if (minctg > 1) {
uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
/*
* verify that the minimum contig requirement for the
* actual length does not cross segment boundary.
*/
length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
size_t);
npages = btopr(length);
minctg = howmany(npages, attr->dma_attr_sgllen);
if (minctg > pfnseg + 1)
return (DDI_FAILURE);
physcontig = 1;
} else {
length = P2ROUNDUP_TYPED(length, iomin, size_t);
}
/*
* Allocate the requested amount from the system.
*/
a = kalloca(length, iomin, cansleep, physcontig, attr);
if ((*kaddrp = a) == NULL)
return (DDI_FAILURE);
/*
* if we to modify the cache attributes, go back and muck with the
* mappings.
*/
if (OVERRIDE_CACHE_ATTR(flags)) {
order = 0;
i_ddi_cacheattr_to_hatacc(flags, &order);
e = kmem_override_cache_attrs(a, length, order);
if (e != 0) {
kfreea(a);
return (DDI_FAILURE);
}
}
if (real_length) {
*real_length = length;
}
if (ap) {
/*
* initialize access handle
*/
iap = (ddi_acc_impl_t *)ap->ah_platform_private;
iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
impl_acc_hdl_init(ap);
}
return (DDI_SUCCESS);
}
/* ARGSUSED */
void
i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
{
if (ap != NULL) {
/*
* if we modified the cache attributes on alloc, go back and
* fix them since this memory could be returned to the
* general pool.
*/
if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
uint_t order = 0;
int e;
i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
if (e != 0) {
cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
"override cache attrs, memory leaked\n");
return;
}
}
}
kfreea(kaddr);
}
/*
* Access Barriers
*
*/
/*ARGSUSED*/
int
i_ddi_ontrap(ddi_acc_handle_t hp)
{
return (DDI_FAILURE);
}
/*ARGSUSED*/
void
i_ddi_notrap(ddi_acc_handle_t hp)
{
}
/*
* Misc Functions
*/
/*
* Implementation instance override functions
*
* No override on i86pc
*/
/*ARGSUSED*/
uint_t
impl_assign_instance(dev_info_t *dip)
{
return ((uint_t)-1);
}
/*ARGSUSED*/
int
impl_keep_instance(dev_info_t *dip)
{
#if defined(__xpv)
/*
* Do not persist instance numbers assigned to devices in dom0
*/
dev_info_t *pdip;
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
if (((pdip = ddi_get_parent(dip)) != NULL) &&
(strcmp(ddi_get_name(pdip), "xpvd") == 0))
return (DDI_SUCCESS);
}
#endif
return (DDI_FAILURE);
}
/*ARGSUSED*/
int
impl_free_instance(dev_info_t *dip)
{
return (DDI_FAILURE);
}
/*ARGSUSED*/
int
impl_check_cpu(dev_info_t *devi)
{
return (DDI_SUCCESS);
}
/*
* Referenced in common/cpr_driver.c: Power off machine.
* Don't know how to power off i86pc.
*/
void
arch_power_down()
{}
/*
* Copy name to property_name, since name
* is in the low address range below kernelbase.
*/
static void
copy_boot_str(const char *boot_str, char *kern_str, int len)
{
int i = 0;
while (i < len - 1 && boot_str[i] != '\0') {
kern_str[i] = boot_str[i];
i++;
}
kern_str[i] = 0; /* null terminate */
if (boot_str[i] != '\0')
cmn_err(CE_WARN,
"boot property string is truncated to %s", kern_str);
}
static void
get_boot_properties(void)
{
extern char hw_provider[];
dev_info_t *devi;
char *name;
int length;
char property_name[50], property_val[50];
void *bop_staging_area;
bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
/*
* Import "root" properties from the boot.
*
* We do this by invoking BOP_NEXTPROP until the list
* is completely copied in.
*/
devi = ddi_root_node();
for (name = BOP_NEXTPROP(bootops, ""); /* get first */
name; /* NULL => DONE */
name = BOP_NEXTPROP(bootops, name)) { /* get next */
/* copy string to memory above kernelbase */
copy_boot_str(name, property_name, 50);
/*
* Skip vga properties. They will be picked up later
* by get_vga_properties.
*/
if (strcmp(property_name, "display-edif-block") == 0 ||
strcmp(property_name, "display-edif-id") == 0) {
continue;
}
length = BOP_GETPROPLEN(bootops, property_name);
if (length == 0)
continue;
if (length > MMU_PAGESIZE) {
cmn_err(CE_NOTE,
"boot property %s longer than 0x%x, ignored\n",
property_name, MMU_PAGESIZE);
continue;
}
BOP_GETPROP(bootops, property_name, bop_staging_area);
/*
* special properties:
* si-machine, si-hw-provider
* goes to kernel data structures.
* bios-boot-device and stdout
* goes to hardware property list so it may show up
* in the prtconf -vp output. This is needed by
* Install/Upgrade. Once we fix install upgrade,
* this can be taken out.
*/
if (strcmp(name, "si-machine") == 0) {
(void) strncpy(utsname.machine, bop_staging_area,
SYS_NMLN);
utsname.machine[SYS_NMLN - 1] = (char)NULL;
} else if (strcmp(name, "si-hw-provider") == 0) {
(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
hw_provider[SYS_NMLN - 1] = (char)NULL;
} else if (strcmp(name, "bios-boot-device") == 0) {
copy_boot_str(bop_staging_area, property_val, 50);
(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
property_name, property_val);
} else if (strcmp(name, "stdout") == 0) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
property_name, *((int *)bop_staging_area));
} else {
/* Property type unknown, use old prop interface */
(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
DDI_PROP_CANSLEEP, property_name, bop_staging_area,
length);
}
}
kmem_free(bop_staging_area, MMU_PAGESIZE);
}
static void
get_vga_properties(void)
{
dev_info_t *devi;
major_t major;
char *name;
int length;
char property_val[50];
void *bop_staging_area;
/*
* XXXX Hack Allert!
* There really needs to be a better way for identifying various
* console framebuffers and their related issues. Till then,
* check for this one as a replacement to vgatext.
*/
major = ddi_name_to_major("ragexl");
if (major == (major_t)-1) {
major = ddi_name_to_major("vgatext");
if (major == (major_t)-1)
return;
}
devi = devnamesp[major].dn_head;
if (devi == NULL)
return;
bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
/*
* Import "vga" properties from the boot.
*/
name = "display-edif-block";
length = BOP_GETPROPLEN(bootops, name);
if (length > 0 && length < MMU_PAGESIZE) {
BOP_GETPROP(bootops, name, bop_staging_area);
(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
devi, name, bop_staging_area, length);
}
/*
* kdmconfig is also looking for display-type and
* video-adapter-type. We default to color and svga.
*
* Could it be "monochrome", "vga"?
* Nah, you've got to come to the 21st century...
* And you can set monitor type manually in kdmconfig
* if you are really an old junky.
*/
(void) ndi_prop_update_string(DDI_DEV_T_NONE,
devi, "display-type", "color");
(void) ndi_prop_update_string(DDI_DEV_T_NONE,
devi, "video-adapter-type", "svga");
name = "display-edif-id";
length = BOP_GETPROPLEN(bootops, name);
if (length > 0 && length < MMU_PAGESIZE) {
BOP_GETPROP(bootops, name, bop_staging_area);
copy_boot_str(bop_staging_area, property_val, length);
(void) ndi_prop_update_string(DDI_DEV_T_NONE,
devi, name, property_val);
}
kmem_free(bop_staging_area, MMU_PAGESIZE);
}
/*
* This is temporary, but absolutely necessary. If we are being
* booted with a device tree created by the DevConf project's bootconf
* program, then we have device information nodes that reflect
* reality. At this point in time in the Solaris release schedule, the
* kernel drivers aren't prepared for reality. They still depend on their
* own ad-hoc interpretations of the properties created when their .conf
* files were interpreted. These drivers use an "ignore-hardware-nodes"
* property to prevent them from using the nodes passed up from the bootconf
* device tree.
*
* Trying to assemble root file system drivers as we are booting from
* devconf will fail if the kernel driver is basing its name_addr's on the
* psuedo-node device info while the bootpath passed up from bootconf is using
* reality-based name_addrs. We help the boot along in this case by
* looking at the pre-bootconf bootpath and determining if we would have
* successfully matched if that had been the bootpath we had chosen.
*
* Note that we only even perform this extra check if we've booted
* using bootconf's 1275 compliant bootpath, this is the boot device, and
* we're trying to match the name_addr specified in the 1275 bootpath.
*/
#define MAXCOMPONENTLEN 32
int
x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
{
/*
* There are multiple criteria to be met before we can even
* consider allowing a name_addr match here.
*
* 1) We must have been booted such that the bootconf program
* created device tree nodes and properties. This can be
* determined by examining the 'bootpath' property. This
* property will be a non-null string iff bootconf was
* involved in the boot.
*
* 2) The module that we want to match must be the boot device.
*
* 3) The instance of the module we are thinking of letting be
* our match must be ignoring hardware nodes.
*
* 4) The name_addr we want to match must be the name_addr
* specified in the 1275 bootpath.
*/
static char bootdev_module[MAXCOMPONENTLEN];
static char bootdev_oldmod[MAXCOMPONENTLEN];
static char bootdev_newaddr[MAXCOMPONENTLEN];
static char bootdev_oldaddr[MAXCOMPONENTLEN];
static int quickexit;
char *daddr;
int dlen;
char *lkupname;
int rv = DDI_FAILURE;
if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
"devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
(ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
"ignore-hardware-nodes", -1) != -1)) {
if (strcmp(daddr, caddr) == 0) {
return (DDI_SUCCESS);
}
}
if (quickexit)
return (rv);
if (bootdev_module[0] == '\0') {
char *addrp, *eoaddrp;
char *busp, *modp, *atp;
char *bp1275, *bp;
int bp1275len, bplen;
bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
if (ddi_getlongprop(DDI_DEV_T_ANY,
ddi_root_node(), 0, "bootpath",
(caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
bp1275len <= 1) {
/*
* We didn't boot from bootconf so we never need to
* do any special matches.
*/
quickexit = 1;
if (bp1275)
kmem_free(bp1275, bp1275len);
return (rv);
}
if (ddi_getlongprop(DDI_DEV_T_ANY,
ddi_root_node(), 0, "boot-path",
(caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
/*
* No fallback position for matching. This is
* certainly unexpected, but we'll handle it
* just in case.
*/
quickexit = 1;
kmem_free(bp1275, bp1275len);
if (bp)
kmem_free(bp, bplen);
return (rv);
}
/*
* Determine boot device module and 1275 name_addr
*
* bootpath assumed to be of the form /bus/module@name_addr
*/
if (busp = strchr(bp1275, '/')) {
if (modp = strchr(busp + 1, '/')) {
if (atp = strchr(modp + 1, '@')) {
*atp = '\0';
addrp = atp + 1;
if (eoaddrp = strchr(addrp, '/'))
*eoaddrp = '\0';
}
}
}
if (modp && addrp) {
(void) strncpy(bootdev_module, modp + 1,
MAXCOMPONENTLEN);
bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
} else {
quickexit = 1;
kmem_free(bp1275, bp1275len);
kmem_free(bp, bplen);
return (rv);
}
/*
* Determine fallback name_addr
*
* 10/3/96 - Also save fallback module name because it
* might actually be different than the current module
* name. E.G., ISA pnp drivers have new names.
*
* bootpath assumed to be of the form /bus/module@name_addr
*/
addrp = NULL;
if (busp = strchr(bp, '/')) {
if (modp = strchr(busp + 1, '/')) {
if (atp = strchr(modp + 1, '@')) {
*atp = '\0';
addrp = atp + 1;
if (eoaddrp = strchr(addrp, '/'))
*eoaddrp = '\0';
}
}
}
if (modp && addrp) {
(void) strncpy(bootdev_oldmod, modp + 1,
MAXCOMPONENTLEN);
bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
}
/* Free up the bootpath storage now that we're done with it. */
kmem_free(bp1275, bp1275len);
kmem_free(bp, bplen);
if (bootdev_oldaddr[0] == '\0') {
quickexit = 1;
return (rv);
}
}
if (((lkupname = ddi_get_name(cdip)) != NULL) &&
(strcmp(bootdev_module, lkupname) == 0 ||
strcmp(bootdev_oldmod, lkupname) == 0) &&
((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
"ignore-hardware-nodes", -1) != -1) ||
ignore_hardware_nodes) &&
strcmp(bootdev_newaddr, caddr) == 0 &&
strcmp(bootdev_oldaddr, naddr) == 0) {
rv = DDI_SUCCESS;
}
return (rv);
}
/*
* Perform a copy from a memory mapped device (whose devinfo pointer is devi)
* separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
*/
/*ARGSUSED*/
int
e_ddi_copyfromdev(dev_info_t *devi,
off_t off, const void *devaddr, void *kaddr, size_t len)
{
bcopy(devaddr, kaddr, len);
return (0);
}
/*
* Perform a copy to a memory mapped device (whose devinfo pointer is devi)
* separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
*/
/*ARGSUSED*/
int
e_ddi_copytodev(dev_info_t *devi,
off_t off, const void *kaddr, void *devaddr, size_t len)
{
bcopy(kaddr, devaddr, len);
return (0);
}
static int
poke_mem(peekpoke_ctlops_t *in_args)
{
int err = DDI_SUCCESS;
on_trap_data_t otd;
/* Set up protected environment. */
if (!on_trap(&otd, OT_DATA_ACCESS)) {
switch (in_args->size) {
case sizeof (uint8_t):
*(uint8_t *)(in_args->dev_addr) =
*(uint8_t *)in_args->host_addr;
break;
case sizeof (uint16_t):
*(uint16_t *)(in_args->dev_addr) =
*(uint16_t *)in_args->host_addr;
break;
case sizeof (uint32_t):
*(uint32_t *)(in_args->dev_addr) =
*(uint32_t *)in_args->host_addr;
break;
case sizeof (uint64_t):
*(uint64_t *)(in_args->dev_addr) =
*(uint64_t *)in_args->host_addr;
break;
default:
err = DDI_FAILURE;
break;
}
} else
err = DDI_FAILURE;
/* Take down protected environment. */
no_trap();
return (err);
}
static int
peek_mem(peekpoke_ctlops_t *in_args)
{
int err = DDI_SUCCESS;
on_trap_data_t otd;
if (!on_trap(&otd, OT_DATA_ACCESS)) {
switch (in_args->size) {
case sizeof (uint8_t):
*(uint8_t *)in_args->host_addr =
*(uint8_t *)in_args->dev_addr;
break;
case sizeof (uint16_t):
*(uint16_t *)in_args->host_addr =
*(uint16_t *)in_args->dev_addr;
break;
case sizeof (uint32_t):
*(uint32_t *)in_args->host_addr =
*(uint32_t *)in_args->dev_addr;
break;
case sizeof (uint64_t):
*(uint64_t *)in_args->host_addr =
*(uint64_t *)in_args->dev_addr;
break;
default:
err = DDI_FAILURE;
break;
}
} else
err = DDI_FAILURE;
no_trap();
return (err);
}
/*
* This is called only to process peek/poke when the DIP is NULL.
* Assume that this is for memory, as nexi take care of device safe accesses.
*/
int
peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
{
return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
}
/*
* we've just done a cautious put/get. Check if it was successful by
* calling pci_ereport_post() on all puts and for any gets that return -1
*/
static int
pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
void (*scan)(dev_info_t *, ddi_fm_error_t *))
{
int rval = DDI_SUCCESS;
peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
ddi_fm_error_t de;
ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
int check_err = 0;
int repcount = in_args->repcount;
if (ctlop == DDI_CTLOPS_POKE &&
hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
return (DDI_SUCCESS);
if (ctlop == DDI_CTLOPS_PEEK &&
hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
for (; repcount; repcount--) {
switch (in_args->size) {
case sizeof (uint8_t):
if (*(uint8_t *)in_args->host_addr == 0xff)
check_err = 1;
break;
case sizeof (uint16_t):
if (*(uint16_t *)in_args->host_addr == 0xffff)
check_err = 1;
break;
case sizeof (uint32_t):
if (*(uint32_t *)in_args->host_addr ==
0xffffffff)
check_err = 1;
break;
case sizeof (uint64_t):
if (*(uint64_t *)in_args->host_addr ==
0xffffffffffffffff)
check_err = 1;
break;
}
}
if (check_err == 0)
return (DDI_SUCCESS);
}
/*
* for a cautious put or get or a non-cautious get that returned -1 call
* io framework to see if there really was an error
*/
bzero(&de, sizeof (ddi_fm_error_t));
de.fme_version = DDI_FME_VERSION;
de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
de.fme_flag = DDI_FM_ERR_EXPECTED;
de.fme_acc_handle = in_args->handle;
} else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
/*
* We only get here with DDI_DEFAULT_ACC for config space gets.
* Non-hardened drivers may be probing the hardware and
* expecting -1 returned. So need to treat errors on
* DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
*/
de.fme_flag = DDI_FM_ERR_EXPECTED;
de.fme_acc_handle = in_args->handle;
} else {
/*
* Hardened driver doing protected accesses shouldn't
* get errors unless there's a hardware problem. Treat
* as nonfatal if there's an error, but set UNEXPECTED
* so we raise ereports on any errors and potentially
* fault the device
*/
de.fme_flag = DDI_FM_ERR_UNEXPECTED;
}
(void) scan(dip, &de);
if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
de.fme_status != DDI_FM_OK) {
ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
rval = DDI_FAILURE;
errp->err_ena = de.fme_ena;
errp->err_expected = de.fme_flag;
errp->err_status = DDI_FM_NONFATAL;
}
return (rval);
}
/*
* pci_peekpoke_check_nofma() is for when an error occurs on a register access
* during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
* recurse, so assume all puts are OK and gets have failed if they return -1
*/
static int
pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
{
int rval = DDI_SUCCESS;
peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
int repcount = in_args->repcount;
if (ctlop == DDI_CTLOPS_POKE)
return (rval);
for (; repcount; repcount--) {
switch (in_args->size) {
case sizeof (uint8_t):
if (*(uint8_t *)in_args->host_addr == 0xff)
rval = DDI_FAILURE;
break;
case sizeof (uint16_t):
if (*(uint16_t *)in_args->host_addr == 0xffff)
rval = DDI_FAILURE;
break;
case sizeof (uint32_t):
if (*(uint32_t *)in_args->host_addr == 0xffffffff)
rval = DDI_FAILURE;
break;
case sizeof (uint64_t):
if (*(uint64_t *)in_args->host_addr ==
0xffffffffffffffff)
rval = DDI_FAILURE;
break;
}
}
if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
rval == DDI_FAILURE) {
ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
errp->err_expected = DDI_FM_ERR_UNEXPECTED;
errp->err_status = DDI_FM_NONFATAL;
}
return (rval);
}
int
pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
ddi_ctl_enum_t ctlop, void *arg, void *result,
int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
void (*scan)(dev_info_t *, ddi_fm_error_t *))
{
int rval;
peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
/*
* this function only supports cautious accesses, not peeks/pokes
* which don't have a handle
*/
if (hp == NULL)
return (DDI_FAILURE);
if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
if (!mutex_tryenter(err_mutexp)) {
/*
* As this may be a recursive call from within
* pci_ereport_post() we can't wait for the mutexes.
* Fortunately we know someone is already calling
* pci_ereport_post() which will handle the error bits
* for us, and as this is a config space access we can
* just do the access and check return value for -1
* using pci_peekpoke_check_nofma().
*/
rval = handler(dip, rdip, ctlop, arg, result);
if (rval == DDI_SUCCESS)
rval = pci_peekpoke_check_nofma(arg, ctlop);
return (rval);
}
/*
* This can't be a recursive call. Drop the err_mutex and get
* both mutexes in the right order. If an error hasn't already
* been detected by the ontrap code, use pci_peekpoke_check_fma
* which will call pci_ereport_post() to check error status.
*/
mutex_exit(err_mutexp);
}
mutex_enter(peek_poke_mutexp);
rval = handler(dip, rdip, ctlop, arg, result);
if (rval == DDI_SUCCESS) {
mutex_enter(err_mutexp);
rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
mutex_exit(err_mutexp);
}
mutex_exit(peek_poke_mutexp);
return (rval);
}
void
impl_setup_ddi(void)
{
#if !defined(__xpv)
extern void startup_bios_disk(void);
extern int post_fastreboot;
#endif
dev_info_t *xdip, *isa_dip;
rd_existing_t rd_mem_prop;
int err;
ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
(pnode_t)DEVI_SID_NODEID, &xdip);
(void) BOP_GETPROP(bootops,
"ramdisk_start", (void *)&ramdisk_start);
(void) BOP_GETPROP(bootops,
"ramdisk_end", (void *)&ramdisk_end);
#ifdef __xpv
ramdisk_start -= ONE_GIG;
ramdisk_end -= ONE_GIG;
#endif
rd_mem_prop.phys = ramdisk_start;
rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
sizeof (rd_mem_prop));
err = ndi_devi_bind_driver(xdip, 0);
ASSERT(err == 0);
/* isa node */
if (pseudo_isa) {
ndi_devi_alloc_sleep(ddi_root_node(), "isa",
(pnode_t)DEVI_SID_NODEID, &isa_dip);
(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
"device_type", "isa");
(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
"bus-type", "isa");
(void) ndi_devi_bind_driver(isa_dip, 0);
}
/*
* Read in the properties from the boot.
*/
get_boot_properties();
/* not framebuffer should be enumerated, if present */
get_vga_properties();
/*
* Check for administratively disabled drivers.
*/
check_driver_disable();
#if !defined(__xpv)
if (!post_fastreboot)
startup_bios_disk();
#endif
/* do bus dependent probes. */
impl_bus_initialprobe();
}
dev_t
getrootdev(void)
{
/*
* Precedence given to rootdev if set in /etc/system
*/
if (root_is_svm == B_TRUE) {
return (ddi_pathname_to_dev_t(svm_bootpath));
}
/*
* Usually rootfs.bo_name is initialized by the
* the bootpath property from bootenv.rc, but
* defaults to "/ramdisk:a" otherwise.
*/
return (ddi_pathname_to_dev_t(rootfs.bo_name));
}
static struct bus_probe {
struct bus_probe *next;
void (*probe)(int);
} *bus_probes;
void
impl_bus_add_probe(void (*func)(int))
{
struct bus_probe *probe;
struct bus_probe *lastprobe = NULL;
probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
probe->probe = func;
probe->next = NULL;
if (!bus_probes) {
bus_probes = probe;
return;
}
lastprobe = bus_probes;
while (lastprobe->next)
lastprobe = lastprobe->next;
lastprobe->next = probe;
}
/*ARGSUSED*/
void
impl_bus_delete_probe(void (*func)(int))
{
struct bus_probe *prev = NULL;
struct bus_probe *probe = bus_probes;
while (probe) {
if (probe->probe == func)
break;
prev = probe;
probe = probe->next;
}
if (probe == NULL)
return;
if (prev)
prev->next = probe->next;
else
bus_probes = probe->next;
kmem_free(probe, sizeof (struct bus_probe));
}
/*
* impl_bus_initialprobe
* Modload the prom simulator, then let it probe to verify existence
* and type of PCI support.
*/
static void
impl_bus_initialprobe(void)
{
struct bus_probe *probe;
/* load modules to install bus probes */
#if defined(__xpv)
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
if (modload("misc", "pci_autoconfig") < 0) {
panic("failed to load misc/pci_autoconfig");
}
if (modload("drv", "isa") < 0)
panic("failed to load drv/isa");
}
(void) modload("misc", "xpv_autoconfig");
#else
if (modload("misc", "pci_autoconfig") < 0) {
panic("failed to load misc/pci_autoconfig");
}
(void) modload("misc", "acpidev");
if (modload("drv", "isa") < 0)
panic("failed to load drv/isa");
#endif
probe = bus_probes;
while (probe) {
/* run the probe functions */
(*probe->probe)(0);
probe = probe->next;
}
}
/*
* impl_bus_reprobe
* Reprogram devices not set up by firmware.
*/
static void
impl_bus_reprobe(void)
{
struct bus_probe *probe;
probe = bus_probes;
while (probe) {
/* run the probe function */
(*probe->probe)(1);
probe = probe->next;
}
}
/*
* The following functions ready a cautious request to go up to the nexus
* driver. It is up to the nexus driver to decide how to process the request.
* It may choose to call i_ddi_do_caut_get/put in this file, or do it
* differently.
*/
static void
i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
ddi_ctl_enum_t cmd)
{
peekpoke_ctlops_t cautacc_ctlops_arg;
cautacc_ctlops_arg.size = size;
cautacc_ctlops_arg.dev_addr = dev_addr;
cautacc_ctlops_arg.host_addr = host_addr;
cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
cautacc_ctlops_arg.repcount = repcount;
cautacc_ctlops_arg.flags = flags;
(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
&cautacc_ctlops_arg, NULL);
}
uint8_t
i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
{
uint8_t value;
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
return (value);
}
uint16_t
i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
{
uint16_t value;
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
return (value);
}
uint32_t
i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
{
uint32_t value;
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
return (value);
}
uint64_t
i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
{
uint64_t value;
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
return (value);
}
void
i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
}
void
i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
}
void
i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
}
void
i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
}
void
i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
}
void
i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
}
void
i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
}
void
i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
}
void
i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
}
void
i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
}
void
i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
}
void
i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags)
{
i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
}
boolean_t
i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
{
uint64_t hi_pa;
hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
if (attrp->dma_attr_addr_hi < hi_pa) {
return (B_TRUE);
}
return (B_FALSE);
}
size_t
i_ddi_copybuf_size()
{
return (dma_max_copybuf_size);
}
/*
* i_ddi_dma_max()
* returns the maximum DMA size which can be performed in a single DMA
* window taking into account the devices DMA contraints (attrp), the
* maximum copy buffer size (if applicable), and the worse case buffer
* fragmentation.
*/
/*ARGSUSED*/
uint32_t
i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
{
uint64_t maxxfer;
/*
* take the min of maxxfer and the the worse case fragementation
* (e.g. every cookie <= 1 page)
*/
maxxfer = MIN(attrp->dma_attr_maxxfer,
((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
/*
* If the DMA engine can't reach all off memory, we also need to take
* the max size of the copybuf into consideration.
*/
if (i_ddi_copybuf_required(attrp)) {
maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
}
/*
* we only return a 32-bit value. Make sure it's not -1. Round to a
* page so it won't be mistaken for an error value during debug.
*/
if (maxxfer >= 0xFFFFFFFF) {
maxxfer = 0xFFFFF000;
}
/*
* make sure the value we return is a whole multiple of the
* granlarity.
*/
if (attrp->dma_attr_granular > 1) {
maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
}
return ((uint32_t)maxxfer);
}
/*ARGSUSED*/
void
translate_devid(dev_info_t *dip)
{
}
pfn_t
i_ddi_paddr_to_pfn(paddr_t paddr)
{
pfn_t pfn;
#ifdef __xpv
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
pfn = xen_assign_pfn(mmu_btop(paddr));
} else {
pfn = mmu_btop(paddr);
}
#else
pfn = mmu_btop(paddr);
#endif
return (pfn);
}