mp_platform_common.c revision e2af1b53c69207cf8b36451b3a8c8f800ee9855e
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2016 Nexenta Systems, Inc.
*/
/*
* Copyright (c) 2010, Intel Corporation.
* All rights reserved.
*/
/*
* PSMI 1.1 extensions are supported only in 2.6 and later versions.
* PSMI 1.2 extensions are supported only in 2.7 and later versions.
* PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
* PSMI 1.5 extensions are supported in Solaris Nevada.
* PSMI 1.6 extensions are supported in Solaris Nevada.
* PSMI 1.7 extensions are supported in Solaris Nevada.
*/
#define PSMI_1_7
#include <sys/processor.h>
#include <sys/time.h>
#include <sys/psm.h>
#include <sys/smp_impldefs.h>
#include <sys/cram.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/psm_common.h>
#include <sys/apic.h>
#include <sys/apic_timer.h>
#include <sys/pit.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/pci.h>
#include <sys/promif.h>
#include <sys/x86_archext.h>
#include <sys/cpc_impl.h>
#include <sys/uadmin.h>
#include <sys/panic.h>
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/trap.h>
#include <sys/machsystm.h>
#include <sys/cpuvar.h>
#include <sys/rm_platter.h>
#include <sys/privregs.h>
#include <sys/cyclic.h>
#include <sys/note.h>
#include <sys/pci_intr_lib.h>
#include <sys/sunndi.h>
#if !defined(__xpv)
#include <sys/hpet.h>
#include <sys/clock.h>
#endif
/*
* Local Function Prototypes
*/
static int apic_handle_defconf();
static int apic_parse_mpct(caddr_t mpct, int bypass);
static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
static int apic_checksum(caddr_t bptr, int len);
static int apic_find_bus_type(char *bus);
static int apic_find_bus(int busid);
static struct apic_io_intr *apic_find_io_intr(int irqno);
static int apic_find_free_irq(int start, int end);
struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
static void apic_free_apic_cpus(void);
static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
static int apic_acpi_enter_apicmode(void);
int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
int child_ipin, struct apic_io_intr **intrp);
int apic_find_bus_id(int bustype);
int apic_find_intin(uchar_t ioapic, uchar_t intin);
void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */
/* ACPI SCI interrupt configuration; -1 if SCI not used */
int apic_sci_vect = -1;
iflag_t apic_sci_flags;
#if !defined(__xpv)
/* ACPI HPET interrupt configuration; -1 if HPET not used */
int apic_hpet_vect = -1;
iflag_t apic_hpet_flags;
#endif
/*
* psm name pointer
*/
char *psm_name;
/* ACPI support routines */
static int acpi_probe(char *);
static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
int *pci_irqp, iflag_t *intr_flagp);
int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
int ipin, int *pci_irqp, iflag_t *intr_flagp);
uchar_t acpi_find_ioapic(int irq);
static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
/* Max wait time (in repetitions) for flags to clear in an RDT entry. */
int apic_max_reps_clear_pending = 1000;
int apic_intr_policy = INTR_ROUND_ROBIN;
int apic_next_bind_cpu = 1; /* For round robin assignment */
/* start with cpu 1 */
/*
* If enabled, the distribution works as follows:
* On every interrupt entry, the current ipl for the CPU is set in cpu_info
* and the irq corresponding to the ipl is also set in the aci_current array.
* interrupt exit and setspl (due to soft interrupts) will cause the current
* ipl to be be changed. This is cache friendly as these frequently used
* paths write into a per cpu structure.
*
* Sampling is done by checking the structures for all CPUs and incrementing
* the busy field of the irq (if any) executing on each CPU and the busy field
* of the corresponding CPU.
* In periodic mode this is done on every clock interrupt.
* In one-shot mode, this is done thru a cyclic with an interval of
* apic_redistribute_sample_interval (default 10 milli sec).
*
* Every apic_sample_factor_redistribution times we sample, we do computations
* to decide which interrupt needs to be migrated (see comments
* before apic_intr_redistribute().
*/
/*
* Following 3 variables start as % and can be patched or set using an
* API to be defined in future. They will be scaled to
* sample_factor_redistribution which is in turn set to hertz+1 (in periodic
* mode), or 101 in one-shot mode to stagger it away from one sec processing
*/
int apic_int_busy_mark = 60;
int apic_int_free_mark = 20;
int apic_diff_for_redistribution = 10;
/* sampling interval for interrupt redistribution for dynamic migration */
int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
/*
* number of times we sample before deciding to redistribute interrupts
* for dynamic migration
*/
int apic_sample_factor_redistribution = 101;
int apic_redist_cpu_skip = 0;
int apic_num_imbalance = 0;
int apic_num_rebind = 0;
/*
* Maximum number of APIC CPUs in the system, -1 indicates that dynamic
* allocation of CPU ids is disabled.
*/
int apic_max_nproc = -1;
int apic_nproc = 0;
size_t apic_cpus_size = 0;
int apic_defconf = 0;
int apic_irq_translate = 0;
int apic_spec_rev = 0;
int apic_imcrp = 0;
int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */
int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */
/*
* For interrupt link devices, if apic_unconditional_srs is set, an irq resource
* will be assigned (via _SRS). If it is not set, use the current
* irq setting (via _CRS), but only if that irq is in the set of possible
* irqs (returned by _PRS) for the device.
*/
int apic_unconditional_srs = 1;
/*
* For interrupt link devices, if apic_prefer_crs is set when we are
* assigning an IRQ resource to a device, prefer the current IRQ setting
* over other possible irq settings under same conditions.
*/
int apic_prefer_crs = 1;
uchar_t apic_io_id[MAX_IO_APIC];
volatile uint32_t *apicioadr[MAX_IO_APIC];
uchar_t apic_io_ver[MAX_IO_APIC];
uchar_t apic_io_vectbase[MAX_IO_APIC];
uchar_t apic_io_vectend[MAX_IO_APIC];
uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
uint32_t apic_physaddr[MAX_IO_APIC];
boolean_t ioapic_mask_workaround[MAX_IO_APIC];
/*
* First available slot to be used as IRQ index into the apic_irq_table
* for those interrupts (like MSI/X) that don't have a physical IRQ.
*/
int apic_first_avail_irq = APIC_FIRST_FREE_IRQ;
/*
* apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
* and bound elements of cpus_info and the temp_cpu element of irq_struct
*/
lock_t apic_ioapic_lock;
int apic_io_max = 0; /* no. of i/o apics enabled */
struct apic_io_intr *apic_io_intrp = NULL;
static struct apic_bus *apic_busp;
uchar_t apic_resv_vector[MAXIPL+1];
char apic_level_intr[APIC_MAX_VECTOR+1];
uint32_t eisa_level_intr_mask = 0;
/* At least MSB will be set if EISA bus */
int apic_pci_bus_total = 0;
uchar_t apic_single_pci_busid = 0;
/*
* airq_mutex protects additions to the apic_irq_table - the first
* pointer and any airq_nexts off of that one. It also protects
* apic_max_device_irq & apic_min_device_irq. It also guarantees
* that share_id is unique as new ids are generated only when new
* irq_t structs are linked in. Once linked in the structs are never
* deleted. temp_cpu & mps_intr_index field indicate if it is programmed
* or allocated. Note that there is a slight gap between allocating in
* apic_introp_xlate and programming in addspl.
*/
kmutex_t airq_mutex;
apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1];
int apic_max_device_irq = 0;
int apic_min_device_irq = APIC_MAX_VECTOR;
typedef struct prs_irq_list_ent {
int list_prio;
int32_t irq;
iflag_t intrflags;
acpi_prs_private_t prsprv;
struct prs_irq_list_ent *next;
} prs_irq_list_t;
/*
* ACPI variables
*/
/* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
int apic_enable_acpi = 0;
/* ACPI Multiple APIC Description Table ptr */
static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
/* ACPI Interrupt Source Override Structure ptr */
ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
int acpi_iso_cnt = 0;
/* ACPI Non-maskable Interrupt Sources ptr */
static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
static int acpi_nmi_scnt = 0;
static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
static int acpi_nmi_ccnt = 0;
/*
* The following added to identify a software poweroff method if available.
*/
static struct {
int poweroff_method;
char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */
char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */
} apic_mps_ids[] = {
{ APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */
{ APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */
{ APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */
{ APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */
{ APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */
{ APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */
{ APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */
};
int apic_poweroff_method = APIC_POWEROFF_NONE;
/*
* Auto-configuration routines
*/
/*
* Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
* May work with 1.1 - but not guaranteed.
* According to the MP Spec, the MP floating pointer structure
* will be searched in the order described below:
* 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
* 2. Within the last kilobyte of system base memory
* 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
* Once we find the right signature with proper checksum, we call
* either handle_defconf or parse_mpct to get all info necessary for
* subsequent operations.
*/
int
apic_probe_common(char *modname)
{
uint32_t mpct_addr, ebda_start = 0, base_mem_end;
caddr_t biosdatap;
caddr_t mpct = 0;
caddr_t fptr;
int i, mpct_size, mapsize, retval = PSM_FAILURE;
ushort_t ebda_seg, base_mem_size;
struct apic_mpfps_hdr *fpsp;
struct apic_mp_cnf_hdr *hdrp;
int bypass_cpu_and_ioapics_in_mptables;
int acpi_user_options;
if (apic_forceload < 0)
return (retval);
/*
* Remember who we are
*/
psm_name = modname;
/* Allow override for MADT-only mode */
acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
"acpi-user-options", 0);
apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
/* Allow apic_use_acpi to override MADT-only mode */
if (!apic_use_acpi)
apic_use_acpi_madt_only = 0;
retval = acpi_probe(modname);
/*
* mapin the bios data area 40:0
* 40:13h - two-byte location reports the base memory size
* 40:0Eh - two-byte location for the exact starting address of
* the EBDA segment for EISA
*/
biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
if (!biosdatap)
goto apic_ret;
fpsp = (struct apic_mpfps_hdr *)NULL;
mapsize = MPFPS_RAM_WIN_LEN;
/*LINTED: pointer cast may result in improper alignment */
ebda_seg = *((ushort_t *)(biosdatap+0xe));
/* check the 1k of EBDA */
if (ebda_seg) {
ebda_start = ((uint32_t)ebda_seg) << 4;
fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
if (fptr) {
if (!(fpsp =
apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
}
}
/* If not in EBDA, check the last k of system base memory */
if (!fpsp) {
/*LINTED: pointer cast may result in improper alignment */
base_mem_size = *((ushort_t *)(biosdatap + 0x13));
if (base_mem_size > 512)
base_mem_end = 639 * 1024;
else
base_mem_end = 511 * 1024;
/* if ebda == last k of base mem, skip to check BIOS ROM */
if (base_mem_end != ebda_start) {
fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
PROT_READ);
if (fptr) {
if (!(fpsp = apic_find_fps_sig(fptr,
MPFPS_RAM_WIN_LEN)))
psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
}
}
}
psm_unmap_phys(biosdatap, 0x20);
/* If still cannot find it, check the BIOS ROM space */
if (!fpsp) {
mapsize = MPFPS_ROM_WIN_LEN;
fptr = psm_map_phys(MPFPS_ROM_WIN_START,
MPFPS_ROM_WIN_LEN, PROT_READ);
if (fptr) {
if (!(fpsp =
apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
goto apic_ret;
}
}
}
if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
goto apic_ret;
}
apic_spec_rev = fpsp->mpfps_spec_rev;
if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
goto apic_ret;
}
/* check IMCR is present or not */
apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
/* check default configuration (dual CPUs) */
if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
psm_unmap_phys(fptr, mapsize);
if ((retval = apic_handle_defconf()) != PSM_SUCCESS)
return (retval);
goto apic_ret;
}
/* MP Configuration Table */
mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
/*
* Map in enough memory for the MP Configuration Table Header.
* Use this table to read the total length of the BIOS data and
* map in all the info
*/
/*LINTED: pointer cast may result in improper alignment */
hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
sizeof (struct apic_mp_cnf_hdr), PROT_READ);
if (!hdrp)
goto apic_ret;
/* check mp configuration table signature PCMP */
if (hdrp->mpcnf_sig != 0x504d4350) {
psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
goto apic_ret;
}
mpct_size = (int)hdrp->mpcnf_tbl_length;
apic_set_pwroff_method_from_mpcnfhdr(hdrp);
psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
/* This is an ACPI machine No need for further checks */
goto apic_ret;
}
/*
* Map in the entries for this machine, ie. Processor
* Entry Tables, Bus Entry Tables, etc.
* They are in fixed order following one another
*/
mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
if (!mpct)
goto apic_ret;
if (apic_checksum(mpct, mpct_size) != 0)
goto apic_fail1;
/*LINTED: pointer cast may result in improper alignment */
hdrp = (struct apic_mp_cnf_hdr *)mpct;
apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
if (!apicadr)
goto apic_fail1;
/* Parse all information in the tables */
bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
PSM_SUCCESS) {
retval = PSM_SUCCESS;
goto apic_ret;
}
apic_fail1:
psm_unmap_phys(mpct, mpct_size);
mpct = NULL;
apic_ret:
if (retval == PSM_SUCCESS) {
extern int apic_ioapic_method_probe();
if ((retval = apic_ioapic_method_probe()) == PSM_SUCCESS)
return (PSM_SUCCESS);
}
for (i = 0; i < apic_io_max; i++)
mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
if (apic_cpus) {
kmem_free(apic_cpus, apic_cpus_size);
apic_cpus = NULL;
}
if (apicadr) {
mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
apicadr = NULL;
}
if (mpct)
psm_unmap_phys(mpct, mpct_size);
return (retval);
}
static void
apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
{
int i;
for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
i++) {
if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
strlen(apic_mps_ids[i].oem_id)) == 0) &&
(strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
strlen(apic_mps_ids[i].prod_id)) == 0)) {
apic_poweroff_method = apic_mps_ids[i].poweroff_method;
break;
}
}
if (apic_debug_mps_id != 0) {
cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
"Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
psm_name,
hdrp->mpcnf_oem_str[0],
hdrp->mpcnf_oem_str[1],
hdrp->mpcnf_oem_str[2],
hdrp->mpcnf_oem_str[3],
hdrp->mpcnf_oem_str[4],
hdrp->mpcnf_oem_str[5],
hdrp->mpcnf_oem_str[6],
hdrp->mpcnf_oem_str[7],
hdrp->mpcnf_prod_str[0],
hdrp->mpcnf_prod_str[1],
hdrp->mpcnf_prod_str[2],
hdrp->mpcnf_prod_str[3],
hdrp->mpcnf_prod_str[4],
hdrp->mpcnf_prod_str[5],
hdrp->mpcnf_prod_str[6],
hdrp->mpcnf_prod_str[7],
hdrp->mpcnf_prod_str[8],
hdrp->mpcnf_prod_str[9],
hdrp->mpcnf_prod_str[10],
hdrp->mpcnf_prod_str[11]);
}
}
static void
apic_free_apic_cpus(void)
{
if (apic_cpus != NULL) {
kmem_free(apic_cpus, apic_cpus_size);
apic_cpus = NULL;
apic_cpus_size = 0;
}
}
static int
acpi_probe(char *modname)
{
int i, intmax, index;
uint32_t id, ver;
int acpi_verboseflags = 0;
int madt_seen, madt_size;
ACPI_SUBTABLE_HEADER *ap;
ACPI_MADT_LOCAL_APIC *mpa;
ACPI_MADT_LOCAL_X2APIC *mpx2a;
ACPI_MADT_IO_APIC *mia;
ACPI_MADT_IO_SAPIC *misa;
ACPI_MADT_INTERRUPT_OVERRIDE *mio;
ACPI_MADT_NMI_SOURCE *mns;
ACPI_MADT_INTERRUPT_SOURCE *mis;
ACPI_MADT_LOCAL_APIC_NMI *mlan;
ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan;
ACPI_MADT_LOCAL_APIC_OVERRIDE *mao;
int sci;
iflag_t sci_flags;
volatile uint32_t *ioapic;
int ioapic_ix;
uint32_t *local_ids;
uint32_t *proc_ids;
uchar_t hid;
int warned = 0;
if (!apic_use_acpi)
return (PSM_FAILURE);
if (AcpiGetTable(ACPI_SIG_MADT, 1,
(ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
return (PSM_FAILURE);
apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
if (!apicadr)
return (PSM_FAILURE);
if ((local_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
KM_NOSLEEP)) == NULL)
return (PSM_FAILURE);
if ((proc_ids = (uint32_t *)kmem_zalloc(NCPU * sizeof (uint32_t),
KM_NOSLEEP)) == NULL) {
kmem_free(local_ids, NCPU * sizeof (uint32_t));
return (PSM_FAILURE);
}
id = apic_reg_ops->apic_read(APIC_LID_REG);
local_ids[0] = (uchar_t)(id >> 24);
apic_nproc = index = 1;
apic_io_max = 0;
ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
madt_size = acpi_mapic_dtp->Header.Length;
madt_seen = sizeof (*acpi_mapic_dtp);
while (madt_seen < madt_size) {
switch (ap->Type) {
case ACPI_MADT_TYPE_LOCAL_APIC:
mpa = (ACPI_MADT_LOCAL_APIC *) ap;
if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
if (mpa->Id == 255) {
cmn_err(CE_WARN, "!%s: encountered "
"invalid entry in MADT: CPU %d "
"has Local APIC Id equal to 255 ",
psm_name, mpa->ProcessorId);
}
if (mpa->Id == local_ids[0]) {
ASSERT(index == 1);
proc_ids[0] = mpa->ProcessorId;
} else if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
local_ids[index] = mpa->Id;
proc_ids[index] = mpa->ProcessorId;
index++;
apic_nproc++;
} else if (apic_nproc == NCPU && !warned) {
cmn_err(CE_WARN, "%s: CPU limit "
"exceeded"
#if !defined(__amd64)
" for 32-bit mode"
#endif
"; Solaris will use %d CPUs.",
psm_name, NCPU);
warned = 1;
}
}
break;
case ACPI_MADT_TYPE_IO_APIC:
mia = (ACPI_MADT_IO_APIC *) ap;
if (apic_io_max < MAX_IO_APIC) {
ioapic_ix = apic_io_max;
apic_io_id[apic_io_max] = mia->Id;
apic_io_vectbase[apic_io_max] =
mia->GlobalIrqBase;
apic_physaddr[apic_io_max] =
(uint32_t)mia->Address;
ioapic = apicioadr[apic_io_max] =
mapin_ioapic((uint32_t)mia->Address,
APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
if (!ioapic)
goto cleanup;
ioapic_mask_workaround[apic_io_max] =
apic_is_ioapic_AMD_813x(mia->Address);
apic_io_max++;
}
break;
case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
if (acpi_isop == NULL)
acpi_isop = mio;
acpi_iso_cnt++;
break;
case ACPI_MADT_TYPE_NMI_SOURCE:
/* UNIMPLEMENTED */
mns = (ACPI_MADT_NMI_SOURCE *) ap;
if (acpi_nmi_sp == NULL)
acpi_nmi_sp = mns;
acpi_nmi_scnt++;
cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
mns->GlobalIrq, mns->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
/* UNIMPLEMENTED */
mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
if (acpi_nmi_cp == NULL)
acpi_nmi_cp = mlan;
acpi_nmi_ccnt++;
cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
mlan->ProcessorId, mlan->IntiFlags,
mlan->Lint);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
/* UNIMPLEMENTED */
mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
cmn_err(CE_NOTE, "!apic: address override: %lx\n",
(long)mao->Address);
break;
case ACPI_MADT_TYPE_IO_SAPIC:
/* UNIMPLEMENTED */
misa = (ACPI_MADT_IO_SAPIC *) ap;
cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
misa->Id, misa->GlobalIrqBase,
(long)misa->Address);
break;
case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
/* UNIMPLEMENTED */
mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
cmn_err(CE_NOTE,
"!apic: irq source: %d %d %d 0x%x %d %d\n",
mis->Id, mis->Eid, mis->GlobalIrq,
mis->IntiFlags, mis->Type,
mis->IoSapicVector);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC:
mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
/*
* All logical processors with APIC ID values
* of 255 and greater will have their APIC
* reported through Processor X2APIC structure.
* All logical processors with APIC ID less than
* 255 will have their APIC reported through
* Processor Local APIC.
*
* Some systems apparently don't care and report all
* processors through Processor X2APIC structures. We
* warn about that but don't ignore those CPUs.
*/
if (mpx2a->LocalApicId < 255) {
cmn_err(CE_WARN, "!%s: ignoring invalid entry "
"in MADT: CPU %d has X2APIC Id %d (< 255)",
psm_name, mpx2a->Uid, mpx2a->LocalApicId);
}
if (mpx2a->LapicFlags & ACPI_MADT_ENABLED) {
if (mpx2a->LocalApicId == local_ids[0]) {
ASSERT(index == 1);
proc_ids[0] = mpx2a->Uid;
} else if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
local_ids[index] = mpx2a->LocalApicId;
proc_ids[index] = mpx2a->Uid;
index++;
apic_nproc++;
} else if (apic_nproc == NCPU && !warned) {
cmn_err(CE_WARN, "%s: CPU limit "
"exceeded"
#if !defined(__amd64)
" for 32-bit mode"
#endif
"; Solaris will use %d CPUs.",
psm_name, NCPU);
warned = 1;
}
}
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
/* UNIMPLEMENTED */
mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
if (mx2alan->Uid >> 8)
acpi_nmi_ccnt++;
#ifdef DEBUG
cmn_err(CE_NOTE,
"!apic: local x2apic nmi: %d 0x%x %d\n",
mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
#endif
break;
case ACPI_MADT_TYPE_RESERVED:
default:
break;
}
/* advance to next entry */
madt_seen += ap->Length;
ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
}
/*
* allocate enough space for possible hot-adding of CPUs.
* max_ncpus may be less than apic_nproc if it's set by user.
*/
if (plat_dr_support_cpu()) {
apic_max_nproc = max_ncpus;
}
apic_cpus_size = max(apic_nproc, max_ncpus) * sizeof (*apic_cpus);
if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
goto cleanup;
/*
* ACPI doesn't provide the local apic ver, get it directly from the
* local apic
*/
ver = apic_reg_ops->apic_read(APIC_VERS_REG);
for (i = 0; i < apic_nproc; i++) {
apic_cpus[i].aci_local_id = local_ids[i];
apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
apic_cpus[i].aci_processor_id = proc_ids[i];
/* Only build mapping info for CPUs present at boot. */
if (i < boot_ncpus)
(void) acpica_map_cpu(i, proc_ids[i]);
}
/*
* To support CPU dynamic reconfiguration, the apic CPU info structure
* for each possible CPU will be pre-allocated at boot time.
* The state for each apic CPU info structure will be assigned according
* to the following rules:
* Rule 1:
* Slot index range: [0, min(apic_nproc, boot_ncpus))
* State flags: 0
* Note: cpu exists and will be configured/enabled at boot time
* Rule 2:
* Slot index range: [boot_ncpus, apic_nproc)
* State flags: APIC_CPU_FREE | APIC_CPU_DIRTY
* Note: cpu exists but won't be configured/enabled at boot time
* Rule 3:
* Slot index range: [apic_nproc, boot_ncpus)
* State flags: APIC_CPU_FREE
* Note: cpu doesn't exist at boot time
* Rule 4:
* Slot index range: [max(apic_nproc, boot_ncpus), max_ncpus)
* State flags: APIC_CPU_FREE
* Note: cpu doesn't exist at boot time
*/
CPUSET_ZERO(apic_cpumask);
for (i = 0; i < min(boot_ncpus, apic_nproc); i++) {
CPUSET_ADD(apic_cpumask, i);
apic_cpus[i].aci_status = 0;
}
for (i = boot_ncpus; i < apic_nproc; i++) {
apic_cpus[i].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
}
for (i = apic_nproc; i < boot_ncpus; i++) {
apic_cpus[i].aci_status = APIC_CPU_FREE;
}
for (i = max(boot_ncpus, apic_nproc); i < max_ncpus; i++) {
apic_cpus[i].aci_status = APIC_CPU_FREE;
}
for (i = 0; i < apic_io_max; i++) {
ioapic_ix = i;
/*
* need to check Sitka on the following acpi problem
* On the Sitka, the ioapic's apic_id field isn't reporting
* the actual io apic id. We have reported this problem
* to Intel. Until they fix the problem, we will get the
* actual id directly from the ioapic.
*/
id = ioapic_read(ioapic_ix, APIC_ID_CMD);
hid = (uchar_t)(id >> 24);
if (hid != apic_io_id[i]) {
if (apic_io_id[i] == 0)
apic_io_id[i] = hid;
else { /* set ioapic id to whatever reported by ACPI */
id = ((uint32_t)apic_io_id[i]) << 24;
ioapic_write(ioapic_ix, APIC_ID_CMD, id);
}
}
ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
apic_io_ver[i] = (uchar_t)(ver & 0xff);
intmax = (ver >> 16) & 0xff;
apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
if (apic_first_avail_irq <= apic_io_vectend[i])
apic_first_avail_irq = apic_io_vectend[i] + 1;
}
/*
* Process SCI configuration here
* An error may be returned here if
* acpi-user-options specifies legacy mode
* (no SCI, no ACPI mode)
*/
if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
sci = -1;
/*
* Now call acpi_init() to generate namespaces
* If this fails, we don't attempt to use ACPI
* even if we were able to get a MADT above
*/
if (acpica_init() != AE_OK)
goto cleanup;
/*
* Call acpica_build_processor_map() now that we have
* ACPI namesspace access
*/
(void) acpica_build_processor_map();
/*
* Squirrel away the SCI and flags for later on
* in apic_picinit() when we're ready
*/
apic_sci_vect = sci;
apic_sci_flags = sci_flags;
if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
goto cleanup;
/* Enable ACPI APIC interrupt routing */
if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
apic_enable_acpi = 1;
if (apic_sci_vect > 0) {
acpica_set_core_feature(ACPI_FEATURE_SCI_EVENT);
}
if (apic_use_acpi_madt_only) {
cmn_err(CE_CONT,
"?Using ACPI for CPU/IOAPIC information ONLY\n");
}
#if !defined(__xpv)
/*
* probe ACPI for hpet information here which is used later
* in apic_picinit().
*/
if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
}
#endif
kmem_free(local_ids, NCPU * sizeof (uint32_t));
kmem_free(proc_ids, NCPU * sizeof (uint32_t));
return (PSM_SUCCESS);
}
/* if setting APIC mode failed above, we fall through to cleanup */
cleanup:
apic_free_apic_cpus();
if (apicadr != NULL) {
mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
apicadr = NULL;
}
apic_max_nproc = -1;
apic_nproc = 0;
for (i = 0; i < apic_io_max; i++) {
mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
apicioadr[i] = NULL;
}
apic_io_max = 0;
acpi_isop = NULL;
acpi_iso_cnt = 0;
acpi_nmi_sp = NULL;
acpi_nmi_scnt = 0;
acpi_nmi_cp = NULL;
acpi_nmi_ccnt = 0;
kmem_free(local_ids, NCPU * sizeof (uint32_t));
kmem_free(proc_ids, NCPU * sizeof (uint32_t));
return (PSM_FAILURE);
}
/*
* Handle default configuration. Fill in reqd global variables & tables
* Fill all details as MP table does not give any more info
*/
static int
apic_handle_defconf()
{
uint_t lid;
/* Failed to probe ACPI MADT tables, disable CPU DR. */
apic_max_nproc = -1;
apic_free_apic_cpus();
plat_dr_disable_cpu();
apicioadr[0] = (void *)mapin_ioapic(APIC_IO_ADDR,
APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
apicadr = (void *)psm_map_phys(APIC_LOCAL_ADDR,
APIC_LOCAL_MEMLEN, PROT_READ);
apic_cpus_size = 2 * sizeof (*apic_cpus);
apic_cpus = (apic_cpus_info_t *)
kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
goto apic_handle_defconf_fail;
CPUSET_ONLY(apic_cpumask, 0);
CPUSET_ADD(apic_cpumask, 1);
apic_nproc = 2;
lid = apic_reg_ops->apic_read(APIC_LID_REG);
apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
/*
* According to the PC+MP spec 1.1, the local ids
* for the default configuration has to be 0 or 1
*/
if (apic_cpus[0].aci_local_id == 1)
apic_cpus[1].aci_local_id = 0;
else if (apic_cpus[0].aci_local_id == 0)
apic_cpus[1].aci_local_id = 1;
else
goto apic_handle_defconf_fail;
apic_io_id[0] = 2;
apic_io_max = 1;
if (apic_defconf >= 5) {
apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
apic_io_ver[0] = APIC_INTEGRATED_VERS;
} else {
apic_cpus[0].aci_local_ver = 0; /* 82489 DX */
apic_cpus[1].aci_local_ver = 0;
apic_io_ver[0] = 0;
}
if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
return (PSM_SUCCESS);
apic_handle_defconf_fail:
if (apicadr)
mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
if (apicioadr[0])
mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
return (PSM_FAILURE);
}
/* Parse the entries in MP configuration table and collect info that we need */
static int
apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
{
struct apic_procent *procp;
struct apic_bus *busp;
struct apic_io_entry *ioapicp;
struct apic_io_intr *intrp;
int ioapic_ix;
uint_t lid;
uint32_t id;
uchar_t hid;
int warned = 0;
/*LINTED: pointer cast may result in improper alignment */
procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
/* No need to count cpu entries if we won't use them */
if (!bypass_cpus_and_ioapics) {
/* Find max # of CPUS and allocate structure accordingly */
apic_nproc = 0;
CPUSET_ZERO(apic_cpumask);
while (procp->proc_entry == APIC_CPU_ENTRY) {
if (procp->proc_cpuflags & CPUFLAGS_EN) {
if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
CPUSET_ADD(apic_cpumask, apic_nproc);
apic_nproc++;
} else if (apic_nproc == NCPU && !warned) {
cmn_err(CE_WARN, "%s: CPU limit "
"exceeded"
#if !defined(__amd64)
" for 32-bit mode"
#endif
"; Solaris will use %d CPUs.",
psm_name, NCPU);
warned = 1;
}
}
procp++;
}
apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
return (PSM_FAILURE);
}
/*LINTED: pointer cast may result in improper alignment */
procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
/*
* start with index 1 as 0 needs to be filled in with Boot CPU, but
* if we're bypassing this information, it has already been filled
* in by acpi_probe(), so don't overwrite it.
*/
if (!bypass_cpus_and_ioapics)
apic_nproc = 1;
while (procp->proc_entry == APIC_CPU_ENTRY) {
/* check whether the cpu exists or not */
if (!bypass_cpus_and_ioapics &&
procp->proc_cpuflags & CPUFLAGS_EN) {
if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
lid = apic_reg_ops->apic_read(APIC_LID_REG);
apic_cpus[0].aci_local_id = procp->proc_apicid;
if (apic_cpus[0].aci_local_id !=
(uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
return (PSM_FAILURE);
}
apic_cpus[0].aci_local_ver =
procp->proc_version;
} else if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
apic_cpus[apic_nproc].aci_local_id =
procp->proc_apicid;
apic_cpus[apic_nproc].aci_local_ver =
procp->proc_version;
apic_nproc++;
}
}
procp++;
}
/*
* Save start of bus entries for later use.
* Get EISA level cntrl if EISA bus is present.
* Also get the CPI bus id for single CPI bus case
*/
apic_busp = busp = (struct apic_bus *)procp;
while (busp->bus_entry == APIC_BUS_ENTRY) {
lid = apic_find_bus_type((char *)&busp->bus_str1);
if (lid == BUS_EISA) {
eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
} else if (lid == BUS_PCI) {
/*
* apic_single_pci_busid will be used only if
* apic_pic_bus_total is equal to 1
*/
apic_pci_bus_total++;
apic_single_pci_busid = busp->bus_id;
}
busp++;
}
ioapicp = (struct apic_io_entry *)busp;
if (!bypass_cpus_and_ioapics)
apic_io_max = 0;
do {
if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
apic_io_id[apic_io_max] = ioapicp->io_apicid;
apic_io_ver[apic_io_max] = ioapicp->io_version;
apicioadr[apic_io_max] =
(void *)mapin_ioapic(
(uint32_t)ioapicp->io_apic_addr,
APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
if (!apicioadr[apic_io_max])
return (PSM_FAILURE);
ioapic_mask_workaround[apic_io_max] =
apic_is_ioapic_AMD_813x(
ioapicp->io_apic_addr);
ioapic_ix = apic_io_max;
id = ioapic_read(ioapic_ix, APIC_ID_CMD);
hid = (uchar_t)(id >> 24);
if (hid != apic_io_id[apic_io_max]) {
if (apic_io_id[apic_io_max] == 0)
apic_io_id[apic_io_max] = hid;
else {
/*
* set ioapic id to whatever
* reported by MPS
*
* may not need to set index
* again ???
* take it out and try
*/
id = ((uint32_t)
apic_io_id[apic_io_max]) <<
24;
ioapic_write(ioapic_ix,
APIC_ID_CMD, id);
}
}
apic_io_max++;
}
}
ioapicp++;
} while (ioapicp->io_entry == APIC_IO_ENTRY);
apic_io_intrp = (struct apic_io_intr *)ioapicp;
intrp = apic_io_intrp;
while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
(apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
apic_irq_translate = 1;
break;
}
intrp++;
}
return (PSM_SUCCESS);
}
boolean_t
apic_cpu_in_range(int cpu)
{
cpu &= ~IRQ_USER_BOUND;
/* Check whether cpu id is in valid range. */
if (cpu < 0 || cpu >= apic_nproc) {
return (B_FALSE);
} else if (apic_max_nproc != -1 && cpu >= apic_max_nproc) {
/*
* Check whether cpuid is in valid range if CPU DR is enabled.
*/
return (B_FALSE);
} else if (!CPU_IN_SET(apic_cpumask, cpu)) {
return (B_FALSE);
}
return (B_TRUE);
}
processorid_t
apic_get_next_bind_cpu(void)
{
int i, count;
processorid_t cpuid = 0;
for (count = 0; count < apic_nproc; count++) {
if (apic_next_bind_cpu >= apic_nproc) {
apic_next_bind_cpu = 0;
}
i = apic_next_bind_cpu++;
if (apic_cpu_in_range(i)) {
cpuid = i;
break;
}
}
return (cpuid);
}
uint16_t
apic_get_apic_version()
{
int i;
uchar_t min_io_apic_ver = 0;
static uint16_t version; /* Cache as value is constant */
static boolean_t found = B_FALSE; /* Accomodate zero version */
if (found == B_FALSE) {
found = B_TRUE;
/*
* Don't assume all IO APICs in the system are the same.
*
* Set to the minimum version.
*/
for (i = 0; i < apic_io_max; i++) {
if ((apic_io_ver[i] != 0) &&
((min_io_apic_ver == 0) ||
(min_io_apic_ver >= apic_io_ver[i])))
min_io_apic_ver = apic_io_ver[i];
}
/* Assume all local APICs are of the same version. */
version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
}
return (version);
}
static struct apic_mpfps_hdr *
apic_find_fps_sig(caddr_t cptr, int len)
{
int i;
/* Look for the pattern "_MP_" */
for (i = 0; i < len; i += 16) {
if ((*(cptr+i) == '_') &&
(*(cptr+i+1) == 'M') &&
(*(cptr+i+2) == 'P') &&
(*(cptr+i+3) == '_'))
/*LINTED: pointer cast may result in improper alignment */
return ((struct apic_mpfps_hdr *)(cptr + i));
}
return (NULL);
}
static int
apic_checksum(caddr_t bptr, int len)
{
int i;
uchar_t cksum;
cksum = 0;
for (i = 0; i < len; i++)
cksum += *bptr++;
return ((int)cksum);
}
/*
* On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
* needs special handling. We may need to chase up the device tree,
* using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
* to find the IPIN at the root bus that relates to the IPIN on the
* subsidiary bus (for ACPI or MP). We may, however, have an entry
* in the MP table or the ACPI namespace for this device itself.
* We handle both cases in the search below.
*/
/* this is the non-acpi version */
int
apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
struct apic_io_intr **intrp)
{
dev_info_t *dipp, *dip;
int pci_irq;
ddi_acc_handle_t cfg_handle;
int bridge_devno, bridge_bus;
int ipin;
dip = idip;
/*CONSTCOND*/
while (1) {
if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
(pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
return (-1);
if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
pci_config_teardown(&cfg_handle);
if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
NULL) != 0)
return (-1);
/*
* This is the rotating scheme documented in the
* PCI-to-PCI spec. If the PCI-to-PCI bridge is
* behind another PCI-to-PCI bridge, then it needs
* to keep ascending until an interrupt entry is
* found or the root is reached.
*/
ipin = (child_devno + child_ipin) % PCI_INTD;
if (bridge_bus == 0 && apic_pci_bus_total == 1)
bridge_bus = (int)apic_single_pci_busid;
pci_irq = ((bridge_devno & 0x1f) << 2) |
(ipin & 0x3);
if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
bridge_bus)) != NULL) {
return (pci_irq);
}
dip = dipp;
child_devno = bridge_devno;
child_ipin = ipin;
} else {
pci_config_teardown(&cfg_handle);
return (-1);
}
}
/*LINTED: function will not fall off the bottom */
}
uchar_t
acpi_find_ioapic(int irq)
{
int i;
for (i = 0; i < apic_io_max; i++) {
if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
return ((uchar_t)i);
}
return (0xFF); /* shouldn't happen */
}
/*
* See if two irqs are compatible for sharing a vector.
* Currently we only support sharing of PCI devices.
*/
static int
acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
{
uint_t level1, po1;
uint_t level2, po2;
/* Assume active high by default */
po1 = 0;
po2 = 0;
if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
return (0);
if (iflag1.intr_el == INTR_EL_CONFORM)
level1 = AV_LEVEL;
else
level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
(iflag1.intr_po == INTR_PO_CONFORM)))
po1 = AV_ACTIVE_LOW;
if (iflag2.intr_el == INTR_EL_CONFORM)
level2 = AV_LEVEL;
else
level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
(iflag2.intr_po == INTR_PO_CONFORM)))
po2 = AV_ACTIVE_LOW;
if ((level1 == level2) && (po1 == po2))
return (1);
return (0);
}
struct apic_io_intr *
apic_find_io_intr_w_busid(int irqno, int busid)
{
struct apic_io_intr *intrp;
/*
* It can have more than 1 entry with same source bus IRQ,
* but unique with the source bus id
*/
intrp = apic_io_intrp;
if (intrp != NULL) {
while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
if (intrp->intr_irq == irqno &&
intrp->intr_busid == busid &&
intrp->intr_type == IO_INTR_INT)
return (intrp);
intrp++;
}
}
APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
"busid %x:%x\n", irqno, busid));
return ((struct apic_io_intr *)NULL);
}
struct mps_bus_info {
char *bus_name;
int bus_id;
} bus_info_array[] = {
"ISA ", BUS_ISA,
"PCI ", BUS_PCI,
"EISA ", BUS_EISA,
"XPRESS", BUS_XPRESS,
"PCMCIA", BUS_PCMCIA,
"VL ", BUS_VL,
"CBUS ", BUS_CBUS,
"CBUSII", BUS_CBUSII,
"FUTURE", BUS_FUTURE,
"INTERN", BUS_INTERN,
"MBI ", BUS_MBI,
"MBII ", BUS_MBII,
"MPI ", BUS_MPI,
"MPSA ", BUS_MPSA,
"NUBUS ", BUS_NUBUS,
"TC ", BUS_TC,
"VME ", BUS_VME,
"PCI-E ", BUS_PCIE
};
static int
apic_find_bus_type(char *bus)
{
int i = 0;
for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
if (strncmp(bus, bus_info_array[i].bus_name,
strlen(bus_info_array[i].bus_name)) == 0)
return (bus_info_array[i].bus_id);
APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
return (0);
}
static int
apic_find_bus(int busid)
{
struct apic_bus *busp;
busp = apic_busp;
while (busp->bus_entry == APIC_BUS_ENTRY) {
if (busp->bus_id == busid)
return (apic_find_bus_type((char *)&busp->bus_str1));
busp++;
}
APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
return (0);
}
int
apic_find_bus_id(int bustype)
{
struct apic_bus *busp;
busp = apic_busp;
while (busp->bus_entry == APIC_BUS_ENTRY) {
if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
return (busp->bus_id);
busp++;
}
APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
bustype));
return (-1);
}
/*
* Check if a particular irq need to be reserved for any io_intr
*/
static struct apic_io_intr *
apic_find_io_intr(int irqno)
{
struct apic_io_intr *intrp;
intrp = apic_io_intrp;
if (intrp != NULL) {
while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
if (intrp->intr_irq == irqno &&
intrp->intr_type == IO_INTR_INT)
return (intrp);
intrp++;
}
}
return ((struct apic_io_intr *)NULL);
}
/*
* Check if the given ioapicindex intin combination has already been assigned
* an irq. If so return irqno. Else -1
*/
int
apic_find_intin(uchar_t ioapic, uchar_t intin)
{
apic_irq_t *irqptr;
int i;
/* find ioapic and intin in the apic_irq_table[] and return the index */
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
irqptr = apic_irq_table[i];
while (irqptr) {
if ((irqptr->airq_mps_intr_index >= 0) &&
(irqptr->airq_intin_no == intin) &&
(irqptr->airq_ioapicindex == ioapic)) {
APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
"entry for ioapic:intin %x:%x "
"shared interrupts ?", ioapic, intin));
return (i);
}
irqptr = irqptr->airq_next;
}
}
return (-1);
}
int
apic_allocate_irq(int irq)
{
int freeirq, i;
if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
(irq - 1))) == -1) {
/*
* if BIOS really defines every single irq in the mps
* table, then don't worry about conflicting with
* them, just use any free slot in apic_irq_table
*/
for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
if ((apic_irq_table[i] == NULL) ||
apic_irq_table[i]->airq_mps_intr_index ==
FREE_INDEX) {
freeirq = i;
break;
}
}
if (freeirq == -1) {
/* This shouldn't happen, but just in case */
cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
return (-1);
}
}
if (apic_irq_table[freeirq] == NULL) {
apic_irq_table[freeirq] =
kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
if (apic_irq_table[freeirq] == NULL) {
cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
psm_name);
return (-1);
}
apic_irq_table[freeirq]->airq_temp_cpu = IRQ_UNINIT;
apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
}
return (freeirq);
}
static int
apic_find_free_irq(int start, int end)
{
int i;
for (i = start; i <= end; i++)
/* Check if any I/O entry needs this IRQ */
if (apic_find_io_intr(i) == NULL) {
/* Then see if it is free */
if ((apic_irq_table[i] == NULL) ||
(apic_irq_table[i]->airq_mps_intr_index ==
FREE_INDEX)) {
return (i);
}
}
return (-1);
}
/*
* compute the polarity, trigger mode and vector for programming into
* the I/O apic and record in airq_rdt_entry.
*/
void
apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
{
int ioapicindex, bus_type, vector;
short intr_index;
uint_t level, po, io_po;
struct apic_io_intr *iointrp;
intr_index = irqptr->airq_mps_intr_index;
DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
"irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
(void *)irqptr->airq_dip, irqptr->airq_vector));
if (intr_index == RESERVE_INDEX) {
apic_error |= APIC_ERR_INVALID_INDEX;
return;
} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
return;
}
vector = irqptr->airq_vector;
ioapicindex = irqptr->airq_ioapicindex;
/* Assume edge triggered by default */
level = 0;
/* Assume active high by default */
po = 0;
if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
ASSERT(irq < 16);
if (eisa_level_intr_mask & (1 << irq))
level = AV_LEVEL;
if (intr_index == FREE_INDEX && apic_defconf == 0)
apic_error |= APIC_ERR_INVALID_INDEX;
} else if (intr_index == ACPI_INDEX) {
bus_type = irqptr->airq_iflag.bustype;
if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
if (bus_type == BUS_PCI)
level = AV_LEVEL;
} else
level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
AV_LEVEL : 0;
if (level &&
((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
(irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
bus_type == BUS_PCI)))
po = AV_ACTIVE_LOW;
} else {
iointrp = apic_io_intrp + intr_index;
bus_type = apic_find_bus(iointrp->intr_busid);
if (iointrp->intr_el == INTR_EL_CONFORM) {
if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
level = AV_LEVEL;
else if (bus_type == BUS_PCI)
level = AV_LEVEL;
} else
level = (iointrp->intr_el == INTR_EL_LEVEL) ?
AV_LEVEL : 0;
if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
(iointrp->intr_po == INTR_PO_CONFORM &&
bus_type == BUS_PCI)))
po = AV_ACTIVE_LOW;
}
if (level)
apic_level_intr[irq] = 1;
/*
* The 82489DX External APIC cannot do active low polarity interrupts.
*/
if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
io_po = po;
else
io_po = 0;
if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
prom_printf("setio: ioapic=0x%x intin=0x%x level=0x%x po=0x%x "
"vector=0x%x cpu=0x%x\n\n", ioapicindex,
irqptr->airq_intin_no, level, io_po, vector,
irqptr->airq_cpu);
irqptr->airq_rdt_entry = level|io_po|vector;
}
int
apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
int ipin, int *pci_irqp, iflag_t *intr_flagp)
{
int status;
acpi_psm_lnk_t acpipsmlnk;
if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
intr_flagp)) == ACPI_PSM_SUCCESS) {
APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
"from cache for device %s, instance #%d\n", psm_name,
*pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
return (status);
}
bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
&acpipsmlnk)) == ACPI_PSM_FAILURE) {
APIC_VERBOSE_IRQ((CE_WARN, "%s: "
" acpi_translate_pci_irq failed for device %s, instance"
" #%d", psm_name, ddi_get_name(dip),
ddi_get_instance(dip)));
return (status);
}
if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
intr_flagp);
if (status != ACPI_PSM_SUCCESS) {
status = acpi_get_current_irq_resource(&acpipsmlnk,
pci_irqp, intr_flagp);
}
}
if (status == ACPI_PSM_SUCCESS) {
acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
intr_flagp, &acpipsmlnk);
APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
"new irq %d for device %s, instance #%d\n", psm_name,
*pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
}
return (status);
}
/*
* Adds an entry to the irq list passed in, and returns the new list.
* Entries are added in priority order (lower numerical priorities are
* placed closer to the head of the list)
*/
static prs_irq_list_t *
acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
iflag_t *iflagp, acpi_prs_private_t *prsprvp)
{
struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
newent->list_prio = priority;
newent->irq = irq;
newent->intrflags = *iflagp;
newent->prsprv = *prsprvp;
/* ->next is NULL from kmem_zalloc */
/*
* New list -- return the new entry as the list.
*/
if (listp == NULL)
return (newent);
/*
* Save original list pointer for return (since we're not modifying
* the head)
*/
origlistp = listp;
/*
* Insertion sort, with entries with identical keys stored AFTER
* existing entries (the less-than-or-equal test of priority does
* this for us).
*/
while (listp != NULL && listp->list_prio <= priority) {
prevp = listp;
listp = listp->next;
}
newent->next = listp;
if (prevp == NULL) { /* Add at head of list (newent is the new head) */
return (newent);
} else {
prevp->next = newent;
return (origlistp);
}
}
/*
* Frees the list passed in, deallocating all memory and leaving *listpp
* set to NULL.
*/
static void
acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
{
struct prs_irq_list_ent *nextp;
ASSERT(listpp != NULL);
while (*listpp != NULL) {
nextp = (*listpp)->next;
kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
*listpp = nextp;
}
}
/*
* apic_choose_irqs_from_prs returns a list of irqs selected from the list of
* irqs returned by the link device's _PRS method. The irqs are chosen
* to minimize contention in situations where the interrupt link device
* can be programmed to steer interrupts to different interrupt controller
* inputs (some of which may already be in use). The list is sorted in order
* of irqs to use, with the highest priority given to interrupt controller
* inputs that are not shared. When an interrupt controller input
* must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
* returned list in the order that minimizes sharing (thereby ensuring lowest
* possible latency from interrupt trigger time to ISR execution time).
*/
static prs_irq_list_t *
apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
int crs_irq)
{
int32_t irq;
int i;
prs_irq_list_t *prsirqlistp = NULL;
iflag_t iflags;
while (irqlistent != NULL) {
irqlistent->intr_flags.bustype = BUS_PCI;
for (i = 0; i < irqlistent->num_irqs; i++) {
irq = irqlistent->irqs[i];
if (irq <= 0) {
/* invalid irq number */
continue;
}
if ((irq < 16) && (apic_reserved_irqlist[irq]))
continue;
if ((apic_irq_table[irq] == NULL) ||
(apic_irq_table[irq]->airq_dip == dip)) {
prsirqlistp = acpi_insert_prs_irq_ent(
prsirqlistp, 0 /* Highest priority */, irq,
&irqlistent->intr_flags,
&irqlistent->acpi_prs_prv);
/*
* If we do not prefer the current irq from _CRS
* or if we do and this irq is the same as the
* current irq from _CRS, this is the one
* to pick.
*/
if (!(apic_prefer_crs) || (irq == crs_irq)) {
return (prsirqlistp);
}
continue;
}
/*
* Edge-triggered interrupts cannot be shared
*/
if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
continue;
/*
* To work around BIOSes that contain incorrect
* interrupt polarity information in interrupt
* descriptors returned by _PRS, we assume that
* the polarity of the other device sharing this
* interrupt controller input is compatible.
* If it's not, the caller will catch it when
* the caller invokes the link device's _CRS method
* (after invoking its _SRS method).
*/
iflags = irqlistent->intr_flags;
iflags.intr_po =
apic_irq_table[irq]->airq_iflag.intr_po;
if (!acpi_intr_compatible(iflags,
apic_irq_table[irq]->airq_iflag)) {
APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
"not compatible [%x:%x:%x !~ %x:%x:%x]",
psm_name, irq,
iflags.intr_po,
iflags.intr_el,
iflags.bustype,
apic_irq_table[irq]->airq_iflag.intr_po,
apic_irq_table[irq]->airq_iflag.intr_el,
apic_irq_table[irq]->airq_iflag.bustype));
continue;
}
/*
* If we prefer the irq from _CRS, no need
* to search any further (and make sure
* to add this irq with the highest priority
* so it's tried first).
*/
if (crs_irq == irq && apic_prefer_crs) {
return (acpi_insert_prs_irq_ent(
prsirqlistp,
0 /* Highest priority */,
irq, &iflags,
&irqlistent->acpi_prs_prv));
}
/*
* Priority is equal to the share count (lower
* share count is higher priority). Note that
* the intr flags passed in here are the ones we
* changed above -- if incorrect, it will be
* caught by the caller's _CRS flags comparison.
*/
prsirqlistp = acpi_insert_prs_irq_ent(
prsirqlistp,
apic_irq_table[irq]->airq_share, irq,
&iflags, &irqlistent->acpi_prs_prv);
}
/* Go to the next irqlist entry */
irqlistent = irqlistent->next;
}
return (prsirqlistp);
}
/*
* Configures the irq for the interrupt link device identified by
* acpipsmlnkp.
*
* Gets the current and the list of possible irq settings for the
* device. If apic_unconditional_srs is not set, and the current
* resource setting is in the list of possible irq settings,
* current irq resource setting is passed to the caller.
*
* Otherwise, picks an irq number from the list of possible irq
* settings, and sets the irq of the device to this value.
* If prefer_crs is set, among a set of irq numbers in the list that have
* the least number of devices sharing the interrupt, we pick current irq
* resource setting if it is a member of this set.
*
* Passes the irq number in the value pointed to by pci_irqp, and
* polarity and sensitivity in the structure pointed to by dipintrflagp
* to the caller.
*
* Note that if setting the irq resource failed, but successfuly obtained
* the current irq resource settings, passes the current irq resources
* and considers it a success.
*
* Returns:
* ACPI_PSM_SUCCESS on success.
*
* ACPI_PSM_FAILURE if an error occured during the configuration or
* if a suitable irq was not found for this device, or if setting the
* irq resource and obtaining the current resource fails.
*
*/
static int
apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
int *pci_irqp, iflag_t *dipintr_flagp)
{
int32_t irq;
int cur_irq = -1;
acpi_irqlist_t *irqlistp;
prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
boolean_t found_irq = B_FALSE;
dipintr_flagp->bustype = BUS_PCI;
if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
== ACPI_PSM_FAILURE) {
APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
"or assign IRQ for device %s, instance #%d: The system was "
"unable to get the list of potential IRQs from ACPI.",
psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
return (ACPI_PSM_FAILURE);
}
if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
(cur_irq > 0)) {
/*
* If an IRQ is set in CRS and that IRQ exists in the set
* returned from _PRS, return that IRQ, otherwise print
* a warning
*/
if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
== ACPI_PSM_SUCCESS) {
ASSERT(pci_irqp != NULL);
*pci_irqp = cur_irq;
acpi_free_irqlist(irqlistp);
return (ACPI_PSM_SUCCESS);
}
APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
"current irq %d for device %s, instance #%d in ACPI's "
"list of possible irqs for this device. Picking one from "
" the latter list.", psm_name, cur_irq, ddi_get_name(dip),
ddi_get_instance(dip)));
}
if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
cur_irq)) == NULL) {
APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
"suitable irq from the list of possible irqs for device "
"%s, instance #%d in ACPI's list of possible irqs",
psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
acpi_free_irqlist(irqlistp);
return (ACPI_PSM_FAILURE);
}
acpi_free_irqlist(irqlistp);
for (prs_irq_entp = prs_irq_listp;
prs_irq_entp != NULL && found_irq == B_FALSE;
prs_irq_entp = prs_irq_entp->next) {
acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
irq = prs_irq_entp->irq;
APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
"device %s instance #%d\n", psm_name, irq,
ddi_get_name(dip), ddi_get_instance(dip)));
if ((acpi_set_irq_resource(acpipsmlnkp, irq))
== ACPI_PSM_SUCCESS) {
/*
* setting irq was successful, check to make sure CRS
* reflects that. If CRS does not agree with what we
* set, return the irq that was set.
*/
if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
dipintr_flagp) == ACPI_PSM_SUCCESS) {
if (cur_irq != irq)
APIC_VERBOSE_IRQ((CE_WARN,
"!%s: IRQ resource set "
"(irqno %d) for device %s "
"instance #%d, differs from "
"current setting irqno %d",
psm_name, irq, ddi_get_name(dip),
ddi_get_instance(dip), cur_irq));
} else {
/*
* On at least one system, there was a bug in
* a DSDT method called by _STA, causing _STA to
* indicate that the link device was disabled
* (when, in fact, it was enabled). Since _SRS
* succeeded, assume that _CRS is lying and use
* the iflags from this _PRS interrupt choice.
* If we're wrong about the flags, the polarity
* will be incorrect and we may get an interrupt
* storm, but there's not much else we can do
* at this point.
*/
*dipintr_flagp = prs_irq_entp->intrflags;
}
/*
* Return the irq that was set, and not what _CRS
* reports, since _CRS has been seen to return
* different IRQs than what was passed to _SRS on some
* systems (and just not return successfully on others).
*/
cur_irq = irq;
found_irq = B_TRUE;
} else {
APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
"irq %d failed for device %s instance #%d",
psm_name, irq, ddi_get_name(dip),
ddi_get_instance(dip)));
if (cur_irq == -1) {
acpi_destroy_prs_irq_list(&prs_irq_listp);
return (ACPI_PSM_FAILURE);
}
}
}
acpi_destroy_prs_irq_list(&prs_irq_listp);
if (!found_irq)
return (ACPI_PSM_FAILURE);
ASSERT(pci_irqp != NULL);
*pci_irqp = cur_irq;
return (ACPI_PSM_SUCCESS);
}
void
ioapic_disable_redirection()
{
int ioapic_ix;
int intin_max;
int intin_ix;
/* Disable the I/O APIC redirection entries */
for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
/* Bits 23-16 define the maximum redirection entries */
intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
& 0xff;
for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
/*
* The assumption here is that this is safe, even for
* systems with IOAPICs that suffer from the hardware
* erratum because all devices have been quiesced before
* this function is called from apic_shutdown()
* (or equivalent). If that assumption turns out to be
* false, this mask operation can induce the same
* erratum result we're trying to avoid.
*/
ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
AV_MASK);
}
}
}
/*
* Looks for an IOAPIC with the specified physical address in the /ioapics
* node in the device tree (created by the PCI enumerator).
*/
static boolean_t
apic_is_ioapic_AMD_813x(uint32_t physaddr)
{
/*
* Look in /ioapics, for the ioapic with
* the physical address given
*/
dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
dev_info_t *ioapic_child;
boolean_t rv = B_FALSE;
int vid, did;
uint64_t ioapic_paddr;
boolean_t done = B_FALSE;
if (ioapicsnode == NULL)
return (B_FALSE);
/* Load first child: */
ioapic_child = ddi_get_child(ioapicsnode);
while (!done && ioapic_child != 0) { /* Iterate over children */
if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
!= 0 && physaddr == ioapic_paddr) {
vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
if (vid == VENID_AMD) {
did = ddi_prop_get_int(DDI_DEV_T_ANY,
ioapic_child, DDI_PROP_DONTPASS,
IOAPICS_PROP_DEVID, 0);
if (did == DEVID_8131_IOAPIC ||
did == DEVID_8132_IOAPIC) {
rv = B_TRUE;
done = B_TRUE;
}
}
}
if (!done)
ioapic_child = ddi_get_next_sibling(ioapic_child);
}
/* The ioapics node was held by ddi_find_devinfo, so release it */
ndi_rele_devi(ioapicsnode);
return (rv);
}
struct apic_state {
int32_t as_task_reg;
int32_t as_dest_reg;
int32_t as_format_reg;
int32_t as_local_timer;
int32_t as_pcint_vect;
int32_t as_int_vect0;
int32_t as_int_vect1;
int32_t as_err_vect;
int32_t as_init_count;
int32_t as_divide_reg;
int32_t as_spur_int_reg;
uint32_t as_ioapic_ids[MAX_IO_APIC];
};
static int
apic_acpi_enter_apicmode(void)
{
ACPI_OBJECT_LIST arglist;
ACPI_OBJECT arg;
ACPI_STATUS status;
/* Setup parameter object */
arglist.Count = 1;
arglist.Pointer = &arg;
arg.Type = ACPI_TYPE_INTEGER;
arg.Integer.Value = ACPI_APIC_MODE;
status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
if (ACPI_FAILURE(status))
return (PSM_FAILURE);
else
return (PSM_SUCCESS);
}
static void
apic_save_state(struct apic_state *sp)
{
int i, cpuid;
ulong_t iflag;
PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
/*
* First the local APIC.
*/
sp->as_task_reg = apic_reg_ops->apic_get_pri();
sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG);
if (apic_mode == LOCAL_APIC)
sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
/*
* If on the boot processor then save the IOAPICs' IDs
*/
if ((cpuid = psm_get_cpu_id()) == 0) {
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
for (i = 0; i < apic_io_max; i++)
sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
/* apic_state() is currently invoked only in Suspend/Resume */
apic_cpus[cpuid].aci_status |= APIC_CPU_SUSPEND;
}
static void
apic_restore_state(struct apic_state *sp)
{
int i;
ulong_t iflag;
/*
* First the local APIC.
*/
apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
if (apic_mode == LOCAL_APIC) {
apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
}
apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
/*
* the following only needs to be done once, so we do it on the
* boot processor, since we know that we only have one of those
*/
if (psm_get_cpu_id() == 0) {
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
/* Restore IOAPICs' APIC IDs */
for (i = 0; i < apic_io_max; i++) {
ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
}
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
/*
* Reenter APIC mode before restoring LNK devices
*/
(void) apic_acpi_enter_apicmode();
/*
* restore acpi link device mappings
*/
acpi_restore_link_devices();
}
}
/*
* Returns 0 on success
*/
int
apic_state(psm_state_request_t *rp)
{
PMD(PMD_SX, ("apic_state "))
switch (rp->psr_cmd) {
case PSM_STATE_ALLOC:
rp->req.psm_state_req.psr_state =
kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
if (rp->req.psm_state_req.psr_state == NULL)
return (ENOMEM);
rp->req.psm_state_req.psr_state_size =
sizeof (struct apic_state);
PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
return (0);
case PSM_STATE_FREE:
kmem_free(rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size);
PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
return (0);
case PSM_STATE_SAVE:
PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
apic_save_state(rp->req.psm_state_req.psr_state);
return (0);
case PSM_STATE_RESTORE:
apic_restore_state(rp->req.psm_state_req.psr_state);
PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
return (0);
default:
return (EINVAL);
}
}