mp_platform_common.c revision c2abea31a52f41437975e6ca91105aa716aee3fa
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* PSMI 1.1 extensions are supported only in 2.6 and later versions.
* PSMI 1.2 extensions are supported only in 2.7 and later versions.
* PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
* PSMI 1.5 extensions are supported in Solaris Nevada.
* PSMI 1.6 extensions are supported in Solaris Nevada.
*/
#define PSMI_1_6
#include <sys/processor.h>
#include <sys/time.h>
#include <sys/psm.h>
#include <sys/smp_impldefs.h>
#include <sys/cram.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/psm_common.h>
#include <sys/apic.h>
#include <sys/pit.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/pci.h>
#include <sys/promif.h>
#include <sys/x86_archext.h>
#include <sys/cpc_impl.h>
#include <sys/uadmin.h>
#include <sys/panic.h>
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/trap.h>
#include <sys/machsystm.h>
#include <sys/cpuvar.h>
#include <sys/rm_platter.h>
#include <sys/privregs.h>
#include <sys/cyclic.h>
#include <sys/note.h>
#include <sys/pci_intr_lib.h>
#include <sys/sunndi.h>
#if !defined(__xpv)
#include <sys/hpet.h>
#include <sys/clock.h>
#endif
/*
* Local Function Prototypes
*/
static int apic_handle_defconf();
static int apic_parse_mpct(caddr_t mpct, int bypass);
static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size);
static int apic_checksum(caddr_t bptr, int len);
static int apic_find_bus_type(char *bus);
static int apic_find_bus(int busid);
static int apic_find_bus_id(int bustype);
static struct apic_io_intr *apic_find_io_intr(int irqno);
static int apic_find_free_irq(int start, int end);
static void apic_mark_vector(uchar_t oldvector, uchar_t newvector);
static void apic_xlate_vector_free_timeout_handler(void *arg);
static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
int new_bind_cpu, int apicindex, int intin_no, int which_irq,
struct ioapic_reprogram_data *drep);
static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq);
static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid);
static int apic_find_intin(uchar_t ioapic, uchar_t intin);
static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno,
int child_ipin, struct apic_io_intr **intrp);
static int apic_setup_irq_table(dev_info_t *dip, int irqno,
struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp,
int type);
static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp);
static void apic_try_deferred_reprogram(int ipl, int vect);
static void delete_defer_repro_ent(int which_irq);
static void apic_ioapic_wait_pending_clear(int ioapicindex,
int intin_no);
static boolean_t apic_is_ioapic_AMD_813x(uint32_t physaddr);
static int apic_acpi_enter_apicmode(void);
int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */
/* ACPI SCI interrupt configuration; -1 if SCI not used */
int apic_sci_vect = -1;
iflag_t apic_sci_flags;
#if !defined(__xpv)
/* ACPI HPET interrupt configuration; -1 if HPET not used */
int apic_hpet_vect = -1;
iflag_t apic_hpet_flags;
#endif
/*
* psm name pointer
*/
static char *psm_name;
/* ACPI support routines */
static int acpi_probe(char *);
static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
int *pci_irqp, iflag_t *intr_flagp);
static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
int ipin, int *pci_irqp, iflag_t *intr_flagp);
static uchar_t acpi_find_ioapic(int irq);
static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2);
/*
* number of bits per byte, from <sys/param.h>
*/
#define UCHAR_MAX ((1 << NBBY) - 1)
/* Max wait time (in repetitions) for flags to clear in an RDT entry. */
int apic_max_reps_clear_pending = 1000;
/* The irq # is implicit in the array index: */
struct ioapic_reprogram_data apic_reprogram_info[APIC_MAX_VECTOR+1];
/*
* APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. ioapic_reprogram_info
* is indexed by IRQ number, NOT by vector number.
*/
int apic_intr_policy = INTR_ROUND_ROBIN;
int apic_next_bind_cpu = 1; /* For round robin assignment */
/* start with cpu 1 */
/*
* If enabled, the distribution works as follows:
* On every interrupt entry, the current ipl for the CPU is set in cpu_info
* and the irq corresponding to the ipl is also set in the aci_current array.
* interrupt exit and setspl (due to soft interrupts) will cause the current
* ipl to be be changed. This is cache friendly as these frequently used
* paths write into a per cpu structure.
*
* Sampling is done by checking the structures for all CPUs and incrementing
* the busy field of the irq (if any) executing on each CPU and the busy field
* of the corresponding CPU.
* In periodic mode this is done on every clock interrupt.
* In one-shot mode, this is done thru a cyclic with an interval of
* apic_redistribute_sample_interval (default 10 milli sec).
*
* Every apic_sample_factor_redistribution times we sample, we do computations
* to decide which interrupt needs to be migrated (see comments
* before apic_intr_redistribute().
*/
/*
* Following 3 variables start as % and can be patched or set using an
* API to be defined in future. They will be scaled to
* sample_factor_redistribution which is in turn set to hertz+1 (in periodic
* mode), or 101 in one-shot mode to stagger it away from one sec processing
*/
int apic_int_busy_mark = 60;
int apic_int_free_mark = 20;
int apic_diff_for_redistribution = 10;
/* sampling interval for interrupt redistribution for dynamic migration */
int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */
/*
* number of times we sample before deciding to redistribute interrupts
* for dynamic migration
*/
int apic_sample_factor_redistribution = 101;
/* timeout for xlate_vector, mark_vector */
int apic_revector_timeout = 16 * 10000; /* 160 millisec */
int apic_redist_cpu_skip = 0;
int apic_num_imbalance = 0;
int apic_num_rebind = 0;
int apic_nproc = 0;
size_t apic_cpus_size = 0;
int apic_defconf = 0;
int apic_irq_translate = 0;
int apic_spec_rev = 0;
int apic_imcrp = 0;
int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */
int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */
/*
* For interrupt link devices, if apic_unconditional_srs is set, an irq resource
* will be assigned (via _SRS). If it is not set, use the current
* irq setting (via _CRS), but only if that irq is in the set of possible
* irqs (returned by _PRS) for the device.
*/
int apic_unconditional_srs = 1;
/*
* For interrupt link devices, if apic_prefer_crs is set when we are
* assigning an IRQ resource to a device, prefer the current IRQ setting
* over other possible irq settings under same conditions.
*/
int apic_prefer_crs = 1;
uchar_t apic_io_id[MAX_IO_APIC];
volatile uint32_t *apicioadr[MAX_IO_APIC];
static uchar_t apic_io_ver[MAX_IO_APIC];
static uchar_t apic_io_vectbase[MAX_IO_APIC];
static uchar_t apic_io_vectend[MAX_IO_APIC];
uchar_t apic_reserved_irqlist[MAX_ISA_IRQ + 1];
uint32_t apic_physaddr[MAX_IO_APIC];
static boolean_t ioapic_mask_workaround[MAX_IO_APIC];
/*
* First available slot to be used as IRQ index into the apic_irq_table
* for those interrupts (like MSI/X) that don't have a physical IRQ.
*/
int apic_first_avail_irq = APIC_FIRST_FREE_IRQ;
/*
* apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound
* and bound elements of cpus_info and the temp_cpu element of irq_struct
*/
lock_t apic_ioapic_lock;
/*
* apic_defer_reprogram_lock ensures that only one processor is handling
* deferred interrupt programming at *_intr_exit time.
*/
static lock_t apic_defer_reprogram_lock;
/*
* The current number of deferred reprogrammings outstanding
*/
uint_t apic_reprogram_outstanding = 0;
#ifdef DEBUG
/*
* Counters that keep track of deferred reprogramming stats
*/
uint_t apic_intr_deferrals = 0;
uint_t apic_intr_deliver_timeouts = 0;
uint_t apic_last_ditch_reprogram_failures = 0;
uint_t apic_deferred_setup_failures = 0;
uint_t apic_defer_repro_total_retries = 0;
uint_t apic_defer_repro_successes = 0;
uint_t apic_deferred_spurious_enters = 0;
#endif
static int apic_io_max = 0; /* no. of i/o apics enabled */
static struct apic_io_intr *apic_io_intrp = 0;
static struct apic_bus *apic_busp;
uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1];
uchar_t apic_resv_vector[MAXIPL+1];
char apic_level_intr[APIC_MAX_VECTOR+1];
static uint32_t eisa_level_intr_mask = 0;
/* At least MSB will be set if EISA bus */
static int apic_pci_bus_total = 0;
static uchar_t apic_single_pci_busid = 0;
/*
* airq_mutex protects additions to the apic_irq_table - the first
* pointer and any airq_nexts off of that one. It also protects
* apic_max_device_irq & apic_min_device_irq. It also guarantees
* that share_id is unique as new ids are generated only when new
* irq_t structs are linked in. Once linked in the structs are never
* deleted. temp_cpu & mps_intr_index field indicate if it is programmed
* or allocated. Note that there is a slight gap between allocating in
* apic_introp_xlate and programming in addspl.
*/
kmutex_t airq_mutex;
apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1];
int apic_max_device_irq = 0;
int apic_min_device_irq = APIC_MAX_VECTOR;
/*
* Following declarations are for revectoring; used when ISRs at different
* IPLs share an irq.
*/
static lock_t apic_revector_lock;
int apic_revector_pending = 0;
static uchar_t *apic_oldvec_to_newvec;
static uchar_t *apic_newvec_to_oldvec;
typedef struct prs_irq_list_ent {
int list_prio;
int32_t irq;
iflag_t intrflags;
acpi_prs_private_t prsprv;
struct prs_irq_list_ent *next;
} prs_irq_list_t;
/*
* ACPI variables
*/
/* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */
int apic_enable_acpi = 0;
/* ACPI Multiple APIC Description Table ptr */
static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
/* ACPI Interrupt Source Override Structure ptr */
static ACPI_MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL;
static int acpi_iso_cnt = 0;
/* ACPI Non-maskable Interrupt Sources ptr */
static ACPI_MADT_NMI_SOURCE *acpi_nmi_sp = NULL;
static int acpi_nmi_scnt = 0;
static ACPI_MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL;
static int acpi_nmi_ccnt = 0;
/*
* The following added to identify a software poweroff method if available.
*/
static struct {
int poweroff_method;
char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */
char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */
} apic_mps_ids[] = {
{ APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */
{ APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */
{ APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */
{ APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */
{ APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */
{ APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */
{ APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */
};
int apic_poweroff_method = APIC_POWEROFF_NONE;
/*
* Auto-configuration routines
*/
/*
* Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here
* May work with 1.1 - but not guaranteed.
* According to the MP Spec, the MP floating pointer structure
* will be searched in the order described below:
* 1. In the first kilobyte of Extended BIOS Data Area (EBDA)
* 2. Within the last kilobyte of system base memory
* 3. In the BIOS ROM address space between 0F0000h and 0FFFFh
* Once we find the right signature with proper checksum, we call
* either handle_defconf or parse_mpct to get all info necessary for
* subsequent operations.
*/
int
apic_probe_common(char *modname)
{
uint32_t mpct_addr, ebda_start = 0, base_mem_end;
caddr_t biosdatap;
caddr_t mpct;
caddr_t fptr;
int i, mpct_size, mapsize, retval = PSM_FAILURE;
ushort_t ebda_seg, base_mem_size;
struct apic_mpfps_hdr *fpsp;
struct apic_mp_cnf_hdr *hdrp;
int bypass_cpu_and_ioapics_in_mptables;
int acpi_user_options;
if (apic_forceload < 0)
return (retval);
/*
* Remember who we are
*/
psm_name = modname;
/* Allow override for MADT-only mode */
acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0,
"acpi-user-options", 0);
apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0);
/* Allow apic_use_acpi to override MADT-only mode */
if (!apic_use_acpi)
apic_use_acpi_madt_only = 0;
retval = acpi_probe(modname);
/*
* mapin the bios data area 40:0
* 40:13h - two-byte location reports the base memory size
* 40:0Eh - two-byte location for the exact starting address of
* the EBDA segment for EISA
*/
biosdatap = psm_map_phys(0x400, 0x20, PROT_READ);
if (!biosdatap)
return (retval);
fpsp = (struct apic_mpfps_hdr *)NULL;
mapsize = MPFPS_RAM_WIN_LEN;
/*LINTED: pointer cast may result in improper alignment */
ebda_seg = *((ushort_t *)(biosdatap+0xe));
/* check the 1k of EBDA */
if (ebda_seg) {
ebda_start = ((uint32_t)ebda_seg) << 4;
fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ);
if (fptr) {
if (!(fpsp =
apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN)))
psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
}
}
/* If not in EBDA, check the last k of system base memory */
if (!fpsp) {
/*LINTED: pointer cast may result in improper alignment */
base_mem_size = *((ushort_t *)(biosdatap + 0x13));
if (base_mem_size > 512)
base_mem_end = 639 * 1024;
else
base_mem_end = 511 * 1024;
/* if ebda == last k of base mem, skip to check BIOS ROM */
if (base_mem_end != ebda_start) {
fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN,
PROT_READ);
if (fptr) {
if (!(fpsp = apic_find_fps_sig(fptr,
MPFPS_RAM_WIN_LEN)))
psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN);
}
}
}
psm_unmap_phys(biosdatap, 0x20);
/* If still cannot find it, check the BIOS ROM space */
if (!fpsp) {
mapsize = MPFPS_ROM_WIN_LEN;
fptr = psm_map_phys(MPFPS_ROM_WIN_START,
MPFPS_ROM_WIN_LEN, PROT_READ);
if (fptr) {
if (!(fpsp =
apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) {
psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
return (retval);
}
}
}
if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) {
psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
return (retval);
}
apic_spec_rev = fpsp->mpfps_spec_rev;
if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) {
psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN);
return (retval);
}
/* check IMCR is present or not */
apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP;
/* check default configuration (dual CPUs) */
if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) {
psm_unmap_phys(fptr, mapsize);
return (apic_handle_defconf());
}
/* MP Configuration Table */
mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr);
psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */
/*
* Map in enough memory for the MP Configuration Table Header.
* Use this table to read the total length of the BIOS data and
* map in all the info
*/
/*LINTED: pointer cast may result in improper alignment */
hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr,
sizeof (struct apic_mp_cnf_hdr), PROT_READ);
if (!hdrp)
return (retval);
/* check mp configuration table signature PCMP */
if (hdrp->mpcnf_sig != 0x504d4350) {
psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
return (retval);
}
mpct_size = (int)hdrp->mpcnf_tbl_length;
apic_set_pwroff_method_from_mpcnfhdr(hdrp);
psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr));
if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) {
/* This is an ACPI machine No need for further checks */
return (retval);
}
/*
* Map in the entries for this machine, ie. Processor
* Entry Tables, Bus Entry Tables, etc.
* They are in fixed order following one another
*/
mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ);
if (!mpct)
return (retval);
if (apic_checksum(mpct, mpct_size) != 0)
goto apic_fail1;
/*LINTED: pointer cast may result in improper alignment */
hdrp = (struct apic_mp_cnf_hdr *)mpct;
apicadr = (uint32_t *)mapin_apic((uint32_t)hdrp->mpcnf_local_apic,
APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
if (!apicadr)
goto apic_fail1;
/* Parse all information in the tables */
bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS);
if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) ==
PSM_SUCCESS)
return (PSM_SUCCESS);
for (i = 0; i < apic_io_max; i++)
mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
if (apic_cpus)
kmem_free(apic_cpus, apic_cpus_size);
if (apicadr)
mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
apic_fail1:
psm_unmap_phys(mpct, mpct_size);
return (retval);
}
static void
apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp)
{
int i;
for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0]));
i++) {
if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id,
strlen(apic_mps_ids[i].oem_id)) == 0) &&
(strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id,
strlen(apic_mps_ids[i].prod_id)) == 0)) {
apic_poweroff_method = apic_mps_ids[i].poweroff_method;
break;
}
}
if (apic_debug_mps_id != 0) {
cmn_err(CE_CONT, "%s: MPS OEM ID = '%c%c%c%c%c%c%c%c'"
"Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n",
psm_name,
hdrp->mpcnf_oem_str[0],
hdrp->mpcnf_oem_str[1],
hdrp->mpcnf_oem_str[2],
hdrp->mpcnf_oem_str[3],
hdrp->mpcnf_oem_str[4],
hdrp->mpcnf_oem_str[5],
hdrp->mpcnf_oem_str[6],
hdrp->mpcnf_oem_str[7],
hdrp->mpcnf_prod_str[0],
hdrp->mpcnf_prod_str[1],
hdrp->mpcnf_prod_str[2],
hdrp->mpcnf_prod_str[3],
hdrp->mpcnf_prod_str[4],
hdrp->mpcnf_prod_str[5],
hdrp->mpcnf_prod_str[6],
hdrp->mpcnf_prod_str[7],
hdrp->mpcnf_prod_str[8],
hdrp->mpcnf_prod_str[9],
hdrp->mpcnf_prod_str[10],
hdrp->mpcnf_prod_str[11]);
}
}
static int
acpi_probe(char *modname)
{
int i, intmax, index;
uint32_t id, ver;
int acpi_verboseflags = 0;
int madt_seen, madt_size;
ACPI_SUBTABLE_HEADER *ap;
ACPI_MADT_LOCAL_APIC *mpa;
ACPI_MADT_LOCAL_X2APIC *mpx2a;
ACPI_MADT_IO_APIC *mia;
ACPI_MADT_IO_SAPIC *misa;
ACPI_MADT_INTERRUPT_OVERRIDE *mio;
ACPI_MADT_NMI_SOURCE *mns;
ACPI_MADT_INTERRUPT_SOURCE *mis;
ACPI_MADT_LOCAL_APIC_NMI *mlan;
ACPI_MADT_LOCAL_X2APIC_NMI *mx2alan;
ACPI_MADT_LOCAL_APIC_OVERRIDE *mao;
int sci;
iflag_t sci_flags;
volatile uint32_t *ioapic;
int ioapic_ix;
uint32_t local_ids[NCPU];
uint32_t proc_ids[NCPU];
uchar_t hid;
int warned = 0;
if (!apic_use_acpi)
return (PSM_FAILURE);
if (AcpiGetTable(ACPI_SIG_MADT, 1,
(ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
return (PSM_FAILURE);
apicadr = mapin_apic((uint32_t)acpi_mapic_dtp->Address,
APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE);
if (!apicadr)
return (PSM_FAILURE);
/*
* We don't enable x2APIC when Solaris is running under xVM.
*/
#if !defined(__xpv)
if (apic_detect_x2apic()) {
apic_enable_x2apic();
}
#endif
id = apic_reg_ops->apic_read(APIC_LID_REG);
local_ids[0] = (uchar_t)(id >> 24);
apic_nproc = index = 1;
CPUSET_ONLY(apic_cpumask, 0);
apic_io_max = 0;
ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
madt_size = acpi_mapic_dtp->Header.Length;
madt_seen = sizeof (*acpi_mapic_dtp);
while (madt_seen < madt_size) {
switch (ap->Type) {
case ACPI_MADT_TYPE_LOCAL_APIC:
mpa = (ACPI_MADT_LOCAL_APIC *) ap;
if (mpa->LapicFlags & ACPI_MADT_ENABLED) {
if (mpa->Id == local_ids[0]) {
proc_ids[0] = mpa->ProcessorId;
acpica_map_cpu(0, mpa->ProcessorId);
} else if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
local_ids[index] = mpa->Id;
proc_ids[index] = mpa->ProcessorId;
CPUSET_ADD(apic_cpumask, index);
acpica_map_cpu(index, mpa->ProcessorId);
index++;
apic_nproc++;
} else if (apic_nproc == NCPU && !warned) {
cmn_err(CE_WARN, "%s: CPU limit "
"exceeded"
#if !defined(__amd64)
" for 32-bit mode"
#endif
"; Solaris will use %d CPUs.",
psm_name, NCPU);
warned = 1;
}
}
break;
case ACPI_MADT_TYPE_IO_APIC:
mia = (ACPI_MADT_IO_APIC *) ap;
if (apic_io_max < MAX_IO_APIC) {
ioapic_ix = apic_io_max;
apic_io_id[apic_io_max] = mia->Id;
apic_io_vectbase[apic_io_max] =
mia->GlobalIrqBase;
apic_physaddr[apic_io_max] =
(uint32_t)mia->Address;
ioapic = apicioadr[apic_io_max] =
mapin_ioapic((uint32_t)mia->Address,
APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
if (!ioapic)
goto cleanup;
ioapic_mask_workaround[apic_io_max] =
apic_is_ioapic_AMD_813x(mia->Address);
apic_io_max++;
}
break;
case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
mio = (ACPI_MADT_INTERRUPT_OVERRIDE *) ap;
if (acpi_isop == NULL)
acpi_isop = mio;
acpi_iso_cnt++;
break;
case ACPI_MADT_TYPE_NMI_SOURCE:
/* UNIMPLEMENTED */
mns = (ACPI_MADT_NMI_SOURCE *) ap;
if (acpi_nmi_sp == NULL)
acpi_nmi_sp = mns;
acpi_nmi_scnt++;
cmn_err(CE_NOTE, "!apic: nmi source: %d 0x%x\n",
mns->GlobalIrq, mns->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
/* UNIMPLEMENTED */
mlan = (ACPI_MADT_LOCAL_APIC_NMI *) ap;
if (acpi_nmi_cp == NULL)
acpi_nmi_cp = mlan;
acpi_nmi_ccnt++;
cmn_err(CE_NOTE, "!apic: local nmi: %d 0x%x %d\n",
mlan->ProcessorId, mlan->IntiFlags,
mlan->Lint);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
/* UNIMPLEMENTED */
mao = (ACPI_MADT_LOCAL_APIC_OVERRIDE *) ap;
cmn_err(CE_NOTE, "!apic: address override: %lx\n",
(long)mao->Address);
break;
case ACPI_MADT_TYPE_IO_SAPIC:
/* UNIMPLEMENTED */
misa = (ACPI_MADT_IO_SAPIC *) ap;
cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n",
misa->Id, misa->GlobalIrqBase,
(long)misa->Address);
break;
case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
/* UNIMPLEMENTED */
mis = (ACPI_MADT_INTERRUPT_SOURCE *) ap;
cmn_err(CE_NOTE,
"!apic: irq source: %d %d %d 0x%x %d %d\n",
mis->Id, mis->Eid, mis->GlobalIrq,
mis->IntiFlags, mis->Type,
mis->IoSapicVector);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC:
mpx2a = (ACPI_MADT_LOCAL_X2APIC *) ap;
/*
* All logical processors with APIC ID values
* of 255 and greater will have their APIC
* reported through Processor X2APIC structure.
* All logical processors with APIC ID less than
* 255 will have their APIC reported through
* Processor Local APIC.
*/
if ((mpx2a->LapicFlags & ACPI_MADT_ENABLED) &&
(mpx2a->LocalApicId >> 8)) {
if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
local_ids[index] = mpx2a->LocalApicId;
CPUSET_ADD(apic_cpumask, index);
acpica_map_cpu(index, mpx2a->Uid);
index++;
apic_nproc++;
} else if (apic_nproc == NCPU && !warned) {
cmn_err(CE_WARN, "%s: CPU limit "
"exceeded"
#if !defined(__amd64)
" for 32-bit mode"
#endif
"; Solaris will use %d CPUs.",
psm_name, NCPU);
warned = 1;
}
}
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
/* UNIMPLEMENTED */
mx2alan = (ACPI_MADT_LOCAL_X2APIC_NMI *) ap;
if (mx2alan->Uid >> 8)
acpi_nmi_ccnt++;
#ifdef DEBUG
cmn_err(CE_NOTE,
"!apic: local x2apic nmi: %d 0x%x %d\n",
mx2alan->Uid, mx2alan->IntiFlags, mx2alan->Lint);
#endif
break;
case ACPI_MADT_TYPE_RESERVED:
default:
break;
}
/* advance to next entry */
madt_seen += ap->Length;
ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
}
apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
if ((apic_cpus = kmem_zalloc(apic_cpus_size, KM_NOSLEEP)) == NULL)
goto cleanup;
/*
* ACPI doesn't provide the local apic ver, get it directly from the
* local apic
*/
ver = apic_reg_ops->apic_read(APIC_VERS_REG);
for (i = 0; i < apic_nproc; i++) {
apic_cpus[i].aci_local_id = local_ids[i];
apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF);
}
for (i = 0; i < apic_io_max; i++) {
ioapic_ix = i;
/*
* need to check Sitka on the following acpi problem
* On the Sitka, the ioapic's apic_id field isn't reporting
* the actual io apic id. We have reported this problem
* to Intel. Until they fix the problem, we will get the
* actual id directly from the ioapic.
*/
id = ioapic_read(ioapic_ix, APIC_ID_CMD);
hid = (uchar_t)(id >> 24);
if (hid != apic_io_id[i]) {
if (apic_io_id[i] == 0)
apic_io_id[i] = hid;
else { /* set ioapic id to whatever reported by ACPI */
id = ((uint32_t)apic_io_id[i]) << 24;
ioapic_write(ioapic_ix, APIC_ID_CMD, id);
}
}
ver = ioapic_read(ioapic_ix, APIC_VERS_CMD);
apic_io_ver[i] = (uchar_t)(ver & 0xff);
intmax = (ver >> 16) & 0xff;
apic_io_vectend[i] = apic_io_vectbase[i] + intmax;
if (apic_first_avail_irq <= apic_io_vectend[i])
apic_first_avail_irq = apic_io_vectend[i] + 1;
}
/*
* Process SCI configuration here
* An error may be returned here if
* acpi-user-options specifies legacy mode
* (no SCI, no ACPI mode)
*/
if (acpica_get_sci(&sci, &sci_flags) != AE_OK)
sci = -1;
/*
* Now call acpi_init() to generate namespaces
* If this fails, we don't attempt to use ACPI
* even if we were able to get a MADT above
*/
if (acpica_init() != AE_OK)
goto cleanup;
/*
* Call acpica_build_processor_map() now that we have
* ACPI namesspace access
*/
acpica_build_processor_map();
/*
* Squirrel away the SCI and flags for later on
* in apic_picinit() when we're ready
*/
apic_sci_vect = sci;
apic_sci_flags = sci_flags;
if (apic_verbose & APIC_VERBOSE_IRQ_FLAG)
acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG;
if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG)
acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG;
if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG)
acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG;
if (acpi_psm_init(modname, acpi_verboseflags) == ACPI_PSM_FAILURE)
goto cleanup;
/* Enable ACPI APIC interrupt routing */
if (apic_acpi_enter_apicmode() != PSM_FAILURE) {
build_reserved_irqlist((uchar_t *)apic_reserved_irqlist);
apic_enable_acpi = 1;
if (apic_use_acpi_madt_only) {
cmn_err(CE_CONT,
"?Using ACPI for CPU/IOAPIC information ONLY\n");
}
#if !defined(__xpv)
/*
* probe ACPI for hpet information here which is used later
* in apic_picinit().
*/
if (hpet_acpi_init(&apic_hpet_vect, &apic_hpet_flags) < 0) {
cmn_err(CE_NOTE, "!ACPI HPET table query failed\n");
}
#endif
return (PSM_SUCCESS);
}
/* if setting APIC mode failed above, we fall through to cleanup */
cleanup:
if (apicadr != NULL) {
mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
apicadr = NULL;
}
apic_nproc = 0;
for (i = 0; i < apic_io_max; i++) {
mapout_ioapic((caddr_t)apicioadr[i], APIC_IO_MEMLEN);
apicioadr[i] = NULL;
}
apic_io_max = 0;
acpi_isop = NULL;
acpi_iso_cnt = 0;
acpi_nmi_sp = NULL;
acpi_nmi_scnt = 0;
acpi_nmi_cp = NULL;
acpi_nmi_ccnt = 0;
return (PSM_FAILURE);
}
/*
* Handle default configuration. Fill in reqd global variables & tables
* Fill all details as MP table does not give any more info
*/
static int
apic_handle_defconf()
{
uint_t lid;
/*LINTED: pointer cast may result in improper alignment */
apicioadr[0] = mapin_ioapic(APIC_IO_ADDR,
APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
/*LINTED: pointer cast may result in improper alignment */
apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR,
APIC_LOCAL_MEMLEN, PROT_READ);
apic_cpus_size = 2 * sizeof (*apic_cpus);
apic_cpus = (apic_cpus_info_t *)
kmem_zalloc(apic_cpus_size, KM_NOSLEEP);
if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus))
goto apic_handle_defconf_fail;
CPUSET_ONLY(apic_cpumask, 0);
CPUSET_ADD(apic_cpumask, 1);
apic_nproc = 2;
lid = apic_reg_ops->apic_read(APIC_LID_REG);
apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET);
/*
* According to the PC+MP spec 1.1, the local ids
* for the default configuration has to be 0 or 1
*/
if (apic_cpus[0].aci_local_id == 1)
apic_cpus[1].aci_local_id = 0;
else if (apic_cpus[0].aci_local_id == 0)
apic_cpus[1].aci_local_id = 1;
else
goto apic_handle_defconf_fail;
apic_io_id[0] = 2;
apic_io_max = 1;
if (apic_defconf >= 5) {
apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS;
apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS;
apic_io_ver[0] = APIC_INTEGRATED_VERS;
} else {
apic_cpus[0].aci_local_ver = 0; /* 82489 DX */
apic_cpus[1].aci_local_ver = 0;
apic_io_ver[0] = 0;
}
if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6)
eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
return (PSM_SUCCESS);
apic_handle_defconf_fail:
if (apic_cpus)
kmem_free(apic_cpus, apic_cpus_size);
if (apicadr)
mapout_apic((caddr_t)apicadr, APIC_LOCAL_MEMLEN);
if (apicioadr[0])
mapout_ioapic((caddr_t)apicioadr[0], APIC_IO_MEMLEN);
return (PSM_FAILURE);
}
/* Parse the entries in MP configuration table and collect info that we need */
static int
apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics)
{
struct apic_procent *procp;
struct apic_bus *busp;
struct apic_io_entry *ioapicp;
struct apic_io_intr *intrp;
int ioapic_ix;
uint_t lid;
uint32_t id;
uchar_t hid;
int warned = 0;
/*LINTED: pointer cast may result in improper alignment */
procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
/* No need to count cpu entries if we won't use them */
if (!bypass_cpus_and_ioapics) {
/* Find max # of CPUS and allocate structure accordingly */
apic_nproc = 0;
CPUSET_ZERO(apic_cpumask);
while (procp->proc_entry == APIC_CPU_ENTRY) {
if (procp->proc_cpuflags & CPUFLAGS_EN) {
if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
CPUSET_ADD(apic_cpumask, apic_nproc);
apic_nproc++;
} else if (apic_nproc == NCPU && !warned) {
cmn_err(CE_WARN, "%s: CPU limit "
"exceeded"
#if !defined(__amd64)
" for 32-bit mode"
#endif
"; Solaris will use %d CPUs.",
psm_name, NCPU);
warned = 1;
}
}
procp++;
}
apic_cpus_size = apic_nproc * sizeof (*apic_cpus);
if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *)
kmem_zalloc(apic_cpus_size, KM_NOSLEEP)))
return (PSM_FAILURE);
}
/*LINTED: pointer cast may result in improper alignment */
procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr));
/*
* start with index 1 as 0 needs to be filled in with Boot CPU, but
* if we're bypassing this information, it has already been filled
* in by acpi_probe(), so don't overwrite it.
*/
if (!bypass_cpus_and_ioapics)
apic_nproc = 1;
while (procp->proc_entry == APIC_CPU_ENTRY) {
/* check whether the cpu exists or not */
if (!bypass_cpus_and_ioapics &&
procp->proc_cpuflags & CPUFLAGS_EN) {
if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */
lid = apic_reg_ops->apic_read(APIC_LID_REG);
apic_cpus[0].aci_local_id = procp->proc_apicid;
if (apic_cpus[0].aci_local_id !=
(uchar_t)(lid >> APIC_ID_BIT_OFFSET)) {
return (PSM_FAILURE);
}
apic_cpus[0].aci_local_ver =
procp->proc_version;
} else if (apic_nproc < NCPU && use_mp &&
apic_nproc < boot_ncpus) {
apic_cpus[apic_nproc].aci_local_id =
procp->proc_apicid;
apic_cpus[apic_nproc].aci_local_ver =
procp->proc_version;
apic_nproc++;
}
}
procp++;
}
/*
* Save start of bus entries for later use.
* Get EISA level cntrl if EISA bus is present.
* Also get the CPI bus id for single CPI bus case
*/
apic_busp = busp = (struct apic_bus *)procp;
while (busp->bus_entry == APIC_BUS_ENTRY) {
lid = apic_find_bus_type((char *)&busp->bus_str1);
if (lid == BUS_EISA) {
eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) |
inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1);
} else if (lid == BUS_PCI) {
/*
* apic_single_pci_busid will be used only if
* apic_pic_bus_total is equal to 1
*/
apic_pci_bus_total++;
apic_single_pci_busid = busp->bus_id;
}
busp++;
}
ioapicp = (struct apic_io_entry *)busp;
if (!bypass_cpus_and_ioapics)
apic_io_max = 0;
do {
if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) {
if (ioapicp->io_flags & IOAPIC_FLAGS_EN) {
apic_io_id[apic_io_max] = ioapicp->io_apicid;
apic_io_ver[apic_io_max] = ioapicp->io_version;
/*LINTED: pointer cast may result in improper alignment */
apicioadr[apic_io_max] =
mapin_ioapic(
(uint32_t)ioapicp->io_apic_addr,
APIC_IO_MEMLEN, PROT_READ | PROT_WRITE);
if (!apicioadr[apic_io_max])
return (PSM_FAILURE);
ioapic_mask_workaround[apic_io_max] =
apic_is_ioapic_AMD_813x(
ioapicp->io_apic_addr);
ioapic_ix = apic_io_max;
id = ioapic_read(ioapic_ix, APIC_ID_CMD);
hid = (uchar_t)(id >> 24);
if (hid != apic_io_id[apic_io_max]) {
if (apic_io_id[apic_io_max] == 0)
apic_io_id[apic_io_max] = hid;
else {
/*
* set ioapic id to whatever
* reported by MPS
*
* may not need to set index
* again ???
* take it out and try
*/
id = ((uint32_t)
apic_io_id[apic_io_max]) <<
24;
ioapic_write(ioapic_ix,
APIC_ID_CMD, id);
}
}
apic_io_max++;
}
}
ioapicp++;
} while (ioapicp->io_entry == APIC_IO_ENTRY);
apic_io_intrp = (struct apic_io_intr *)ioapicp;
intrp = apic_io_intrp;
while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) ||
(apic_find_bus(intrp->intr_busid) == BUS_PCI)) {
apic_irq_translate = 1;
break;
}
intrp++;
}
return (PSM_SUCCESS);
}
boolean_t
apic_cpu_in_range(int cpu)
{
return ((cpu & ~IRQ_USER_BOUND) < apic_nproc);
}
uint16_t
apic_get_apic_version()
{
int i;
uchar_t min_io_apic_ver = 0;
static uint16_t version; /* Cache as value is constant */
static boolean_t found = B_FALSE; /* Accomodate zero version */
if (found == B_FALSE) {
found = B_TRUE;
/*
* Don't assume all IO APICs in the system are the same.
*
* Set to the minimum version.
*/
for (i = 0; i < apic_io_max; i++) {
if ((apic_io_ver[i] != 0) &&
((min_io_apic_ver == 0) ||
(min_io_apic_ver >= apic_io_ver[i])))
min_io_apic_ver = apic_io_ver[i];
}
/* Assume all local APICs are of the same version. */
version = (min_io_apic_ver << 8) | apic_cpus[0].aci_local_ver;
}
return (version);
}
static struct apic_mpfps_hdr *
apic_find_fps_sig(caddr_t cptr, int len)
{
int i;
/* Look for the pattern "_MP_" */
for (i = 0; i < len; i += 16) {
if ((*(cptr+i) == '_') &&
(*(cptr+i+1) == 'M') &&
(*(cptr+i+2) == 'P') &&
(*(cptr+i+3) == '_'))
/*LINTED: pointer cast may result in improper alignment */
return ((struct apic_mpfps_hdr *)(cptr + i));
}
return (NULL);
}
static int
apic_checksum(caddr_t bptr, int len)
{
int i;
uchar_t cksum;
cksum = 0;
for (i = 0; i < len; i++)
cksum += *bptr++;
return ((int)cksum);
}
/*
* Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable
* are also set to NULL. vector->irq is set to a value which cannot map
* to a real irq to show that it is free.
*/
void
apic_init_common()
{
int i, j, indx;
int *iptr;
/*
* Initialize apic_ipls from apic_vectortoipl. This array is
* used in apic_intr_enter to determine the IPL to use for the
* corresponding vector. On some systems, due to hardware errata
* and interrupt sharing, the IPL may not correspond to the IPL listed
* in apic_vectortoipl (see apic_addspl and apic_delspl).
*/
for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
indx = i * APIC_VECTOR_PER_IPL;
for (j = 0; j < APIC_VECTOR_PER_IPL; j++, indx++)
apic_ipls[indx] = apic_vectortoipl[i];
}
/* cpu 0 is always up (for now) */
apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
iptr = (int *)&apic_irq_table[0];
for (i = 0; i <= APIC_MAX_VECTOR; i++) {
apic_level_intr[i] = 0;
*iptr++ = NULL;
apic_vector_to_irq[i] = APIC_RESV_IRQ;
/* These *must* be initted to B_TRUE! */
apic_reprogram_info[i].done = B_TRUE;
apic_reprogram_info[i].irqp = NULL;
apic_reprogram_info[i].tries = 0;
apic_reprogram_info[i].bindcpu = 0;
}
/*
* Allocate a dummy irq table entry for the reserved entry.
* This takes care of the race between removing an irq and
* clock detecting a CPU in that irq during interrupt load
* sampling.
*/
apic_irq_table[APIC_RESV_IRQ] =
kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
}
void
ioapic_init_intr(int mask_apic)
{
int ioapic_ix;
struct intrspec ispec;
apic_irq_t *irqptr;
int i, j;
ulong_t iflag;
LOCK_INIT_CLEAR(&apic_revector_lock);
LOCK_INIT_CLEAR(&apic_defer_reprogram_lock);
/* mask interrupt vectors */
for (j = 0; j < apic_io_max && mask_apic; j++) {
int intin_max;
ioapic_ix = j;
/* Bits 23-16 define the maximum redirection entries */
intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
& 0xff;
for (i = 0; i <= intin_max; i++)
ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * i, AV_MASK);
}
/*
* Hack alert: deal with ACPI SCI interrupt chicken/egg here
*/
if (apic_sci_vect > 0) {
/*
* acpica has already done add_avintr(); we just
* to finish the job by mimicing translate_irq()
*
* Fake up an intrspec and setup the tables
*/
ispec.intrspec_vec = apic_sci_vect;
ispec.intrspec_pri = SCI_IPL;
if (apic_setup_irq_table(NULL, apic_sci_vect, NULL,
&ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) {
cmn_err(CE_WARN, "!apic: SCI setup failed");
return;
}
irqptr = apic_irq_table[apic_sci_vect];
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
/* Program I/O APIC */
(void) apic_setup_io_intr(irqptr, apic_sci_vect, B_FALSE);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
irqptr->airq_share++;
}
#if !defined(__xpv)
/*
* Hack alert: deal with ACPI HPET interrupt chicken/egg here.
*/
if (apic_hpet_vect > 0) {
/*
* hpet has already done add_avintr(); we just need
* to finish the job by mimicing translate_irq()
*
* Fake up an intrspec and setup the tables
*/
ispec.intrspec_vec = apic_hpet_vect;
ispec.intrspec_pri = CBE_HIGH_PIL;
if (apic_setup_irq_table(NULL, apic_hpet_vect, NULL,
&ispec, &apic_hpet_flags, DDI_INTR_TYPE_FIXED) < 0) {
cmn_err(CE_WARN, "!apic: HPET setup failed");
return;
}
irqptr = apic_irq_table[apic_hpet_vect];
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
/* Program I/O APIC */
(void) apic_setup_io_intr(irqptr, apic_hpet_vect, B_FALSE);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
irqptr->airq_share++;
}
#endif /* !defined(__xpv) */
}
/*
* Add mask bits to disable interrupt vector from happening
* at or above IPL. In addition, it should remove mask bits
* to enable interrupt vectors below the given IPL.
*
* Both add and delspl are complicated by the fact that different interrupts
* may share IRQs. This can happen in two ways.
* 1. The same H/W line is shared by more than 1 device
* 1a. with interrupts at different IPLs
* 1b. with interrupts at same IPL
* 2. We ran out of vectors at a given IPL and started sharing vectors.
* 1b and 2 should be handled gracefully, except for the fact some ISRs
* will get called often when no interrupt is pending for the device.
* For 1a, we just hope that the machine blows up with the person who
* set it up that way!. In the meantime, we handle it at the higher IPL.
*/
/*ARGSUSED*/
int
apic_addspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
{
uchar_t vector;
ulong_t iflag;
apic_irq_t *irqptr, *irqheadptr;
int irqindex;
ASSERT(max_ipl <= UCHAR_MAX);
irqindex = IRQINDEX(irqno);
if ((irqindex == -1) || (!apic_irq_table[irqindex]))
return (PSM_FAILURE);
mutex_enter(&airq_mutex);
irqptr = irqheadptr = apic_irq_table[irqindex];
DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x "
"vector=0x%x\n", (void *)irqptr->airq_dip,
irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
while (irqptr) {
if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
break;
irqptr = irqptr->airq_next;
}
irqptr->airq_share++;
mutex_exit(&airq_mutex);
/* return if it is not hardware interrupt */
if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
return (PSM_SUCCESS);
/* Or if there are more interupts at a higher IPL */
if (ipl != max_ipl)
return (PSM_SUCCESS);
/*
* if apic_picinit() has not been called yet, just return.
* At the end of apic_picinit(), we will call setup_io_intr().
*/
if (!apic_picinit_called)
return (PSM_SUCCESS);
/*
* Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate,
* return failure. Not very elegant, but then we hope the
* machine will blow up with ...
*/
if (irqptr->airq_ipl != max_ipl &&
!ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
vector = apic_allocate_vector(max_ipl, irqindex, 1);
if (vector == 0) {
irqptr->airq_share--;
return (PSM_FAILURE);
}
irqptr = irqheadptr;
apic_mark_vector(irqptr->airq_vector, vector);
while (irqptr) {
irqptr->airq_vector = vector;
irqptr->airq_ipl = (uchar_t)max_ipl;
/*
* reprogram irq being added and every one else
* who is not in the UNINIT state
*/
if ((VIRTIRQ(irqindex, irqptr->airq_share_id) ==
irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) {
apic_record_rdt_entry(irqptr, irqindex);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
(void) apic_setup_io_intr(irqptr, irqindex,
B_FALSE);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
irqptr = irqptr->airq_next;
}
return (PSM_SUCCESS);
} else if (irqptr->airq_ipl != max_ipl &&
ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
/*
* We cannot upgrade the vector, but we can change
* the IPL that this vector induces.
*
* Note that we subtract APIC_BASE_VECT from the vector
* here because this array is used in apic_intr_enter
* (no need to add APIC_BASE_VECT in that hot code
* path since we can do it in the rarely-executed path
* here).
*/
apic_ipls[irqptr->airq_vector - APIC_BASE_VECT] =
(uchar_t)max_ipl;
irqptr = irqheadptr;
while (irqptr) {
irqptr->airq_ipl = (uchar_t)max_ipl;
irqptr = irqptr->airq_next;
}
return (PSM_SUCCESS);
}
ASSERT(irqptr);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
(void) apic_setup_io_intr(irqptr, irqindex, B_FALSE);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
return (PSM_SUCCESS);
}
/*
* Recompute mask bits for the given interrupt vector.
* If there is no interrupt servicing routine for this
* vector, this function should disable interrupt vector
* from happening at all IPLs. If there are still
* handlers using the given vector, this function should
* disable the given vector from happening below the lowest
* IPL of the remaining hadlers.
*/
/*ARGSUSED*/
int
apic_delspl_common(int irqno, int ipl, int min_ipl, int max_ipl)
{
uchar_t vector;
uint32_t bind_cpu;
int intin, irqindex;
int ioapic_ix;
apic_irq_t *irqptr, *irqheadptr, *irqp;
ulong_t iflag;
mutex_enter(&airq_mutex);
irqindex = IRQINDEX(irqno);
irqptr = irqheadptr = apic_irq_table[irqindex];
DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x "
"vector=0x%x\n", (void *)irqptr->airq_dip,
irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector));
while (irqptr) {
if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno)
break;
irqptr = irqptr->airq_next;
}
ASSERT(irqptr);
irqptr->airq_share--;
mutex_exit(&airq_mutex);
if (ipl < max_ipl)
return (PSM_SUCCESS);
/* return if it is not hardware interrupt */
if (irqptr->airq_mps_intr_index == RESERVE_INDEX)
return (PSM_SUCCESS);
if (!apic_picinit_called) {
/*
* Clear irq_struct. If two devices shared an intpt
* line & 1 unloaded before picinit, we are hosed. But, then
* we hope the machine will ...
*/
irqptr->airq_mps_intr_index = FREE_INDEX;
irqptr->airq_temp_cpu = IRQ_UNINIT;
apic_free_vector(irqptr->airq_vector);
return (PSM_SUCCESS);
}
/*
* Downgrade vector to new max_ipl if needed.If we cannot allocate,
* use old IPL. Not very elegant, but then we hope ...
*/
if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL) &&
!ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
apic_irq_t *irqp;
if (vector = apic_allocate_vector(max_ipl, irqno, 1)) {
apic_mark_vector(irqheadptr->airq_vector, vector);
irqp = irqheadptr;
while (irqp) {
irqp->airq_vector = vector;
irqp->airq_ipl = (uchar_t)max_ipl;
if (irqp->airq_temp_cpu != IRQ_UNINIT) {
apic_record_rdt_entry(irqp, irqindex);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
(void) apic_setup_io_intr(irqp,
irqindex, B_FALSE);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
irqp = irqp->airq_next;
}
}
} else if (irqptr->airq_ipl != max_ipl &&
max_ipl != PSM_INVALID_IPL &&
ioapic_mask_workaround[irqptr->airq_ioapicindex]) {
/*
* We cannot downgrade the IPL of the vector below the vector's
* hardware priority. If we did, it would be possible for a
* higher-priority hardware vector to interrupt a CPU running at an IPL
* lower than the hardware priority of the interrupting vector (but
* higher than the soft IPL of this IRQ). When this happens, we would
* then try to drop the IPL BELOW what it was (effectively dropping
* below base_spl) which would be potentially catastrophic.
*
* (e.g. Suppose the hardware vector associated with this IRQ is 0x40
* (hardware IPL of 4). Further assume that the old IPL of this IRQ
* was 4, but the new IPL is 1. If we forced vector 0x40 to result in
* an IPL of 1, it would be possible for the processor to be executing
* at IPL 3 and for an interrupt to come in on vector 0x40, interrupting
* the currently-executing ISR. When apic_intr_enter consults
* apic_irqs[], it will return 1, bringing the IPL of the CPU down to 1
* so even though the processor was running at IPL 4, an IPL 1
* interrupt will have interrupted it, which must not happen)).
*
* Effectively, this means that the hardware priority corresponding to
* the IRQ's IPL (in apic_ipls[]) cannot be lower than the vector's
* hardware priority.
*
* (In the above example, then, after removal of the IPL 4 device's
* interrupt handler, the new IPL will continue to be 4 because the
* hardware priority that IPL 1 implies is lower than the hardware
* priority of the vector used.)
*/
/* apic_ipls is indexed by vector, starting at APIC_BASE_VECT */
const int apic_ipls_index = irqptr->airq_vector -
APIC_BASE_VECT;
const int vect_inherent_hwpri = irqptr->airq_vector >>
APIC_IPL_SHIFT;
/*
* If there are still devices using this IRQ, determine the
* new ipl to use.
*/
if (irqptr->airq_share) {
int vect_desired_hwpri, hwpri;
ASSERT(max_ipl < MAXIPL);
vect_desired_hwpri = apic_ipltopri[max_ipl] >>
APIC_IPL_SHIFT;
/*
* If the desired IPL's hardware priority is lower
* than that of the vector, use the hardware priority
* of the vector to determine the new IPL.
*/
hwpri = (vect_desired_hwpri < vect_inherent_hwpri) ?
vect_inherent_hwpri : vect_desired_hwpri;
/*
* Now, to get the right index for apic_vectortoipl,
* we need to subtract APIC_BASE_VECT from the
* hardware-vector-equivalent (in hwpri). Since hwpri
* is already shifted, we shift APIC_BASE_VECT before
* doing the subtraction.
*/
hwpri -= (APIC_BASE_VECT >> APIC_IPL_SHIFT);
ASSERT(hwpri >= 0);
ASSERT(hwpri < MAXIPL);
max_ipl = apic_vectortoipl[hwpri];
apic_ipls[apic_ipls_index] = max_ipl;
irqp = irqheadptr;
while (irqp) {
irqp->airq_ipl = (uchar_t)max_ipl;
irqp = irqp->airq_next;
}
} else {
/*
* No more devices on this IRQ, so reset this vector's
* element in apic_ipls to the original IPL for this
* vector
*/
apic_ipls[apic_ipls_index] =
apic_vectortoipl[vect_inherent_hwpri];
}
}
if (irqptr->airq_share)
return (PSM_SUCCESS);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
if (irqptr->airq_mps_intr_index == MSI_INDEX) {
/*
* Disable the MSI vector
* Make sure we only disable on the last
* of the multi-MSI support
*/
if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
apic_pci_msi_disable_mode(irqptr->airq_dip,
DDI_INTR_TYPE_MSI);
}
} else if (irqptr->airq_mps_intr_index == MSIX_INDEX) {
/*
* Disable the MSI-X vector
* needs to clear its mask and addr/data for each MSI-X
*/
apic_pci_msi_unconfigure(irqptr->airq_dip, DDI_INTR_TYPE_MSIX,
irqptr->airq_origirq);
/*
* Make sure we only disable on the last MSI-X
*/
if (i_ddi_intr_get_current_nenables(irqptr->airq_dip) == 1) {
apic_pci_msi_disable_mode(irqptr->airq_dip,
DDI_INTR_TYPE_MSIX);
}
} else {
/*
* The assumption here is that this is safe, even for
* systems with IOAPICs that suffer from the hardware
* erratum because all devices have been quiesced before
* they unregister their interrupt handlers. If that
* assumption turns out to be false, this mask operation
* can induce the same erratum result we're trying to
* avoid.
*/
ioapic_ix = irqptr->airq_ioapicindex;
intin = irqptr->airq_intin_no;
ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin, AV_MASK);
}
#if !defined(__xpv)
apic_vt_ops->apic_intrr_free_entry(irqptr);
#endif
if (max_ipl == PSM_INVALID_IPL) {
ASSERT(irqheadptr == irqptr);
bind_cpu = irqptr->airq_temp_cpu;
if (((uint32_t)bind_cpu != IRQ_UNBOUND) &&
((uint32_t)bind_cpu != IRQ_UNINIT)) {
ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc);
if (bind_cpu & IRQ_USER_BOUND) {
/* If hardbound, temp_cpu == cpu */
bind_cpu &= ~IRQ_USER_BOUND;
apic_cpus[bind_cpu].aci_bound--;
} else
apic_cpus[bind_cpu].aci_temp_bound--;
}
irqptr->airq_temp_cpu = IRQ_UNINIT;
irqptr->airq_mps_intr_index = FREE_INDEX;
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
apic_free_vector(irqptr->airq_vector);
return (PSM_SUCCESS);
}
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
mutex_enter(&airq_mutex);
if ((irqptr == apic_irq_table[irqindex])) {
apic_irq_t *oldirqptr;
/* Move valid irq entry to the head */
irqheadptr = oldirqptr = irqptr;
irqptr = irqptr->airq_next;
ASSERT(irqptr);
while (irqptr) {
if (irqptr->airq_mps_intr_index != FREE_INDEX)
break;
oldirqptr = irqptr;
irqptr = irqptr->airq_next;
}
/* remove all invalid ones from the beginning */
apic_irq_table[irqindex] = irqptr;
/*
* and link them back after the head. The invalid ones
* begin with irqheadptr and end at oldirqptr
*/
oldirqptr->airq_next = irqptr->airq_next;
irqptr->airq_next = irqheadptr;
}
mutex_exit(&airq_mutex);
irqptr->airq_temp_cpu = IRQ_UNINIT;
irqptr->airq_mps_intr_index = FREE_INDEX;
return (PSM_SUCCESS);
}
/*
* apic_introp_xlate() replaces apic_translate_irq() and is
* called only from apic_intr_ops(). With the new ADII framework,
* the priority can no longer be retrieved through i_ddi_get_intrspec().
* It has to be passed in from the caller.
*/
int
apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type)
{
char dev_type[16];
int dev_len, pci_irq, newirq, bustype, devid, busid, i;
int irqno = ispec->intrspec_vec;
ddi_acc_handle_t cfg_handle;
uchar_t ipin;
struct apic_io_intr *intrp;
iflag_t intr_flag;
ACPI_SUBTABLE_HEADER *hp;
ACPI_MADT_INTERRUPT_OVERRIDE *isop;
apic_irq_t *airqp;
int parent_is_pci_or_pciex = 0;
int child_is_pciex = 0;
DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s "
"type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type,
irqno));
dev_len = sizeof (dev_type);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
&dev_len) == DDI_PROP_SUCCESS) {
if ((strcmp(dev_type, "pci") == 0) ||
(strcmp(dev_type, "pciex") == 0))
parent_is_pci_or_pciex = 1;
}
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
&dev_len) == DDI_PROP_SUCCESS) {
if (strstr(dev_type, "pciex"))
child_is_pciex = 1;
}
if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) {
airqp->airq_iflag.bustype =
child_is_pciex ? BUS_PCIE : BUS_PCI;
return (apic_vector_to_irq[airqp->airq_vector]);
}
return (apic_setup_irq_table(dip, irqno, NULL, ispec,
NULL, type));
}
bustype = 0;
/* check if we have already translated this irq */
mutex_enter(&airq_mutex);
newirq = apic_min_device_irq;
for (; newirq <= apic_max_device_irq; newirq++) {
airqp = apic_irq_table[newirq];
while (airqp) {
if ((airqp->airq_dip == dip) &&
(airqp->airq_origirq == irqno) &&
(airqp->airq_mps_intr_index != FREE_INDEX)) {
mutex_exit(&airq_mutex);
return (VIRTIRQ(newirq, airqp->airq_share_id));
}
airqp = airqp->airq_next;
}
}
mutex_exit(&airq_mutex);
if (apic_defconf)
goto defconf;
if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi))
goto nonpci;
if (parent_is_pci_or_pciex) {
/* pci device */
if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
goto nonpci;
if (busid == 0 && apic_pci_bus_total == 1)
busid = (int)apic_single_pci_busid;
if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
goto nonpci;
ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
pci_config_teardown(&cfg_handle);
if (apic_enable_acpi && !apic_use_acpi_madt_only) {
if (apic_acpi_translate_pci_irq(dip, busid, devid,
ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
goto nonpci;
intr_flag.bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL,
ispec, &intr_flag, type)) == -1)
goto nonpci;
return (newirq);
} else {
pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid))
== NULL) {
if ((pci_irq = apic_handle_pci_pci_bridge(dip,
devid, ipin, &intrp)) == -1)
goto nonpci;
}
if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp,
ispec, NULL, type)) == -1)
goto nonpci;
return (newirq);
}
} else if (strcmp(dev_type, "isa") == 0)
bustype = BUS_ISA;
else if (strcmp(dev_type, "eisa") == 0)
bustype = BUS_EISA;
nonpci:
if (apic_enable_acpi && !apic_use_acpi_madt_only) {
/* search iso entries first */
if (acpi_iso_cnt != 0) {
hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
i = 0;
while (i < acpi_iso_cnt) {
if (hp->Type ==
ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
isop =
(ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
if (isop->Bus == 0 &&
isop->SourceIrq == irqno) {
newirq = isop->GlobalIrq;
intr_flag.intr_po =
isop->IntiFlags &
ACPI_MADT_POLARITY_MASK;
intr_flag.intr_el =
(isop->IntiFlags &
ACPI_MADT_TRIGGER_MASK)
>> 2;
intr_flag.bustype = BUS_ISA;
return (apic_setup_irq_table(
dip, newirq, NULL, ispec,
&intr_flag, type));
}
i++;
}
hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
hp->Length);
}
}
intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
intr_flag.intr_el = INTR_EL_EDGE;
intr_flag.bustype = BUS_ISA;
return (apic_setup_irq_table(dip, irqno, NULL, ispec,
&intr_flag, type));
} else {
if (bustype == 0)
bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
for (i = 0; i < 2; i++) {
if (((busid = apic_find_bus_id(bustype)) != -1) &&
((intrp = apic_find_io_intr_w_busid(irqno, busid))
!= NULL)) {
if ((newirq = apic_setup_irq_table(dip, irqno,
intrp, ispec, NULL, type)) != -1) {
return (newirq);
}
goto defconf;
}
bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
}
}
/* MPS default configuration */
defconf:
newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type);
if (newirq == -1)
return (newirq);
ASSERT(IRQINDEX(newirq) == irqno);
ASSERT(apic_irq_table[irqno]);
return (newirq);
}
/*
* On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge
* needs special handling. We may need to chase up the device tree,
* using the PCI-PCI Bridge specification's "rotating IPIN assumptions",
* to find the IPIN at the root bus that relates to the IPIN on the
* subsidiary bus (for ACPI or MP). We may, however, have an entry
* in the MP table or the ACPI namespace for this device itself.
* We handle both cases in the search below.
*/
/* this is the non-acpi version */
static int
apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin,
struct apic_io_intr **intrp)
{
dev_info_t *dipp, *dip;
int pci_irq;
ddi_acc_handle_t cfg_handle;
int bridge_devno, bridge_bus;
int ipin;
dip = idip;
/*CONSTCOND*/
while (1) {
if (((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) ||
(pci_config_setup(dipp, &cfg_handle) != DDI_SUCCESS))
return (-1);
if ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) ==
PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle,
PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) {
pci_config_teardown(&cfg_handle);
if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno,
NULL) != 0)
return (-1);
/*
* This is the rotating scheme documented in the
* PCI-to-PCI spec. If the PCI-to-PCI bridge is
* behind another PCI-to-PCI bridge, then it needs
* to keep ascending until an interrupt entry is
* found or the root is reached.
*/
ipin = (child_devno + child_ipin) % PCI_INTD;
if (bridge_bus == 0 && apic_pci_bus_total == 1)
bridge_bus = (int)apic_single_pci_busid;
pci_irq = ((bridge_devno & 0x1f) << 2) |
(ipin & 0x3);
if ((*intrp = apic_find_io_intr_w_busid(pci_irq,
bridge_bus)) != NULL) {
return (pci_irq);
}
dip = dipp;
child_devno = bridge_devno;
child_ipin = ipin;
} else {
pci_config_teardown(&cfg_handle);
return (-1);
}
}
/*LINTED: function will not fall off the bottom */
}
static uchar_t
acpi_find_ioapic(int irq)
{
int i;
for (i = 0; i < apic_io_max; i++) {
if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i])
return (i);
}
return (0xFF); /* shouldn't happen */
}
/*
* See if two irqs are compatible for sharing a vector.
* Currently we only support sharing of PCI devices.
*/
static int
acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2)
{
uint_t level1, po1;
uint_t level2, po2;
/* Assume active high by default */
po1 = 0;
po2 = 0;
if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI)
return (0);
if (iflag1.intr_el == INTR_EL_CONFORM)
level1 = AV_LEVEL;
else
level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) ||
(iflag1.intr_po == INTR_PO_CONFORM)))
po1 = AV_ACTIVE_LOW;
if (iflag2.intr_el == INTR_EL_CONFORM)
level2 = AV_LEVEL;
else
level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0;
if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) ||
(iflag2.intr_po == INTR_PO_CONFORM)))
po2 = AV_ACTIVE_LOW;
if ((level1 == level2) && (po1 == po2))
return (1);
return (0);
}
/*
* Attempt to share vector with someone else
*/
static int
apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl,
uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp)
{
#ifdef DEBUG
apic_irq_t *tmpirqp = NULL;
#endif /* DEBUG */
apic_irq_t *irqptr, dummyirq;
int newirq, chosen_irq = -1, share = 127;
int lowest, highest, i;
uchar_t share_id;
DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x "
"intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl));
highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL;
if (highest < lowest) /* Both ipl and ipl-1 map to same pri */
lowest -= APIC_VECTOR_PER_IPL;
dummyirq.airq_mps_intr_index = intr_index;
dummyirq.airq_ioapicindex = ioapicindex;
dummyirq.airq_intin_no = ipin;
if (intr_flagp)
dummyirq.airq_iflag = *intr_flagp;
apic_record_rdt_entry(&dummyirq, irqno);
for (i = lowest; i <= highest; i++) {
newirq = apic_vector_to_irq[i];
if (newirq == APIC_RESV_IRQ)
continue;
irqptr = apic_irq_table[newirq];
if ((dummyirq.airq_rdt_entry & 0xFF00) !=
(irqptr->airq_rdt_entry & 0xFF00))
/* not compatible */
continue;
if (irqptr->airq_share < share) {
share = irqptr->airq_share;
chosen_irq = newirq;
}
}
if (chosen_irq != -1) {
/*
* Assign a share id which is free or which is larger
* than the largest one.
*/
share_id = 1;
mutex_enter(&airq_mutex);
irqptr = apic_irq_table[chosen_irq];
while (irqptr) {
if (irqptr->airq_mps_intr_index == FREE_INDEX) {
share_id = irqptr->airq_share_id;
break;
}
if (share_id <= irqptr->airq_share_id)
share_id = irqptr->airq_share_id + 1;
#ifdef DEBUG
tmpirqp = irqptr;
#endif /* DEBUG */
irqptr = irqptr->airq_next;
}
if (!irqptr) {
irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
irqptr->airq_temp_cpu = IRQ_UNINIT;
irqptr->airq_next =
apic_irq_table[chosen_irq]->airq_next;
apic_irq_table[chosen_irq]->airq_next = irqptr;
#ifdef DEBUG
tmpirqp = apic_irq_table[chosen_irq];
#endif /* DEBUG */
}
irqptr->airq_mps_intr_index = intr_index;
irqptr->airq_ioapicindex = ioapicindex;
irqptr->airq_intin_no = ipin;
if (intr_flagp)
irqptr->airq_iflag = *intr_flagp;
irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector;
irqptr->airq_share_id = share_id;
apic_record_rdt_entry(irqptr, irqno);
*irqptrp = irqptr;
#ifdef DEBUG
/* shuffle the pointers to test apic_delspl path */
if (tmpirqp) {
tmpirqp->airq_next = irqptr->airq_next;
irqptr->airq_next = apic_irq_table[chosen_irq];
apic_irq_table[chosen_irq] = irqptr;
}
#endif /* DEBUG */
mutex_exit(&airq_mutex);
return (VIRTIRQ(chosen_irq, share_id));
}
return (-1);
}
/*
*
*/
static int
apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp,
struct intrspec *ispec, iflag_t *intr_flagp, int type)
{
int origirq = ispec->intrspec_vec;
uchar_t ipl = ispec->intrspec_pri;
int newirq, intr_index;
uchar_t ipin, ioapic, ioapicindex, vector;
apic_irq_t *irqptr;
major_t major;
dev_info_t *sdip;
DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d "
"irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq));
ASSERT(ispec != NULL);
major = (dip != NULL) ? ddi_driver_major(dip) : 0;
if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
/* MSI/X doesn't need to setup ioapic stuffs */
ioapicindex = 0xff;
ioapic = 0xff;
ipin = (uchar_t)0xff;
intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX :
MSIX_INDEX;
mutex_enter(&airq_mutex);
if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == -1) {
mutex_exit(&airq_mutex);
/* need an irq for MSI/X to index into autovect[] */
cmn_err(CE_WARN, "No interrupt irq: %s instance %d",
ddi_get_name(dip), ddi_get_instance(dip));
return (-1);
}
mutex_exit(&airq_mutex);
} else if (intrp != NULL) {
intr_index = (int)(intrp - apic_io_intrp);
ioapic = intrp->intr_destid;
ipin = intrp->intr_destintin;
/* Find ioapicindex. If destid was ALL, we will exit with 0. */
for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
if (apic_io_id[ioapicindex] == ioapic)
break;
ASSERT((ioapic == apic_io_id[ioapicindex]) ||
(ioapic == INTR_ALL_APIC));
/* check whether this intin# has been used by another irqno */
if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) {
return (newirq);
}
} else if (intr_flagp != NULL) {
/* ACPI case */
intr_index = ACPI_INDEX;
ioapicindex = acpi_find_ioapic(irqno);
ASSERT(ioapicindex != 0xFF);
ioapic = apic_io_id[ioapicindex];
ipin = irqno - apic_io_vectbase[ioapicindex];
if (apic_irq_table[irqno] &&
apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
apic_irq_table[irqno]->airq_ioapicindex ==
ioapicindex);
return (irqno);
}
} else {
/* default configuration */
ioapicindex = 0;
ioapic = apic_io_id[ioapicindex];
ipin = (uchar_t)irqno;
intr_index = DEFAULT_INDEX;
}
if (ispec == NULL) {
APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n",
irqno));
} else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) {
if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index,
ipl, ioapicindex, ipin, &irqptr)) != -1) {
irqptr->airq_ipl = ipl;
irqptr->airq_origirq = (uchar_t)origirq;
irqptr->airq_dip = dip;
irqptr->airq_major = major;
sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip;
/* This is OK to do really */
if (sdip == NULL) {
cmn_err(CE_WARN, "Sharing vectors: %s"
" instance %d and SCI",
ddi_get_name(dip), ddi_get_instance(dip));
} else {
cmn_err(CE_WARN, "Sharing vectors: %s"
" instance %d and %s instance %d",
ddi_get_name(sdip), ddi_get_instance(sdip),
ddi_get_name(dip), ddi_get_instance(dip));
}
return (newirq);
}
/* try high priority allocation now that share has failed */
if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) {
cmn_err(CE_WARN, "No interrupt vector: %s instance %d",
ddi_get_name(dip), ddi_get_instance(dip));
return (-1);
}
}
mutex_enter(&airq_mutex);
if (apic_irq_table[irqno] == NULL) {
irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
irqptr->airq_temp_cpu = IRQ_UNINIT;
apic_irq_table[irqno] = irqptr;
} else {
irqptr = apic_irq_table[irqno];
if (irqptr->airq_mps_intr_index != FREE_INDEX) {
/*
* The slot is used by another irqno, so allocate
* a free irqno for this interrupt
*/
newirq = apic_allocate_irq(apic_first_avail_irq);
if (newirq == -1) {
mutex_exit(&airq_mutex);
return (-1);
}
irqno = newirq;
irqptr = apic_irq_table[irqno];
if (irqptr == NULL) {
irqptr = kmem_zalloc(sizeof (apic_irq_t),
KM_SLEEP);
irqptr->airq_temp_cpu = IRQ_UNINIT;
apic_irq_table[irqno] = irqptr;
}
vector = apic_modify_vector(vector, newirq);
}
}
apic_max_device_irq = max(irqno, apic_max_device_irq);
apic_min_device_irq = min(irqno, apic_min_device_irq);
mutex_exit(&airq_mutex);
irqptr->airq_ioapicindex = ioapicindex;
irqptr->airq_intin_no = ipin;
irqptr->airq_ipl = ipl;
irqptr->airq_vector = vector;
irqptr->airq_origirq = (uchar_t)origirq;
irqptr->airq_share_id = 0;
irqptr->airq_mps_intr_index = (short)intr_index;
irqptr->airq_dip = dip;
irqptr->airq_major = major;
irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin);
if (intr_flagp)
irqptr->airq_iflag = *intr_flagp;
if (!DDI_INTR_IS_MSI_OR_MSIX(type)) {
/* setup I/O APIC entry for non-MSI/X interrupts */
apic_record_rdt_entry(irqptr, irqno);
}
return (irqno);
}
/*
* return the cpu to which this intr should be bound.
* Check properties or any other mechanism to see if user wants it
* bound to a specific CPU. If so, return the cpu id with high bit set.
* If not, use the policy to choose a cpu and return the id.
*/
uint32_t
apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin)
{
int instance, instno, prop_len, bind_cpu, count;
uint_t i, rc;
uint32_t cpu;
major_t major;
char *name, *drv_name, *prop_val, *cptr;
char prop_name[32];
if (apic_intr_policy == INTR_LOWEST_PRIORITY)
return (IRQ_UNBOUND);
if (apic_nproc == 1)
return (0);
drv_name = NULL;
rc = DDI_PROP_NOT_FOUND;
major = (major_t)-1;
if (dip != NULL) {
name = ddi_get_name(dip);
major = ddi_name_to_major(name);
drv_name = ddi_major_to_name(major);
instance = ddi_get_instance(dip);
if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
i = apic_min_device_irq;
for (; i <= apic_max_device_irq; i++) {
if ((i == irq) || (apic_irq_table[i] == NULL) ||
(apic_irq_table[i]->airq_mps_intr_index
== FREE_INDEX))
continue;
if ((apic_irq_table[i]->airq_major == major) &&
(!(apic_irq_table[i]->airq_cpu &
IRQ_USER_BOUND))) {
cpu = apic_irq_table[i]->airq_cpu;
cmn_err(CE_CONT,
"!%s: %s (%s) instance #%d "
"irq 0x%x vector 0x%x ioapic 0x%x "
"intin 0x%x is bound to cpu %d\n",
psm_name,
name, drv_name, instance, irq,
apic_irq_table[irq]->airq_vector,
ioapicid, intin, cpu);
return (cpu);
}
}
}
/*
* search for "drvname"_intpt_bind_cpus property first, the
* syntax of the property should be "a[,b,c,...]" where
* instance 0 binds to cpu a, instance 1 binds to cpu b,
* instance 3 binds to cpu c...
* ddi_getlongprop() will search /option first, then /
* if "drvname"_intpt_bind_cpus doesn't exist, then find
* intpt_bind_cpus property. The syntax is the same, and
* it applies to all the devices if its "drvname" specific
* property doesn't exist
*/
(void) strcpy(prop_name, drv_name);
(void) strcat(prop_name, "_intpt_bind_cpus");
rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name,
(caddr_t)&prop_val, &prop_len);
if (rc != DDI_PROP_SUCCESS) {
rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0,
"intpt_bind_cpus", (caddr_t)&prop_val, &prop_len);
}
}
if (rc == DDI_PROP_SUCCESS) {
for (i = count = 0; i < (prop_len - 1); i++)
if (prop_val[i] == ',')
count++;
if (prop_val[i-1] != ',')
count++;
/*
* if somehow the binding instances defined in the
* property are not enough for this instno., then
* reuse the pattern for the next instance until
* it reaches the requested instno
*/
instno = instance % count;
i = 0;
cptr = prop_val;
while (i < instno)
if (*cptr++ == ',')
i++;
bind_cpu = stoi(&cptr);
kmem_free(prop_val, prop_len);
/* if specific cpu is bogus, then default to cpu 0 */
if (bind_cpu >= apic_nproc) {
cmn_err(CE_WARN, "%s: %s=%s: CPU %d not present",
psm_name, prop_name, prop_val, bind_cpu);
bind_cpu = 0;
} else {
/* indicate that we are bound at user request */
bind_cpu |= IRQ_USER_BOUND;
}
/*
* no need to check apic_cpus[].aci_status, if specific cpu is
* not up, then post_cpu_start will handle it.
*/
} else {
bind_cpu = apic_next_bind_cpu++;
if (bind_cpu >= apic_nproc) {
apic_next_bind_cpu = 1;
bind_cpu = 0;
}
}
if (drv_name != NULL)
cmn_err(CE_CONT, "!%s: %s (%s) instance %d irq 0x%x "
"vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
psm_name, name, drv_name, instance, irq,
apic_irq_table[irq]->airq_vector, ioapicid, intin,
bind_cpu & ~IRQ_USER_BOUND);
else
cmn_err(CE_CONT, "!%s: irq 0x%x "
"vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n",
psm_name, irq, apic_irq_table[irq]->airq_vector, ioapicid,
intin, bind_cpu & ~IRQ_USER_BOUND);
return ((uint32_t)bind_cpu);
}
static struct apic_io_intr *
apic_find_io_intr_w_busid(int irqno, int busid)
{
struct apic_io_intr *intrp;
/*
* It can have more than 1 entry with same source bus IRQ,
* but unique with the source bus id
*/
intrp = apic_io_intrp;
if (intrp != NULL) {
while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
if (intrp->intr_irq == irqno &&
intrp->intr_busid == busid &&
intrp->intr_type == IO_INTR_INT)
return (intrp);
intrp++;
}
}
APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:"
"busid %x:%x\n", irqno, busid));
return ((struct apic_io_intr *)NULL);
}
struct mps_bus_info {
char *bus_name;
int bus_id;
} bus_info_array[] = {
"ISA ", BUS_ISA,
"PCI ", BUS_PCI,
"EISA ", BUS_EISA,
"XPRESS", BUS_XPRESS,
"PCMCIA", BUS_PCMCIA,
"VL ", BUS_VL,
"CBUS ", BUS_CBUS,
"CBUSII", BUS_CBUSII,
"FUTURE", BUS_FUTURE,
"INTERN", BUS_INTERN,
"MBI ", BUS_MBI,
"MBII ", BUS_MBII,
"MPI ", BUS_MPI,
"MPSA ", BUS_MPSA,
"NUBUS ", BUS_NUBUS,
"TC ", BUS_TC,
"VME ", BUS_VME,
"PCI-E ", BUS_PCIE
};
static int
apic_find_bus_type(char *bus)
{
int i = 0;
for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++)
if (strncmp(bus, bus_info_array[i].bus_name,
strlen(bus_info_array[i].bus_name)) == 0)
return (bus_info_array[i].bus_id);
APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus));
return (0);
}
static int
apic_find_bus(int busid)
{
struct apic_bus *busp;
busp = apic_busp;
while (busp->bus_entry == APIC_BUS_ENTRY) {
if (busp->bus_id == busid)
return (apic_find_bus_type((char *)&busp->bus_str1));
busp++;
}
APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid));
return (0);
}
static int
apic_find_bus_id(int bustype)
{
struct apic_bus *busp;
busp = apic_busp;
while (busp->bus_entry == APIC_BUS_ENTRY) {
if (apic_find_bus_type((char *)&busp->bus_str1) == bustype)
return (busp->bus_id);
busp++;
}
APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x",
bustype));
return (-1);
}
/*
* Check if a particular irq need to be reserved for any io_intr
*/
static struct apic_io_intr *
apic_find_io_intr(int irqno)
{
struct apic_io_intr *intrp;
intrp = apic_io_intrp;
if (intrp != NULL) {
while (intrp->intr_entry == APIC_IO_INTR_ENTRY) {
if (intrp->intr_irq == irqno &&
intrp->intr_type == IO_INTR_INT)
return (intrp);
intrp++;
}
}
return ((struct apic_io_intr *)NULL);
}
/*
* Check if the given ioapicindex intin combination has already been assigned
* an irq. If so return irqno. Else -1
*/
static int
apic_find_intin(uchar_t ioapic, uchar_t intin)
{
apic_irq_t *irqptr;
int i;
/* find ioapic and intin in the apic_irq_table[] and return the index */
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
irqptr = apic_irq_table[i];
while (irqptr) {
if ((irqptr->airq_mps_intr_index >= 0) &&
(irqptr->airq_intin_no == intin) &&
(irqptr->airq_ioapicindex == ioapic)) {
APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq "
"entry for ioapic:intin %x:%x "
"shared interrupts ?", ioapic, intin));
return (i);
}
irqptr = irqptr->airq_next;
}
}
return (-1);
}
int
apic_allocate_irq(int irq)
{
int freeirq, i;
if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1)
if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ,
(irq - 1))) == -1) {
/*
* if BIOS really defines every single irq in the mps
* table, then don't worry about conflicting with
* them, just use any free slot in apic_irq_table
*/
for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
if ((apic_irq_table[i] == NULL) ||
apic_irq_table[i]->airq_mps_intr_index ==
FREE_INDEX) {
freeirq = i;
break;
}
}
if (freeirq == -1) {
/* This shouldn't happen, but just in case */
cmn_err(CE_WARN, "%s: NO available IRQ", psm_name);
return (-1);
}
}
if (apic_irq_table[freeirq] == NULL) {
apic_irq_table[freeirq] =
kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
if (apic_irq_table[freeirq] == NULL) {
cmn_err(CE_WARN, "%s: NO memory to allocate IRQ",
psm_name);
return (-1);
}
apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX;
}
return (freeirq);
}
static int
apic_find_free_irq(int start, int end)
{
int i;
for (i = start; i <= end; i++)
/* Check if any I/O entry needs this IRQ */
if (apic_find_io_intr(i) == NULL) {
/* Then see if it is free */
if ((apic_irq_table[i] == NULL) ||
(apic_irq_table[i]->airq_mps_intr_index ==
FREE_INDEX)) {
return (i);
}
}
return (-1);
}
/*
* Mark vector as being in the process of being deleted. Interrupts
* may still come in on some CPU. The moment an interrupt comes with
* the new vector, we know we can free the old one. Called only from
* addspl and delspl with interrupts disabled. Because an interrupt
* can be shared, but no interrupt from either device may come in,
* we also use a timeout mechanism, which we arbitrarily set to
* apic_revector_timeout microseconds.
*/
static void
apic_mark_vector(uchar_t oldvector, uchar_t newvector)
{
ulong_t iflag;
iflag = intr_clear();
lock_set(&apic_revector_lock);
if (!apic_oldvec_to_newvec) {
apic_oldvec_to_newvec =
kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2,
KM_NOSLEEP);
if (!apic_oldvec_to_newvec) {
/*
* This failure is not catastrophic.
* But, the oldvec will never be freed.
*/
apic_error |= APIC_ERR_MARK_VECTOR_FAIL;
lock_clear(&apic_revector_lock);
intr_restore(iflag);
return;
}
apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR];
}
/* See if we already did this for drivers which do double addintrs */
if (apic_oldvec_to_newvec[oldvector] != newvector) {
apic_oldvec_to_newvec[oldvector] = newvector;
apic_newvec_to_oldvec[newvector] = oldvector;
apic_revector_pending++;
}
lock_clear(&apic_revector_lock);
intr_restore(iflag);
(void) timeout(apic_xlate_vector_free_timeout_handler,
(void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout));
}
/*
* xlate_vector is called from intr_enter if revector_pending is set.
* It will xlate it if needed and mark the old vector as free.
*/
uchar_t
apic_xlate_vector(uchar_t vector)
{
uchar_t newvector, oldvector = 0;
lock_set(&apic_revector_lock);
/* Do we really need to do this ? */
if (!apic_revector_pending) {
lock_clear(&apic_revector_lock);
return (vector);
}
if ((newvector = apic_oldvec_to_newvec[vector]) != 0)
oldvector = vector;
else {
/*
* The incoming vector is new . See if a stale entry is
* remaining
*/
if ((oldvector = apic_newvec_to_oldvec[vector]) != 0)
newvector = vector;
}
if (oldvector) {
apic_revector_pending--;
apic_oldvec_to_newvec[oldvector] = 0;
apic_newvec_to_oldvec[newvector] = 0;
apic_free_vector(oldvector);
lock_clear(&apic_revector_lock);
/* There could have been more than one reprogramming! */
return (apic_xlate_vector(newvector));
}
lock_clear(&apic_revector_lock);
return (vector);
}
void
apic_xlate_vector_free_timeout_handler(void *arg)
{
ulong_t iflag;
uchar_t oldvector, newvector;
oldvector = (uchar_t)(uintptr_t)arg;
iflag = intr_clear();
lock_set(&apic_revector_lock);
if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) {
apic_free_vector(oldvector);
apic_oldvec_to_newvec[oldvector] = 0;
apic_newvec_to_oldvec[newvector] = 0;
apic_revector_pending--;
}
lock_clear(&apic_revector_lock);
intr_restore(iflag);
}
/*
* compute the polarity, trigger mode and vector for programming into
* the I/O apic and record in airq_rdt_entry.
*/
static void
apic_record_rdt_entry(apic_irq_t *irqptr, int irq)
{
int ioapicindex, bus_type, vector;
short intr_index;
uint_t level, po, io_po;
struct apic_io_intr *iointrp;
intr_index = irqptr->airq_mps_intr_index;
DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d "
"irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq,
(void *)irqptr->airq_dip, irqptr->airq_vector));
if (intr_index == RESERVE_INDEX) {
apic_error |= APIC_ERR_INVALID_INDEX;
return;
} else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) {
return;
}
vector = irqptr->airq_vector;
ioapicindex = irqptr->airq_ioapicindex;
/* Assume edge triggered by default */
level = 0;
/* Assume active high by default */
po = 0;
if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) {
ASSERT(irq < 16);
if (eisa_level_intr_mask & (1 << irq))
level = AV_LEVEL;
if (intr_index == FREE_INDEX && apic_defconf == 0)
apic_error |= APIC_ERR_INVALID_INDEX;
} else if (intr_index == ACPI_INDEX) {
bus_type = irqptr->airq_iflag.bustype;
if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) {
if (bus_type == BUS_PCI)
level = AV_LEVEL;
} else
level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ?
AV_LEVEL : 0;
if (level &&
((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) ||
(irqptr->airq_iflag.intr_po == INTR_PO_CONFORM &&
bus_type == BUS_PCI)))
po = AV_ACTIVE_LOW;
} else {
iointrp = apic_io_intrp + intr_index;
bus_type = apic_find_bus(iointrp->intr_busid);
if (iointrp->intr_el == INTR_EL_CONFORM) {
if ((irq < 16) && (eisa_level_intr_mask & (1 << irq)))
level = AV_LEVEL;
else if (bus_type == BUS_PCI)
level = AV_LEVEL;
} else
level = (iointrp->intr_el == INTR_EL_LEVEL) ?
AV_LEVEL : 0;
if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) ||
(iointrp->intr_po == INTR_PO_CONFORM &&
bus_type == BUS_PCI)))
po = AV_ACTIVE_LOW;
}
if (level)
apic_level_intr[irq] = 1;
/*
* The 82489DX External APIC cannot do active low polarity interrupts.
*/
if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX))
io_po = po;
else
io_po = 0;
if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG)
printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n",
ioapicindex, irqptr->airq_intin_no, level, io_po, vector);
irqptr->airq_rdt_entry = level|io_po|vector;
}
/*
* Bind interrupt corresponding to irq_ptr to bind_cpu.
* Must be called with interrupts disabled and apic_ioapic_lock held
*/
int
apic_rebind(apic_irq_t *irq_ptr, int bind_cpu,
struct ioapic_reprogram_data *drep)
{
int ioapicindex, intin_no;
uint32_t airq_temp_cpu;
apic_cpus_info_t *cpu_infop;
uint32_t rdt_entry;
int which_irq;
ioapic_rdt_t irdt;
which_irq = apic_vector_to_irq[irq_ptr->airq_vector];
intin_no = irq_ptr->airq_intin_no;
ioapicindex = irq_ptr->airq_ioapicindex;
airq_temp_cpu = irq_ptr->airq_temp_cpu;
if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) {
if (airq_temp_cpu & IRQ_USER_BOUND)
/* Mask off high bit so it can be used as array index */
airq_temp_cpu &= ~IRQ_USER_BOUND;
ASSERT(airq_temp_cpu < apic_nproc);
}
/*
* Can't bind to a CPU that's not accepting interrupts:
*/
cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND];
if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE))
return (1);
/*
* If we are about to change the interrupt vector for this interrupt,
* and this interrupt is level-triggered, attached to an IOAPIC,
* has been delivered to a CPU and that CPU has not handled it
* yet, we cannot reprogram the IOAPIC now.
*/
if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex,
intin_no);
if ((irq_ptr->airq_vector != RDT_VECTOR(rdt_entry)) &&
apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu,
bind_cpu, ioapicindex, intin_no, which_irq, drep) != 0) {
return (0);
}
/*
* NOTE: We do not unmask the RDT here, as an interrupt MAY
* still come in before we have a chance to reprogram it below.
* The reprogramming below will simultaneously change and
* unmask the RDT entry.
*/
if ((uint32_t)bind_cpu == IRQ_UNBOUND) {
irdt.ir_lo = AV_LDEST | AV_LOPRI |
irq_ptr->airq_rdt_entry;
#if !defined(__xpv)
irdt.ir_hi = AV_TOALL >> APIC_ID_BIT_OFFSET;
apic_vt_ops->apic_intrr_alloc_entry(irq_ptr);
apic_vt_ops->apic_intrr_map_entry(
irq_ptr, (void *)&irdt);
apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt);
/* Write the RDT entry -- no specific CPU binding */
WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
irdt.ir_hi | AV_TOALL);
#else
WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
AV_TOALL);
#endif
if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu !=
IRQ_UNBOUND)
apic_cpus[airq_temp_cpu].aci_temp_bound--;
/*
* Write the vector, trigger, and polarity portion of
* the RDT
*/
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
irdt.ir_lo);
irq_ptr->airq_temp_cpu = IRQ_UNBOUND;
return (0);
}
}
if (bind_cpu & IRQ_USER_BOUND) {
cpu_infop->aci_bound++;
} else {
cpu_infop->aci_temp_bound++;
}
ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc);
if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) {
apic_cpus[airq_temp_cpu].aci_temp_bound--;
}
if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) {
irdt.ir_lo = AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry;
irdt.ir_hi = cpu_infop->aci_local_id;
#if !defined(__xpv)
apic_vt_ops->apic_intrr_alloc_entry(irq_ptr);
apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&irdt);
apic_vt_ops->apic_intrr_record_rdt(irq_ptr, &irdt);
/* Write the RDT entry -- bind to a specific CPU: */
WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
irdt.ir_hi);
#else
/* Write the RDT entry -- bind to a specific CPU: */
WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin_no,
irdt.ir_hi << APIC_ID_BIT_OFFSET);
#endif
/* Write the vector, trigger, and polarity portion of the RDT */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin_no,
irdt.ir_lo);
} else {
int type = (irq_ptr->airq_mps_intr_index == MSI_INDEX) ?
DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX;
if (type == DDI_INTR_TYPE_MSI) {
if (irq_ptr->airq_ioapicindex ==
irq_ptr->airq_origirq) {
/* first one */
DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
"apic_pci_msi_enable_vector\n"));
apic_pci_msi_enable_vector(irq_ptr,
type, which_irq, irq_ptr->airq_vector,
irq_ptr->airq_intin_no,
cpu_infop->aci_local_id);
}
if ((irq_ptr->airq_ioapicindex +
irq_ptr->airq_intin_no - 1) ==
irq_ptr->airq_origirq) { /* last one */
DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call "
"apic_pci_msi_enable_mode\n"));
apic_pci_msi_enable_mode(irq_ptr->airq_dip,
type, which_irq);
}
} else { /* MSI-X */
apic_pci_msi_enable_vector(irq_ptr, type,
irq_ptr->airq_origirq, irq_ptr->airq_vector, 1,
cpu_infop->aci_local_id);
apic_pci_msi_enable_mode(irq_ptr->airq_dip, type,
irq_ptr->airq_origirq);
}
}
irq_ptr->airq_temp_cpu = (uint32_t)bind_cpu;
apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND));
return (0);
}
static void
apic_last_ditch_clear_remote_irr(int ioapic_ix, int intin_no)
{
if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no)
& AV_REMOTE_IRR) != 0) {
/*
* Trying to clear the bit through normal
* channels has failed. So as a last-ditch
* effort, try to set the trigger mode to
* edge, then to level. This has been
* observed to work on many systems.
*/
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no,
READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no) & ~AV_LEVEL);
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no,
READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no) | AV_LEVEL);
/*
* If the bit's STILL set, this interrupt may
* be hosed.
*/
if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no) & AV_REMOTE_IRR) != 0) {
prom_printf("%s: Remote IRR still "
"not clear for IOAPIC %d intin %d.\n"
"\tInterrupts to this pin may cease "
"functioning.\n", psm_name, ioapic_ix,
intin_no);
#ifdef DEBUG
apic_last_ditch_reprogram_failures++;
#endif
}
}
}
/*
* This function is protected by apic_ioapic_lock coupled with the
* fact that interrupts are disabled.
*/
static void
delete_defer_repro_ent(int which_irq)
{
ASSERT(which_irq >= 0);
ASSERT(which_irq <= 255);
if (apic_reprogram_info[which_irq].done)
return;
apic_reprogram_info[which_irq].done = B_TRUE;
#ifdef DEBUG
apic_defer_repro_total_retries +=
apic_reprogram_info[which_irq].tries;
apic_defer_repro_successes++;
#endif
if (--apic_reprogram_outstanding == 0) {
setlvlx = psm_intr_exit_fn();
}
}
/*
* Interrupts must be disabled during this function to prevent
* self-deadlock. Interrupts are disabled because this function
* is called from apic_check_stuck_interrupt(), which is called
* from apic_rebind(), which requires its caller to disable interrupts.
*/
static void
add_defer_repro_ent(apic_irq_t *irq_ptr, int which_irq, int new_bind_cpu)
{
ASSERT(which_irq >= 0);
ASSERT(which_irq <= 255);
/*
* On the off-chance that there's already a deferred
* reprogramming on this irq, check, and if so, just update the
* CPU and irq pointer to which the interrupt is targeted, then return.
*/
if (!apic_reprogram_info[which_irq].done) {
apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
apic_reprogram_info[which_irq].irqp = irq_ptr;
return;
}
apic_reprogram_info[which_irq].irqp = irq_ptr;
apic_reprogram_info[which_irq].bindcpu = new_bind_cpu;
apic_reprogram_info[which_irq].tries = 0;
/*
* This must be the last thing set, since we're not
* grabbing any locks, apic_try_deferred_reprogram() will
* make its decision about using this entry iff done
* is false.
*/
apic_reprogram_info[which_irq].done = B_FALSE;
/*
* If there were previously no deferred reprogrammings, change
* setlvlx to call apic_try_deferred_reprogram()
*/
if (++apic_reprogram_outstanding == 1) {
setlvlx = apic_try_deferred_reprogram;
}
}
static void
apic_try_deferred_reprogram(int prev_ipl, int irq)
{
int reproirq;
ulong_t iflag;
struct ioapic_reprogram_data *drep;
(*psm_intr_exit_fn())(prev_ipl, irq);
if (!lock_try(&apic_defer_reprogram_lock)) {
return;
}
/*
* Acquire the apic_ioapic_lock so that any other operations that
* may affect the apic_reprogram_info state are serialized.
* It's still possible for the last deferred reprogramming to clear
* between the time we entered this function and the time we get to
* the for loop below. In that case, *setlvlx will have been set
* back to *_intr_exit and drep will be NULL. (There's no way to
* stop that from happening -- we would need to grab a lock before
* calling *setlvlx, which is neither realistic nor prudent).
*/
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
/*
* For each deferred RDT entry, try to reprogram it now. Note that
* there is no lock acquisition to read apic_reprogram_info because
* '.done' is set only after the other fields in the structure are set.
*/
drep = NULL;
for (reproirq = 0; reproirq <= APIC_MAX_VECTOR; reproirq++) {
if (apic_reprogram_info[reproirq].done == B_FALSE) {
drep = &apic_reprogram_info[reproirq];
break;
}
}
/*
* Either we found a deferred action to perform, or
* we entered this function spuriously, after *setlvlx
* was restored to point to *_intr_exit. Any other
* permutation is invalid.
*/
ASSERT(drep != NULL || *setlvlx == psm_intr_exit_fn());
/*
* Though we can't really do anything about errors
* at this point, keep track of them for reporting.
* Note that it is very possible for apic_setup_io_intr
* to re-register this very timeout if the Remote IRR bit
* has not yet cleared.
*/
#ifdef DEBUG
if (drep != NULL) {
if (apic_setup_io_intr(drep, reproirq, B_TRUE) != 0) {
apic_deferred_setup_failures++;
}
} else {
apic_deferred_spurious_enters++;
}
#else
if (drep != NULL)
(void) apic_setup_io_intr(drep, reproirq, B_TRUE);
#endif
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
lock_clear(&apic_defer_reprogram_lock);
}
static void
apic_ioapic_wait_pending_clear(int ioapic_ix, int intin_no)
{
int waited;
/*
* Wait for the delivery pending bit to clear.
*/
if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
(AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) {
/*
* If we're still waiting on the delivery of this interrupt,
* continue to wait here until it is delivered (this should be
* a very small amount of time, but include a timeout just in
* case).
*/
for (waited = 0; waited < apic_max_reps_clear_pending;
waited++) {
if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no) & AV_PENDING) == 0) {
break;
}
}
}
}
/*
* Checks to see if the IOAPIC interrupt entry specified has its Remote IRR
* bit set. Calls functions that modify the function that setlvlx points to,
* so that the reprogramming can be retried very shortly.
*
* This function will mask the RDT entry if the interrupt is level-triggered.
* (The caller is responsible for unmasking the RDT entry.)
*
* Returns non-zero if the caller should defer IOAPIC reprogramming.
*/
static int
apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu,
int new_bind_cpu, int ioapic_ix, int intin_no, int which_irq,
struct ioapic_reprogram_data *drep)
{
int32_t rdt_entry;
int waited;
int reps = 0;
/*
* Wait for the delivery pending bit to clear.
*/
do {
++reps;
apic_ioapic_wait_pending_clear(ioapic_ix, intin_no);
/*
* Mask the RDT entry, but only if it's a level-triggered
* interrupt
*/
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no);
if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) {
/* Mask it */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
AV_MASK | rdt_entry);
}
if ((rdt_entry & AV_LEVEL) == AV_LEVEL) {
/*
* If there was a race and an interrupt was injected
* just before we masked, check for that case here.
* Then, unmask the RDT entry and try again. If we're
* on our last try, don't unmask (because we want the
* RDT entry to remain masked for the rest of the
* function).
*/
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no);
if ((rdt_entry & AV_PENDING) &&
(reps < apic_max_reps_clear_pending)) {
/* Unmask it */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no, rdt_entry & ~AV_MASK);
}
}
} while ((rdt_entry & AV_PENDING) &&
(reps < apic_max_reps_clear_pending));
#ifdef DEBUG
if (rdt_entry & AV_PENDING)
apic_intr_deliver_timeouts++;
#endif
/*
* If the remote IRR bit is set, then the interrupt has been sent
* to a CPU for processing. We have no choice but to wait for
* that CPU to process the interrupt, at which point the remote IRR
* bit will be cleared.
*/
if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) &
(AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) {
/*
* If the CPU that this RDT is bound to is NOT the current
* CPU, wait until that CPU handles the interrupt and ACKs
* it. If this interrupt is not bound to any CPU (that is,
* if it's bound to the logical destination of "anyone"), it
* may have been delivered to the current CPU so handle that
* case by deferring the reprogramming (below).
*/
if ((old_bind_cpu != IRQ_UNBOUND) &&
(old_bind_cpu != IRQ_UNINIT) &&
(old_bind_cpu != psm_get_cpu_id())) {
for (waited = 0; waited < apic_max_reps_clear_pending;
waited++) {
if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no) & AV_REMOTE_IRR) == 0) {
delete_defer_repro_ent(which_irq);
/* Remote IRR has cleared! */
return (0);
}
}
}
/*
* If we waited and the Remote IRR bit is still not cleared,
* AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
* times for this interrupt, try the last-ditch workaround:
*/
if (drep && drep->tries >= APIC_REPROGRAM_MAX_TRIES) {
apic_last_ditch_clear_remote_irr(ioapic_ix, intin_no);
/* Mark this one as reprogrammed: */
delete_defer_repro_ent(which_irq);
return (0);
} else {
#ifdef DEBUG
apic_intr_deferrals++;
#endif
/*
* If waiting for the Remote IRR bit (above) didn't
* allow it to clear, defer the reprogramming.
* Add a new deferred-programming entry if the
* caller passed a NULL one (and update the existing one
* in case anything changed).
*/
add_defer_repro_ent(irq_ptr, which_irq, new_bind_cpu);
if (drep)
drep->tries++;
/* Inform caller to defer IOAPIC programming: */
return (1);
}
}
/* Remote IRR is clear */
delete_defer_repro_ent(which_irq);
return (0);
}
/*
* Called to migrate all interrupts at an irq to another cpu.
* Must be called with interrupts disabled and apic_ioapic_lock held
*/
int
apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu)
{
apic_irq_t *irqptr = irq_ptr;
int retval = 0;
while (irqptr) {
if (irqptr->airq_temp_cpu != IRQ_UNINIT)
retval |= apic_rebind(irqptr, bind_cpu, NULL);
irqptr = irqptr->airq_next;
}
return (retval);
}
/*
* apic_intr_redistribute does all the messy computations for identifying
* which interrupt to move to which CPU. Currently we do just one interrupt
* at a time. This reduces the time we spent doing all this within clock
* interrupt. When it is done in idle, we could do more than 1.
* First we find the most busy and the most free CPU (time in ISR only)
* skipping those CPUs that has been identified as being ineligible (cpu_skip)
* Then we look for IRQs which are closest to the difference between the
* most busy CPU and the average ISR load. We try to find one whose load
* is less than difference.If none exists, then we chose one larger than the
* difference, provided it does not make the most idle CPU worse than the
* most busy one. In the end, we clear all the busy fields for CPUs. For
* IRQs, they are cleared as they are scanned.
*/
void
apic_intr_redistribute()
{
int busiest_cpu, most_free_cpu;
int cpu_free, cpu_busy, max_busy, min_busy;
int min_free, diff;
int average_busy, cpus_online;
int i, busy;
ulong_t iflag;
apic_cpus_info_t *cpu_infop;
apic_irq_t *min_busy_irq = NULL;
apic_irq_t *max_busy_irq = NULL;
busiest_cpu = most_free_cpu = -1;
cpu_free = cpu_busy = max_busy = average_busy = 0;
min_free = apic_sample_factor_redistribution;
cpus_online = 0;
/*
* Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu
* without ioapic_lock. That is OK as we are just doing statistical
* sampling anyway and any inaccuracy now will get corrected next time
* The call to rebind which actually changes things will make sure
* we are consistent.
*/
for (i = 0; i < apic_nproc; i++) {
if (!(apic_redist_cpu_skip & (1 << i)) &&
(apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) {
cpu_infop = &apic_cpus[i];
/*
* If no unbound interrupts or only 1 total on this
* CPU, skip
*/
if (!cpu_infop->aci_temp_bound ||
(cpu_infop->aci_bound + cpu_infop->aci_temp_bound)
== 1) {
apic_redist_cpu_skip |= 1 << i;
continue;
}
busy = cpu_infop->aci_busy;
average_busy += busy;
cpus_online++;
if (max_busy < busy) {
max_busy = busy;
busiest_cpu = i;
}
if (min_free > busy) {
min_free = busy;
most_free_cpu = i;
}
if (busy > apic_int_busy_mark) {
cpu_busy |= 1 << i;
} else {
if (busy < apic_int_free_mark)
cpu_free |= 1 << i;
}
}
}
if ((cpu_busy && cpu_free) ||
(max_busy >= (min_free + apic_diff_for_redistribution))) {
apic_num_imbalance++;
#ifdef DEBUG
if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
prom_printf(
"redistribute busy=%x free=%x max=%x min=%x",
cpu_busy, cpu_free, max_busy, min_free);
}
#endif /* DEBUG */
average_busy /= cpus_online;
diff = max_busy - average_busy;
min_busy = max_busy; /* start with the max possible value */
max_busy = 0;
min_busy_irq = max_busy_irq = NULL;
i = apic_min_device_irq;
for (; i <= apic_max_device_irq; i++) {
apic_irq_t *irq_ptr;
/* Change to linked list per CPU ? */
if ((irq_ptr = apic_irq_table[i]) == NULL)
continue;
/* Check for irq_busy & decide which one to move */
/* Also zero them for next round */
if ((irq_ptr->airq_temp_cpu == busiest_cpu) &&
irq_ptr->airq_busy) {
if (irq_ptr->airq_busy < diff) {
/*
* Check for least busy CPU,
* best fit or what ?
*/
if (max_busy < irq_ptr->airq_busy) {
/*
* Most busy within the
* required differential
*/
max_busy = irq_ptr->airq_busy;
max_busy_irq = irq_ptr;
}
} else {
if (min_busy > irq_ptr->airq_busy) {
/*
* least busy, but more than
* the reqd diff
*/
if (min_busy <
(diff + average_busy -
min_free)) {
/*
* Making sure new cpu
* will not end up
* worse
*/
min_busy =
irq_ptr->airq_busy;
min_busy_irq = irq_ptr;
}
}
}
}
irq_ptr->airq_busy = 0;
}
if (max_busy_irq != NULL) {
#ifdef DEBUG
if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
prom_printf("rebinding %x to %x",
max_busy_irq->airq_vector, most_free_cpu);
}
#endif /* DEBUG */
iflag = intr_clear();
if (lock_try(&apic_ioapic_lock)) {
if (apic_rebind_all(max_busy_irq,
most_free_cpu) == 0) {
/* Make change permenant */
max_busy_irq->airq_cpu =
(uint32_t)most_free_cpu;
}
lock_clear(&apic_ioapic_lock);
}
intr_restore(iflag);
} else if (min_busy_irq != NULL) {
#ifdef DEBUG
if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) {
prom_printf("rebinding %x to %x",
min_busy_irq->airq_vector, most_free_cpu);
}
#endif /* DEBUG */
iflag = intr_clear();
if (lock_try(&apic_ioapic_lock)) {
if (apic_rebind_all(min_busy_irq,
most_free_cpu) == 0) {
/* Make change permenant */
min_busy_irq->airq_cpu =
(uint32_t)most_free_cpu;
}
lock_clear(&apic_ioapic_lock);
}
intr_restore(iflag);
} else {
if (cpu_busy != (1 << busiest_cpu)) {
apic_redist_cpu_skip |= 1 << busiest_cpu;
/*
* We leave cpu_skip set so that next time we
* can choose another cpu
*/
}
}
apic_num_rebind++;
} else {
/*
* found nothing. Could be that we skipped over valid CPUs
* or we have balanced everything. If we had a variable
* ticks_for_redistribution, it could be increased here.
* apic_int_busy, int_free etc would also need to be
* changed.
*/
if (apic_redist_cpu_skip)
apic_redist_cpu_skip = 0;
}
for (i = 0; i < apic_nproc; i++) {
apic_cpus[i].aci_busy = 0;
}
}
void
apic_cleanup_busy()
{
int i;
apic_irq_t *irq_ptr;
for (i = 0; i < apic_nproc; i++) {
apic_cpus[i].aci_busy = 0;
}
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
if ((irq_ptr = apic_irq_table[i]) != NULL)
irq_ptr->airq_busy = 0;
}
}
static int
apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid,
int ipin, int *pci_irqp, iflag_t *intr_flagp)
{
int status;
acpi_psm_lnk_t acpipsmlnk;
if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp,
intr_flagp)) == ACPI_PSM_SUCCESS) {
APIC_VERBOSE_IRQ((CE_CONT, "!%s: Found irqno %d "
"from cache for device %s, instance #%d\n", psm_name,
*pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
return (status);
}
bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t));
if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp,
&acpipsmlnk)) == ACPI_PSM_FAILURE) {
APIC_VERBOSE_IRQ((CE_WARN, "%s: "
" acpi_translate_pci_irq failed for device %s, instance"
" #%d", psm_name, ddi_get_name(dip),
ddi_get_instance(dip)));
return (status);
}
if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) {
status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp,
intr_flagp);
if (status != ACPI_PSM_SUCCESS) {
status = acpi_get_current_irq_resource(&acpipsmlnk,
pci_irqp, intr_flagp);
}
}
if (status == ACPI_PSM_SUCCESS) {
acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp,
intr_flagp, &acpipsmlnk);
APIC_VERBOSE_IRQ((CE_CONT, "%s: [ACPI] "
"new irq %d for device %s, instance #%d\n", psm_name,
*pci_irqp, ddi_get_name(dip), ddi_get_instance(dip)));
}
return (status);
}
/*
* Adds an entry to the irq list passed in, and returns the new list.
* Entries are added in priority order (lower numerical priorities are
* placed closer to the head of the list)
*/
static prs_irq_list_t *
acpi_insert_prs_irq_ent(prs_irq_list_t *listp, int priority, int irq,
iflag_t *iflagp, acpi_prs_private_t *prsprvp)
{
struct prs_irq_list_ent *newent, *prevp = NULL, *origlistp;
newent = kmem_zalloc(sizeof (struct prs_irq_list_ent), KM_SLEEP);
newent->list_prio = priority;
newent->irq = irq;
newent->intrflags = *iflagp;
newent->prsprv = *prsprvp;
/* ->next is NULL from kmem_zalloc */
/*
* New list -- return the new entry as the list.
*/
if (listp == NULL)
return (newent);
/*
* Save original list pointer for return (since we're not modifying
* the head)
*/
origlistp = listp;
/*
* Insertion sort, with entries with identical keys stored AFTER
* existing entries (the less-than-or-equal test of priority does
* this for us).
*/
while (listp != NULL && listp->list_prio <= priority) {
prevp = listp;
listp = listp->next;
}
newent->next = listp;
if (prevp == NULL) { /* Add at head of list (newent is the new head) */
return (newent);
} else {
prevp->next = newent;
return (origlistp);
}
}
/*
* Frees the list passed in, deallocating all memory and leaving *listpp
* set to NULL.
*/
static void
acpi_destroy_prs_irq_list(prs_irq_list_t **listpp)
{
struct prs_irq_list_ent *nextp;
ASSERT(listpp != NULL);
while (*listpp != NULL) {
nextp = (*listpp)->next;
kmem_free(*listpp, sizeof (struct prs_irq_list_ent));
*listpp = nextp;
}
}
/*
* apic_choose_irqs_from_prs returns a list of irqs selected from the list of
* irqs returned by the link device's _PRS method. The irqs are chosen
* to minimize contention in situations where the interrupt link device
* can be programmed to steer interrupts to different interrupt controller
* inputs (some of which may already be in use). The list is sorted in order
* of irqs to use, with the highest priority given to interrupt controller
* inputs that are not shared. When an interrupt controller input
* must be shared, apic_choose_irqs_from_prs adds the possible irqs to the
* returned list in the order that minimizes sharing (thereby ensuring lowest
* possible latency from interrupt trigger time to ISR execution time).
*/
static prs_irq_list_t *
apic_choose_irqs_from_prs(acpi_irqlist_t *irqlistent, dev_info_t *dip,
int crs_irq)
{
int32_t irq;
int i;
prs_irq_list_t *prsirqlistp = NULL;
iflag_t iflags;
while (irqlistent != NULL) {
irqlistent->intr_flags.bustype = BUS_PCI;
for (i = 0; i < irqlistent->num_irqs; i++) {
irq = irqlistent->irqs[i];
if (irq <= 0) {
/* invalid irq number */
continue;
}
if ((irq < 16) && (apic_reserved_irqlist[irq]))
continue;
if ((apic_irq_table[irq] == NULL) ||
(apic_irq_table[irq]->airq_dip == dip)) {
prsirqlistp = acpi_insert_prs_irq_ent(
prsirqlistp, 0 /* Highest priority */, irq,
&irqlistent->intr_flags,
&irqlistent->acpi_prs_prv);
/*
* If we do not prefer the current irq from _CRS
* or if we do and this irq is the same as the
* current irq from _CRS, this is the one
* to pick.
*/
if (!(apic_prefer_crs) || (irq == crs_irq)) {
return (prsirqlistp);
}
continue;
}
/*
* Edge-triggered interrupts cannot be shared
*/
if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE)
continue;
/*
* To work around BIOSes that contain incorrect
* interrupt polarity information in interrupt
* descriptors returned by _PRS, we assume that
* the polarity of the other device sharing this
* interrupt controller input is compatible.
* If it's not, the caller will catch it when
* the caller invokes the link device's _CRS method
* (after invoking its _SRS method).
*/
iflags = irqlistent->intr_flags;
iflags.intr_po =
apic_irq_table[irq]->airq_iflag.intr_po;
if (!acpi_intr_compatible(iflags,
apic_irq_table[irq]->airq_iflag)) {
APIC_VERBOSE_IRQ((CE_CONT, "!%s: irq %d "
"not compatible [%x:%x:%x !~ %x:%x:%x]",
psm_name, irq,
iflags.intr_po,
iflags.intr_el,
iflags.bustype,
apic_irq_table[irq]->airq_iflag.intr_po,
apic_irq_table[irq]->airq_iflag.intr_el,
apic_irq_table[irq]->airq_iflag.bustype));
continue;
}
/*
* If we prefer the irq from _CRS, no need
* to search any further (and make sure
* to add this irq with the highest priority
* so it's tried first).
*/
if (crs_irq == irq && apic_prefer_crs) {
return (acpi_insert_prs_irq_ent(
prsirqlistp,
0 /* Highest priority */,
irq, &iflags,
&irqlistent->acpi_prs_prv));
}
/*
* Priority is equal to the share count (lower
* share count is higher priority). Note that
* the intr flags passed in here are the ones we
* changed above -- if incorrect, it will be
* caught by the caller's _CRS flags comparison.
*/
prsirqlistp = acpi_insert_prs_irq_ent(
prsirqlistp,
apic_irq_table[irq]->airq_share, irq,
&iflags, &irqlistent->acpi_prs_prv);
}
/* Go to the next irqlist entry */
irqlistent = irqlistent->next;
}
return (prsirqlistp);
}
/*
* Configures the irq for the interrupt link device identified by
* acpipsmlnkp.
*
* Gets the current and the list of possible irq settings for the
* device. If apic_unconditional_srs is not set, and the current
* resource setting is in the list of possible irq settings,
* current irq resource setting is passed to the caller.
*
* Otherwise, picks an irq number from the list of possible irq
* settings, and sets the irq of the device to this value.
* If prefer_crs is set, among a set of irq numbers in the list that have
* the least number of devices sharing the interrupt, we pick current irq
* resource setting if it is a member of this set.
*
* Passes the irq number in the value pointed to by pci_irqp, and
* polarity and sensitivity in the structure pointed to by dipintrflagp
* to the caller.
*
* Note that if setting the irq resource failed, but successfuly obtained
* the current irq resource settings, passes the current irq resources
* and considers it a success.
*
* Returns:
* ACPI_PSM_SUCCESS on success.
*
* ACPI_PSM_FAILURE if an error occured during the configuration or
* if a suitable irq was not found for this device, or if setting the
* irq resource and obtaining the current resource fails.
*
*/
static int
apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip,
int *pci_irqp, iflag_t *dipintr_flagp)
{
int32_t irq;
int cur_irq = -1;
acpi_irqlist_t *irqlistp;
prs_irq_list_t *prs_irq_listp, *prs_irq_entp;
boolean_t found_irq = B_FALSE;
dipintr_flagp->bustype = BUS_PCI;
if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp))
== ACPI_PSM_FAILURE) {
APIC_VERBOSE_IRQ((CE_WARN, "!%s: Unable to determine "
"or assign IRQ for device %s, instance #%d: The system was "
"unable to get the list of potential IRQs from ACPI.",
psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
return (ACPI_PSM_FAILURE);
}
if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) &&
(cur_irq > 0)) {
/*
* If an IRQ is set in CRS and that IRQ exists in the set
* returned from _PRS, return that IRQ, otherwise print
* a warning
*/
if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL)
== ACPI_PSM_SUCCESS) {
ASSERT(pci_irqp != NULL);
*pci_irqp = cur_irq;
acpi_free_irqlist(irqlistp);
return (ACPI_PSM_SUCCESS);
}
APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find the "
"current irq %d for device %s, instance #%d in ACPI's "
"list of possible irqs for this device. Picking one from "
" the latter list.", psm_name, cur_irq, ddi_get_name(dip),
ddi_get_instance(dip)));
}
if ((prs_irq_listp = apic_choose_irqs_from_prs(irqlistp, dip,
cur_irq)) == NULL) {
APIC_VERBOSE_IRQ((CE_WARN, "!%s: Could not find a "
"suitable irq from the list of possible irqs for device "
"%s, instance #%d in ACPI's list of possible irqs",
psm_name, ddi_get_name(dip), ddi_get_instance(dip)));
acpi_free_irqlist(irqlistp);
return (ACPI_PSM_FAILURE);
}
acpi_free_irqlist(irqlistp);
for (prs_irq_entp = prs_irq_listp;
prs_irq_entp != NULL && found_irq == B_FALSE;
prs_irq_entp = prs_irq_entp->next) {
acpipsmlnkp->acpi_prs_prv = prs_irq_entp->prsprv;
irq = prs_irq_entp->irq;
APIC_VERBOSE_IRQ((CE_CONT, "!%s: Setting irq %d for "
"device %s instance #%d\n", psm_name, irq,
ddi_get_name(dip), ddi_get_instance(dip)));
if ((acpi_set_irq_resource(acpipsmlnkp, irq))
== ACPI_PSM_SUCCESS) {
/*
* setting irq was successful, check to make sure CRS
* reflects that. If CRS does not agree with what we
* set, return the irq that was set.
*/
if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq,
dipintr_flagp) == ACPI_PSM_SUCCESS) {
if (cur_irq != irq)
APIC_VERBOSE_IRQ((CE_WARN,
"!%s: IRQ resource set "
"(irqno %d) for device %s "
"instance #%d, differs from "
"current setting irqno %d",
psm_name, irq, ddi_get_name(dip),
ddi_get_instance(dip), cur_irq));
} else {
/*
* On at least one system, there was a bug in
* a DSDT method called by _STA, causing _STA to
* indicate that the link device was disabled
* (when, in fact, it was enabled). Since _SRS
* succeeded, assume that _CRS is lying and use
* the iflags from this _PRS interrupt choice.
* If we're wrong about the flags, the polarity
* will be incorrect and we may get an interrupt
* storm, but there's not much else we can do
* at this point.
*/
*dipintr_flagp = prs_irq_entp->intrflags;
}
/*
* Return the irq that was set, and not what _CRS
* reports, since _CRS has been seen to return
* different IRQs than what was passed to _SRS on some
* systems (and just not return successfully on others).
*/
cur_irq = irq;
found_irq = B_TRUE;
} else {
APIC_VERBOSE_IRQ((CE_WARN, "!%s: set resource "
"irq %d failed for device %s instance #%d",
psm_name, irq, ddi_get_name(dip),
ddi_get_instance(dip)));
if (cur_irq == -1) {
acpi_destroy_prs_irq_list(&prs_irq_listp);
return (ACPI_PSM_FAILURE);
}
}
}
acpi_destroy_prs_irq_list(&prs_irq_listp);
if (!found_irq)
return (ACPI_PSM_FAILURE);
ASSERT(pci_irqp != NULL);
*pci_irqp = cur_irq;
return (ACPI_PSM_SUCCESS);
}
void
ioapic_disable_redirection()
{
int ioapic_ix;
int intin_max;
int intin_ix;
/* Disable the I/O APIC redirection entries */
for (ioapic_ix = 0; ioapic_ix < apic_io_max; ioapic_ix++) {
/* Bits 23-16 define the maximum redirection entries */
intin_max = (ioapic_read(ioapic_ix, APIC_VERS_CMD) >> 16)
& 0xff;
for (intin_ix = 0; intin_ix <= intin_max; intin_ix++) {
/*
* The assumption here is that this is safe, even for
* systems with IOAPICs that suffer from the hardware
* erratum because all devices have been quiesced before
* this function is called from apic_shutdown()
* (or equivalent). If that assumption turns out to be
* false, this mask operation can induce the same
* erratum result we're trying to avoid.
*/
ioapic_write(ioapic_ix, APIC_RDT_CMD + 2 * intin_ix,
AV_MASK);
}
}
}
/*
* Looks for an IOAPIC with the specified physical address in the /ioapics
* node in the device tree (created by the PCI enumerator).
*/
static boolean_t
apic_is_ioapic_AMD_813x(uint32_t physaddr)
{
/*
* Look in /ioapics, for the ioapic with
* the physical address given
*/
dev_info_t *ioapicsnode = ddi_find_devinfo(IOAPICS_NODE_NAME, -1, 0);
dev_info_t *ioapic_child;
boolean_t rv = B_FALSE;
int vid, did;
uint64_t ioapic_paddr;
boolean_t done = B_FALSE;
if (ioapicsnode == NULL)
return (B_FALSE);
/* Load first child: */
ioapic_child = ddi_get_child(ioapicsnode);
while (!done && ioapic_child != 0) { /* Iterate over children */
if ((ioapic_paddr = (uint64_t)ddi_prop_get_int64(DDI_DEV_T_ANY,
ioapic_child, DDI_PROP_DONTPASS, "reg", 0))
!= 0 && physaddr == ioapic_paddr) {
vid = ddi_prop_get_int(DDI_DEV_T_ANY, ioapic_child,
DDI_PROP_DONTPASS, IOAPICS_PROP_VENID, 0);
if (vid == VENID_AMD) {
did = ddi_prop_get_int(DDI_DEV_T_ANY,
ioapic_child, DDI_PROP_DONTPASS,
IOAPICS_PROP_DEVID, 0);
if (did == DEVID_8131_IOAPIC ||
did == DEVID_8132_IOAPIC) {
rv = B_TRUE;
done = B_TRUE;
}
}
}
if (!done)
ioapic_child = ddi_get_next_sibling(ioapic_child);
}
/* The ioapics node was held by ddi_find_devinfo, so release it */
ndi_rele_devi(ioapicsnode);
return (rv);
}
struct apic_state {
int32_t as_task_reg;
int32_t as_dest_reg;
int32_t as_format_reg;
int32_t as_local_timer;
int32_t as_pcint_vect;
int32_t as_int_vect0;
int32_t as_int_vect1;
int32_t as_err_vect;
int32_t as_init_count;
int32_t as_divide_reg;
int32_t as_spur_int_reg;
uint32_t as_ioapic_ids[MAX_IO_APIC];
};
static int
apic_acpi_enter_apicmode(void)
{
ACPI_OBJECT_LIST arglist;
ACPI_OBJECT arg;
ACPI_STATUS status;
/* Setup parameter object */
arglist.Count = 1;
arglist.Pointer = &arg;
arg.Type = ACPI_TYPE_INTEGER;
arg.Integer.Value = ACPI_APIC_MODE;
status = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL);
if (ACPI_FAILURE(status))
return (PSM_FAILURE);
else
return (PSM_SUCCESS);
}
static void
apic_save_state(struct apic_state *sp)
{
int i;
ulong_t iflag;
PMD(PMD_SX, ("apic_save_state %p\n", (void *)sp))
/*
* First the local APIC.
*/
sp->as_task_reg = apic_reg_ops->apic_get_pri();
sp->as_dest_reg = apic_reg_ops->apic_read(APIC_DEST_REG);
if (apic_mode == LOCAL_APIC)
sp->as_format_reg = apic_reg_ops->apic_read(APIC_FORMAT_REG);
sp->as_local_timer = apic_reg_ops->apic_read(APIC_LOCAL_TIMER);
sp->as_pcint_vect = apic_reg_ops->apic_read(APIC_PCINT_VECT);
sp->as_int_vect0 = apic_reg_ops->apic_read(APIC_INT_VECT0);
sp->as_int_vect1 = apic_reg_ops->apic_read(APIC_INT_VECT1);
sp->as_err_vect = apic_reg_ops->apic_read(APIC_ERR_VECT);
sp->as_init_count = apic_reg_ops->apic_read(APIC_INIT_COUNT);
sp->as_divide_reg = apic_reg_ops->apic_read(APIC_DIVIDE_REG);
sp->as_spur_int_reg = apic_reg_ops->apic_read(APIC_SPUR_INT_REG);
/*
* If on the boot processor then save the IOAPICs' IDs
*/
if (psm_get_cpu_id() == 0) {
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
for (i = 0; i < apic_io_max; i++)
sp->as_ioapic_ids[i] = ioapic_read(i, APIC_ID_CMD);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
}
static void
apic_restore_state(struct apic_state *sp)
{
int i;
ulong_t iflag;
/*
* First the local APIC.
*/
apic_reg_ops->apic_write_task_reg(sp->as_task_reg);
if (apic_mode == LOCAL_APIC) {
apic_reg_ops->apic_write(APIC_DEST_REG, sp->as_dest_reg);
apic_reg_ops->apic_write(APIC_FORMAT_REG, sp->as_format_reg);
}
apic_reg_ops->apic_write(APIC_LOCAL_TIMER, sp->as_local_timer);
apic_reg_ops->apic_write(APIC_PCINT_VECT, sp->as_pcint_vect);
apic_reg_ops->apic_write(APIC_INT_VECT0, sp->as_int_vect0);
apic_reg_ops->apic_write(APIC_INT_VECT1, sp->as_int_vect1);
apic_reg_ops->apic_write(APIC_ERR_VECT, sp->as_err_vect);
apic_reg_ops->apic_write(APIC_INIT_COUNT, sp->as_init_count);
apic_reg_ops->apic_write(APIC_DIVIDE_REG, sp->as_divide_reg);
apic_reg_ops->apic_write(APIC_SPUR_INT_REG, sp->as_spur_int_reg);
/*
* the following only needs to be done once, so we do it on the
* boot processor, since we know that we only have one of those
*/
if (psm_get_cpu_id() == 0) {
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
/* Restore IOAPICs' APIC IDs */
for (i = 0; i < apic_io_max; i++) {
ioapic_write(i, APIC_ID_CMD, sp->as_ioapic_ids[i]);
}
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
/*
* Reenter APIC mode before restoring LNK devices
*/
(void) apic_acpi_enter_apicmode();
/*
* restore acpi link device mappings
*/
acpi_restore_link_devices();
}
}
/*
* Returns 0 on success
*/
int
apic_state(psm_state_request_t *rp)
{
PMD(PMD_SX, ("apic_state "))
switch (rp->psr_cmd) {
case PSM_STATE_ALLOC:
rp->req.psm_state_req.psr_state =
kmem_zalloc(sizeof (struct apic_state), KM_NOSLEEP);
if (rp->req.psm_state_req.psr_state == NULL)
return (ENOMEM);
rp->req.psm_state_req.psr_state_size =
sizeof (struct apic_state);
PMD(PMD_SX, (":STATE_ALLOC: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
return (0);
case PSM_STATE_FREE:
kmem_free(rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size);
PMD(PMD_SX, (" STATE_FREE: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
return (0);
case PSM_STATE_SAVE:
PMD(PMD_SX, (" STATE_SAVE: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
apic_save_state(rp->req.psm_state_req.psr_state);
return (0);
case PSM_STATE_RESTORE:
apic_restore_state(rp->req.psm_state_req.psr_state);
PMD(PMD_SX, (" STATE_RESTORE: state %p, size %lx\n",
rp->req.psm_state_req.psr_state,
rp->req.psm_state_req.psr_state_size))
return (0);
default:
return (EINVAL);
}
}