dboot_startkern.c revision ae115bc77f6fcde83175c75b4206dc2e50747966
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/machparam.h>
#include <sys/x86_archext.h>
#include <sys/systm.h>
#include <sys/mach_mmu.h>
#include <sys/multiboot.h>
extern multiboot_header_t mb_header;
extern int have_cpuid(void);
extern uint32_t get_cpuid_edx(uint32_t *eax);
#include <sys/inttypes.h>
#include <sys/bootinfo.h>
#include <sys/mach_mmu.h>
#include <sys/boot_console.h>
#include "dboot_printf.h"
#include "dboot_xboot.h"
#include "dboot_elfload.h"
/*
* This file contains code that runs to transition us from either a multiboot
* compliant loader (32 bit non-paging) or Xen domain loader to regular kernel
* execution. Its task is to setup the kernel memory image and page tables.
*
* The code executes as:
* - 32 bits under GRUB (for 32 or 64 bit Solaris)
* - 32 bit program for Xen 32 bit
* - 64 bit program for Xen 64 bit (at least that's my assumption for now)
*
* Under Xen, we must create mappings for any memory beyond the initial
* start of day allocation (such as the kernel itself).
*
* When not under Xen, the mapping between maddr_t and paddr_t is 1:1.
* Since we are running in real mode, so all such memory is accessible.
*/
/*
* Standard bits used in PTE (page level) and PTP (internal levels)
*/
x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE | PT_USER;
x86pte_t pte_bits = PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE;
/*
* This is the target addresses (physical) where the kernel text and data
* nucleus pages will be unpacked. On Xen this is actually a virtual address.
*/
paddr_t ktext_phys;
uint32_t ksize = 2 * FOUR_MEG; /* kernel nucleus is 8Meg */
static uint64_t target_kernel_text; /* value to use for KERNEL_TEXT */
/*
* The stack is setup in assembler before entering startup_kernel()
*/
char stack_space[STACK_SIZE];
/*
* Used to track physical memory allocation
*/
static paddr_t next_avail_addr = 0;
multiboot_info_t *mb_info;
/*
* This contains information passed to the kernel
*/
struct xboot_info boot_info[2]; /* extra space to fix alignement for amd64 */
struct xboot_info *bi;
/*
* Page table and memory stuff.
*/
static uint64_t max_mem; /* maximum memory address */
/*
* Information about processor MMU
*/
int amd64_support = 0;
int largepage_support = 0;
int pae_support = 0;
int pge_support = 0;
int NX_support = 0;
/*
* Low 32 bits of kernel entry address passed back to assembler.
* When running a 64 bit kernel, the high 32 bits are 0xffffffff.
*/
uint32_t entry_addr_low;
/*
* Memlists for the kernel. We shouldn't need a lot of these.
*/
#define MAX_MEMLIST (10)
struct boot_memlist memlists[MAX_MEMLIST];
uint_t memlists_used = 0;
#define MAX_MODULES (10)
struct boot_modules modules[MAX_MODULES];
uint_t modules_used = 0;
/*
* Debugging macros
*/
uint_t prom_debug = 0;
uint_t map_debug = 0;
/*
* The Xen/Grub specific code builds the initial memlists. This code does
* sort/merge/link for final use.
*/
static void
sort_physinstall(void)
{
int i;
int j;
struct boot_memlist tmp;
/*
* Now sort the memlists, in case they weren't in order.
* Yeah, this is a bubble sort; small, simple and easy to get right.
*/
DBG_MSG("Sorting phys-installed list\n");
for (j = memlists_used - 1; j > 0; --j) {
for (i = 0; i < j; ++i) {
if (memlists[i].addr < memlists[i + 1].addr)
continue;
tmp = memlists[i];
memlists[i] = memlists[i + 1];
memlists[i + 1] = tmp;
}
}
/*
* Merge any memlists that don't have holes between them.
*/
for (i = 0; i <= memlists_used - 1; ++i) {
if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr)
continue;
if (prom_debug)
dboot_printf(
"merging mem segs %" PRIx64 "...%" PRIx64
" w/ %" PRIx64 "...%" PRIx64 "\n",
memlists[i].addr,
memlists[i].addr + memlists[i].size,
memlists[i + 1].addr,
memlists[i + 1].addr + memlists[i + 1].size);
memlists[i].size += memlists[i + 1].size;
for (j = i + 1; j < memlists_used - 1; ++j)
memlists[j] = memlists[j + 1];
--memlists_used;
DBG(memlists_used);
--i; /* after merging we need to reexamine, so do this */
}
if (prom_debug) {
dboot_printf("\nFinal memlists:\n");
for (i = 0; i < memlists_used; ++i) {
dboot_printf("\t%d: addr=%" PRIx64 " size=%"
PRIx64 "\n", i, memlists[i].addr, memlists[i].size);
}
}
/*
* link together the memlists with native size pointers
*/
memlists[0].next = 0;
memlists[0].prev = 0;
for (i = 1; i < memlists_used; ++i) {
memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1);
memlists[i].next = 0;
memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i);
}
bi->bi_phys_install = (native_ptr_t)memlists;
DBG(bi->bi_phys_install);
}
x86pte_t
get_pteval(paddr_t table, uint_t index)
{
if (pae_support)
return (((x86pte_t *)(uintptr_t)table)[index]);
return (((x86pte32_t *)(uintptr_t)table)[index]);
}
/*ARGSUSED*/
void
set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval)
{
uintptr_t tab_addr = (uintptr_t)table;
if (pae_support)
((x86pte_t *)tab_addr)[index] = pteval;
else
((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval;
if (level == top_level && level == 2)
reload_cr3();
}
paddr_t
make_ptable(x86pte_t *pteval, uint_t level)
{
paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
if (level == top_level && level == 2)
*pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID;
else
*pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits;
if (map_debug)
dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%"
PRIx64 "\n", level, (ulong_t)new_table, *pteval);
return (new_table);
}
x86pte_t *
map_pte(paddr_t table, uint_t index)
{
return ((x86pte_t *)(uintptr_t)(table + index * pte_size));
}
#if 0 /* useful if debugging */
/*
* dump out the contents of page tables...
*/
static void
dump_tables(void)
{
uint_t save_index[4]; /* for recursion */
char *save_table[4]; /* for recursion */
uint_t l;
uint64_t va;
uint64_t pgsize;
int index;
int i;
x86pte_t pteval;
char *table;
static char *tablist = "\t\t\t";
char *tabs = tablist + 3 - top_level;
uint_t pa, pa1;
dboot_printf("Finished pagetables:\n");
table = (char *)top_page_table;
l = top_level;
va = 0;
for (index = 0; index < ptes_per_table; ++index) {
pgsize = 1ull << shift_amt[l];
if (pae_support)
pteval = ((x86pte_t *)table)[index];
else
pteval = ((x86pte32_t *)table)[index];
if (pteval == 0)
goto next_entry;
dboot_printf("%s %lx[0x%x] = %" PRIx64 ", va=%" PRIx64,
tabs + l, table, index, (uint64_t)pteval, va);
pa = ma_to_pa(pteval & MMU_PAGEMASK);
dboot_printf(" physaddr=%" PRIx64 "\n", pa);
/*
* Don't try to walk hypervisor private pagetables
*/
if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) {
save_table[l] = table;
save_index[l] = index;
--l;
index = -1;
table = (char *)(uintptr_t)
ma_to_pa(pteval & MMU_PAGEMASK);
goto recursion;
}
/*
* shorten dump for consecutive mappings
*/
for (i = 1; index + i < ptes_per_table; ++i) {
if (pae_support)
pteval = ((x86pte_t *)table)[index + i];
else
pteval = ((x86pte32_t *)table)[index + i];
if (pteval == 0)
break;
pa1 = ma_to_pa(pteval & MMU_PAGEMASK);
if (pa1 != pa + i * pgsize)
break;
}
if (i > 2) {
dboot_printf("%s...\n", tabs + l);
va += pgsize * (i - 2);
index += i - 2;
}
next_entry:
va += pgsize;
if (l == 3 && index == 256) /* VA hole */
va = 0xffff800000000000ull;
recursion:
;
}
if (l < top_level) {
++l;
index = save_index[l];
table = save_table[l];
goto recursion;
}
}
#endif
/*
* Add a mapping for the physical page at the given virtual address.
*/
static void
map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level)
{
x86pte_t *ptep;
x86pte_t pteval;
pteval = pa_to_ma(pa) | pte_bits;
if (level > 0)
pteval |= PT_PAGESIZE;
if (va >= target_kernel_text && pge_support)
pteval |= PT_GLOBAL;
if (map_debug && pa != va)
dboot_printf("mapping pa=0x%" PRIx64 " va=0x%" PRIx64
" pte=0x%" PRIx64 " l=%d\n",
(uint64_t)pa, (uint64_t)va, pteval, level);
/*
* Find the pte that will map this address. This creates any
* missing intermediate level page tables
*/
ptep = find_pte(va, NULL, level, 0);
/*
* On Xen we must use hypervisor calls to modify the PTE, since
* paging is active. On real hardware we just write to the pagetables
* which aren't in use yet.
*/
if (va < 1024 * 1024)
pteval |= PT_NOCACHE; /* for video RAM */
if (pae_support)
*ptep = pteval;
else
*((x86pte32_t *)ptep) = (x86pte32_t)pteval;
}
/*
* During memory allocation, find the highest address not used yet.
*/
static void
check_higher(paddr_t a)
{
if (a < next_avail_addr)
return;
next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE);
DBG(next_avail_addr);
}
/*
* Walk through the module information finding the last used address.
* The first available address will become the top level page table.
*
* We then build the phys_install memlist from the multiboot information.
*/
static void
init_mem_alloc(void)
{
mb_memory_map_t *mmap;
mb_module_t *mod;
uint64_t start;
uint64_t end;
uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */
extern char _end[];
int i;
DBG_MSG("Entered init_mem_alloc()\n");
DBG((uintptr_t)mb_info);
/*
* search the modules to find the last used address
* we'll build the module list while we're walking through here
*/
DBG_MSG("\nFinding Modules\n");
check_higher((paddr_t)&_end);
for (mod = (mb_module_t *)(mb_info->mods_addr), i = 0;
i < mb_info->mods_count;
++mod, ++i) {
if (prom_debug) {
dboot_printf("\tmodule #%d: %s at: 0x%lx, len 0x%lx\n",
i, (char *)(mod->mod_name),
(ulong_t)mod->mod_start, (ulong_t)mod->mod_end);
}
modules[i].bm_addr = mod->mod_start;
modules[i].bm_size = mod->mod_end;
check_higher(mod->mod_end);
}
bi->bi_modules = (native_ptr_t)modules;
DBG(bi->bi_modules);
bi->bi_module_cnt = mb_info->mods_count;
DBG(bi->bi_module_cnt);
/*
* Walk through the memory map from multiboot and build our memlist
* structures. Note these will have native format pointers.
*/
DBG_MSG("\nFinding Memory Map\n");
DBG(mb_info->flags);
max_mem = 0;
if (mb_info->flags & 0x40) {
DBG(mb_info->mmap_addr);
DBG(mb_info->mmap_length);
check_higher(mb_info->mmap_addr + mb_info->mmap_length);
for (mmap = (mb_memory_map_t *)mb_info->mmap_addr;
(uint32_t)mmap < mb_info->mmap_addr + mb_info->mmap_length;
mmap = (mb_memory_map_t *)((uint32_t)mmap + mmap->size
+ sizeof (mmap->size))) {
start = ((uint64_t)mmap->base_addr_high << 32) +
mmap->base_addr_low;
end = start + ((uint64_t)mmap->length_high << 32) +
mmap->length_low;
if (prom_debug) {
dboot_printf("\ttype: %d %" PRIx64 "..%"
PRIx64 "\n", mmap->type, start, end);
}
/*
* only type 1 is usable RAM
*/
if (mmap->type != 1)
continue;
/*
* page align start and end
*/
start = (start + page_offset) & ~page_offset;
end &= ~page_offset;
if (end <= start)
continue;
if (end > max_mem)
max_mem = end;
memlists[memlists_used].addr = start;
memlists[memlists_used].size = end - start;
++memlists_used; /* no overflow check */
}
} else if (mb_info->flags & 0x01) {
DBG(mb_info->mem_lower);
memlists[memlists_used].addr = 0;
memlists[memlists_used].size = mb_info->mem_lower * 1024;
++memlists_used;
DBG(mb_info->mem_upper);
memlists[memlists_used].addr = 1024 * 1024;
memlists[memlists_used].size = mb_info->mem_upper * 1024;
++memlists_used;
} else {
dboot_panic("No memory info from boot loader!!!\n");
}
check_higher(bi->bi_cmdline);
/*
* finish processing the physinstall list
*/
sort_physinstall();
}
/*
* Simple memory allocator, allocates aligned physical memory.
* Note that startup_kernel() only allocates memory, never frees.
* Memory usage just grows in an upward direction.
*/
static void *
do_mem_alloc(uint32_t size, uint32_t align)
{
uint_t i;
uint64_t best;
uint64_t start;
uint64_t end;
/*
* make sure size is a multiple of pagesize
*/
size = RNDUP(size, MMU_PAGESIZE);
next_avail_addr = RNDUP(next_avail_addr, align);
/*
* a really large bootarchive that causes you to run out of memory
* may cause this to blow up
*/
/* LINTED E_UNEXPECTED_UINT_PROMOTION */
best = (uint64_t)-size;
for (i = 0; i < memlists_used; ++i) {
start = memlists[i].addr;
end = start + memlists[i].size;
/*
* did we find the desired address?
*/
if (start <= next_avail_addr && next_avail_addr + size <= end) {
best = next_avail_addr;
goto done;
}
/*
* if not is this address the best so far?
*/
if (start > next_avail_addr && start < best &&
RNDUP(start, align) + size <= end)
best = RNDUP(start, align);
}
/*
* We didn't find exactly the address we wanted, due to going off the
* end of a memory region. Return the best found memory address.
*/
done:
next_avail_addr = best + size;
(void) memset((void *)(uintptr_t)best, 0, size);
return ((void *)(uintptr_t)best);
}
void *
mem_alloc(uint32_t size)
{
return (do_mem_alloc(size, MMU_PAGESIZE));
}
/*
* Build page tables to map all of memory used so far as well as the kernel.
*/
static void
build_page_tables(void)
{
uint32_t psize;
uint32_t level;
uint32_t off;
uint32_t i;
uint64_t start;
uint64_t end;
uint64_t next_mapping;
/*
* If we're not using Xen, we need to create the top level pagetable.
*/
top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
DBG((uintptr_t)top_page_table);
/*
* Determine if we'll use large mappings for kernel, then map it.
*/
if (largepage_support) {
psize = lpagesize;
level = 1;
} else {
psize = MMU_PAGESIZE;
level = 0;
}
DBG_MSG("Mapping kernel\n");
DBG(ktext_phys);
DBG(target_kernel_text);
DBG(ksize);
DBG(psize);
for (off = 0; off < ksize; off += psize)
map_pa_at_va(ktext_phys + off, target_kernel_text + off, level);
/*
* The kernel will need a 1 page window to work with page tables
*/
bi->bi_pt_window = (uintptr_t)mem_alloc(MMU_PAGESIZE);
DBG(bi->bi_pt_window);
bi->bi_pte_to_pt_window =
(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0);
DBG(bi->bi_pte_to_pt_window);
/*
* Under multiboot we need 1:1 mappings for all of low memory, which
* includes our pagetables. The following code works because our
* simple memory allocator only grows usage in an upwards direction.
*
* We map *all* possible addresses below 1 Meg, since things like
* the video RAM are down there.
*
* Skip memory between 1M and _start, this acts as a reserve
* of memory usable for DMA.
*/
next_mapping = (uintptr_t)_start & MMU_PAGEMASK;
if (map_debug)
dboot_printf("1:1 map pa=0..1Meg\n");
for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE)
map_pa_at_va(start, start, 0);
for (i = 0; i < memlists_used; ++i) {
start = memlists[i].addr;
if (start < next_mapping)
start = next_mapping;
end = start + memlists[i].size;
if (map_debug)
dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
start, end);
while (start < end && start < next_avail_addr) {
map_pa_at_va(start, start, 0);
start += MMU_PAGESIZE;
}
}
DBG_MSG("\nPage tables constructed\n");
}
#define NO_MULTIBOOT \
"multiboot is no longer used to boot the Solaris Operating System.\n\
The grub entry should be changed to:\n\
kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\
module$ /platform/i86pc/$ISADIR/boot_archive\n\
See http://www.sun.com/msg/SUNOS-8000-AK for details.\n"
/*
* startup_kernel has a pretty simple job. It builds pagetables which reflect
* 1:1 mappings for all memory in use. It then also adds mappings for
* the kernel nucleus at virtual address of target_kernel_text using large page
* mappings. The page table pages are also accessible at 1:1 mapped
* virtual addresses.
*/
/*ARGSUSED*/
void
startup_kernel(void)
{
char *cmdline;
uintptr_t addr;
/*
* At this point we are executing in a 32 bit real mode.
*/
cmdline = (char *)mb_info->cmdline;
prom_debug = (strstr(cmdline, "prom_debug") != NULL);
map_debug = (strstr(cmdline, "map_debug") != NULL);
bcons_init(cmdline);
DBG_MSG("\n\nSolaris prekernel set: ");
DBG_MSG(cmdline);
DBG_MSG("\n");
if (strstr(cmdline, "multiboot") != NULL) {
dboot_panic(NO_MULTIBOOT);
}
/*
* boot info must be 16 byte aligned for 64 bit kernel ABI
*/
addr = (uintptr_t)boot_info;
addr = (addr + 0xf) & ~0xf;
bi = (struct xboot_info *)addr;
DBG((uintptr_t)bi);
bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;
/*
* Need correct target_kernel_text value
*/
#if defined(_BOOT_TARGET_amd64)
target_kernel_text = KERNEL_TEXT_amd64;
#else
target_kernel_text = KERNEL_TEXT_i386;
#endif
DBG(target_kernel_text);
/*
* use cpuid to enable MMU features
*/
if (have_cpuid()) {
uint32_t eax, edx;
eax = 1;
edx = get_cpuid_edx(&eax);
if (edx & CPUID_INTC_EDX_PSE)
largepage_support = 1;
if (edx & CPUID_INTC_EDX_PGE)
pge_support = 1;
if (edx & CPUID_INTC_EDX_PAE)
pae_support = 1;
eax = 0x80000000;
edx = get_cpuid_edx(&eax);
if (eax >= 0x80000001) {
eax = 0x80000001;
edx = get_cpuid_edx(&eax);
if (edx & CPUID_AMD_EDX_LM)
amd64_support = 1;
if (edx & CPUID_AMD_EDX_NX)
NX_support = 1;
}
} else {
dboot_printf("cpuid not supported\n");
}
#if defined(_BOOT_TARGET_amd64)
if (amd64_support == 0)
dboot_panic("long mode not supported, rebooting\n");
else if (pae_support == 0)
dboot_panic("long mode, but no PAE; rebooting\n");
#endif
/*
* initialize our memory allocator
*/
init_mem_alloc();
/*
* configure mmu information
*/
#if !defined(_BOOT_TARGET_amd64)
if (pae_support && (max_mem > FOUR_GIG || NX_support)) {
#endif
shift_amt = shift_amt_pae;
ptes_per_table = 512;
pte_size = 8;
lpagesize = TWO_MEG;
#if defined(_BOOT_TARGET_amd64)
top_level = 3;
#else
top_level = 2;
#endif
#if !defined(_BOOT_TARGET_amd64)
} else {
pae_support = 0;
NX_support = 0;
shift_amt = shift_amt_nopae;
ptes_per_table = 1024;
pte_size = 4;
lpagesize = FOUR_MEG;
top_level = 1;
}
#endif
DBG(pge_support);
DBG(NX_support);
DBG(largepage_support);
DBG(amd64_support);
DBG(top_level);
DBG(pte_size);
DBG(ptes_per_table);
DBG(lpagesize);
ktext_phys = FOUR_MEG; /* from UNIX Mapfile */
#if defined(_BOOT_TARGET_amd64)
/*
* For grub, copy kernel bits from the ELF64 file to final place.
*/
DBG_MSG("\nAllocating nucleus pages.\n");
ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
if (ktext_phys == 0)
dboot_panic("failed to allocate aligned kernel memory\n");
if (dboot_elfload64(mb_header.load_addr) != 0)
dboot_panic("failed to parse kernel ELF image, rebooting\n");
#endif
DBG(ktext_phys);
/*
* Allocate page tables.
*/
build_page_tables();
/*
* return to assembly code to switch to running kernel
*/
entry_addr_low = (uint32_t)target_kernel_text;
DBG(entry_addr_low);
bi->bi_use_largepage = largepage_support;
bi->bi_use_pae = pae_support;
bi->bi_use_pge = pge_support;
bi->bi_use_nx = NX_support;
bi->bi_next_paddr = next_avail_addr;
DBG(bi->bi_next_paddr);
bi->bi_next_vaddr = (uintptr_t)next_avail_addr;
DBG(bi->bi_next_vaddr);
bi->bi_mb_info = (uintptr_t)mb_info;
bi->bi_top_page_table = (uintptr_t)top_page_table;
bi->bi_kseg_size = FOUR_MEG;
DBG(bi->bi_kseg_size);
#if 0 /* useful if debugging initial page tables */
if (prom_debug)
dump_tables();
#endif
DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");
}