/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* Copyright 2013 Joyent, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/machparam.h>
#include <sys/x86_archext.h>
#include <sys/systm.h>
#include <sys/mach_mmu.h>
#include <sys/multiboot.h>
#include <sys/sha1.h>
#include <util/string.h>
#include <util/strtolctype.h>
#if defined(__xpv)
#include <sys/hypervisor.h>
uintptr_t xen_virt_start;
pfn_t *mfn_to_pfn_mapping;
#else /* !__xpv */
extern multiboot_header_t mb_header;
extern int have_cpuid(void);
#endif /* !__xpv */
#include <sys/inttypes.h>
#include <sys/bootinfo.h>
#include <sys/mach_mmu.h>
#include <sys/boot_console.h>
#include "dboot_asm.h"
#include "dboot_printf.h"
#include "dboot_xboot.h"
#include "dboot_elfload.h"
#define SHA1_ASCII_LENGTH (SHA1_DIGEST_LENGTH * 2)
/*
* This file contains code that runs to transition us from either a multiboot
* compliant loader (32 bit non-paging) or a XPV domain loader to
* regular kernel execution. Its task is to setup the kernel memory image
* and page tables.
*
* The code executes as:
* - 32 bits under GRUB (for 32 or 64 bit Solaris)
* - a 32 bit program for the 32-bit PV hypervisor
* - a 64 bit program for the 64-bit PV hypervisor (at least for now)
*
* Under the PV hypervisor, we must create mappings for any memory beyond the
* initial start of day allocation (such as the kernel itself).
*
* When on the metal, the mapping between maddr_t and paddr_t is 1:1.
* Since we are running in real mode, so all such memory is accessible.
*/
/*
* Standard bits used in PTE (page level) and PTP (internal levels)
*/
x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER;
x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST;
/*
* This is the target addresses (physical) where the kernel text and data
* nucleus pages will be unpacked. On the hypervisor this is actually a
* virtual address.
*/
paddr_t ktext_phys;
uint32_t ksize = 2 * FOUR_MEG; /* kernel nucleus is 8Meg */
static uint64_t target_kernel_text; /* value to use for KERNEL_TEXT */
/*
* The stack is setup in assembler before entering startup_kernel()
*/
char stack_space[STACK_SIZE];
/*
* Used to track physical memory allocation
*/
static paddr_t next_avail_addr = 0;
#if defined(__xpv)
/*
* Additional information needed for hypervisor memory allocation.
* Only memory up to scratch_end is mapped by page tables.
* mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so
* to derive a pfn from a pointer, you subtract mfn_base.
*/
static paddr_t scratch_end = 0; /* we can't write all of mem here */
static paddr_t mfn_base; /* addr corresponding to mfn_list[0] */
start_info_t *xen_info;
#else /* __xpv */
/*
* If on the metal, then we have a multiboot loader.
*/
multiboot_info_t *mb_info;
#endif /* __xpv */
/*
* This contains information passed to the kernel
*/
struct xboot_info boot_info[2]; /* extra space to fix alignement for amd64 */
struct xboot_info *bi;
/*
* Page table and memory stuff.
*/
static paddr_t max_mem; /* maximum memory address */
/*
* Information about processor MMU
*/
int amd64_support = 0;
int largepage_support = 0;
int pae_support = 0;
int pge_support = 0;
int NX_support = 0;
/*
* Low 32 bits of kernel entry address passed back to assembler.
* When running a 64 bit kernel, the high 32 bits are 0xffffffff.
*/
uint32_t entry_addr_low;
/*
* Memlists for the kernel. We shouldn't need a lot of these.
*/
#define MAX_MEMLIST (50)
struct boot_memlist memlists[MAX_MEMLIST];
uint_t memlists_used = 0;
struct boot_memlist pcimemlists[MAX_MEMLIST];
uint_t pcimemlists_used = 0;
struct boot_memlist rsvdmemlists[MAX_MEMLIST];
uint_t rsvdmemlists_used = 0;
/*
* This should match what's in the bootloader. It's arbitrary, but GRUB
* in particular has limitations on how much space it can use before it
* stops working properly. This should be enough.
*/
struct boot_modules modules[MAX_BOOT_MODULES];
uint_t modules_used = 0;
/*
* Debugging macros
*/
uint_t prom_debug = 0;
uint_t map_debug = 0;
static char noname[2] = "-";
/*
* Either hypervisor-specific or grub-specific code builds the initial
* memlists. This code does the sort/merge/link for final use.
*/
static void
sort_physinstall(void)
{
int i;
#if !defined(__xpv)
int j;
struct boot_memlist tmp;
/*
* Now sort the memlists, in case they weren't in order.
* Yeah, this is a bubble sort; small, simple and easy to get right.
*/
DBG_MSG("Sorting phys-installed list\n");
for (j = memlists_used - 1; j > 0; --j) {
for (i = 0; i < j; ++i) {
if (memlists[i].addr < memlists[i + 1].addr)
continue;
tmp = memlists[i];
memlists[i] = memlists[i + 1];
memlists[i + 1] = tmp;
}
}
/*
* Merge any memlists that don't have holes between them.
*/
for (i = 0; i <= memlists_used - 1; ++i) {
if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr)
continue;
if (prom_debug)
dboot_printf(
"merging mem segs %" PRIx64 "...%" PRIx64
" w/ %" PRIx64 "...%" PRIx64 "\n",
memlists[i].addr,
memlists[i].addr + memlists[i].size,
memlists[i + 1].addr,
memlists[i + 1].addr + memlists[i + 1].size);
memlists[i].size += memlists[i + 1].size;
for (j = i + 1; j < memlists_used - 1; ++j)
memlists[j] = memlists[j + 1];
--memlists_used;
DBG(memlists_used);
--i; /* after merging we need to reexamine, so do this */
}
#endif /* __xpv */
if (prom_debug) {
dboot_printf("\nFinal memlists:\n");
for (i = 0; i < memlists_used; ++i) {
dboot_printf("\t%d: addr=%" PRIx64 " size=%"
PRIx64 "\n", i, memlists[i].addr, memlists[i].size);
}
}
/*
* link together the memlists with native size pointers
*/
memlists[0].next = 0;
memlists[0].prev = 0;
for (i = 1; i < memlists_used; ++i) {
memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1);
memlists[i].next = 0;
memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i);
}
bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists;
DBG(bi->bi_phys_install);
}
/*
* build bios reserved memlists
*/
static void
build_rsvdmemlists(void)
{
int i;
rsvdmemlists[0].next = 0;
rsvdmemlists[0].prev = 0;
for (i = 1; i < rsvdmemlists_used; ++i) {
rsvdmemlists[i].prev =
(native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1);
rsvdmemlists[i].next = 0;
rsvdmemlists[i - 1].next =
(native_ptr_t)(uintptr_t)(rsvdmemlists + i);
}
bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists;
DBG(bi->bi_rsvdmem);
}
#if defined(__xpv)
/*
* halt on the hypervisor after a delay to drain console output
*/
void
dboot_halt(void)
{
uint_t i = 10000;
while (--i)
(void) HYPERVISOR_yield();
(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
}
/*
* From a machine address, find the corresponding pseudo-physical address.
* Pseudo-physical address are contiguous and run from mfn_base in each VM.
* Machine addresses are the real underlying hardware addresses.
* These are needed for page table entries. Note that this routine is
* poorly protected. A bad value of "ma" will cause a page fault.
*/
paddr_t
ma_to_pa(maddr_t ma)
{
ulong_t pgoff = ma & MMU_PAGEOFFSET;
ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)];
paddr_t pa;
if (pfn >= xen_info->nr_pages)
return (-(paddr_t)1);
pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff;
#ifdef DEBUG
if (ma != pa_to_ma(pa))
dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", "
"pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa));
#endif
return (pa);
}
/*
* From a pseudo-physical address, find the corresponding machine address.
*/
maddr_t
pa_to_ma(paddr_t pa)
{
pfn_t pfn;
ulong_t mfn;
pfn = mmu_btop(pa - mfn_base);
if (pa < mfn_base || pfn >= xen_info->nr_pages)
dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa);
mfn = ((ulong_t *)xen_info->mfn_list)[pfn];
#ifdef DEBUG
if (mfn_to_pfn_mapping[mfn] != pfn)
dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n",
pfn, mfn, mfn_to_pfn_mapping[mfn]);
#endif
return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET));
}
#endif /* __xpv */
x86pte_t
get_pteval(paddr_t table, uint_t index)
{
if (pae_support)
return (((x86pte_t *)(uintptr_t)table)[index]);
return (((x86pte32_t *)(uintptr_t)table)[index]);
}
/*ARGSUSED*/
void
set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval)
{
#ifdef __xpv
mmu_update_t t;
maddr_t mtable = pa_to_ma(table);
int retcnt;
t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE;
t.val = pteval;
if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1)
dboot_panic("HYPERVISOR_mmu_update() failed");
#else /* __xpv */
uintptr_t tab_addr = (uintptr_t)table;
if (pae_support)
((x86pte_t *)tab_addr)[index] = pteval;
else
((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval;
if (level == top_level && level == 2)
reload_cr3();
#endif /* __xpv */
}
paddr_t
make_ptable(x86pte_t *pteval, uint_t level)
{
paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
if (level == top_level && level == 2)
*pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID;
else
*pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits;
#ifdef __xpv
/* Remove write permission to the new page table. */
if (HYPERVISOR_update_va_mapping(new_table,
*pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL))
dboot_panic("HYP_update_va_mapping error");
#endif
if (map_debug)
dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%"
PRIx64 "\n", level, (ulong_t)new_table, *pteval);
return (new_table);
}
x86pte_t *
map_pte(paddr_t table, uint_t index)
{
return ((x86pte_t *)(uintptr_t)(table + index * pte_size));
}
/*
* dump out the contents of page tables...
*/
static void
dump_tables(void)
{
uint_t save_index[4]; /* for recursion */
char *save_table[4]; /* for recursion */
uint_t l;
uint64_t va;
uint64_t pgsize;
int index;
int i;
x86pte_t pteval;
char *table;
static char *tablist = "\t\t\t";
char *tabs = tablist + 3 - top_level;
uint_t pa, pa1;
#if !defined(__xpv)
#define maddr_t paddr_t
#endif /* !__xpv */
dboot_printf("Finished pagetables:\n");
table = (char *)(uintptr_t)top_page_table;
l = top_level;
va = 0;
for (index = 0; index < ptes_per_table; ++index) {
pgsize = 1ull << shift_amt[l];
if (pae_support)
pteval = ((x86pte_t *)table)[index];
else
pteval = ((x86pte32_t *)table)[index];
if (pteval == 0)
goto next_entry;
dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64,
tabs + l, (void *)table, index, (uint64_t)pteval, va);
pa = ma_to_pa(pteval & MMU_PAGEMASK);
dboot_printf(" physaddr=%x\n", pa);
/*
* Don't try to walk hypervisor private pagetables
*/
if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) {
save_table[l] = table;
save_index[l] = index;
--l;
index = -1;
table = (char *)(uintptr_t)
ma_to_pa(pteval & MMU_PAGEMASK);
goto recursion;
}
/*
* shorten dump for consecutive mappings
*/
for (i = 1; index + i < ptes_per_table; ++i) {
if (pae_support)
pteval = ((x86pte_t *)table)[index + i];
else
pteval = ((x86pte32_t *)table)[index + i];
if (pteval == 0)
break;
pa1 = ma_to_pa(pteval & MMU_PAGEMASK);
if (pa1 != pa + i * pgsize)
break;
}
if (i > 2) {
dboot_printf("%s...\n", tabs + l);
va += pgsize * (i - 2);
index += i - 2;
}
next_entry:
va += pgsize;
if (l == 3 && index == 256) /* VA hole */
va = 0xffff800000000000ull;
recursion:
;
}
if (l < top_level) {
++l;
index = save_index[l];
table = save_table[l];
goto recursion;
}
}
/*
* Add a mapping for the machine page at the given virtual address.
*/
static void
map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level)
{
x86pte_t *ptep;
x86pte_t pteval;
pteval = ma | pte_bits;
if (level > 0)
pteval |= PT_PAGESIZE;
if (va >= target_kernel_text && pge_support)
pteval |= PT_GLOBAL;
if (map_debug && ma != va)
dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64
" pte=0x%" PRIx64 " l=%d\n",
(uint64_t)ma, (uint64_t)va, pteval, level);
#if defined(__xpv)
/*
* see if we can avoid find_pte() on the hypervisor
*/
if (HYPERVISOR_update_va_mapping(va, pteval,
UVMF_INVLPG | UVMF_LOCAL) == 0)
return;
#endif
/*
* Find the pte that will map this address. This creates any
* missing intermediate level page tables
*/
ptep = find_pte(va, NULL, level, 0);
/*
* When paravirtualized, we must use hypervisor calls to modify the
* PTE, since paging is active. On real hardware we just write to
* the pagetables which aren't in use yet.
*/
#if defined(__xpv)
ptep = ptep; /* shut lint up */
if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL))
dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64
" l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "",
(uint64_t)va, level, (uint64_t)ma, pteval);
#else
if (va < 1024 * 1024)
pteval |= PT_NOCACHE; /* for video RAM */
if (pae_support)
*ptep = pteval;
else
*((x86pte32_t *)ptep) = (x86pte32_t)pteval;
#endif
}
/*
* Add a mapping for the physical page at the given virtual address.
*/
static void
map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level)
{
map_ma_at_va(pa_to_ma(pa), va, level);
}
/*
* This is called to remove start..end from the
* possible range of PCI addresses.
*/
const uint64_t pci_lo_limit = 0x00100000ul;
const uint64_t pci_hi_limit = 0xfff00000ul;
static void
exclude_from_pci(uint64_t start, uint64_t end)
{
int i;
int j;
struct boot_memlist *ml;
for (i = 0; i < pcimemlists_used; ++i) {
ml = &pcimemlists[i];
/* delete the entire range? */
if (start <= ml->addr && ml->addr + ml->size <= end) {
--pcimemlists_used;
for (j = i; j < pcimemlists_used; ++j)
pcimemlists[j] = pcimemlists[j + 1];
--i; /* to revisit the new one at this index */
}
/* split a range? */
else if (ml->addr < start && end < ml->addr + ml->size) {
++pcimemlists_used;
if (pcimemlists_used > MAX_MEMLIST)
dboot_panic("too many pcimemlists");
for (j = pcimemlists_used - 1; j > i; --j)
pcimemlists[j] = pcimemlists[j - 1];
ml->size = start - ml->addr;
++ml;
ml->size = (ml->addr + ml->size) - end;
ml->addr = end;
++i; /* skip on to next one */
}
/* cut memory off the start? */
else if (ml->addr < end && end < ml->addr + ml->size) {
ml->size -= end - ml->addr;
ml->addr = end;
}
/* cut memory off the end? */
else if (ml->addr <= start && start < ml->addr + ml->size) {
ml->size = start - ml->addr;
}
}
}
/*
* Xen strips the size field out of the mb_memory_map_t, see struct e820entry
* definition in Xen source.
*/
#ifdef __xpv
typedef struct {
uint32_t base_addr_low;
uint32_t base_addr_high;
uint32_t length_low;
uint32_t length_high;
uint32_t type;
} mmap_t;
#else
typedef mb_memory_map_t mmap_t;
#endif
static void
build_pcimemlists(mmap_t *mem, int num)
{
mmap_t *mmap;
uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */
uint64_t start;
uint64_t end;
int i;
/*
* initialize
*/
pcimemlists[0].addr = pci_lo_limit;
pcimemlists[0].size = pci_hi_limit - pci_lo_limit;
pcimemlists_used = 1;
/*
* Fill in PCI memlists.
*/
for (mmap = mem, i = 0; i < num; ++i, ++mmap) {
start = ((uint64_t)mmap->base_addr_high << 32) +
mmap->base_addr_low;
end = start + ((uint64_t)mmap->length_high << 32) +
mmap->length_low;
if (prom_debug)
dboot_printf("\ttype: %d %" PRIx64 "..%"
PRIx64 "\n", mmap->type, start, end);
/*
* page align start and end
*/
start = (start + page_offset) & ~page_offset;
end &= ~page_offset;
if (end <= start)
continue;
exclude_from_pci(start, end);
}
/*
* Finish off the pcimemlist
*/
if (prom_debug) {
for (i = 0; i < pcimemlists_used; ++i) {
dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%"
PRIx64 "\n", pcimemlists[i].addr,
pcimemlists[i].addr + pcimemlists[i].size);
}
}
pcimemlists[0].next = 0;
pcimemlists[0].prev = 0;
for (i = 1; i < pcimemlists_used; ++i) {
pcimemlists[i].prev =
(native_ptr_t)(uintptr_t)(pcimemlists + i - 1);
pcimemlists[i].next = 0;
pcimemlists[i - 1].next =
(native_ptr_t)(uintptr_t)(pcimemlists + i);
}
bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
DBG(bi->bi_pcimem);
}
#if defined(__xpv)
/*
* Initialize memory allocator stuff from hypervisor-supplied start info.
*
* There is 512KB of scratch area after the boot stack page.
* We'll use that for everything except the kernel nucleus pages which are too
* big to fit there and are allocated last anyway.
*/
#define MAXMAPS 100
static mmap_t map_buffer[MAXMAPS];
static void
init_mem_alloc(void)
{
int local; /* variables needed to find start region */
paddr_t scratch_start;
xen_memory_map_t map;
DBG_MSG("Entered init_mem_alloc()\n");
/*
* Free memory follows the stack. There's at least 512KB of scratch
* space, rounded up to at least 2Mb alignment. That should be enough
* for the page tables we'll need to build. The nucleus memory is
* allocated last and will be outside the addressible range. We'll
* switch to new page tables before we unpack the kernel
*/
scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE);
DBG(scratch_start);
scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG);
DBG(scratch_end);
/*
* For paranoia, leave some space between hypervisor data and ours.
* Use 500 instead of 512.
*/
next_avail_addr = scratch_end - 500 * 1024;
DBG(next_avail_addr);
/*
* The domain builder gives us at most 1 module
*/
DBG(xen_info->mod_len);
if (xen_info->mod_len > 0) {
DBG(xen_info->mod_start);
modules[0].bm_addr = xen_info->mod_start;
modules[0].bm_size = xen_info->mod_len;
bi->bi_module_cnt = 1;
bi->bi_modules = (native_ptr_t)modules;
} else {
bi->bi_module_cnt = 0;
bi->bi_modules = NULL;
}
DBG(bi->bi_module_cnt);
DBG(bi->bi_modules);
DBG(xen_info->mfn_list);
DBG(xen_info->nr_pages);
max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT;
DBG(max_mem);
/*
* Using pseudo-physical addresses, so only 1 memlist element
*/
memlists[0].addr = 0;
DBG(memlists[0].addr);
memlists[0].size = max_mem;
DBG(memlists[0].size);
memlists_used = 1;
DBG(memlists_used);
/*
* finish building physinstall list
*/
sort_physinstall();
/*
* build bios reserved memlists
*/
build_rsvdmemlists();
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
/*
* build PCI Memory list
*/
map.nr_entries = MAXMAPS;
/*LINTED: constant in conditional context*/
set_xen_guest_handle(map.buffer, map_buffer);
if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0)
dboot_panic("getting XENMEM_machine_memory_map failed");
build_pcimemlists(map_buffer, map.nr_entries);
}
}
#else /* !__xpv */
static uint8_t
dboot_a2h(char v)
{
if (v >= 'a')
return (v - 'a' + 0xa);
else if (v >= 'A')
return (v - 'A' + 0xa);
else if (v >= '0')
return (v - '0');
else
dboot_panic("bad ASCII hex character %c\n", v);
return (0);
}
static void
digest_a2h(const char *ascii, uint8_t *digest)
{
unsigned int i;
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
digest[i] = dboot_a2h(ascii[i * 2]) << 4;
digest[i] |= dboot_a2h(ascii[i * 2 + 1]);
}
}
/*
* Generate a SHA-1 hash of the first len bytes of image, and compare it with
* the ASCII-format hash found in the 40-byte buffer at ascii. If they
* match, return 0, otherwise -1. This works only for images smaller than
* 4 GB, which should not be a problem.
*/
static int
check_image_hash(uint_t midx)
{
const char *ascii;
const void *image;
size_t len;
SHA1_CTX ctx;
uint8_t digest[SHA1_DIGEST_LENGTH];
uint8_t baseline[SHA1_DIGEST_LENGTH];
unsigned int i;
ascii = (const char *)(uintptr_t)modules[midx].bm_hash;
image = (const void *)(uintptr_t)modules[midx].bm_addr;
len = (size_t)modules[midx].bm_size;
digest_a2h(ascii, baseline);
SHA1Init(&ctx);
SHA1Update(&ctx, image, len);
SHA1Final(digest, &ctx);
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
if (digest[i] != baseline[i])
return (-1);
}
return (0);
}
static const char *
type_to_str(boot_module_type_t type)
{
switch (type) {
case BMT_ROOTFS:
return ("rootfs");
case BMT_FILE:
return ("file");
case BMT_HASH:
return ("hash");
default:
return ("unknown");
}
}
static void
check_images(void)
{
uint_t i;
char displayhash[SHA1_ASCII_LENGTH + 1];
for (i = 0; i < modules_used; i++) {
if (prom_debug) {
dboot_printf("module #%d: name %s type %s "
"addr %lx size %lx\n",
i, (char *)(uintptr_t)modules[i].bm_name,
type_to_str(modules[i].bm_type),
(ulong_t)modules[i].bm_addr,
(ulong_t)modules[i].bm_size);
}
if (modules[i].bm_type == BMT_HASH ||
modules[i].bm_hash == NULL) {
DBG_MSG("module has no hash; skipping check\n");
continue;
}
(void) memcpy(displayhash,
(void *)(uintptr_t)modules[i].bm_hash,
SHA1_ASCII_LENGTH);
displayhash[SHA1_ASCII_LENGTH] = '\0';
if (prom_debug) {
dboot_printf("checking expected hash [%s]: ",
displayhash);
}
if (check_image_hash(i) != 0)
dboot_panic("hash mismatch!\n");
else
DBG_MSG("OK\n");
}
}
/*
* Determine the module's starting address, size, name, and type, and fill the
* boot_modules structure. This structure is used by the bop code, except for
* hashes which are checked prior to transferring control to the kernel.
*/
static void
process_module(mb_module_t *mod)
{
int midx = modules_used++;
char *p, *q;
if (prom_debug) {
dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n",
midx, (char *)(mod->mod_name),
(ulong_t)mod->mod_start, (ulong_t)mod->mod_end);
}
if (mod->mod_start > mod->mod_end) {
dboot_panic("module #%d: module start address 0x%lx greater "
"than end address 0x%lx", midx,
(ulong_t)mod->mod_start, (ulong_t)mod->mod_end);
}
/*
* A brief note on lengths and sizes: GRUB, for reasons unknown, passes
* the address of the last valid byte in a module plus 1 as mod_end.
* This is of course a bug; the multiboot specification simply states
* that mod_start and mod_end "contain the start and end addresses of
* the boot module itself" which is pretty obviously not what GRUB is
* doing. However, fixing it requires that not only this code be
* changed but also that other code consuming this value and values
* derived from it be fixed, and that the kernel and GRUB must either
* both have the bug or neither. While there are a lot of combinations
* that will work, there are also some that won't, so for simplicity
* we'll just cope with the bug. That means we won't actually hash the
* byte at mod_end, and we will expect that mod_end for the hash file
* itself is one greater than some multiple of 41 (40 bytes of ASCII
* hash plus a newline for each module). We set bm_size to the true
* correct number of bytes in each module, achieving exactly this.
*/
modules[midx].bm_addr = mod->mod_start;
modules[midx].bm_size = mod->mod_end - mod->mod_start;
modules[midx].bm_name = mod->mod_name;
modules[midx].bm_hash = NULL;
modules[midx].bm_type = BMT_FILE;
if (mod->mod_name == NULL) {
modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname;
return;
}
p = (char *)(uintptr_t)mod->mod_name;
modules[midx].bm_name =
(native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r");
while (p != NULL) {
q = strsep(&p, " \t\f\n\r");
if (strncmp(q, "name=", 5) == 0) {
if (q[5] != '\0' && !isspace(q[5])) {
modules[midx].bm_name =
(native_ptr_t)(uintptr_t)(q + 5);
}
continue;
}
if (strncmp(q, "type=", 5) == 0) {
if (q[5] == '\0' || isspace(q[5]))
continue;
q += 5;
if (strcmp(q, "rootfs") == 0) {
modules[midx].bm_type = BMT_ROOTFS;
} else if (strcmp(q, "hash") == 0) {
modules[midx].bm_type = BMT_HASH;
} else if (strcmp(q, "file") != 0) {
dboot_printf("\tmodule #%d: unknown module "
"type '%s'; defaulting to 'file'",
midx, q);
}
continue;
}
if (strncmp(q, "hash=", 5) == 0) {
if (q[5] != '\0' && !isspace(q[5])) {
modules[midx].bm_hash =
(native_ptr_t)(uintptr_t)(q + 5);
}
continue;
}
dboot_printf("ignoring unknown option '%s'\n", q);
}
}
/*
* Backward compatibility: if there are exactly one or two modules, both
* of type 'file' and neither with an embedded hash value, we have been
* given the legacy style modules. In this case we need to treat the first
* module as a rootfs and the second as a hash referencing that module.
* Otherwise, even if the configuration is invalid, we assume that the
* operator knows what he's doing or at least isn't being bitten by this
* interface change.
*/
static void
fixup_modules(void)
{
if (modules_used == 0 || modules_used > 2)
return;
if (modules[0].bm_type != BMT_FILE ||
modules_used > 1 && modules[1].bm_type != BMT_FILE) {
return;
}
if (modules[0].bm_hash != NULL ||
modules_used > 1 && modules[1].bm_hash != NULL) {
return;
}
modules[0].bm_type = BMT_ROOTFS;
if (modules_used > 1) {
modules[1].bm_type = BMT_HASH;
modules[1].bm_name = modules[0].bm_name;
}
}
/*
* For modules that do not have assigned hashes but have a separate hash module,
* find the assigned hash module and set the primary module's bm_hash to point
* to the hash data from that module. We will then ignore modules of type
* BMT_HASH from this point forward.
*/
static void
assign_module_hashes(void)
{
uint_t i, j;
for (i = 0; i < modules_used; i++) {
if (modules[i].bm_type == BMT_HASH ||
modules[i].bm_hash != NULL) {
continue;
}
for (j = 0; j < modules_used; j++) {
if (modules[j].bm_type != BMT_HASH ||
strcmp((char *)(uintptr_t)modules[j].bm_name,
(char *)(uintptr_t)modules[i].bm_name) != 0) {
continue;
}
if (modules[j].bm_size < SHA1_ASCII_LENGTH) {
dboot_printf("Short hash module of length "
"0x%lx bytes; ignoring\n",
(ulong_t)modules[j].bm_size);
} else {
modules[i].bm_hash = modules[j].bm_addr;
}
break;
}
}
}
/*
* During memory allocation, find the highest address not used yet.
*/
static void
check_higher(paddr_t a)
{
if (a < next_avail_addr)
return;
next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE);
DBG(next_avail_addr);
}
/*
* Walk through the module information finding the last used address.
* The first available address will become the top level page table.
*
* We then build the phys_install memlist from the multiboot information.
*/
static void
init_mem_alloc(void)
{
mb_memory_map_t *mmap;
mb_module_t *mod;
uint64_t start;
uint64_t end;
uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */
extern char _end[];
int i;
DBG_MSG("Entered init_mem_alloc()\n");
DBG((uintptr_t)mb_info);
if (mb_info->mods_count > MAX_BOOT_MODULES) {
dboot_panic("Too many modules (%d) -- the maximum is %d.",
mb_info->mods_count, MAX_BOOT_MODULES);
}
/*
* search the modules to find the last used address
* we'll build the module list while we're walking through here
*/
DBG_MSG("\nFinding Modules\n");
check_higher((paddr_t)(uintptr_t)&_end);
for (mod = (mb_module_t *)(mb_info->mods_addr), i = 0;
i < mb_info->mods_count;
++mod, ++i) {
process_module(mod);
check_higher(mod->mod_end);
}
bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
DBG(bi->bi_modules);
bi->bi_module_cnt = mb_info->mods_count;
DBG(bi->bi_module_cnt);
fixup_modules();
assign_module_hashes();
check_images();
/*
* Walk through the memory map from multiboot and build our memlist
* structures. Note these will have native format pointers.
*/
DBG_MSG("\nFinding Memory Map\n");
DBG(mb_info->flags);
max_mem = 0;
if (mb_info->flags & 0x40) {
int cnt = 0;
DBG(mb_info->mmap_addr);
DBG(mb_info->mmap_length);
check_higher(mb_info->mmap_addr + mb_info->mmap_length);
for (mmap = (mb_memory_map_t *)mb_info->mmap_addr;
(uint32_t)mmap < mb_info->mmap_addr + mb_info->mmap_length;
mmap = (mb_memory_map_t *)((uint32_t)mmap + mmap->size
+ sizeof (mmap->size))) {
++cnt;
start = ((uint64_t)mmap->base_addr_high << 32) +
mmap->base_addr_low;
end = start + ((uint64_t)mmap->length_high << 32) +
mmap->length_low;
if (prom_debug)
dboot_printf("\ttype: %d %" PRIx64 "..%"
PRIx64 "\n", mmap->type, start, end);
/*
* page align start and end
*/
start = (start + page_offset) & ~page_offset;
end &= ~page_offset;
if (end <= start)
continue;
/*
* only type 1 is usable RAM
*/
switch (mmap->type) {
case 1:
if (end > max_mem)
max_mem = end;
memlists[memlists_used].addr = start;
memlists[memlists_used].size = end - start;
++memlists_used;
if (memlists_used > MAX_MEMLIST)
dboot_panic("too many memlists");
break;
case 2:
rsvdmemlists[rsvdmemlists_used].addr = start;
rsvdmemlists[rsvdmemlists_used].size =
end - start;
++rsvdmemlists_used;
if (rsvdmemlists_used > MAX_MEMLIST)
dboot_panic("too many rsvdmemlists");
break;
default:
continue;
}
}
build_pcimemlists((mb_memory_map_t *)mb_info->mmap_addr, cnt);
} else if (mb_info->flags & 0x01) {
DBG(mb_info->mem_lower);
memlists[memlists_used].addr = 0;
memlists[memlists_used].size = mb_info->mem_lower * 1024;
++memlists_used;
DBG(mb_info->mem_upper);
memlists[memlists_used].addr = 1024 * 1024;
memlists[memlists_used].size = mb_info->mem_upper * 1024;
++memlists_used;
/*
* Old platform - assume I/O space at the end of memory.
*/
pcimemlists[0].addr =
(mb_info->mem_upper * 1024) + (1024 * 1024);
pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr;
pcimemlists[0].next = 0;
pcimemlists[0].prev = 0;
bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
DBG(bi->bi_pcimem);
} else {
dboot_panic("No memory info from boot loader!!!");
}
check_higher(bi->bi_cmdline);
/*
* finish processing the physinstall list
*/
sort_physinstall();
/*
* build bios reserved mem lists
*/
build_rsvdmemlists();
}
#endif /* !__xpv */
/*
* Simple memory allocator, allocates aligned physical memory.
* Note that startup_kernel() only allocates memory, never frees.
* Memory usage just grows in an upward direction.
*/
static void *
do_mem_alloc(uint32_t size, uint32_t align)
{
uint_t i;
uint64_t best;
uint64_t start;
uint64_t end;
/*
* make sure size is a multiple of pagesize
*/
size = RNDUP(size, MMU_PAGESIZE);
next_avail_addr = RNDUP(next_avail_addr, align);
/*
* XXPV fixme joe
*
* a really large bootarchive that causes you to run out of memory
* may cause this to blow up
*/
/* LINTED E_UNEXPECTED_UINT_PROMOTION */
best = (uint64_t)-size;
for (i = 0; i < memlists_used; ++i) {
start = memlists[i].addr;
#if defined(__xpv)
start += mfn_base;
#endif
end = start + memlists[i].size;
/*
* did we find the desired address?
*/
if (start <= next_avail_addr && next_avail_addr + size <= end) {
best = next_avail_addr;
goto done;
}
/*
* if not is this address the best so far?
*/
if (start > next_avail_addr && start < best &&
RNDUP(start, align) + size <= end)
best = RNDUP(start, align);
}
/*
* We didn't find exactly the address we wanted, due to going off the
* end of a memory region. Return the best found memory address.
*/
done:
next_avail_addr = best + size;
#if defined(__xpv)
if (next_avail_addr > scratch_end)
dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: "
"0x%lx", (ulong_t)next_avail_addr,
(ulong_t)scratch_end);
#endif
(void) memset((void *)(uintptr_t)best, 0, size);
return ((void *)(uintptr_t)best);
}
void *
mem_alloc(uint32_t size)
{
return (do_mem_alloc(size, MMU_PAGESIZE));
}
/*
* Build page tables to map all of memory used so far as well as the kernel.
*/
static void
build_page_tables(void)
{
uint32_t psize;
uint32_t level;
uint32_t off;
uint64_t start;
#if !defined(__xpv)
uint32_t i;
uint64_t end;
#endif /* __xpv */
/*
* If we're on metal, we need to create the top level pagetable.
*/
#if defined(__xpv)
top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base;
#else /* __xpv */
top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
#endif /* __xpv */
DBG((uintptr_t)top_page_table);
/*
* Determine if we'll use large mappings for kernel, then map it.
*/
if (largepage_support) {
psize = lpagesize;
level = 1;
} else {
psize = MMU_PAGESIZE;
level = 0;
}
DBG_MSG("Mapping kernel\n");
DBG(ktext_phys);
DBG(target_kernel_text);
DBG(ksize);
DBG(psize);
for (off = 0; off < ksize; off += psize)
map_pa_at_va(ktext_phys + off, target_kernel_text + off, level);
/*
* The kernel will need a 1 page window to work with page tables
*/
bi->bi_pt_window = (uintptr_t)mem_alloc(MMU_PAGESIZE);
DBG(bi->bi_pt_window);
bi->bi_pte_to_pt_window =
(uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0);
DBG(bi->bi_pte_to_pt_window);
#if defined(__xpv)
if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
/* If this is a domU we're done. */
DBG_MSG("\nPage tables constructed\n");
return;
}
#endif /* __xpv */
/*
* We need 1:1 mappings for the lower 1M of memory to access
* BIOS tables used by a couple of drivers during boot.
*
* The following code works because our simple memory allocator
* only grows usage in an upwards direction.
*
* Note that by this point in boot some mappings for low memory
* may already exist because we've already accessed device in low
* memory. (Specifically the video frame buffer and keyboard
* status ports.) If we're booting on raw hardware then GRUB
* created these mappings for us. If we're booting under a
* hypervisor then we went ahead and remapped these devices into
* memory allocated within dboot itself.
*/
if (map_debug)
dboot_printf("1:1 map pa=0..1Meg\n");
for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) {
#if defined(__xpv)
map_ma_at_va(start, start, 0);
#else /* __xpv */
map_pa_at_va(start, start, 0);
#endif /* __xpv */
}
#if !defined(__xpv)
for (i = 0; i < memlists_used; ++i) {
start = memlists[i].addr;
end = start + memlists[i].size;
if (map_debug)
dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
start, end);
while (start < end && start < next_avail_addr) {
map_pa_at_va(start, start, 0);
start += MMU_PAGESIZE;
}
}
#endif /* !__xpv */
DBG_MSG("\nPage tables constructed\n");
}
#define NO_MULTIBOOT \
"multiboot is no longer used to boot the Solaris Operating System.\n\
The grub entry should be changed to:\n\
kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\
module$ /platform/i86pc/$ISADIR/boot_archive\n\
See http://illumos.org/msg/SUNOS-8000-AK for details.\n"
/*
* startup_kernel has a pretty simple job. It builds pagetables which reflect
* 1:1 mappings for all memory in use. It then also adds mappings for
* the kernel nucleus at virtual address of target_kernel_text using large page
* mappings. The page table pages are also accessible at 1:1 mapped
* virtual addresses.
*/
/*ARGSUSED*/
void
startup_kernel(void)
{
char *cmdline;
uintptr_t addr;
#if defined(__xpv)
physdev_set_iopl_t set_iopl;
#endif /* __xpv */
/*
* At this point we are executing in a 32 bit real mode.
*/
#if defined(__xpv)
cmdline = (char *)xen_info->cmd_line;
#else /* __xpv */
cmdline = (char *)mb_info->cmdline;
#endif /* __xpv */
prom_debug = (strstr(cmdline, "prom_debug") != NULL);
map_debug = (strstr(cmdline, "map_debug") != NULL);
#if defined(__xpv)
/*
* For dom0, before we initialize the console subsystem we'll
* need to enable io operations, so set I/O priveldge level to 1.
*/
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
set_iopl.iopl = 1;
(void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
}
#endif /* __xpv */
bcons_init(cmdline);
DBG_MSG("\n\nSolaris prekernel set: ");
DBG_MSG(cmdline);
DBG_MSG("\n");
if (strstr(cmdline, "multiboot") != NULL) {
dboot_panic(NO_MULTIBOOT);
}
/*
* boot info must be 16 byte aligned for 64 bit kernel ABI
*/
addr = (uintptr_t)boot_info;
addr = (addr + 0xf) & ~0xf;
bi = (struct xboot_info *)addr;
DBG((uintptr_t)bi);
bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;
/*
* Need correct target_kernel_text value
*/
#if defined(_BOOT_TARGET_amd64)
target_kernel_text = KERNEL_TEXT_amd64;
#elif defined(__xpv)
target_kernel_text = KERNEL_TEXT_i386_xpv;
#else
target_kernel_text = KERNEL_TEXT_i386;
#endif
DBG(target_kernel_text);
#if defined(__xpv)
/*
* XXPV Derive this stuff from CPUID / what the hypervisor has enabled
*/
#if defined(_BOOT_TARGET_amd64)
/*
* 64-bit hypervisor.
*/
amd64_support = 1;
pae_support = 1;
#else /* _BOOT_TARGET_amd64 */
/*
* See if we are running on a PAE Hypervisor
*/
{
xen_capabilities_info_t caps;
if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0)
dboot_panic("HYPERVISOR_xen_version(caps) failed");
caps[sizeof (caps) - 1] = 0;
if (prom_debug)
dboot_printf("xen capabilities %s\n", caps);
if (strstr(caps, "x86_32p") != NULL)
pae_support = 1;
}
#endif /* _BOOT_TARGET_amd64 */
{
xen_platform_parameters_t p;
if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0)
dboot_panic("HYPERVISOR_xen_version(parms) failed");
DBG(p.virt_start);
mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
}
/*
* The hypervisor loads stuff starting at 1Gig
*/
mfn_base = ONE_GIG;
DBG(mfn_base);
/*
* enable writable page table mode for the hypervisor
*/
if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
VMASST_TYPE_writable_pagetables) < 0)
dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed");
/*
* check for NX support
*/
if (pae_support) {
uint32_t eax = 0x80000000;
uint32_t edx = get_cpuid_edx(&eax);
if (eax >= 0x80000001) {
eax = 0x80000001;
edx = get_cpuid_edx(&eax);
if (edx & CPUID_AMD_EDX_NX)
NX_support = 1;
}
}
#if !defined(_BOOT_TARGET_amd64)
/*
* The 32-bit hypervisor uses segmentation to protect itself from
* guests. This means when a guest attempts to install a flat 4GB
* code or data descriptor the 32-bit hypervisor will protect itself
* by silently shrinking the segment such that if the guest attempts
* any access where the hypervisor lives a #gp fault is generated.
* The problem is that some applications expect a full 4GB flat
* segment for their current thread pointer and will use negative
* offset segment wrap around to access data. TLS support in linux
* brand is one example of this.
*
* The 32-bit hypervisor can catch the #gp fault in these cases
* and emulate the access without passing the #gp fault to the guest
* but only if VMASST_TYPE_4gb_segments is explicitly turned on.
* Seems like this should have been the default.
* Either way, we want the hypervisor -- and not Solaris -- to deal
* to deal with emulating these accesses.
*/
if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
VMASST_TYPE_4gb_segments) < 0)
dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed");
#endif /* !_BOOT_TARGET_amd64 */
#else /* __xpv */
/*
* use cpuid to enable MMU features
*/
if (have_cpuid()) {
uint32_t eax, edx;
eax = 1;
edx = get_cpuid_edx(&eax);
if (edx & CPUID_INTC_EDX_PSE)
largepage_support = 1;
if (edx & CPUID_INTC_EDX_PGE)
pge_support = 1;
if (edx & CPUID_INTC_EDX_PAE)
pae_support = 1;
eax = 0x80000000;
edx = get_cpuid_edx(&eax);
if (eax >= 0x80000001) {
eax = 0x80000001;
edx = get_cpuid_edx(&eax);
if (edx & CPUID_AMD_EDX_LM)
amd64_support = 1;
if (edx & CPUID_AMD_EDX_NX)
NX_support = 1;
}
} else {
dboot_printf("cpuid not supported\n");
}
#endif /* __xpv */
#if defined(_BOOT_TARGET_amd64)
if (amd64_support == 0)
dboot_panic("long mode not supported, rebooting");
else if (pae_support == 0)
dboot_panic("long mode, but no PAE; rebooting");
#else
/*
* Allow the command line to over-ride use of PAE for 32 bit.
*/
if (strstr(cmdline, "disablePAE=true") != NULL) {
pae_support = 0;
NX_support = 0;
amd64_support = 0;
}
#endif
/*
* initialize the simple memory allocator
*/
init_mem_alloc();
#if !defined(__xpv) && !defined(_BOOT_TARGET_amd64)
/*
* disable PAE on 32 bit h/w w/o NX and < 4Gig of memory
*/
if (max_mem < FOUR_GIG && NX_support == 0)
pae_support = 0;
#endif
/*
* configure mmu information
*/
if (pae_support) {
shift_amt = shift_amt_pae;
ptes_per_table = 512;
pte_size = 8;
lpagesize = TWO_MEG;
#if defined(_BOOT_TARGET_amd64)
top_level = 3;
#else
top_level = 2;
#endif
} else {
pae_support = 0;
NX_support = 0;
shift_amt = shift_amt_nopae;
ptes_per_table = 1024;
pte_size = 4;
lpagesize = FOUR_MEG;
top_level = 1;
}
DBG(pge_support);
DBG(NX_support);
DBG(largepage_support);
DBG(amd64_support);
DBG(top_level);
DBG(pte_size);
DBG(ptes_per_table);
DBG(lpagesize);
#if defined(__xpv)
ktext_phys = ONE_GIG; /* from UNIX Mapfile */
#else
ktext_phys = FOUR_MEG; /* from UNIX Mapfile */
#endif
#if !defined(__xpv) && defined(_BOOT_TARGET_amd64)
/*
* For grub, copy kernel bits from the ELF64 file to final place.
*/
DBG_MSG("\nAllocating nucleus pages.\n");
ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
if (ktext_phys == 0)
dboot_panic("failed to allocate aligned kernel memory");
if (dboot_elfload64(mb_header.load_addr) != 0)
dboot_panic("failed to parse kernel ELF image, rebooting");
#endif
DBG(ktext_phys);
/*
* Allocate page tables.
*/
build_page_tables();
/*
* return to assembly code to switch to running kernel
*/
entry_addr_low = (uint32_t)target_kernel_text;
DBG(entry_addr_low);
bi->bi_use_largepage = largepage_support;
bi->bi_use_pae = pae_support;
bi->bi_use_pge = pge_support;
bi->bi_use_nx = NX_support;
#if defined(__xpv)
bi->bi_next_paddr = next_avail_addr - mfn_base;
DBG(bi->bi_next_paddr);
bi->bi_next_vaddr = (native_ptr_t)next_avail_addr;
DBG(bi->bi_next_vaddr);
/*
* unmap unused pages in start area to make them available for DMA
*/
while (next_avail_addr < scratch_end) {
(void) HYPERVISOR_update_va_mapping(next_avail_addr,
0, UVMF_INVLPG | UVMF_LOCAL);
next_avail_addr += MMU_PAGESIZE;
}
bi->bi_xen_start_info = (uintptr_t)xen_info;
DBG((uintptr_t)HYPERVISOR_shared_info);
bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info;
bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base;
#else /* __xpv */
bi->bi_next_paddr = next_avail_addr;
DBG(bi->bi_next_paddr);
bi->bi_next_vaddr = (uintptr_t)next_avail_addr;
DBG(bi->bi_next_vaddr);
bi->bi_mb_info = (uintptr_t)mb_info;
bi->bi_top_page_table = (uintptr_t)top_page_table;
#endif /* __xpv */
bi->bi_kseg_size = FOUR_MEG;
DBG(bi->bi_kseg_size);
#ifndef __xpv
if (map_debug)
dump_tables();
#endif
DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");
}