/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 2010 Nexenta Systems, Inc. All rights reserved.
*/
/*
* sunpm.c builds sunpm.o "power management framework"
* kernel-resident power management code. Implements power management
* policy
* Assumes: all backwards compat. device components wake up on &
* the pm_info pointer in dev_info is initially NULL
*
* PM - (device) Power Management
*
* Each device may have 0 or more components. If a device has no components,
* then it can't be power managed. Each component has 2 or more
* power states.
*
* "Backwards Compatible" (bc) devices:
* There are two different types of devices from the point of view of this
* code. The original type, left over from the original PM implementation on
* the voyager platform are known in this code as "backwards compatible"
* devices (PM_ISBC(dip) returns true).
* They are recognized by the pm code by the lack of a pm-components property
* and a call made by the driver to pm_create_components(9F).
* For these devices, component 0 is special, and represents the power state
* of the device. If component 0 is to be set to power level 0 (off), then
* the framework must first call into the driver's detach(9E) routine with
* DDI_PM_SUSPEND, to get the driver to save the hardware state of the device.
* After setting component 0 from 0 to a non-zero power level, a call must be
* made into the driver's attach(9E) routine with DDI_PM_RESUME.
*
* Currently, the only way to get a bc device power managed is via a set of
* ioctls (PM_DIRECT_PM, PM_SET_CURRENT_POWER) issued to /dev/pm.
*
* For non-bc devices, the driver describes the components by exporting a
* pm-components(9P) property that tells how many components there are,
* tells what each component's power state values are, and provides human
* readable strings (currently unused) for each component name and power state.
* Devices which export pm-components(9P) are automatically power managed
* whenever autopm is enabled (via PM_START_PM ioctl issued by pmconfig(1M)
* after parsing power.conf(4)). The exception to this rule is that power
* manageable CPU devices may be automatically managed independently of autopm
* by either enabling or disabling (via PM_START_CPUPM and PM_STOP_CPUPM
* ioctls) cpupm. If the CPU devices are not managed independently, then they
* are managed by autopm. In either case, for automatically power managed
* devices, all components are considered independent of each other, and it is
* up to the driver to decide when a transition requires saving or restoring
* hardware state.
*
* Each device component also has a threshold time associated with each power
* transition (see power.conf(4)), and a busy/idle state maintained by the
* driver calling pm_idle_component(9F) and pm_busy_component(9F).
* Components are created idle.
*
* The PM framework provides several functions:
* -implement PM policy as described in power.conf(4)
* Policy is set by pmconfig(1M) issuing pm ioctls based on power.conf(4).
* Policies consist of:
* -set threshold values (defaults if none provided by pmconfig)
* -set dependencies among devices
* -enable/disable autopm
* -enable/disable cpupm
* -turn down idle components based on thresholds (if autopm or cpupm is
* enabled) (aka scanning)
* -maintain power states based on dependencies among devices
* -upon request, or when the frame buffer powers off, attempt to turn off
* all components that are idle or become idle over the next (10 sec)
* period in an attempt to get down to an EnergyStar compliant state
* -prevent powering off of a device which exported the
* pm-no-involuntary-power-cycles property without active involvement of
* the device's driver (so no removing power when the device driver is
* not attached)
* -provide a mechanism for a device driver to request that a device's component
* be brought back to the power level necessary for the use of the device
* -allow a process to directly control the power levels of device components
* (via ioctls issued to /dev/pm--see usr/src/uts/common/io/pm.c)
* -ensure that the console frame buffer is powered up before being referenced
* via prom_printf() or other prom calls that might generate console output
* -maintain implicit dependencies (e.g. parent must be powered up if child is)
* -provide "backwards compatible" behavior for devices without pm-components
* property
*
* Scanning:
* Whenever autopm or cpupm is enabled, the framework attempts to bring each
* component of each managed device to its lowest power based on the threshold
* of idleness associated with each transition and the busy/idle state of the
* component.
*
* The actual work of this is done by pm_scan_dev(), which cycles through each
* component of a device, checking its idleness against its current threshold,
* and calling pm_set_power() as appropriate to change the power level.
* This function also indicates when it would next be profitable to scan the
* device again, and a new scan is scheduled after that time.
*
* Dependencies:
* It is possible to establish a dependency between the power states of two
* otherwise unrelated devices. This is currently done to ensure that the
* cdrom is always up whenever the console framebuffer is up, so that the user
* can insert a cdrom and see a popup as a result.
*
* The dependency terminology used in power.conf(4) is not easy to understand,
* so we've adopted a different terminology in the implementation. We write
* of a "keeps up" and a "kept up" device. A relationship can be established
* where one device keeps up another. That means that if the keepsup device
* has any component that is at a non-zero power level, all components of the
* "kept up" device must be brought to full power. This relationship is
* asynchronous. When the keeping device is powered up, a request is queued
* to a worker thread to bring up the kept device. The caller does not wait.
* Scan will not turn down a kept up device.
*
* Direct PM:
* A device may be directly power managed by a process. If a device is
* directly pm'd, then it will not be scanned, and dependencies will not be
* enforced. * If a directly pm'd device's driver requests a power change (via
* pm_raise_power(9F)), then the request is blocked and notification is sent
* to the controlling process, which must issue the requested power change for
* the driver to proceed.
*
*/
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/callb.h> /* callback registration during CPR */
#include <sys/conf.h> /* driver flags and functions */
#include <sys/open.h> /* OTYP_CHR definition */
#include <sys/stat.h> /* S_IFCHR definition */
#include <sys/pathname.h> /* name -> dev_info xlation */
#include <sys/ddi_impldefs.h> /* dev_info node fields */
#include <sys/kmem.h> /* memory alloc stuff */
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/pm.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/sunpm.h>
#include <sys/epm.h>
#include <sys/vfs.h>
#include <sys/mode.h>
#include <sys/mkdev.h>
#include <sys/promif.h>
#include <sys/consdev.h>
#include <sys/esunddi.h>
#include <sys/modctl.h>
#include <sys/fs/ufs_fs.h>
#include <sys/note.h>
#include <sys/taskq.h>
#include <sys/bootconf.h>
#include <sys/reboot.h>
#include <sys/spl.h>
#include <sys/disp.h>
#include <sys/sobject.h>
#include <sys/sunmdi.h>
#include <sys/systm.h>
#include <sys/cpuvar.h>
#include <sys/cyclic.h>
#include <sys/uadmin.h>
#include <sys/srn.h>
/*
* PM LOCKING
* The list of locks:
* Global pm mutex locks.
*
* pm_scan_lock:
* It protects the timeout id of the scan thread, and the value
* of autopm_enabled and cpupm. This lock is not held
* concurrently with any other PM locks.
*
* pm_clone_lock: Protects the clone list and count of poll events
* pending for the pm driver.
* Lock ordering:
* pm_clone_lock -> pm_pscc_interest_rwlock,
* pm_clone_lock -> pm_pscc_direct_rwlock.
*
* pm_rsvp_lock:
* Used to synchronize the data structures used for processes
* to rendezvous with state change information when doing
* direct PM.
* Lock ordering:
* pm_rsvp_lock -> pm_pscc_interest_rwlock,
* pm_rsvp_lock -> pm_pscc_direct_rwlock,
* pm_rsvp_lock -> pm_clone_lock.
*
* ppm_lock: protects the list of registered ppm drivers
* Lock ordering:
* ppm_lock -> ppm driver unit_lock
*
* pm_compcnt_lock:
* Protects count of components that are not at their lowest
* power level.
* Lock ordering:
* pm_compcnt_lock -> ppm_lock.
*
* pm_dep_thread_lock:
* Protects work list for pm_dep_thread. Not taken concurrently
* with any other pm lock.
*
* pm_remdrv_lock:
* Serializes the operation of removing noinvol data structure
* entries for a branch of the tree when a driver has been
* removed from the system (modctl_rem_major).
* Lock ordering:
* pm_remdrv_lock -> pm_noinvol_rwlock.
*
* pm_cfb_lock: (High level spin lock)
* Protects the count of how many components of the console
* frame buffer are off (so we know if we have to bring up the
* console as a result of a prom_printf, etc.
* No other locks are taken while holding this lock.
*
* pm_loan_lock:
* Protects the lock_loan list. List is used to record that one
* thread has acquired a power lock but has launched another thread
* to complete its processing. An entry in the list indicates that
* the worker thread can borrow the lock held by the other thread,
* which must block on the completion of the worker. Use is
* specific to module loading.
* No other locks are taken while holding this lock.
*
* Global PM rwlocks
*
* pm_thresh_rwlock:
* Protects the list of thresholds recorded for future use (when
* devices attach).
* Lock ordering:
* pm_thresh_rwlock -> devi_pm_lock
*
* pm_noinvol_rwlock:
* Protects list of detached nodes that had noinvol registered.
* No other PM locks are taken while holding pm_noinvol_rwlock.
*
* pm_pscc_direct_rwlock:
* Protects the list that maps devices being directly power
* managed to the processes that manage them.
* Lock ordering:
* pm_pscc_direct_rwlock -> psce_lock
*
* pm_pscc_interest_rwlock;
* Protects the list that maps state change events to processes
* that want to know about them.
* Lock ordering:
* pm_pscc_interest_rwlock -> psce_lock
*
* per-dip locks:
*
* Each node has these per-dip locks, which are only used if the device is
* a candidate for power management (e.g. has pm components)
*
* devi_pm_lock:
* Protects all power management state of the node except for
* power level, which is protected by ndi_devi_enter().
* Encapsulated in macros PM_LOCK_DIP()/PM_UNLOCK_DIP().
* Lock ordering:
* devi_pm_lock -> pm_rsvp_lock,
* devi_pm_lock -> pm_dep_thread_lock,
* devi_pm_lock -> pm_noinvol_rwlock,
* devi_pm_lock -> power lock
*
* power lock (ndi_devi_enter()):
* Since changing power level is possibly a slow operation (30
* seconds to spin up a disk drive), this is locked separately.
* Since a call into the driver to change the power level of one
* component may result in a call back into the framework to change
* the power level of another, this lock allows re-entrancy by
* the same thread (ndi_devi_enter is used for this because
* the USB framework uses ndi_devi_enter in its power entry point,
* and use of any other lock would produce a deadlock.
*
* devi_pm_busy_lock:
* This lock protects the integrity of the busy count. It is
* only taken by pm_busy_component() and pm_idle_component and
* some code that adjust the busy time after the timer gets set
* up or after a CPR operation. It is per-dip to keep from
* single-threading all the disk drivers on a system.
* It could be per component instead, but most devices have
* only one component.
* No other PM locks are taken while holding this lock.
*
*/
static int stdout_is_framebuffer;
static kmutex_t e_pm_power_lock;
static kmutex_t pm_loan_lock;
kmutex_t pm_scan_lock;
callb_id_t pm_cpr_cb_id;
callb_id_t pm_panic_cb_id;
callb_id_t pm_halt_cb_id;
int pm_comps_notlowest; /* no. of comps not at lowest power */
int pm_powering_down; /* cpr is source of DDI_SUSPEND calls */
clock_t pm_id_ticks = 5; /* ticks to wait before scan during idle-down */
clock_t pm_default_min_scan = PM_DEFAULT_MIN_SCAN;
clock_t pm_cpu_min_scan = PM_CPU_MIN_SCAN;
#define PM_MIN_SCAN(dip) (PM_ISCPU(dip) ? pm_cpu_min_scan : \
pm_default_min_scan)
static int pm_busop_set_power(dev_info_t *,
void *, pm_bus_power_op_t, void *, void *);
static int pm_busop_match_request(dev_info_t *, void *);
static int pm_all_to_normal_nexus(dev_info_t *, pm_canblock_t);
static void e_pm_set_max_power(dev_info_t *, int, int);
static int e_pm_get_max_power(dev_info_t *, int);
/*
* Dependency Processing is done thru a seperate thread.
*/
kmutex_t pm_dep_thread_lock;
kcondvar_t pm_dep_thread_cv;
pm_dep_wk_t *pm_dep_thread_workq = NULL;
pm_dep_wk_t *pm_dep_thread_tail = NULL;
/*
* Autopm must be turned on by a PM_START_PM ioctl, so we don't end up
* power managing things in single user mode that have been suppressed via
* power.conf entries. Protected by pm_scan_lock.
*/
int autopm_enabled;
/*
* cpupm is turned on and off, by the PM_START_CPUPM and PM_STOP_CPUPM ioctls,
* to define the power management behavior of CPU devices separate from
* autopm. Protected by pm_scan_lock.
*/
pm_cpupm_t cpupm = PM_CPUPM_NOTSET;
/*
* Defines the default mode of operation for CPU power management,
* either the polling implementation, or the event based dispatcher driven
* implementation.
*/
pm_cpupm_t cpupm_default_mode = PM_CPUPM_EVENT;
/*
* AutoS3 depends on autopm being enabled, and must be enabled by
* PM_START_AUTOS3 command.
*/
int autoS3_enabled;
#if !defined(__sparc)
/*
* on sparc these live in fillsysinfo.c
*
* If this variable is non-zero, cpr should return "not supported" when
* it is queried even though it would normally be supported on this platform.
*/
int cpr_supported_override;
/*
* Some platforms may need to support CPR even in the absence of
* having the correct platform id information. If this
* variable is non-zero, cpr should proceed even in the absence
* of otherwise being qualified.
*/
int cpr_platform_enable = 0;
#endif
/*
* pm_S3_enabled indicates that we believe the platform can support S3,
* which we get from pmconfig(1M)
*/
int pm_S3_enabled;
/*
* This flag is true while processes are stopped for a checkpoint/resume.
* Controlling processes of direct pm'd devices are not available to
* participate in power level changes, so we bypass them when this is set.
*/
static int pm_processes_stopped;
#ifdef DEBUG
/*
* see common/sys/epm.h for PMD_* values
*/
uint_t pm_debug = 0;
/*
* If pm_divertdebug is set, then no prom_printf calls will be made by
* PMD(), which will prevent debug output from bringing up the console
* frame buffer. Clearing this variable before setting pm_debug will result
* in PMD output going to the console.
*
* pm_divertdebug is incremented in pm_set_power() if dip == cfb_dip to avoid
* deadlocks and decremented at the end of pm_set_power()
*/
uint_t pm_divertdebug = 1;
volatile uint_t pm_debug_to_console = 0;
kmutex_t pm_debug_lock; /* protects pm_divertdebug */
void prdeps(char *);
#endif
/* Globals */
/*
* List of recorded thresholds and dependencies
*/
pm_thresh_rec_t *pm_thresh_head;
krwlock_t pm_thresh_rwlock;
pm_pdr_t *pm_dep_head;
static int pm_unresolved_deps = 0;
static int pm_prop_deps = 0;
/*
* List of devices that exported no-involuntary-power-cycles property
*/
pm_noinvol_t *pm_noinvol_head;
/*
* Locks used in noinvol processing
*/
krwlock_t pm_noinvol_rwlock;
kmutex_t pm_remdrv_lock;
int pm_default_idle_threshold = PM_DEFAULT_SYS_IDLENESS;
int pm_system_idle_threshold;
int pm_cpu_idle_threshold;
/*
* By default nexus has 0 threshold, and depends on its children to keep it up
*/
int pm_default_nexus_threshold = 0;
/*
* Data structures shared with common/io/pm.c
*/
kmutex_t pm_clone_lock;
kcondvar_t pm_clones_cv[PM_MAX_CLONE];
uint_t pm_poll_cnt[PM_MAX_CLONE]; /* count of events for poll */
unsigned char pm_interest[PM_MAX_CLONE];
struct pollhead pm_pollhead;
/*
* Data structures shared with common/io/srn.c
*/
kmutex_t srn_clone_lock; /* protects srn_signal, srn_inuse */
void (*srn_signal)(int type, int event);
int srn_inuse; /* stop srn detach */
extern int hz;
extern char *platform_module_list[];
/*
* Wrappers for use in ddi_walk_devs
*/
static int pm_set_dev_thr_walk(dev_info_t *, void *);
static int pm_restore_direct_lvl_walk(dev_info_t *, void *);
static int pm_save_direct_lvl_walk(dev_info_t *, void *);
static int pm_discard_dep_walk(dev_info_t *, void *);
#ifdef DEBUG
static int pm_desc_pwrchk_walk(dev_info_t *, void *);
#endif
/*
* Routines for managing noinvol devices
*/
int pm_noinvol_update(int, int, int, char *, dev_info_t *);
void pm_noinvol_update_node(dev_info_t *,
pm_bp_noinvol_t *req);
kmutex_t pm_rsvp_lock;
kmutex_t pm_compcnt_lock;
krwlock_t pm_pscc_direct_rwlock;
krwlock_t pm_pscc_interest_rwlock;
#define PSC_INTEREST 0 /* belongs to interest psc list */
#define PSC_DIRECT 1 /* belongs to direct psc list */
pscc_t *pm_pscc_interest;
pscc_t *pm_pscc_direct;
#define PM_MAJOR(dip) ddi_driver_major(dip)
#define PM_IS_NEXUS(dip) ((PM_MAJOR(dip) == DDI_MAJOR_T_NONE) ? 0 : \
NEXUS_DRV(devopsp[PM_MAJOR(dip)]))
#define POWERING_ON(old, new) ((old) == 0 && (new) != 0)
#define POWERING_OFF(old, new) ((old) != 0 && (new) == 0)
#define PM_INCR_NOTLOWEST(dip) { \
mutex_enter(&pm_compcnt_lock); \
if (!PM_IS_NEXUS(dip) || \
(DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\
if (pm_comps_notlowest == 0) \
pm_ppm_notify_all_lowest(dip, PM_NOT_ALL_LOWEST);\
pm_comps_notlowest++; \
PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr notlowest->%d\n",\
pmf, PM_DEVICE(dip), pm_comps_notlowest)) \
} \
mutex_exit(&pm_compcnt_lock); \
}
#define PM_DECR_NOTLOWEST(dip) { \
mutex_enter(&pm_compcnt_lock); \
if (!PM_IS_NEXUS(dip) || \
(DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\
ASSERT(pm_comps_notlowest); \
pm_comps_notlowest--; \
PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr notlowest to " \
"%d\n", pmf, PM_DEVICE(dip), pm_comps_notlowest))\
if (pm_comps_notlowest == 0) \
pm_ppm_notify_all_lowest(dip, PM_ALL_LOWEST); \
} \
mutex_exit(&pm_compcnt_lock); \
}
/*
* console frame-buffer power-management is not enabled when
* debugging services are present. to override, set pm_cfb_override
* to non-zero.
*/
uint_t pm_cfb_comps_off = 0; /* PM_LEVEL_UNKNOWN is considered on */
kmutex_t pm_cfb_lock;
int pm_cfb_enabled = 1; /* non-zero allows pm of console frame buffer */
#ifdef DEBUG
int pm_cfb_override = 1; /* non-zero allows pm of cfb with debuggers */
#else
int pm_cfb_override = 0; /* non-zero allows pm of cfb with debuggers */
#endif
static dev_info_t *cfb_dip = 0;
static dev_info_t *cfb_dip_detaching = 0;
uint_t cfb_inuse = 0;
static ddi_softintr_t pm_soft_id;
static boolean_t pm_soft_pending;
int pm_scans_disabled = 0;
/*
* A structure to record the fact that one thread has borrowed a lock held
* by another thread. The context requires that the lender block on the
* completion of the borrower.
*/
typedef struct lock_loan {
struct lock_loan *pmlk_next;
kthread_t *pmlk_borrower;
kthread_t *pmlk_lender;
dev_info_t *pmlk_dip;
} lock_loan_t;
static lock_loan_t lock_loan_head; /* list head is a dummy element */
#ifdef DEBUG
#ifdef PMDDEBUG
#define PMD_FUNC(func, name) char *(func) = (name);
#else /* !PMDDEBUG */
#define PMD_FUNC(func, name)
#endif /* PMDDEBUG */
#else /* !DEBUG */
#define PMD_FUNC(func, name)
#endif /* DEBUG */
/*
* Must be called before first device (including pseudo) attach
*/
void
pm_init_locks(void)
{
mutex_init(&pm_scan_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&pm_rsvp_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&pm_compcnt_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&pm_dep_thread_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&pm_remdrv_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&pm_loan_lock, NULL, MUTEX_DRIVER, NULL);
rw_init(&pm_thresh_rwlock, NULL, RW_DEFAULT, NULL);
rw_init(&pm_noinvol_rwlock, NULL, RW_DEFAULT, NULL);
cv_init(&pm_dep_thread_cv, NULL, CV_DEFAULT, NULL);
}
static int pm_reset_timestamps(dev_info_t *, void *);
static boolean_t
pm_cpr_callb(void *arg, int code)
{
_NOTE(ARGUNUSED(arg))
static int auto_save;
static pm_cpupm_t cpupm_save;
switch (code) {
case CB_CODE_CPR_CHKPT:
/*
* Cancel scan or wait for scan in progress to finish
* Other threads may be trying to restart the scan, so we
* have to keep at it unil it sticks
*/
mutex_enter(&pm_scan_lock);
ASSERT(!pm_scans_disabled);
pm_scans_disabled = 1;
auto_save = autopm_enabled;
autopm_enabled = 0;
cpupm_save = cpupm;
cpupm = PM_CPUPM_NOTSET;
mutex_exit(&pm_scan_lock);
ddi_walk_devs(ddi_root_node(), pm_scan_stop_walk, NULL);
break;
case CB_CODE_CPR_RESUME:
ASSERT(!autopm_enabled);
ASSERT(cpupm == PM_CPUPM_NOTSET);
ASSERT(pm_scans_disabled);
pm_scans_disabled = 0;
/*
* Call pm_reset_timestamps to reset timestamps of each
* device to the time when the system is resumed so that their
* idleness can be re-calculated. That's to avoid devices from
* being powered down right after resume if the system was in
* suspended mode long enough.
*/
ddi_walk_devs(ddi_root_node(), pm_reset_timestamps, NULL);
autopm_enabled = auto_save;
cpupm = cpupm_save;
/*
* If there is any auto-pm device, get the scanning
* going. Otherwise don't bother.
*/
ddi_walk_devs(ddi_root_node(), pm_rescan_walk, NULL);
break;
}
return (B_TRUE);
}
/*
* This callback routine is called when there is a system panic. This function
* exists for prototype matching.
*/
static boolean_t
pm_panic_callb(void *arg, int code)
{
_NOTE(ARGUNUSED(arg, code))
void pm_cfb_check_and_powerup(void);
PMD(PMD_CFB, ("pm_panic_callb\n"))
pm_cfb_check_and_powerup();
return (B_TRUE);
}
static boolean_t
pm_halt_callb(void *arg, int code)
{
_NOTE(ARGUNUSED(arg, code))
return (B_TRUE);
}
static void pm_dep_thread(void);
/*
* This needs to be called after the root and platform drivers are loaded
* and be single-threaded with respect to driver attach/detach
*/
void
pm_init(void)
{
PMD_FUNC(pmf, "pm_init")
char **mod;
extern pri_t minclsyspri;
pm_comps_notlowest = 0;
pm_system_idle_threshold = pm_default_idle_threshold;
pm_cpu_idle_threshold = 0;
pm_cpr_cb_id = callb_add(pm_cpr_callb, (void *)NULL,
CB_CL_CPR_PM, "pm_cpr");
pm_panic_cb_id = callb_add(pm_panic_callb, (void *)NULL,
CB_CL_PANIC, "pm_panic");
pm_halt_cb_id = callb_add(pm_halt_callb, (void *)NULL,
CB_CL_HALT, "pm_halt");
/*
* Create a thread to do dependency processing.
*/
(void) thread_create(NULL, 0, (void (*)())pm_dep_thread, NULL, 0, &p0,
TS_RUN, minclsyspri);
/*
* loadrootmodules already loaded these ppm drivers, now get them
* attached so they can claim the root drivers as they attach
*/
for (mod = platform_module_list; *mod; mod++) {
if (i_ddi_attach_hw_nodes(*mod) != DDI_SUCCESS) {
cmn_err(CE_WARN, "!cannot load platform pm driver %s\n",
*mod);
} else {
PMD(PMD_DHR, ("%s: %s (%s)\n", pmf, *mod,
ddi_major_to_name(ddi_name_to_major(*mod))))
}
}
}
/*
* pm_scan_init - create pm scan data structure. Called (if autopm or cpupm
* enabled) when device becomes power managed or after a failed detach and
* when autopm is started via PM_START_PM or PM_START_CPUPM ioctls, and after
* a CPR resume to get all the devices scanning again.
*/
void
pm_scan_init(dev_info_t *dip)
{
PMD_FUNC(pmf, "scan_init")
pm_scan_t *scanp;
ASSERT(!PM_ISBC(dip));
PM_LOCK_DIP(dip);
scanp = PM_GET_PM_SCAN(dip);
if (!scanp) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): create scan data\n",
pmf, PM_DEVICE(dip)))
scanp = kmem_zalloc(sizeof (pm_scan_t), KM_SLEEP);
DEVI(dip)->devi_pm_scan = scanp;
} else if (scanp->ps_scan_flags & PM_SCAN_STOP) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): "
"clear PM_SCAN_STOP flag\n", pmf, PM_DEVICE(dip)))
scanp->ps_scan_flags &= ~PM_SCAN_STOP;
}
PM_UNLOCK_DIP(dip);
}
/*
* pm_scan_fini - remove pm scan data structure when stopping pm on the device
*/
void
pm_scan_fini(dev_info_t *dip)
{
PMD_FUNC(pmf, "scan_fini")
pm_scan_t *scanp;
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
ASSERT(!PM_ISBC(dip));
PM_LOCK_DIP(dip);
scanp = PM_GET_PM_SCAN(dip);
if (!scanp) {
PM_UNLOCK_DIP(dip);
return;
}
ASSERT(!scanp->ps_scan_id && !(scanp->ps_scan_flags &
(PM_SCANNING | PM_SCAN_DISPATCHED | PM_SCAN_AGAIN)));
kmem_free(scanp, sizeof (pm_scan_t));
DEVI(dip)->devi_pm_scan = NULL;
PM_UNLOCK_DIP(dip);
}
/*
* Given a pointer to a component struct, return the current power level
* (struct contains index unless it is a continuous level).
* Located here in hopes of getting both this and dev_is_needed into the
* cache together
*/
static int
cur_power(pm_component_t *cp)
{
if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN)
return (cp->pmc_cur_pwr);
return (cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]);
}
static char *
pm_decode_direction(int direction)
{
switch (direction) {
case PM_LEVEL_UPONLY:
return ("up");
case PM_LEVEL_EXACT:
return ("exact");
case PM_LEVEL_DOWNONLY:
return ("down");
default:
return ("INVALID DIRECTION");
}
}
char *
pm_decode_op(pm_bus_power_op_t op)
{
switch (op) {
case BUS_POWER_CHILD_PWRCHG:
return ("CHILD_PWRCHG");
case BUS_POWER_NEXUS_PWRUP:
return ("NEXUS_PWRUP");
case BUS_POWER_PRE_NOTIFICATION:
return ("PRE_NOTIFICATION");
case BUS_POWER_POST_NOTIFICATION:
return ("POST_NOTIFICATION");
case BUS_POWER_HAS_CHANGED:
return ("HAS_CHANGED");
case BUS_POWER_NOINVOL:
return ("NOINVOL");
default:
return ("UNKNOWN OP");
}
}
/*
* Returns true if level is a possible (valid) power level for component
*/
int
e_pm_valid_power(dev_info_t *dip, int cmpt, int level)
{
PMD_FUNC(pmf, "e_pm_valid_power")
pm_component_t *cp = PM_CP(dip, cmpt);
int i;
int *ip = cp->pmc_comp.pmc_lvals;
int limit = cp->pmc_comp.pmc_numlevels;
if (level < 0)
return (0);
for (i = 0; i < limit; i++) {
if (level == *ip++)
return (1);
}
#ifdef DEBUG
if (pm_debug & PMD_FAIL) {
ip = cp->pmc_comp.pmc_lvals;
for (i = 0; i < limit; i++)
PMD(PMD_FAIL, ("%s: index=%d, level=%d\n",
pmf, i, *ip++))
}
#endif
return (0);
}
static int pm_start(dev_info_t *dip);
/*
* Returns true if device is pm'd (after calling pm_start if need be)
*/
int
e_pm_valid_info(dev_info_t *dip, pm_info_t **infop)
{
pm_info_t *info;
/*
* Check if the device is power managed if not.
* To make the common case (device is power managed already)
* fast, we check without the lock. If device is not already
* power managed, then we take the lock and the long route through
* go get it managed. Devices never go unmanaged until they
* detach.
*/
info = PM_GET_PM_INFO(dip);
if (!info) {
if (!DEVI_IS_ATTACHING(dip)) {
return (0);
}
if (pm_start(dip) != DDI_SUCCESS) {
return (0);
}
info = PM_GET_PM_INFO(dip);
}
ASSERT(info);
if (infop != NULL)
*infop = info;
return (1);
}
int
e_pm_valid_comp(dev_info_t *dip, int cmpt, pm_component_t **cpp)
{
if (cmpt >= 0 && cmpt < PM_NUMCMPTS(dip)) {
if (cpp != NULL)
*cpp = PM_CP(dip, cmpt);
return (1);
} else {
return (0);
}
}
/*
* Internal guts of ddi_dev_is_needed and pm_raise/lower_power
*/
static int
dev_is_needed(dev_info_t *dip, int cmpt, int level, int direction)
{
PMD_FUNC(pmf, "din")
pm_component_t *cp;
char *pathbuf;
int result;
ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY);
if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp) ||
!e_pm_valid_power(dip, cmpt, level))
return (DDI_FAILURE);
PMD(PMD_DIN, ("%s: %s@%s(%s#%d) cmpt=%d, dir=%s, new=%d, cur=%d\n",
pmf, PM_DEVICE(dip), cmpt, pm_decode_direction(direction),
level, cur_power(cp)))
if (pm_set_power(dip, cmpt, level, direction,
PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) {
if (direction == PM_LEVEL_UPONLY) {
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
cmn_err(CE_WARN, "Device %s failed to power up.",
pathbuf);
kmem_free(pathbuf, MAXPATHLEN);
}
PMD(PMD_DIN | PMD_FAIL, ("%s: %s@%s(%s#%d) [%d] %s->%d failed, "
"errno %d\n", pmf, PM_DEVICE(dip), cmpt,
pm_decode_direction(direction), level, result))
return (DDI_FAILURE);
}
PMD(PMD_RESCAN | PMD_DIN, ("%s: pm_rescan %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
pm_rescan(dip);
return (DDI_SUCCESS);
}
/*
* We can get multiple pm_rescan() threads, if one of them discovers
* that no scan is running at the moment, it kicks it into action.
* Otherwise, it tells the current scanning thread to scan again when
* it is done by asserting the PM_SCAN_AGAIN flag. The PM_SCANNING and
* PM_SCAN_AGAIN flags are used to regulate scan, to make sure only one
* thread at a time runs the pm_scan_dev() code.
*/
void
pm_rescan(void *arg)
{
PMD_FUNC(pmf, "rescan")
dev_info_t *dip = (dev_info_t *)arg;
pm_info_t *info;
pm_scan_t *scanp;
timeout_id_t scanid;
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
PM_LOCK_DIP(dip);
info = PM_GET_PM_INFO(dip);
scanp = PM_GET_PM_SCAN(dip);
if (pm_scans_disabled || !PM_SCANABLE(dip) || !info || !scanp ||
(scanp->ps_scan_flags & PM_SCAN_STOP)) {
PM_UNLOCK_DIP(dip);
return;
}
if (scanp->ps_scan_flags & PM_SCANNING) {
scanp->ps_scan_flags |= PM_SCAN_AGAIN;
PM_UNLOCK_DIP(dip);
return;
} else if (scanp->ps_scan_id) {
scanid = scanp->ps_scan_id;
scanp->ps_scan_id = 0;
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): cancel timeout scanid %lx\n",
pmf, PM_DEVICE(dip), (ulong_t)scanid))
PM_UNLOCK_DIP(dip);
(void) untimeout(scanid);
PM_LOCK_DIP(dip);
}
/*
* Dispatching pm_scan during attach time is risky due to the fact that
* attach might soon fail and dip dissolved, and panic may happen while
* attempting to stop scan. So schedule a pm_rescan instead.
* (Note that if either of the first two terms are true, taskq_dispatch
* will not be invoked).
*
* Multiple pm_scan dispatching is unecessary and costly to keep track
* of. The PM_SCAN_DISPATCHED flag is used between pm_rescan and pm_scan
* to regulate the dispatching.
*
* Scan is stopped before the device is detached (in pm_detaching())
* but it may get re-started during the post_detach processing if the
* driver fails to detach.
*/
if (DEVI_IS_ATTACHING(dip) ||
(scanp->ps_scan_flags & PM_SCAN_DISPATCHED) ||
!taskq_dispatch(system_taskq, pm_scan, (void *)dip, TQ_NOSLEEP)) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): attaching, pm_scan already "
"dispatched or dispatching failed\n", pmf, PM_DEVICE(dip)))
if (scanp->ps_scan_id) {
scanid = scanp->ps_scan_id;
scanp->ps_scan_id = 0;
PM_UNLOCK_DIP(dip);
(void) untimeout(scanid);
PM_LOCK_DIP(dip);
if (scanp->ps_scan_id) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): a competing "
"thread scheduled pm_rescan, scanid %lx\n",
pmf, PM_DEVICE(dip),
(ulong_t)scanp->ps_scan_id))
PM_UNLOCK_DIP(dip);
return;
}
}
scanp->ps_scan_id = timeout(pm_rescan, (void *)dip,
(scanp->ps_idle_down ? pm_id_ticks :
(PM_MIN_SCAN(dip) * hz)));
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): scheduled next pm_rescan, "
"scanid %lx\n", pmf, PM_DEVICE(dip),
(ulong_t)scanp->ps_scan_id))
} else {
PMD(PMD_SCAN, ("%s: dispatched pm_scan for %s@%s(%s#%d)\n",
pmf, PM_DEVICE(dip)))
scanp->ps_scan_flags |= PM_SCAN_DISPATCHED;
}
PM_UNLOCK_DIP(dip);
}
void
pm_scan(void *arg)
{
PMD_FUNC(pmf, "scan")
dev_info_t *dip = (dev_info_t *)arg;
pm_scan_t *scanp;
time_t nextscan;
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
PM_LOCK_DIP(dip);
scanp = PM_GET_PM_SCAN(dip);
ASSERT(scanp && PM_GET_PM_INFO(dip));
if (pm_scans_disabled || !PM_SCANABLE(dip) ||
(scanp->ps_scan_flags & PM_SCAN_STOP)) {
scanp->ps_scan_flags &= ~(PM_SCAN_AGAIN | PM_SCAN_DISPATCHED);
PM_UNLOCK_DIP(dip);
return;
}
if (scanp->ps_idle_down) {
/*
* make sure we remember idledown was in affect until
* we've completed the scan
*/
PMID_SET_SCANS(scanp->ps_idle_down)
PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown starts "
"(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down))
}
/* possible having two threads running pm_scan() */
if (scanp->ps_scan_flags & PM_SCANNING) {
scanp->ps_scan_flags |= PM_SCAN_AGAIN;
PMD(PMD_SCAN, ("%s: scanning, will scan %s@%s(%s#%d) again\n",
pmf, PM_DEVICE(dip)))
scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED;
PM_UNLOCK_DIP(dip);
return;
}
scanp->ps_scan_flags |= PM_SCANNING;
scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED;
do {
scanp->ps_scan_flags &= ~PM_SCAN_AGAIN;
PM_UNLOCK_DIP(dip);
nextscan = pm_scan_dev(dip);
PM_LOCK_DIP(dip);
} while (scanp->ps_scan_flags & PM_SCAN_AGAIN);
ASSERT(scanp->ps_scan_flags & PM_SCANNING);
scanp->ps_scan_flags &= ~PM_SCANNING;
if (scanp->ps_idle_down) {
scanp->ps_idle_down &= ~PMID_SCANS;
PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown ends "
"(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down))
}
/* schedule for next idle check */
if (nextscan != LONG_MAX) {
if (nextscan > (LONG_MAX / hz))
nextscan = (LONG_MAX - 1) / hz;
if (scanp->ps_scan_id) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): while scanning "
"another rescan scheduled scanid(%lx)\n", pmf,
PM_DEVICE(dip), (ulong_t)scanp->ps_scan_id))
PM_UNLOCK_DIP(dip);
return;
} else if (!(scanp->ps_scan_flags & PM_SCAN_STOP)) {
scanp->ps_scan_id = timeout(pm_rescan, (void *)dip,
(clock_t)(nextscan * hz));
PMD(PMD_SCAN, ("%s: nextscan for %s@%s(%s#%d) in "
"%lx sec, scanid(%lx) \n", pmf, PM_DEVICE(dip),
(ulong_t)nextscan, (ulong_t)scanp->ps_scan_id))
}
}
PM_UNLOCK_DIP(dip);
}
void
pm_get_timestamps(dev_info_t *dip, time_t *valuep)
{
int components = PM_NUMCMPTS(dip);
int i;
ASSERT(components > 0);
PM_LOCK_BUSY(dip); /* so we get a consistent view */
for (i = 0; i < components; i++) {
valuep[i] = PM_CP(dip, i)->pmc_timestamp;
}
PM_UNLOCK_BUSY(dip);
}
/*
* Returns true if device needs to be kept up because it exported the
* "no-involuntary-power-cycles" property or we're pretending it did (console
* fb case) or it is an ancestor of such a device and has used up the "one
* free cycle" allowed when all such leaf nodes have voluntarily powered down
* upon detach
*/
int
pm_noinvol(dev_info_t *dip)
{
PMD_FUNC(pmf, "noinvol")
/*
* This doesn't change over the life of a driver, so no locking needed
*/
if (PM_IS_CFB(dip)) {
PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB %s@%s(%s#%d)\n",
pmf, PM_DEVICE(dip)))
return (1);
}
/*
* Not an issue if no such kids
*/
if (DEVI(dip)->devi_pm_noinvolpm == 0) {
#ifdef DEBUG
if (DEVI(dip)->devi_pm_volpmd != 0) {
dev_info_t *pdip = dip;
do {
PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d) noinvol %d "
"volpmd %d\n", pmf, PM_DEVICE(pdip),
DEVI(pdip)->devi_pm_noinvolpm,
DEVI(pdip)->devi_pm_volpmd))
pdip = ddi_get_parent(pdip);
} while (pdip);
}
#endif
ASSERT(DEVI(dip)->devi_pm_volpmd == 0);
return (0);
}
/*
* Since we now maintain the counts correct at every node, we no longer
* need to look up the tree. An ancestor cannot use up the free cycle
* without the children getting their counts adjusted.
*/
#ifdef DEBUG
if (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd)
PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s@%s(%s#%d)\n", pmf,
DEVI(dip)->devi_pm_noinvolpm, DEVI(dip)->devi_pm_volpmd,
PM_DEVICE(dip)))
#endif
return (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd);
}
static int cur_threshold(dev_info_t *, int);
static int pm_next_lower_power(pm_component_t *, int);
/*
* This function performs the actual scanning of the device.
* It attempts to power off the indicated device's components if they have
* been idle and other restrictions are met.
* pm_scan_dev calculates and returns when the next scan should happen for
* this device.
*/
time_t
pm_scan_dev(dev_info_t *dip)
{
PMD_FUNC(pmf, "scan_dev")
pm_scan_t *scanp;
time_t *timestamp, idletime, now, thresh;
time_t timeleft = 0;
#ifdef PMDDEBUG
int curpwr;
#endif
int i, nxtpwr, pwrndx, unused;
size_t size;
pm_component_t *cp;
dev_info_t *pdip = ddi_get_parent(dip);
int circ;
clock_t min_scan = pm_default_min_scan;
/*
* skip attaching device
*/
if (DEVI_IS_ATTACHING(dip)) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) is attaching, timeleft(%lx)\n",
pmf, PM_DEVICE(dip), min_scan))
return (min_scan);
}
PM_LOCK_DIP(dip);
scanp = PM_GET_PM_SCAN(dip);
min_scan = PM_MIN_SCAN(dip);
ASSERT(scanp && PM_GET_PM_INFO(dip));
PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip)))
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): kuc is %d\n", pmf, PM_DEVICE(dip),
PM_KUC(dip)))
/* no scan under the following conditions */
if (pm_scans_disabled || !PM_SCANABLE(dip) ||
(scanp->ps_scan_flags & PM_SCAN_STOP) ||
(PM_KUC(dip) != 0) ||
PM_ISDIRECT(dip) || pm_noinvol(dip)) {
PM_UNLOCK_DIP(dip);
PMD(PMD_SCAN, ("%s: [END, %s@%s(%s#%d)] no scan, "
"scan_disabled(%d), apm_enabled(%d), cpupm(%d), "
"kuc(%d), %s directpm, %s pm_noinvol\n",
pmf, PM_DEVICE(dip), pm_scans_disabled, autopm_enabled,
cpupm, PM_KUC(dip),
PM_ISDIRECT(dip) ? "is" : "is not",
pm_noinvol(dip) ? "is" : "is not"))
return (LONG_MAX);
}
PM_UNLOCK_DIP(dip);
if (!ndi_devi_tryenter(pdip, &circ)) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) can't hold pdip",
pmf, PM_DEVICE(pdip)))
return ((time_t)1);
}
now = gethrestime_sec();
size = PM_NUMCMPTS(dip) * sizeof (time_t);
timestamp = kmem_alloc(size, KM_SLEEP);
pm_get_timestamps(dip, timestamp);
/*
* Since we removed support for backwards compatible devices,
* (see big comment at top of file)
* it is no longer required to deal with component 0 last.
*/
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
/*
* If already off (an optimization, perhaps)
*/
cp = PM_CP(dip, i);
pwrndx = cp->pmc_cur_pwr;
#ifdef PMDDEBUG
curpwr = (pwrndx == PM_LEVEL_UNKNOWN) ?
PM_LEVEL_UNKNOWN :
cp->pmc_comp.pmc_lvals[pwrndx];
#endif
if (pwrndx == 0) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d off or "
"lowest\n", pmf, PM_DEVICE(dip), i))
/* skip device if off or at its lowest */
continue;
}
thresh = cur_threshold(dip, i); /* comp i threshold */
if ((timestamp[i] == 0) || (cp->pmc_busycount > 0)) {
/* were busy or newly became busy by another thread */
if (timeleft == 0)
timeleft = max(thresh, min_scan);
else
timeleft = min(
timeleft, max(thresh, min_scan));
continue;
}
idletime = now - timestamp[i]; /* idle time */
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d idle time %lx\n",
pmf, PM_DEVICE(dip), i, idletime))
if (idletime >= thresh || PM_IS_PID(dip)) {
nxtpwr = pm_next_lower_power(cp, pwrndx);
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, %d->%d\n",
pmf, PM_DEVICE(dip), i, curpwr, nxtpwr))
if (pm_set_power(dip, i, nxtpwr, PM_LEVEL_DOWNONLY,
PM_CANBLOCK_FAIL, 1, &unused) != DDI_SUCCESS &&
PM_CURPOWER(dip, i) != nxtpwr) {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, "
"%d->%d Failed\n", pmf, PM_DEVICE(dip),
i, curpwr, nxtpwr))
timeleft = min_scan;
continue;
} else {
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, "
"%d->%d, GOOD curpwr %d\n", pmf,
PM_DEVICE(dip), i, curpwr, nxtpwr,
cur_power(cp)))
if (nxtpwr == 0) /* component went off */
continue;
/*
* scan to next lower level
*/
if (timeleft == 0)
timeleft = max(
1, cur_threshold(dip, i));
else
timeleft = min(timeleft,
max(1, cur_threshold(dip, i)));
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, "
"timeleft(%lx)\n", pmf, PM_DEVICE(dip),
i, timeleft))
}
} else { /* comp not idle long enough */
if (timeleft == 0)
timeleft = thresh - idletime;
else
timeleft = min(timeleft, (thresh - idletime));
PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, timeleft="
"%lx\n", pmf, PM_DEVICE(dip), i, timeleft))
}
}
ndi_devi_exit(pdip, circ);
kmem_free(timestamp, size);
PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] timeleft(%lx)\n", pmf,
PM_DEVICE(dip), timeleft))
/*
* if components are already at lowest level, timeleft is left 0
*/
return ((timeleft == 0) ? LONG_MAX : timeleft);
}
/*
* pm_scan_stop - cancel scheduled pm_rescan,
* wait for termination of dispatched pm_scan thread
* and active pm_scan_dev thread.
*/
void
pm_scan_stop(dev_info_t *dip)
{
PMD_FUNC(pmf, "scan_stop")
pm_scan_t *scanp;
timeout_id_t scanid;
PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip)))
PM_LOCK_DIP(dip);
scanp = PM_GET_PM_SCAN(dip);
if (!scanp) {
PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] scan not initialized\n",
pmf, PM_DEVICE(dip)))
PM_UNLOCK_DIP(dip);
return;
}
scanp->ps_scan_flags |= PM_SCAN_STOP;
/* cancel scheduled scan taskq */
while (scanp->ps_scan_id) {
scanid = scanp->ps_scan_id;
scanp->ps_scan_id = 0;
PM_UNLOCK_DIP(dip);
(void) untimeout(scanid);
PM_LOCK_DIP(dip);
}
while (scanp->ps_scan_flags & (PM_SCANNING | PM_SCAN_DISPATCHED)) {
PM_UNLOCK_DIP(dip);
delay(1);
PM_LOCK_DIP(dip);
}
PM_UNLOCK_DIP(dip);
PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip)))
}
int
pm_scan_stop_walk(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
if (!PM_GET_PM_SCAN(dip))
return (DDI_WALK_CONTINUE);
ASSERT(!PM_ISBC(dip));
pm_scan_stop(dip);
return (DDI_WALK_CONTINUE);
}
/*
* Converts a power level value to its index
*/
static int
power_val_to_index(pm_component_t *cp, int val)
{
int limit, i, *ip;
ASSERT(val != PM_LEVEL_UPONLY && val != PM_LEVEL_DOWNONLY &&
val != PM_LEVEL_EXACT);
/* convert power value into index (i) */
limit = cp->pmc_comp.pmc_numlevels;
ip = cp->pmc_comp.pmc_lvals;
for (i = 0; i < limit; i++)
if (val == *ip++)
return (i);
return (-1);
}
/*
* Converts a numeric power level to a printable string
*/
static char *
power_val_to_string(pm_component_t *cp, int val)
{
int index;
if (val == PM_LEVEL_UPONLY)
return ("<UPONLY>");
if (val == PM_LEVEL_UNKNOWN ||
(index = power_val_to_index(cp, val)) == -1)
return ("<LEVEL_UNKNOWN>");
return (cp->pmc_comp.pmc_lnames[index]);
}
/*
* Return true if this node has been claimed by a ppm.
*/
static int
pm_ppm_claimed(dev_info_t *dip)
{
return (PPM(dip) != NULL);
}
/*
* A node which was voluntarily power managed has just used up its "free cycle"
* and need is volpmd field cleared, and the same done to all its descendents
*/
static void
pm_clear_volpm_dip(dev_info_t *dip)
{
PMD_FUNC(pmf, "clear_volpm_dip")
if (dip == NULL)
return;
PMD(PMD_NOINVOL, ("%s: clear volpm from %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
DEVI(dip)->devi_pm_volpmd = 0;
for (dip = ddi_get_child(dip); dip; dip = ddi_get_next_sibling(dip)) {
pm_clear_volpm_dip(dip);
}
}
/*
* A node which was voluntarily power managed has used up the "free cycles"
* for the subtree that it is the root of. Scan through the list of detached
* nodes and adjust the counts of any that are descendents of the node.
*/
static void
pm_clear_volpm_list(dev_info_t *dip)
{
PMD_FUNC(pmf, "clear_volpm_list")
char *pathbuf;
size_t len;
pm_noinvol_t *ip;
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
len = strlen(pathbuf);
PMD(PMD_NOINVOL, ("%s: clear volpm list %s\n", pmf, pathbuf))
rw_enter(&pm_noinvol_rwlock, RW_WRITER);
for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
PMD(PMD_NOINVOL, ("%s: clear volpm: ni_path %s\n", pmf,
ip->ni_path))
if (strncmp(pathbuf, ip->ni_path, len) == 0 &&
ip->ni_path[len] == '/') {
PMD(PMD_NOINVOL, ("%s: clear volpm: %s\n", pmf,
ip->ni_path))
ip->ni_volpmd = 0;
ip->ni_wasvolpmd = 0;
}
}
kmem_free(pathbuf, MAXPATHLEN);
rw_exit(&pm_noinvol_rwlock);
}
/*
* Powers a device, suspending or resuming the driver if it is a backward
* compatible device, calling into ppm to change power level.
* Called with the component's power lock held.
*/
static int
power_dev(dev_info_t *dip, int comp, int level, int old_level,
pm_canblock_t canblock, pm_ppm_devlist_t **devlist)
{
PMD_FUNC(pmf, "power_dev")
power_req_t power_req;
int power_op_ret; /* DDI_SUCCESS or DDI_FAILURE */
int resume_needed = 0;
int suspended = 0;
int result;
#ifdef PMDDEBUG
struct pm_component *cp = PM_CP(dip, comp);
#endif
int bc = PM_ISBC(dip);
int pm_all_components_off(dev_info_t *);
int clearvolpmd = 0;
char pathbuf[MAXNAMELEN];
#ifdef PMDDEBUG
char *ppmname, *ppmaddr;
#endif
/*
* If this is comp 0 of a backwards compat device and we are
* going to take the power away, we need to detach it with
* DDI_PM_SUSPEND command.
*/
if (bc && comp == 0 && POWERING_OFF(old_level, level)) {
if (devi_detach(dip, DDI_PM_SUSPEND) != DDI_SUCCESS) {
/* We could not suspend before turning cmpt zero off */
PMD(PMD_ERROR, ("%s: could not suspend %s@%s(%s#%d)\n",
pmf, PM_DEVICE(dip)))
return (DDI_FAILURE);
} else {
DEVI(dip)->devi_pm_flags |= PMC_SUSPENDED;
suspended++;
}
}
power_req.request_type = PMR_PPM_SET_POWER;
power_req.req.ppm_set_power_req.who = dip;
power_req.req.ppm_set_power_req.cmpt = comp;
power_req.req.ppm_set_power_req.old_level = old_level;
power_req.req.ppm_set_power_req.new_level = level;
power_req.req.ppm_set_power_req.canblock = canblock;
power_req.req.ppm_set_power_req.cookie = NULL;
#ifdef PMDDEBUG
if (pm_ppm_claimed(dip)) {
ppmname = PM_NAME(PPM(dip));
ppmaddr = PM_ADDR(PPM(dip));
} else {
ppmname = "noppm";
ppmaddr = "0";
}
PMD(PMD_PPM, ("%s: %s@%s(%s#%d):%s[%d] %s (%d) -> %s (%d) via %s@%s\n",
pmf, PM_DEVICE(dip), cp->pmc_comp.pmc_name, comp,
power_val_to_string(cp, old_level), old_level,
power_val_to_string(cp, level), level, ppmname, ppmaddr))
#endif
/*
* If non-bc noinvolpm device is turning first comp on, or noinvolpm
* bc device comp 0 is powering on, then we count it as a power cycle
* against its voluntary count.
*/
if (DEVI(dip)->devi_pm_volpmd &&
(!bc && pm_all_components_off(dip) && level != 0) ||
(bc && comp == 0 && POWERING_ON(old_level, level)))
clearvolpmd = 1;
if ((power_op_ret = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
&power_req, &result)) == DDI_SUCCESS) {
/*
* Now do involuntary pm accounting; If we've just cycled power
* on a voluntarily pm'd node, and by inference on its entire
* subtree, we need to set the subtree (including those nodes
* already detached) volpmd counts to 0, and subtract out the
* value of the current node's volpmd count from the ancestors
*/
if (clearvolpmd) {
int volpmd = DEVI(dip)->devi_pm_volpmd;
pm_clear_volpm_dip(dip);
pm_clear_volpm_list(dip);
if (volpmd) {
(void) ddi_pathname(dip, pathbuf);
(void) pm_noinvol_update(PM_BP_NOINVOL_POWER,
volpmd, 0, pathbuf, dip);
}
}
} else {
PMD(PMD_FAIL, ("%s: can't set comp %d (%s) of %s@%s(%s#%d) "
"to level %d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name,
PM_DEVICE(dip), level, power_val_to_string(cp, level)))
}
/*
* If some other devices were also powered up (e.g. other cpus in
* the same domain) return a pointer to that list
*/
if (devlist) {
*devlist = (pm_ppm_devlist_t *)
power_req.req.ppm_set_power_req.cookie;
}
/*
* We will have to resume the device if the device is backwards compat
* device and either of the following is true:
* -This is comp 0 and we have successfully powered it up
* -This is comp 0 and we have failed to power it down. Resume is
* needed because we have suspended it above
*/
if (bc && comp == 0) {
ASSERT(PM_ISDIRECT(dip) || DEVI_IS_DETACHING(dip));
if (power_op_ret == DDI_SUCCESS) {
if (POWERING_ON(old_level, level)) {
/*
* It must be either suspended or resumed
* via pm_power_has_changed path
*/
ASSERT((DEVI(dip)->devi_pm_flags &
PMC_SUSPENDED) ||
(PM_CP(dip, comp)->pmc_flags &
PM_PHC_WHILE_SET_POWER));
resume_needed = suspended;
}
} else {
if (POWERING_OFF(old_level, level)) {
/*
* It must be either suspended or resumed
* via pm_power_has_changed path
*/
ASSERT((DEVI(dip)->devi_pm_flags &
PMC_SUSPENDED) ||
(PM_CP(dip, comp)->pmc_flags &
PM_PHC_WHILE_SET_POWER));
resume_needed = suspended;
}
}
}
if (resume_needed) {
ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED);
/* ppm is not interested in DDI_PM_RESUME */
if ((power_op_ret = devi_attach(dip, DDI_PM_RESUME)) ==
DDI_SUCCESS) {
DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED;
} else
cmn_err(CE_WARN, "!pm: Can't resume %s@%s(%s#%d)",
PM_DEVICE(dip));
}
return (power_op_ret);
}
/*
* Return true if we are the owner or a borrower of the devi lock. See
* pm_lock_power_single() about borrowing the lock.
*/
static int
pm_devi_lock_held(dev_info_t *dip)
{
lock_loan_t *cur;
if (DEVI_BUSY_OWNED(dip))
return (1);
/* return false if no locks borrowed */
if (lock_loan_head.pmlk_next == NULL)
return (0);
mutex_enter(&pm_loan_lock);
/* see if our thread is registered as a lock borrower. */
for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next)
if (cur->pmlk_borrower == curthread)
break;
mutex_exit(&pm_loan_lock);
return (cur != NULL && cur->pmlk_lender == DEVI(dip)->devi_busy_thread);
}
/*
* pm_set_power: adjusts power level of device. Assumes device is power
* manageable & component exists.
*
* Cases which require us to bring up devices we keep up ("wekeepups") for
* backwards compatible devices:
* component 0 is off and we're bringing it up from 0
* bring up wekeepup first
* and recursively when component 0 is off and we bring some other
* component up from 0
* For devices which are not backward compatible, our dependency notion is much
* simpler. Unless all components are off, then wekeeps must be on.
* We don't treat component 0 differently.
* Canblock tells how to deal with a direct pm'd device.
* Scan arg tells us if we were called from scan, in which case we don't need
* to go back to the root node and walk down to change power.
*/
int
pm_set_power(dev_info_t *dip, int comp, int level, int direction,
pm_canblock_t canblock, int scan, int *retp)
{
PMD_FUNC(pmf, "set_power")
char *pathbuf;
pm_bp_child_pwrchg_t bpc;
pm_sp_misc_t pspm;
int ret = DDI_SUCCESS;
int unused = DDI_SUCCESS;
dev_info_t *pdip = ddi_get_parent(dip);
#ifdef DEBUG
int diverted = 0;
/*
* This prevents operations on the console from calling prom_printf and
* either deadlocking or bringing up the console because of debug
* output
*/
if (dip == cfb_dip) {
diverted++;
mutex_enter(&pm_debug_lock);
pm_divertdebug++;
mutex_exit(&pm_debug_lock);
}
#endif
ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY ||
direction == PM_LEVEL_EXACT);
PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d, dir=%s, new=%d\n",
pmf, PM_DEVICE(dip), comp, pm_decode_direction(direction), level))
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
bpc.bpc_dip = dip;
bpc.bpc_path = pathbuf;
bpc.bpc_comp = comp;
bpc.bpc_olevel = PM_CURPOWER(dip, comp);
bpc.bpc_nlevel = level;
pspm.pspm_direction = direction;
pspm.pspm_errnop = retp;
pspm.pspm_canblock = canblock;
pspm.pspm_scan = scan;
bpc.bpc_private = &pspm;
/*
* If a config operation is being done (we've locked the parent) or
* we already hold the power lock (we've locked the node)
* then we can operate directly on the node because we have already
* brought up all the ancestors, otherwise, we have to go back to the
* top of the tree.
*/
if (pm_devi_lock_held(pdip) || pm_devi_lock_held(dip))
ret = pm_busop_set_power(dip, NULL, BUS_POWER_CHILD_PWRCHG,
(void *)&bpc, (void *)&unused);
else
ret = pm_busop_bus_power(ddi_root_node(), NULL,
BUS_POWER_CHILD_PWRCHG, (void *)&bpc, (void *)&unused);
#ifdef DEBUG
if (ret != DDI_SUCCESS || *retp != DDI_SUCCESS) {
PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) can't change power, ret=%d, "
"errno=%d\n", pmf, PM_DEVICE(dip), ret, *retp))
}
if (diverted) {
mutex_enter(&pm_debug_lock);
pm_divertdebug--;
mutex_exit(&pm_debug_lock);
}
#endif
kmem_free(pathbuf, MAXPATHLEN);
return (ret);
}
/*
* If holddip is set, then if a dip is found we return with the node held.
*
* This code uses the same locking scheme as e_ddi_hold_devi_by_path
* (resolve_pathname), but it does not drive attach.
*/
dev_info_t *
pm_name_to_dip(char *pathname, int holddip)
{
struct pathname pn;
char *component;
dev_info_t *parent, *child;
int circ;
if ((pathname == NULL) || (*pathname != '/'))
return (NULL);
/* setup pathname and allocate component */
if (pn_get(pathname, UIO_SYSSPACE, &pn))
return (NULL);
component = kmem_alloc(MAXNAMELEN, KM_SLEEP);
/* start at top, process '/' component */
parent = child = ddi_root_node();
ndi_hold_devi(parent);
pn_skipslash(&pn);
ASSERT(i_ddi_devi_attached(parent));
/* process components of pathname */
while (pn_pathleft(&pn)) {
(void) pn_getcomponent(&pn, component);
/* enter parent and search for component child */
ndi_devi_enter(parent, &circ);
child = ndi_devi_findchild(parent, component);
if ((child == NULL) || !i_ddi_devi_attached(child)) {
child = NULL;
ndi_devi_exit(parent, circ);
ndi_rele_devi(parent);
goto out;
}
/* attached child found, hold child and release parent */
ndi_hold_devi(child);
ndi_devi_exit(parent, circ);
ndi_rele_devi(parent);
/* child becomes parent, and process next component */
parent = child;
pn_skipslash(&pn);
/* loop with active ndi_devi_hold of child->parent */
}
out:
pn_free(&pn);
kmem_free(component, MAXNAMELEN);
/* if we are not asked to return with hold, drop current hold */
if (child && !holddip)
ndi_rele_devi(child);
return (child);
}
/*
* Search for a dependency and mark it unsatisfied
*/
static void
pm_unsatisfy(char *keeper, char *kept)
{
PMD_FUNC(pmf, "unsatisfy")
pm_pdr_t *dp;
PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, keeper, kept))
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (!dp->pdr_isprop) {
if (strcmp(dp->pdr_keeper, keeper) == 0 &&
(dp->pdr_kept_count > 0) &&
strcmp(dp->pdr_kept_paths[0], kept) == 0) {
if (dp->pdr_satisfied) {
dp->pdr_satisfied = 0;
pm_unresolved_deps++;
PMD(PMD_KEEPS, ("%s: clear satisfied, "
"pm_unresolved_deps now %d\n", pmf,
pm_unresolved_deps))
}
}
}
}
}
/*
* Device dip is being un power managed, it keeps up count other devices.
* We need to release any hold we have on the kept devices, and also
* mark the dependency no longer satisfied.
*/
static void
pm_unkeeps(int count, char *keeper, char **keptpaths, int pwr)
{
PMD_FUNC(pmf, "unkeeps")
int i, j;
dev_info_t *kept;
dev_info_t *dip;
struct pm_component *cp;
int keeper_on = 0, circ;
PMD(PMD_KEEPS, ("%s: count=%d, keeper=%s, keptpaths=%p\n", pmf, count,
keeper, (void *)keptpaths))
/*
* Try to grab keeper. Keeper may have gone away by now,
* in this case, used the passed in value pwr
*/
dip = pm_name_to_dip(keeper, 1);
for (i = 0; i < count; i++) {
/* Release power hold */
kept = pm_name_to_dip(keptpaths[i], 1);
if (kept) {
PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)[%d]\n", pmf,
PM_DEVICE(kept), i))
/*
* We need to check if we skipped a bringup here
* because we could have failed the bringup
* (ie DIRECT PM device) and have
* not increment the count.
*/
if ((dip != NULL) && (PM_GET_PM_INFO(dip) != NULL)) {
keeper_on = 0;
PM_LOCK_POWER(dip, &circ);
for (j = 0; j < PM_NUMCMPTS(dip); j++) {
cp = &DEVI(dip)->devi_pm_components[j];
if (cur_power(cp)) {
keeper_on++;
break;
}
}
if (keeper_on && (PM_SKBU(kept) == 0)) {
pm_rele_power(kept);
DEVI(kept)->devi_pm_flags
&= ~PMC_SKIP_BRINGUP;
}
PM_UNLOCK_POWER(dip, circ);
} else if (pwr) {
if (PM_SKBU(kept) == 0) {
pm_rele_power(kept);
DEVI(kept)->devi_pm_flags
&= ~PMC_SKIP_BRINGUP;
}
}
ddi_release_devi(kept);
}
/*
* mark this dependency not satisfied
*/
pm_unsatisfy(keeper, keptpaths[i]);
}
if (dip)
ddi_release_devi(dip);
}
/*
* Device kept is being un power managed, it is kept up by keeper.
* We need to mark the dependency no longer satisfied.
*/
static void
pm_unkepts(char *kept, char *keeper)
{
PMD_FUNC(pmf, "unkepts")
PMD(PMD_KEEPS, ("%s: kept=%s, keeper=%s\n", pmf, kept, keeper))
ASSERT(keeper != NULL);
/*
* mark this dependency not satisfied
*/
pm_unsatisfy(keeper, kept);
}
/*
* Removes dependency information and hold on the kepts, if the path is a
* path of a keeper.
*/
static void
pm_free_keeper(char *path, int pwr)
{
pm_pdr_t *dp;
int i;
size_t length;
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (strcmp(dp->pdr_keeper, path) != 0)
continue;
/*
* Remove all our kept holds and the dependency records,
* then free up the kept lists.
*/
pm_unkeeps(dp->pdr_kept_count, path, dp->pdr_kept_paths, pwr);
if (dp->pdr_kept_count) {
for (i = 0; i < dp->pdr_kept_count; i++) {
length = strlen(dp->pdr_kept_paths[i]);
kmem_free(dp->pdr_kept_paths[i], length + 1);
}
kmem_free(dp->pdr_kept_paths,
dp->pdr_kept_count * sizeof (char **));
dp->pdr_kept_paths = NULL;
dp->pdr_kept_count = 0;
}
}
}
/*
* Removes the device represented by path from the list of kepts, if the
* path is a path of a kept
*/
static void
pm_free_kept(char *path)
{
pm_pdr_t *dp;
int i;
int j, count;
size_t length;
char **paths;
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (dp->pdr_kept_count == 0)
continue;
count = dp->pdr_kept_count;
/* Remove this device from the kept path lists */
for (i = 0; i < count; i++) {
if (strcmp(dp->pdr_kept_paths[i], path) == 0) {
pm_unkepts(path, dp->pdr_keeper);
length = strlen(dp->pdr_kept_paths[i]) + 1;
kmem_free(dp->pdr_kept_paths[i], length);
dp->pdr_kept_paths[i] = NULL;
dp->pdr_kept_count--;
}
}
/* Compact the kept paths array */
if (dp->pdr_kept_count) {
length = dp->pdr_kept_count * sizeof (char **);
paths = kmem_zalloc(length, KM_SLEEP);
j = 0;
for (i = 0; i < count; i++) {
if (dp->pdr_kept_paths[i] != NULL) {
paths[j] = dp->pdr_kept_paths[i];
j++;
}
}
ASSERT(j == dp->pdr_kept_count);
}
/* Now free the old array and point to the new one */
kmem_free(dp->pdr_kept_paths, count * sizeof (char **));
if (dp->pdr_kept_count)
dp->pdr_kept_paths = paths;
else
dp->pdr_kept_paths = NULL;
}
}
/*
* Free the dependency information for a device.
*/
void
pm_free_keeps(char *path, int pwr)
{
PMD_FUNC(pmf, "free_keeps")
#ifdef DEBUG
int doprdeps = 0;
void prdeps(char *);
PMD(PMD_KEEPS, ("%s: %s\n", pmf, path))
if (pm_debug & PMD_KEEPS) {
doprdeps = 1;
prdeps("pm_free_keeps before");
}
#endif
/*
* First assume we are a keeper and remove all our kepts.
*/
pm_free_keeper(path, pwr);
/*
* Now assume we a kept device, and remove all our records.
*/
pm_free_kept(path);
#ifdef DEBUG
if (doprdeps) {
prdeps("pm_free_keeps after");
}
#endif
}
static int
pm_is_kept(char *path)
{
pm_pdr_t *dp;
int i;
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (dp->pdr_kept_count == 0)
continue;
for (i = 0; i < dp->pdr_kept_count; i++) {
if (strcmp(dp->pdr_kept_paths[i], path) == 0)
return (1);
}
}
return (0);
}
static void
e_pm_hold_rele_power(dev_info_t *dip, int cnt)
{
PMD_FUNC(pmf, "hold_rele_power")
int circ;
if ((dip == NULL) ||
(PM_GET_PM_INFO(dip) == NULL) || PM_ISBC(dip))
return;
PM_LOCK_POWER(dip, &circ);
ASSERT(cnt >= 0 && PM_KUC(dip) >= 0 || cnt < 0 && PM_KUC(dip) > 0);
PMD(PMD_KIDSUP, ("%s: kidsupcnt for %s@%s(%s#%d) %d->%d\n", pmf,
PM_DEVICE(dip), PM_KUC(dip), (PM_KUC(dip) + cnt)))
PM_KUC(dip) += cnt;
ASSERT(PM_KUC(dip) >= 0);
PM_UNLOCK_POWER(dip, circ);
if (cnt < 0 && PM_KUC(dip) == 0)
pm_rescan(dip);
}
#define MAX_PPM_HANDLERS 4
kmutex_t ppm_lock; /* in case we ever do multi-threaded startup */
struct ppm_callbacks {
int (*ppmc_func)(dev_info_t *);
dev_info_t *ppmc_dip;
} ppm_callbacks[MAX_PPM_HANDLERS + 1];
/*
* This routine calls into all the registered ppms to notify them
* that either all components of power-managed devices are at their
* lowest levels or no longer all are at their lowest levels.
*/
static void
pm_ppm_notify_all_lowest(dev_info_t *dip, int mode)
{
struct ppm_callbacks *ppmcp;
power_req_t power_req;
int result = 0;
power_req.request_type = PMR_PPM_ALL_LOWEST;
power_req.req.ppm_all_lowest_req.mode = mode;
mutex_enter(&ppm_lock);
for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++)
(void) pm_ctlops((dev_info_t *)ppmcp->ppmc_dip, dip,
DDI_CTLOPS_POWER, &power_req, &result);
mutex_exit(&ppm_lock);
if (mode == PM_ALL_LOWEST) {
if (autoS3_enabled) {
PMD(PMD_SX, ("pm_ppm_notify_all_lowest triggering "
"autos3\n"))
mutex_enter(&srn_clone_lock);
if (srn_signal) {
srn_inuse++;
PMD(PMD_SX, ("(*srn_signal)(AUTOSX, 3)\n"))
(*srn_signal)(SRN_TYPE_AUTOSX, 3);
srn_inuse--;
} else {
PMD(PMD_SX, ("srn_signal NULL\n"))
}
mutex_exit(&srn_clone_lock);
} else {
PMD(PMD_SX, ("pm_ppm_notify_all_lowest autos3 "
"disabled\n"));
}
}
}
static void
pm_set_pm_info(dev_info_t *dip, void *value)
{
DEVI(dip)->devi_pm_info = value;
}
pm_rsvp_t *pm_blocked_list;
/*
* Look up an entry in the blocked list by dip and component
*/
static pm_rsvp_t *
pm_rsvp_lookup(dev_info_t *dip, int comp)
{
pm_rsvp_t *p;
ASSERT(MUTEX_HELD(&pm_rsvp_lock));
for (p = pm_blocked_list; p; p = p->pr_next)
if (p->pr_dip == dip && p->pr_comp == comp) {
return (p);
}
return (NULL);
}
/*
* Called when a device which is direct power managed (or the parent or
* dependent of such a device) changes power, or when a pm clone is closed
* that was direct power managing a device. This call results in pm_blocked()
* (below) returning.
*/
void
pm_proceed(dev_info_t *dip, int cmd, int comp, int newlevel)
{
PMD_FUNC(pmf, "proceed")
pm_rsvp_t *found = NULL;
pm_rsvp_t *p;
mutex_enter(&pm_rsvp_lock);
switch (cmd) {
/*
* we're giving up control, let any pending op continue
*/
case PMP_RELEASE:
for (p = pm_blocked_list; p; p = p->pr_next) {
if (dip == p->pr_dip) {
p->pr_retval = PMP_RELEASE;
PMD(PMD_DPM, ("%s: RELEASE %s@%s(%s#%d)\n",
pmf, PM_DEVICE(dip)))
cv_signal(&p->pr_cv);
}
}
break;
/*
* process has done PM_SET_CURRENT_POWER; let a matching request
* succeed and a non-matching request for the same device fail
*/
case PMP_SETPOWER:
found = pm_rsvp_lookup(dip, comp);
if (!found) /* if driver not waiting */
break;
/*
* This cannot be pm_lower_power, since that can only happen
* during detach or probe
*/
if (found->pr_newlevel <= newlevel) {
found->pr_retval = PMP_SUCCEED;
PMD(PMD_DPM, ("%s: SUCCEED %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
} else {
found->pr_retval = PMP_FAIL;
PMD(PMD_DPM, ("%s: FAIL %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
}
cv_signal(&found->pr_cv);
break;
default:
panic("pm_proceed unknown cmd %d", cmd);
}
mutex_exit(&pm_rsvp_lock);
}
/*
* This routine dispatches new work to the dependency thread. Caller must
* be prepared to block for memory if necessary.
*/
void
pm_dispatch_to_dep_thread(int cmd, char *keeper, char *kept, int wait,
int *res, int cached_pwr)
{
pm_dep_wk_t *new_work;
new_work = kmem_zalloc(sizeof (pm_dep_wk_t), KM_SLEEP);
new_work->pdw_type = cmd;
new_work->pdw_wait = wait;
new_work->pdw_done = 0;
new_work->pdw_ret = 0;
new_work->pdw_pwr = cached_pwr;
cv_init(&new_work->pdw_cv, NULL, CV_DEFAULT, NULL);
if (keeper != NULL) {
new_work->pdw_keeper = kmem_zalloc(strlen(keeper) + 1,
KM_SLEEP);
(void) strcpy(new_work->pdw_keeper, keeper);
}
if (kept != NULL) {
new_work->pdw_kept = kmem_zalloc(strlen(kept) + 1, KM_SLEEP);
(void) strcpy(new_work->pdw_kept, kept);
}
mutex_enter(&pm_dep_thread_lock);
if (pm_dep_thread_workq == NULL) {
pm_dep_thread_workq = new_work;
pm_dep_thread_tail = new_work;
new_work->pdw_next = NULL;
} else {
pm_dep_thread_tail->pdw_next = new_work;
pm_dep_thread_tail = new_work;
new_work->pdw_next = NULL;
}
cv_signal(&pm_dep_thread_cv);
/* If caller asked for it, wait till it is done. */
if (wait) {
while (!new_work->pdw_done)
cv_wait(&new_work->pdw_cv, &pm_dep_thread_lock);
/*
* Pass return status, if any, back.
*/
if (res != NULL)
*res = new_work->pdw_ret;
/*
* If we asked to wait, it is our job to free the request
* structure.
*/
if (new_work->pdw_keeper)
kmem_free(new_work->pdw_keeper,
strlen(new_work->pdw_keeper) + 1);
if (new_work->pdw_kept)
kmem_free(new_work->pdw_kept,
strlen(new_work->pdw_kept) + 1);
kmem_free(new_work, sizeof (pm_dep_wk_t));
}
mutex_exit(&pm_dep_thread_lock);
}
/*
* Release the pm resource for this device.
*/
void
pm_rem_info(dev_info_t *dip)
{
PMD_FUNC(pmf, "rem_info")
int i, count = 0;
pm_info_t *info = PM_GET_PM_INFO(dip);
dev_info_t *pdip = ddi_get_parent(dip);
char *pathbuf;
int work_type = PM_DEP_WK_DETACH;
ASSERT(info);
ASSERT(!PM_IAM_LOCKING_DIP(dip));
if (PM_ISDIRECT(dip)) {
info->pmi_dev_pm_state &= ~PM_DIRECT;
ASSERT(info->pmi_clone);
info->pmi_clone = 0;
pm_proceed(dip, PMP_RELEASE, -1, -1);
}
ASSERT(!PM_GET_PM_SCAN(dip));
/*
* Now adjust parent's kidsupcnt. BC nodes we check only comp 0,
* Others we check all components. BC node that has already
* called pm_destroy_components() has zero component count.
* Parents that get notification are not adjusted because their
* kidsupcnt is always 0 (or 1 during configuration).
*/
PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d) has %d components\n", pmf,
PM_DEVICE(dip), PM_NUMCMPTS(dip)))
/* node is detached, so we can examine power without locking */
if (PM_ISBC(dip)) {
count = (PM_CURPOWER(dip, 0) != 0);
} else {
for (i = 0; i < PM_NUMCMPTS(dip); i++)
count += (PM_CURPOWER(dip, i) != 0);
}
if (PM_NUMCMPTS(dip) && pdip && !PM_WANTS_NOTIFICATION(pdip))
e_pm_hold_rele_power(pdip, -count);
/* Schedule a request to clean up dependency records */
pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
pm_dispatch_to_dep_thread(work_type, pathbuf, pathbuf,
PM_DEP_NOWAIT, NULL, (count > 0));
kmem_free(pathbuf, MAXPATHLEN);
/*
* Adjust the pm_comps_notlowest count since this device is
* not being power-managed anymore.
*/
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
pm_component_t *cp = PM_CP(dip, i);
if (cp->pmc_cur_pwr != 0)
PM_DECR_NOTLOWEST(dip)
}
/*
* Once we clear the info pointer, it looks like it is not power
* managed to everybody else.
*/
pm_set_pm_info(dip, NULL);
kmem_free(info, sizeof (pm_info_t));
}
int
pm_get_norm_pwrs(dev_info_t *dip, int **valuep, size_t *length)
{
int components = PM_NUMCMPTS(dip);
int *bufp;
size_t size;
int i;
if (components <= 0) {
cmn_err(CE_NOTE, "!pm: %s@%s(%s#%d) has no components, "
"can't get normal power values\n", PM_DEVICE(dip));
return (DDI_FAILURE);
} else {
size = components * sizeof (int);
bufp = kmem_alloc(size, KM_SLEEP);
for (i = 0; i < components; i++) {
bufp[i] = pm_get_normal_power(dip, i);
}
}
*length = size;
*valuep = bufp;
return (DDI_SUCCESS);
}
static int
pm_reset_timestamps(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
int components;
int i;
if (!PM_GET_PM_INFO(dip))
return (DDI_WALK_CONTINUE);
components = PM_NUMCMPTS(dip);
ASSERT(components > 0);
PM_LOCK_BUSY(dip);
for (i = 0; i < components; i++) {
struct pm_component *cp;
/*
* If the component was not marked as busy,
* reset its timestamp to now.
*/
cp = PM_CP(dip, i);
if (cp->pmc_timestamp)
cp->pmc_timestamp = gethrestime_sec();
}
PM_UNLOCK_BUSY(dip);
return (DDI_WALK_CONTINUE);
}
/*
* Convert a power level to an index into the levels array (or
* just PM_LEVEL_UNKNOWN in that special case).
*/
static int
pm_level_to_index(dev_info_t *dip, pm_component_t *cp, int level)
{
PMD_FUNC(pmf, "level_to_index")
int i;
int limit = cp->pmc_comp.pmc_numlevels;
int *ip = cp->pmc_comp.pmc_lvals;
if (level == PM_LEVEL_UNKNOWN)
return (level);
for (i = 0; i < limit; i++) {
if (level == *ip++) {
PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d)[%d] to %x\n",
pmf, PM_DEVICE(dip),
(int)(cp - DEVI(dip)->devi_pm_components), level))
return (i);
}
}
panic("pm_level_to_index: level %d not found for device "
"%s@%s(%s#%d)", level, PM_DEVICE(dip));
/*NOTREACHED*/
}
/*
* Internal function to set current power level
*/
static void
e_pm_set_cur_pwr(dev_info_t *dip, pm_component_t *cp, int level)
{
PMD_FUNC(pmf, "set_cur_pwr")
int curpwr = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ?
cp->pmc_phc_pwr : cp->pmc_cur_pwr);
/*
* Nothing to adjust if current & new levels are the same.
*/
if (curpwr != PM_LEVEL_UNKNOWN &&
level == cp->pmc_comp.pmc_lvals[curpwr])
return;
/*
* Keep the count for comps doing transition to/from lowest
* level.
*/
if (curpwr == 0) {
PM_INCR_NOTLOWEST(dip);
} else if (level == cp->pmc_comp.pmc_lvals[0]) {
PM_DECR_NOTLOWEST(dip);
}
cp->pmc_phc_pwr = PM_LEVEL_UNKNOWN;
cp->pmc_cur_pwr = pm_level_to_index(dip, cp, level);
}
static int pm_phc_impl(dev_info_t *, int, int, int);
/*
* This is the default method of setting the power of a device if no ppm
* driver has claimed it.
*/
int
pm_power(dev_info_t *dip, int comp, int level)
{
PMD_FUNC(pmf, "power")
struct dev_ops *ops;
int (*fn)(dev_info_t *, int, int);
struct pm_component *cp = PM_CP(dip, comp);
int retval;
pm_info_t *info = PM_GET_PM_INFO(dip);
PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf,
PM_DEVICE(dip), comp, level))
if (!(ops = ddi_get_driver(dip))) {
PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) has no ops\n", pmf,
PM_DEVICE(dip)))
return (DDI_FAILURE);
}
if ((ops->devo_rev < 2) || !(fn = ops->devo_power)) {
PMD(PMD_FAIL, ("%s: %s%s\n", pmf,
(ops->devo_rev < 2 ? " wrong devo_rev" : ""),
(!fn ? " devo_power NULL" : "")))
return (DDI_FAILURE);
}
cp->pmc_flags |= PM_POWER_OP;
retval = (*fn)(dip, comp, level);
cp->pmc_flags &= ~PM_POWER_OP;
if (retval == DDI_SUCCESS) {
e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level);
return (DDI_SUCCESS);
}
/*
* If pm_power_has_changed() detected a deadlock with pm_power() it
* updated only the power level of the component. If our attempt to
* set the device new to a power level above has failed we sync the
* total power state via phc code now.
*/
if (cp->pmc_flags & PM_PHC_WHILE_SET_POWER) {
int phc_lvl =
cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr];
ASSERT(info);
(void) pm_phc_impl(dip, comp, phc_lvl, 0);
PMD(PMD_PHC, ("%s: phc %s@%s(%s#%d) comp=%d level=%d\n",
pmf, PM_DEVICE(dip), comp, phc_lvl))
}
PMD(PMD_FAIL, ("%s: can't set comp=%d (%s) of %s@%s(%s#%d) to "
"level=%d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, PM_DEVICE(dip),
level, power_val_to_string(cp, level)));
return (DDI_FAILURE);
}
int
pm_unmanage(dev_info_t *dip)
{
PMD_FUNC(pmf, "unmanage")
power_req_t power_req;
int result, retval = 0;
ASSERT(!PM_IAM_LOCKING_DIP(dip));
PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
power_req.request_type = PMR_PPM_UNMANAGE;
power_req.req.ppm_config_req.who = dip;
if (pm_ppm_claimed(dip))
retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
&power_req, &result);
#ifdef DEBUG
else
retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
&power_req, &result);
#endif
ASSERT(retval == DDI_SUCCESS);
pm_rem_info(dip);
return (retval);
}
int
pm_raise_power(dev_info_t *dip, int comp, int level)
{
if (level < 0)
return (DDI_FAILURE);
if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) ||
!e_pm_valid_power(dip, comp, level))
return (DDI_FAILURE);
return (dev_is_needed(dip, comp, level, PM_LEVEL_UPONLY));
}
int
pm_lower_power(dev_info_t *dip, int comp, int level)
{
PMD_FUNC(pmf, "pm_lower_power")
if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) ||
!e_pm_valid_power(dip, comp, level)) {
PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) "
"comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level))
return (DDI_FAILURE);
}
if (!DEVI_IS_DETACHING(dip)) {
PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) not detaching\n",
pmf, PM_DEVICE(dip)))
return (DDI_FAILURE);
}
/*
* If we don't care about saving power, or we're treating this node
* specially, then this is a no-op
*/
if (!PM_SCANABLE(dip) || pm_noinvol(dip)) {
PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) %s%s%s%s\n",
pmf, PM_DEVICE(dip),
!autopm_enabled ? "!autopm_enabled " : "",
!PM_POLLING_CPUPM ? "!cpupm_polling " : "",
PM_CPUPM_DISABLED ? "cpupm_disabled " : "",
pm_noinvol(dip) ? "pm_noinvol()" : ""))
return (DDI_SUCCESS);
}
if (dev_is_needed(dip, comp, level, PM_LEVEL_DOWNONLY) != DDI_SUCCESS) {
PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) dev_is_needed failed\n", pmf,
PM_DEVICE(dip)))
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* Find the entries struct for a given dip in the blocked list, return it locked
*/
static psce_t *
pm_psc_dip_to_direct(dev_info_t *dip, pscc_t **psccp)
{
pscc_t *p;
psce_t *psce;
rw_enter(&pm_pscc_direct_rwlock, RW_READER);
for (p = pm_pscc_direct; p; p = p->pscc_next) {
if (p->pscc_dip == dip) {
*psccp = p;
psce = p->pscc_entries;
mutex_enter(&psce->psce_lock);
ASSERT(psce);
rw_exit(&pm_pscc_direct_rwlock);
return (psce);
}
}
rw_exit(&pm_pscc_direct_rwlock);
panic("sunpm: no entry for dip %p in direct list", (void *)dip);
/*NOTREACHED*/
}
/*
* Write an entry indicating a power level change (to be passed to a process
* later) in the given psce.
* If we were called in the path that brings up the console fb in the
* case of entering the prom, we don't want to sleep. If the alloc fails, then
* we create a record that has a size of -1, a physaddr of NULL, and that
* has the overflow flag set.
*/
static int
psc_entry(ushort_t event, psce_t *psce, dev_info_t *dip, int comp, int new,
int old, int which, pm_canblock_t canblock)
{
char buf[MAXNAMELEN];
pm_state_change_t *p;
size_t size;
caddr_t physpath = NULL;
int overrun = 0;
ASSERT(MUTEX_HELD(&psce->psce_lock));
(void) ddi_pathname(dip, buf);
size = strlen(buf) + 1;
p = psce->psce_in;
if (canblock == PM_CANBLOCK_BYPASS) {
physpath = kmem_alloc(size, KM_NOSLEEP);
if (physpath == NULL) {
/*
* mark current entry as overrun
*/
p->flags |= PSC_EVENT_LOST;
size = (size_t)-1;
}
} else
physpath = kmem_alloc(size, KM_SLEEP);
if (p->size) { /* overflow; mark the next entry */
if (p->size != (size_t)-1)
kmem_free(p->physpath, p->size);
ASSERT(psce->psce_out == p);
if (p == psce->psce_last) {
psce->psce_first->flags |= PSC_EVENT_LOST;
psce->psce_out = psce->psce_first;
} else {
(p + 1)->flags |= PSC_EVENT_LOST;
psce->psce_out = (p + 1);
}
overrun++;
} else if (physpath == NULL) { /* alloc failed, mark this entry */
p->flags |= PSC_EVENT_LOST;
p->size = 0;
p->physpath = NULL;
}
if (which == PSC_INTEREST) {
mutex_enter(&pm_compcnt_lock);
if (pm_comps_notlowest == 0)
p->flags |= PSC_ALL_LOWEST;
else
p->flags &= ~PSC_ALL_LOWEST;
mutex_exit(&pm_compcnt_lock);
}
p->event = event;
p->timestamp = gethrestime_sec();
p->component = comp;
p->old_level = old;
p->new_level = new;
p->physpath = physpath;
p->size = size;
if (physpath != NULL)
(void) strcpy(p->physpath, buf);
if (p == psce->psce_last)
psce->psce_in = psce->psce_first;
else
psce->psce_in = ++p;
mutex_exit(&psce->psce_lock);
return (overrun);
}
/*
* Find the next entry on the interest list. We keep a pointer to the item we
* last returned in the user's cooke. Returns a locked entries struct.
*/
static psce_t *
psc_interest(void **cookie, pscc_t **psccp)
{
pscc_t *pscc;
pscc_t **cookiep = (pscc_t **)cookie;
if (*cookiep == NULL)
pscc = pm_pscc_interest;
else
pscc = (*cookiep)->pscc_next;
if (pscc) {
*cookiep = pscc;
*psccp = pscc;
mutex_enter(&pscc->pscc_entries->psce_lock);
return (pscc->pscc_entries);
} else {
return (NULL);
}
}
/*
* Create an entry for a process to pick up indicating a power level change.
*/
static void
pm_enqueue_notify(ushort_t cmd, dev_info_t *dip, int comp,
int newlevel, int oldlevel, pm_canblock_t canblock)
{
PMD_FUNC(pmf, "enqueue_notify")
pscc_t *pscc;
psce_t *psce;
void *cookie = NULL;
int overrun;
ASSERT(MUTEX_HELD(&pm_rsvp_lock));
switch (cmd) {
case PSC_PENDING_CHANGE: /* only for controlling process */
PMD(PMD_DPM, ("%s: PENDING %s@%s(%s#%d), comp %d, %d -> %d\n",
pmf, PM_DEVICE(dip), comp, oldlevel, newlevel))
psce = pm_psc_dip_to_direct(dip, &pscc);
ASSERT(psce);
PMD(PMD_IOCTL, ("%s: PENDING: %s@%s(%s#%d) pm_poll_cnt[%d] "
"%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone,
pm_poll_cnt[pscc->pscc_clone]))
overrun = psc_entry(cmd, psce, dip, comp, newlevel, oldlevel,
PSC_DIRECT, canblock);
PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone))
mutex_enter(&pm_clone_lock);
if (!overrun)
pm_poll_cnt[pscc->pscc_clone]++;
cv_signal(&pm_clones_cv[pscc->pscc_clone]);
pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN));
mutex_exit(&pm_clone_lock);
break;
case PSC_HAS_CHANGED:
PMD(PMD_DPM, ("%s: HAS %s@%s(%s#%d), comp %d, %d -> %d\n",
pmf, PM_DEVICE(dip), comp, oldlevel, newlevel))
if (PM_ISDIRECT(dip) && canblock != PM_CANBLOCK_BYPASS) {
psce = pm_psc_dip_to_direct(dip, &pscc);
PMD(PMD_IOCTL, ("%s: HAS: %s@%s(%s#%d) pm_poll_cnt[%d] "
"%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone,
pm_poll_cnt[pscc->pscc_clone]))
overrun = psc_entry(cmd, psce, dip, comp, newlevel,
oldlevel, PSC_DIRECT, canblock);
PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone))
mutex_enter(&pm_clone_lock);
if (!overrun)
pm_poll_cnt[pscc->pscc_clone]++;
cv_signal(&pm_clones_cv[pscc->pscc_clone]);
pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN));
mutex_exit(&pm_clone_lock);
}
mutex_enter(&pm_clone_lock);
rw_enter(&pm_pscc_interest_rwlock, RW_READER);
while ((psce = psc_interest(&cookie, &pscc)) != NULL) {
(void) psc_entry(cmd, psce, dip, comp, newlevel,
oldlevel, PSC_INTEREST, canblock);
cv_signal(&pm_clones_cv[pscc->pscc_clone]);
}
rw_exit(&pm_pscc_interest_rwlock);
mutex_exit(&pm_clone_lock);
break;
#ifdef DEBUG
default:
ASSERT(0);
#endif
}
}
static void
pm_enqueue_notify_others(pm_ppm_devlist_t **listp, pm_canblock_t canblock)
{
if (listp) {
pm_ppm_devlist_t *p, *next = NULL;
for (p = *listp; p; p = next) {
next = p->ppd_next;
pm_enqueue_notify(PSC_HAS_CHANGED, p->ppd_who,
p->ppd_cmpt, p->ppd_new_level, p->ppd_old_level,
canblock);
kmem_free(p, sizeof (pm_ppm_devlist_t));
}
*listp = NULL;
}
}
/*
* Try to get the power locks of the parent node and target (child)
* node. Return true if successful (with both locks held) or false
* (with no locks held).
*/
static int
pm_try_parent_child_locks(dev_info_t *pdip,
dev_info_t *dip, int *pcircp, int *circp)
{
if (ndi_devi_tryenter(pdip, pcircp))
if (PM_TRY_LOCK_POWER(dip, circp)) {
return (1);
} else {
ndi_devi_exit(pdip, *pcircp);
}
return (0);
}
/*
* Determine if the power lock owner is blocked by current thread.
* returns :
* 1 - If the thread owning the effective power lock (the first lock on
* which a thread blocks when it does PM_LOCK_POWER) is blocked by
* a mutex held by the current thread.
*
* 0 - otherwise
*
* Note : This function is called by pm_power_has_changed to determine whether
* it is executing in parallel with pm_set_power.
*/
static int
pm_blocked_by_us(dev_info_t *dip)
{
power_req_t power_req;
kthread_t *owner;
int result;
kmutex_t *mp;
dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm;
power_req.request_type = PMR_PPM_POWER_LOCK_OWNER;
power_req.req.ppm_power_lock_owner_req.who = dip;
if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, &result) !=
DDI_SUCCESS) {
/*
* It is assumed that if the device is claimed by ppm, ppm
* will always implement this request type and it'll always
* return success. We panic here, if it fails.
*/
panic("pm: Can't determine power lock owner of %s@%s(%s#%d)\n",
PM_DEVICE(dip));
/*NOTREACHED*/
}
if ((owner = power_req.req.ppm_power_lock_owner_req.owner) != NULL &&
owner->t_state == TS_SLEEP &&
owner->t_sobj_ops &&
SOBJ_TYPE(owner->t_sobj_ops) == SOBJ_MUTEX &&
(mp = (kmutex_t *)owner->t_wchan) &&
mutex_owner(mp) == curthread)
return (1);
return (0);
}
/*
* Notify parent which wants to hear about a child's power changes.
*/
static void
pm_notify_parent(dev_info_t *dip,
dev_info_t *pdip, int comp, int old_level, int level)
{
pm_bp_has_changed_t bphc;
pm_sp_misc_t pspm;
char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
int result = DDI_SUCCESS;
bphc.bphc_dip = dip;
bphc.bphc_path = ddi_pathname(dip, pathbuf);
bphc.bphc_comp = comp;
bphc.bphc_olevel = old_level;
bphc.bphc_nlevel = level;
pspm.pspm_canblock = PM_CANBLOCK_BLOCK;
pspm.pspm_scan = 0;
bphc.bphc_private = &pspm;
(void) (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL,
BUS_POWER_HAS_CHANGED, (void *)&bphc, (void *)&result);
kmem_free(pathbuf, MAXPATHLEN);
}
/*
* Check if we need to resume a BC device, and make the attach call as required.
*/
static int
pm_check_and_resume(dev_info_t *dip, int comp, int old_level, int level)
{
int ret = DDI_SUCCESS;
if (PM_ISBC(dip) && comp == 0 && old_level == 0 && level != 0) {
ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED);
/* ppm is not interested in DDI_PM_RESUME */
if ((ret = devi_attach(dip, DDI_PM_RESUME)) != DDI_SUCCESS)
/* XXX Should we mark it resumed, */
/* even though it failed? */
cmn_err(CE_WARN, "!pm: Can't resume %s@%s",
PM_NAME(dip), PM_ADDR(dip));
DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED;
}
return (ret);
}
/*
* Tests outside the lock to see if we should bother to enqueue an entry
* for any watching process. If yes, then caller will take the lock and
* do the full protocol
*/
static int
pm_watchers()
{
if (pm_processes_stopped)
return (0);
return (pm_pscc_direct || pm_pscc_interest);
}
static int pm_phc_impl(dev_info_t *, int, int, int);
/*
* A driver is reporting that the power of one of its device's components
* has changed. Update the power state accordingly.
*/
int
pm_power_has_changed(dev_info_t *dip, int comp, int level)
{
PMD_FUNC(pmf, "pm_power_has_changed")
int ret;
dev_info_t *pdip = ddi_get_parent(dip);
struct pm_component *cp;
int blocked, circ, pcirc, old_level;
if (level < 0) {
PMD(PMD_FAIL, ("%s: %s@%s(%s#%d): bad level=%d\n", pmf,
PM_DEVICE(dip), level))
return (DDI_FAILURE);
}
PMD(PMD_KIDSUP | PMD_DEP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf,
PM_DEVICE(dip), comp, level))
if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, &cp) ||
!e_pm_valid_power(dip, comp, level))
return (DDI_FAILURE);
/*
* A driver thread calling pm_power_has_changed and another thread
* calling pm_set_power can deadlock. The problem is not resolvable
* by changing lock order, so we use pm_blocked_by_us() to detect
* this specific deadlock. If we can't get the lock immediately
* and we are deadlocked, just update the component's level, do
* notifications, and return. We intend to update the total power
* state later (if the other thread fails to set power to the
* desired level). If we were called because of a power change on a
* component that isn't involved in a set_power op, update all state
* immediately.
*/
cp = PM_CP(dip, comp);
while (!pm_try_parent_child_locks(pdip, dip, &pcirc, &circ)) {
if (((blocked = pm_blocked_by_us(dip)) != 0) &&
(cp->pmc_flags & PM_POWER_OP)) {
if (pm_watchers()) {
mutex_enter(&pm_rsvp_lock);
pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp,
level, cur_power(cp), PM_CANBLOCK_BLOCK);
mutex_exit(&pm_rsvp_lock);
}
if (pdip && PM_WANTS_NOTIFICATION(pdip))
pm_notify_parent(dip,
pdip, comp, cur_power(cp), level);
(void) pm_check_and_resume(dip,
comp, cur_power(cp), level);
/*
* Stash the old power index, update curpwr, and flag
* that the total power state needs to be synched.
*/
cp->pmc_flags |= PM_PHC_WHILE_SET_POWER;
/*
* Several pm_power_has_changed calls could arrive
* while the set power path remains blocked. Keep the
* oldest old power and the newest new power of any
* sequence of phc calls which arrive during deadlock.
*/
if (cp->pmc_phc_pwr == PM_LEVEL_UNKNOWN)
cp->pmc_phc_pwr = cp->pmc_cur_pwr;
cp->pmc_cur_pwr =
pm_level_to_index(dip, cp, level);
PMD(PMD_PHC, ("%s: deadlock for %s@%s(%s#%d), comp=%d, "
"level=%d\n", pmf, PM_DEVICE(dip), comp, level))
return (DDI_SUCCESS);
} else
if (blocked) { /* blocked, but different cmpt? */
if (!ndi_devi_tryenter(pdip, &pcirc)) {
cmn_err(CE_NOTE,
"!pm: parent kuc not updated due "
"to possible deadlock.\n");
return (pm_phc_impl(dip,
comp, level, 1));
}
old_level = cur_power(cp);
if (pdip && !PM_WANTS_NOTIFICATION(pdip) &&
(!PM_ISBC(dip) || comp == 0) &&
POWERING_ON(old_level, level))
pm_hold_power(pdip);
ret = pm_phc_impl(dip, comp, level, 1);
if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
if ((!PM_ISBC(dip) ||
comp == 0) && level == 0 &&
old_level != PM_LEVEL_UNKNOWN)
pm_rele_power(pdip);
}
ndi_devi_exit(pdip, pcirc);
/* child lock not held: deadlock */
return (ret);
}
delay(1);
PMD(PMD_PHC, ("%s: try lock again\n", pmf))
}
/* non-deadlock case */
old_level = cur_power(cp);
if (pdip && !PM_WANTS_NOTIFICATION(pdip) &&
(!PM_ISBC(dip) || comp == 0) && POWERING_ON(old_level, level))
pm_hold_power(pdip);
ret = pm_phc_impl(dip, comp, level, 1);
if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
if ((!PM_ISBC(dip) || comp == 0) && level == 0 &&
old_level != PM_LEVEL_UNKNOWN)
pm_rele_power(pdip);
}
PM_UNLOCK_POWER(dip, circ);
ndi_devi_exit(pdip, pcirc);
return (ret);
}
/*
* Account for power changes to a component of the the console frame buffer.
* If lowering power from full (or "unkown", which is treatd as full)
* we will increment the "components off" count of the fb device.
* Subsequent lowering of the same component doesn't affect the count. If
* raising a component back to full power, we will decrement the count.
*
* Return: the increment value for pm_cfb_comps_off (-1, 0, or 1)
*/
static int
calc_cfb_comps_incr(dev_info_t *dip, int cmpt, int old, int new)
{
struct pm_component *cp = PM_CP(dip, cmpt);
int on = (old == PM_LEVEL_UNKNOWN || old == cp->pmc_norm_pwr);
int want_normal = (new == cp->pmc_norm_pwr);
int incr = 0;
if (on && !want_normal)
incr = 1;
else if (!on && want_normal)
incr = -1;
return (incr);
}
/*
* Adjust the count of console frame buffer components < full power.
*/
static void
update_comps_off(int incr, dev_info_t *dip)
{
mutex_enter(&pm_cfb_lock);
pm_cfb_comps_off += incr;
ASSERT(pm_cfb_comps_off <= PM_NUMCMPTS(dip));
mutex_exit(&pm_cfb_lock);
}
/*
* Update the power state in the framework (via the ppm). The 'notify'
* argument tells whether to notify watchers. Power lock is already held.
*/
static int
pm_phc_impl(dev_info_t *dip, int comp, int level, int notify)
{
PMD_FUNC(pmf, "phc_impl")
power_req_t power_req;
int i, dodeps = 0;
dev_info_t *pdip = ddi_get_parent(dip);
int result;
int old_level;
struct pm_component *cp;
int incr = 0;
dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm;
int work_type = 0;
char *pathbuf;
/* Must use "official" power level for this test. */
cp = PM_CP(dip, comp);
old_level = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ?
cp->pmc_phc_pwr : cp->pmc_cur_pwr);
if (old_level != PM_LEVEL_UNKNOWN)
old_level = cp->pmc_comp.pmc_lvals[old_level];
if (level == old_level) {
PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d is already at "
"level=%d\n", pmf, PM_DEVICE(dip), comp, level))
return (DDI_SUCCESS);
}
/*
* Tell ppm about this.
*/
power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY;
power_req.req.ppm_notify_level_req.who = dip;
power_req.req.ppm_notify_level_req.cmpt = comp;
power_req.req.ppm_notify_level_req.new_level = level;
power_req.req.ppm_notify_level_req.old_level = old_level;
if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req,
&result) == DDI_FAILURE) {
PMD(PMD_FAIL, ("%s: pm_ctlops %s@%s(%s#%d) to %d failed\n",
pmf, PM_DEVICE(dip), level))
return (DDI_FAILURE);
}
if (PM_IS_CFB(dip)) {
incr = calc_cfb_comps_incr(dip, comp, old_level, level);
if (incr) {
update_comps_off(incr, dip);
PMD(PMD_CFB, ("%s: %s@%s(%s#%d) comp=%d %d->%d "
"cfb_comps_off->%d\n", pmf, PM_DEVICE(dip),
comp, old_level, level, pm_cfb_comps_off))
}
}
e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level);
result = DDI_SUCCESS;
if (notify) {
if (pdip && PM_WANTS_NOTIFICATION(pdip))
pm_notify_parent(dip, pdip, comp, old_level, level);
(void) pm_check_and_resume(dip, comp, old_level, level);
}
/*
* Decrement the dependency kidsup count if we turn a device
* off.
*/
if (POWERING_OFF(old_level, level)) {
dodeps = 1;
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
cp = PM_CP(dip, i);
if (cur_power(cp)) {
dodeps = 0;
break;
}
}
if (dodeps)
work_type = PM_DEP_WK_POWER_OFF;
}
/*
* Increment if we turn it on. Check to see
* if other comps are already on, if so,
* dont increment.
*/
if (POWERING_ON(old_level, level)) {
dodeps = 1;
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
cp = PM_CP(dip, i);
if (comp == i)
continue;
/* -1 also treated as 0 in this case */
if (cur_power(cp) > 0) {
dodeps = 0;
break;
}
}
if (dodeps)
work_type = PM_DEP_WK_POWER_ON;
}
if (dodeps) {
pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
pm_dispatch_to_dep_thread(work_type, pathbuf, NULL,
PM_DEP_NOWAIT, NULL, 0);
kmem_free(pathbuf, MAXPATHLEN);
}
if (notify && (level != old_level) && pm_watchers()) {
mutex_enter(&pm_rsvp_lock);
pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, level, old_level,
PM_CANBLOCK_BLOCK);
mutex_exit(&pm_rsvp_lock);
}
PMD(PMD_RESCAN, ("%s: %s@%s(%s#%d): pm_rescan\n", pmf, PM_DEVICE(dip)))
pm_rescan(dip);
return (DDI_SUCCESS);
}
/*
* This function is called at startup time to notify pm of the existence
* of any platform power managers for this platform. As a result of
* this registration, each function provided will be called each time
* a device node is attached, until one returns true, and it must claim the
* device node (by returning non-zero) if it wants to be involved in the
* node's power management. If it does claim the node, then it will
* subsequently be notified of attach and detach events.
*
*/
int
pm_register_ppm(int (*func)(dev_info_t *), dev_info_t *dip)
{
PMD_FUNC(pmf, "register_ppm")
struct ppm_callbacks *ppmcp;
pm_component_t *cp;
int i, pwr, result, circ;
power_req_t power_req;
struct ppm_notify_level_req *p = &power_req.req.ppm_notify_level_req;
void pm_ppm_claim(dev_info_t *);
mutex_enter(&ppm_lock);
ppmcp = ppm_callbacks;
for (i = 0; i < MAX_PPM_HANDLERS; i++, ppmcp++) {
if (ppmcp->ppmc_func == NULL) {
ppmcp->ppmc_func = func;
ppmcp->ppmc_dip = dip;
break;
}
}
mutex_exit(&ppm_lock);
if (i >= MAX_PPM_HANDLERS)
return (DDI_FAILURE);
while ((dip = ddi_get_parent(dip)) != NULL) {
if (dip != ddi_root_node() && PM_GET_PM_INFO(dip) == NULL)
continue;
pm_ppm_claim(dip);
/* don't bother with the not power-manageable nodes */
if (pm_ppm_claimed(dip) && PM_GET_PM_INFO(dip)) {
/*
* Tell ppm about this.
*/
power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY;
p->old_level = PM_LEVEL_UNKNOWN;
p->who = dip;
PM_LOCK_POWER(dip, &circ);
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
cp = PM_CP(dip, i);
pwr = cp->pmc_cur_pwr;
if (pwr != PM_LEVEL_UNKNOWN) {
p->cmpt = i;
p->new_level = cur_power(cp);
p->old_level = PM_LEVEL_UNKNOWN;
if (pm_ctlops(PPM(dip), dip,
DDI_CTLOPS_POWER, &power_req,
&result) == DDI_FAILURE) {
PMD(PMD_FAIL, ("%s: pc "
"%s@%s(%s#%d) to %d "
"fails\n", pmf,
PM_DEVICE(dip), pwr))
}
}
}
PM_UNLOCK_POWER(dip, circ);
}
}
return (DDI_SUCCESS);
}
/*
* Call the ppm's that have registered and adjust the devinfo struct as
* appropriate. First one to claim it gets it. The sets of devices claimed
* by each ppm are assumed to be disjoint.
*/
void
pm_ppm_claim(dev_info_t *dip)
{
struct ppm_callbacks *ppmcp;
if (PPM(dip)) {
return;
}
mutex_enter(&ppm_lock);
for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) {
if ((*ppmcp->ppmc_func)(dip)) {
DEVI(dip)->devi_pm_ppm =
(struct dev_info *)ppmcp->ppmc_dip;
mutex_exit(&ppm_lock);
return;
}
}
mutex_exit(&ppm_lock);
}
/*
* Node is being detached so stop autopm until we see if it succeeds, in which
* case pm_stop will be called. For backwards compatible devices we bring the
* device up to full power on the assumption the detach will succeed.
*/
void
pm_detaching(dev_info_t *dip)
{
PMD_FUNC(pmf, "detaching")
pm_info_t *info = PM_GET_PM_INFO(dip);
int iscons;
PMD(PMD_REMDEV, ("%s: %s@%s(%s#%d), %d comps\n", pmf, PM_DEVICE(dip),
PM_NUMCMPTS(dip)))
if (info == NULL)
return;
ASSERT(DEVI_IS_DETACHING(dip));
PM_LOCK_DIP(dip);
info->pmi_dev_pm_state |= PM_DETACHING;
PM_UNLOCK_DIP(dip);
if (!PM_ISBC(dip))
pm_scan_stop(dip);
/*
* console and old-style devices get brought up when detaching.
*/
iscons = PM_IS_CFB(dip);
if (iscons || PM_ISBC(dip)) {
(void) pm_all_to_normal(dip, PM_CANBLOCK_BYPASS);
if (iscons) {
mutex_enter(&pm_cfb_lock);
while (cfb_inuse) {
mutex_exit(&pm_cfb_lock);
PMD(PMD_CFB, ("%s: delay; cfb_inuse\n", pmf))
delay(1);
mutex_enter(&pm_cfb_lock);
}
ASSERT(cfb_dip_detaching == NULL);
ASSERT(cfb_dip);
cfb_dip_detaching = cfb_dip; /* case detach fails */
cfb_dip = NULL;
mutex_exit(&pm_cfb_lock);
}
}
}
/*
* Node failed to detach. If it used to be autopm'd, make it so again.
*/
void
pm_detach_failed(dev_info_t *dip)
{
PMD_FUNC(pmf, "detach_failed")
pm_info_t *info = PM_GET_PM_INFO(dip);
int pm_all_at_normal(dev_info_t *);
if (info == NULL)
return;
ASSERT(DEVI_IS_DETACHING(dip));
if (info->pmi_dev_pm_state & PM_DETACHING) {
info->pmi_dev_pm_state &= ~PM_DETACHING;
if (info->pmi_dev_pm_state & PM_ALLNORM_DEFERRED) {
/* Make sure the operation is still needed */
if (!pm_all_at_normal(dip)) {
if (pm_all_to_normal(dip,
PM_CANBLOCK_FAIL) != DDI_SUCCESS) {
PMD(PMD_ERROR, ("%s: could not bring "
"%s@%s(%s#%d) to normal\n", pmf,
PM_DEVICE(dip)))
}
}
info->pmi_dev_pm_state &= ~PM_ALLNORM_DEFERRED;
}
}
if (!PM_ISBC(dip)) {
mutex_enter(&pm_scan_lock);
if (PM_SCANABLE(dip))
pm_scan_init(dip);
mutex_exit(&pm_scan_lock);
pm_rescan(dip);
}
}
/* generic Backwards Compatible component */
static char *bc_names[] = {"off", "on"};
static pm_comp_t bc_comp = {"unknown", 2, NULL, NULL, &bc_names[0]};
static void
e_pm_default_levels(dev_info_t *dip, pm_component_t *cp, int norm)
{
pm_comp_t *pmc;
pmc = &cp->pmc_comp;
pmc->pmc_numlevels = 2;
pmc->pmc_lvals[0] = 0;
pmc->pmc_lvals[1] = norm;
e_pm_set_cur_pwr(dip, cp, norm);
}
static void
e_pm_default_components(dev_info_t *dip, int cmpts)
{
int i;
pm_component_t *p = DEVI(dip)->devi_pm_components;
p = DEVI(dip)->devi_pm_components;
for (i = 0; i < cmpts; i++, p++) {
p->pmc_comp = bc_comp; /* struct assignment */
p->pmc_comp.pmc_lvals = kmem_zalloc(2 * sizeof (int),
KM_SLEEP);
p->pmc_comp.pmc_thresh = kmem_alloc(2 * sizeof (int),
KM_SLEEP);
p->pmc_comp.pmc_numlevels = 2;
p->pmc_comp.pmc_thresh[0] = INT_MAX;
p->pmc_comp.pmc_thresh[1] = INT_MAX;
}
}
/*
* Called from functions that require components to exist already to allow
* for their creation by parsing the pm-components property.
* Device will not be power managed as a result of this call
* No locking needed because we're single threaded by the ndi_devi_enter
* done while attaching, and the device isn't visible until after it has
* attached
*/
int
pm_premanage(dev_info_t *dip, int style)
{
PMD_FUNC(pmf, "premanage")
pm_comp_t *pcp, *compp;
int cmpts, i, norm, error;
pm_component_t *p = DEVI(dip)->devi_pm_components;
pm_comp_t *pm_autoconfig(dev_info_t *, int *);
ASSERT(!PM_IAM_LOCKING_DIP(dip));
/*
* If this dip has already been processed, don't mess with it
*/
if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE)
return (DDI_SUCCESS);
if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_FAILED) {
return (DDI_FAILURE);
}
/*
* Look up pm-components property and create components accordingly
* If that fails, fall back to backwards compatibility
*/
if ((compp = pm_autoconfig(dip, &error)) == NULL) {
/*
* If error is set, the property existed but was not well formed
*/
if (error || (style == PM_STYLE_NEW)) {
DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_FAILED;
return (DDI_FAILURE);
}
/*
* If they don't have the pm-components property, then we
* want the old "no pm until PM_SET_DEVICE_THRESHOLDS ioctl"
* behavior driver must have called pm_create_components, and
* we need to flesh out dummy components
*/
if ((cmpts = PM_NUMCMPTS(dip)) == 0) {
/*
* Not really failure, but we don't want the
* caller to treat it as success
*/
return (DDI_FAILURE);
}
DEVI(dip)->devi_pm_flags |= PMC_BC;
e_pm_default_components(dip, cmpts);
for (i = 0; i < cmpts; i++) {
/*
* if normal power not set yet, we don't really know
* what *ANY* of the power values are. If normal
* power is set, then we assume for this backwards
* compatible case that the values are 0, normal power.
*/
norm = pm_get_normal_power(dip, i);
if (norm == (uint_t)-1) {
PMD(PMD_ERROR, ("%s: %s@%s(%s#%d)[%d]\n", pmf,
PM_DEVICE(dip), i))
return (DDI_FAILURE);
}
/*
* Components of BC devices start at their normal power,
* so count them to be not at their lowest power.
*/
PM_INCR_NOTLOWEST(dip);
e_pm_default_levels(dip, PM_CP(dip, i), norm);
}
} else {
/*
* e_pm_create_components was called from pm_autoconfig(), it
* creates components with no descriptions (or known levels)
*/
cmpts = PM_NUMCMPTS(dip);
ASSERT(cmpts != 0);
pcp = compp;
p = DEVI(dip)->devi_pm_components;
for (i = 0; i < cmpts; i++, p++) {
p->pmc_comp = *pcp++; /* struct assignment */
ASSERT(PM_CP(dip, i)->pmc_cur_pwr == 0);
e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN);
}
if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH)
pm_set_device_threshold(dip, pm_cpu_idle_threshold,
PMC_CPU_THRESH);
else
pm_set_device_threshold(dip, pm_system_idle_threshold,
PMC_DEF_THRESH);
kmem_free(compp, cmpts * sizeof (pm_comp_t));
}
return (DDI_SUCCESS);
}
/*
* Called from during or after the device's attach to let us know it is ready
* to play autopm. Look up the pm model and manage the device accordingly.
* Returns system call errno value.
* If DDI_ATTACH and DDI_DETACH were in same namespace, this would be
* a little cleaner
*
* Called with dip lock held, return with dip lock unheld.
*/
int
e_pm_manage(dev_info_t *dip, int style)
{
PMD_FUNC(pmf, "e_manage")
pm_info_t *info;
dev_info_t *pdip = ddi_get_parent(dip);
int pm_thresh_specd(dev_info_t *);
int count;
char *pathbuf;
if (pm_premanage(dip, style) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
ASSERT(PM_GET_PM_INFO(dip) == NULL);
info = kmem_zalloc(sizeof (pm_info_t), KM_SLEEP);
/*
* Now set up parent's kidsupcnt. BC nodes are assumed to start
* out at their normal power, so they are "up", others start out
* unknown, which is effectively "up". Parent which want notification
* get kidsupcnt of 0 always.
*/
count = (PM_ISBC(dip)) ? 1 : PM_NUMCMPTS(dip);
if (count && pdip && !PM_WANTS_NOTIFICATION(pdip))
e_pm_hold_rele_power(pdip, count);
pm_set_pm_info(dip, info);
/*
* Apply any recorded thresholds
*/
(void) pm_thresh_specd(dip);
/*
* Do dependency processing.
*/
pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
pm_dispatch_to_dep_thread(PM_DEP_WK_ATTACH, pathbuf, pathbuf,
PM_DEP_NOWAIT, NULL, 0);
kmem_free(pathbuf, MAXPATHLEN);
if (!PM_ISBC(dip)) {
mutex_enter(&pm_scan_lock);
if (PM_SCANABLE(dip)) {
pm_scan_init(dip);
mutex_exit(&pm_scan_lock);
pm_rescan(dip);
} else {
mutex_exit(&pm_scan_lock);
}
}
return (0);
}
/*
* This is the obsolete exported interface for a driver to find out its
* "normal" (max) power.
* We only get components destroyed while no power management is
* going on (and the device is detached), so we don't need a mutex here
*/
int
pm_get_normal_power(dev_info_t *dip, int comp)
{
if (comp >= 0 && comp < PM_NUMCMPTS(dip)) {
return (PM_CP(dip, comp)->pmc_norm_pwr);
}
return (DDI_FAILURE);
}
/*
* Fetches the current power level. Return DDI_SUCCESS or DDI_FAILURE.
*/
int
pm_get_current_power(dev_info_t *dip, int comp, int *levelp)
{
if (comp >= 0 && comp < PM_NUMCMPTS(dip)) {
*levelp = PM_CURPOWER(dip, comp);
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* Returns current threshold of indicated component
*/
static int
cur_threshold(dev_info_t *dip, int comp)
{
pm_component_t *cp = PM_CP(dip, comp);
int pwr;
if (PM_ISBC(dip)) {
/*
* backwards compatible nodes only have one threshold
*/
return (cp->pmc_comp.pmc_thresh[1]);
}
pwr = cp->pmc_cur_pwr;
if (pwr == PM_LEVEL_UNKNOWN) {
int thresh;
if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH)
thresh = pm_default_nexus_threshold;
else if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH)
thresh = pm_cpu_idle_threshold;
else
thresh = pm_system_idle_threshold;
return (thresh);
}
ASSERT(cp->pmc_comp.pmc_thresh);
return (cp->pmc_comp.pmc_thresh[pwr]);
}
/*
* Compute next lower component power level given power index.
*/
static int
pm_next_lower_power(pm_component_t *cp, int pwrndx)
{
int nxt_pwr;
if (pwrndx == PM_LEVEL_UNKNOWN) {
nxt_pwr = cp->pmc_comp.pmc_lvals[0];
} else {
pwrndx--;
ASSERT(pwrndx >= 0);
nxt_pwr = cp->pmc_comp.pmc_lvals[pwrndx];
}
return (nxt_pwr);
}
/*
* Update the maxpower (normal) power of a component. Note that the
* component's power level is only changed if it's current power level
* is higher than the new max power.
*/
int
pm_update_maxpower(dev_info_t *dip, int comp, int level)
{
PMD_FUNC(pmf, "update_maxpower")
int old;
int result;
if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) ||
!e_pm_valid_power(dip, comp, level)) {
PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) "
"comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level))
return (DDI_FAILURE);
}
old = e_pm_get_max_power(dip, comp);
e_pm_set_max_power(dip, comp, level);
if (pm_set_power(dip, comp, level, PM_LEVEL_DOWNONLY,
PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) {
e_pm_set_max_power(dip, comp, old);
PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) pm_set_power failed\n", pmf,
PM_DEVICE(dip)))
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* Bring all components of device to normal power
*/
int
pm_all_to_normal(dev_info_t *dip, pm_canblock_t canblock)
{
PMD_FUNC(pmf, "all_to_normal")
int *normal;
int i, ncomps, result;
size_t size;
int changefailed = 0;
PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
ASSERT(PM_GET_PM_INFO(dip));
if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) {
PMD(PMD_ALLNORM, ("%s: can't get norm pwrs for "
"%s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
return (DDI_FAILURE);
}
ncomps = PM_NUMCMPTS(dip);
for (i = 0; i < ncomps; i++) {
if (pm_set_power(dip, i, normal[i],
PM_LEVEL_UPONLY, canblock, 0, &result) != DDI_SUCCESS) {
changefailed++;
PMD(PMD_ALLNORM | PMD_FAIL, ("%s: failed to set "
"%s@%s(%s#%d)[%d] to %d, errno %d\n", pmf,
PM_DEVICE(dip), i, normal[i], result))
}
}
kmem_free(normal, size);
if (changefailed) {
PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) "
"to full power\n", pmf, changefailed, PM_DEVICE(dip)))
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* Returns true if all components of device are at normal power
*/
int
pm_all_at_normal(dev_info_t *dip)
{
PMD_FUNC(pmf, "all_at_normal")
int *normal;
int i;
size_t size;
PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) {
PMD(PMD_ALLNORM, ("%s: can't get normal power\n", pmf))
return (DDI_FAILURE);
}
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
int current = PM_CURPOWER(dip, i);
if (normal[i] > current) {
PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d) comp=%d, "
"norm=%d, cur=%d\n", pmf, PM_DEVICE(dip), i,
normal[i], current))
break;
}
}
kmem_free(normal, size);
if (i != PM_NUMCMPTS(dip)) {
return (0);
}
return (1);
}
static void bring_pmdep_up(dev_info_t *, int);
static void
bring_wekeeps_up(char *keeper)
{
PMD_FUNC(pmf, "bring_wekeeps_up")
int i;
pm_pdr_t *dp;
pm_info_t *wku_info;
char *kept_path;
dev_info_t *kept;
if (panicstr) {
return;
}
/*
* We process the request even if the keeper detaches because
* detach processing expects this to increment kidsupcnt of kept.
*/
PMD(PMD_BRING, ("%s: keeper= %s\n", pmf, keeper))
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (strcmp(dp->pdr_keeper, keeper) != 0)
continue;
for (i = 0; i < dp->pdr_kept_count; i++) {
kept_path = dp->pdr_kept_paths[i];
if (kept_path == NULL)
continue;
ASSERT(kept_path[0] != '\0');
if ((kept = pm_name_to_dip(kept_path, 1)) == NULL)
continue;
wku_info = PM_GET_PM_INFO(kept);
if (wku_info == NULL) {
if (kept)
ddi_release_devi(kept);
continue;
}
/*
* Don't mess with it if it is being detached, it isn't
* safe to call its power entry point
*/
if (wku_info->pmi_dev_pm_state & PM_DETACHING) {
if (kept)
ddi_release_devi(kept);
continue;
}
bring_pmdep_up(kept, 1);
ddi_release_devi(kept);
}
}
}
/*
* Bring up the 'kept' device passed as argument
*/
static void
bring_pmdep_up(dev_info_t *kept_dip, int hold)
{
PMD_FUNC(pmf, "bring_pmdep_up")
int is_all_at_normal = 0;
/*
* If the kept device has been unmanaged, do nothing.
*/
if (!PM_GET_PM_INFO(kept_dip))
return;
/* Just ignore DIRECT PM device till they are released. */
if (!pm_processes_stopped && PM_ISDIRECT(kept_dip) &&
!(is_all_at_normal = pm_all_at_normal(kept_dip))) {
PMD(PMD_BRING, ("%s: can't bring up PM_DIRECT %s@%s(%s#%d) "
"controlling process did something else\n", pmf,
PM_DEVICE(kept_dip)))
DEVI(kept_dip)->devi_pm_flags |= PMC_SKIP_BRINGUP;
return;
}
/* if we got here the keeper had a transition from OFF->ON */
if (hold)
pm_hold_power(kept_dip);
if (!is_all_at_normal)
(void) pm_all_to_normal(kept_dip, PM_CANBLOCK_FAIL);
}
/*
* A bunch of stuff that belongs only to the next routine (or two)
*/
static const char namestr[] = "NAME=";
static const int nameln = sizeof (namestr) - 1;
static const char pmcompstr[] = "pm-components";
struct pm_comp_pkg {
pm_comp_t *comp;
struct pm_comp_pkg *next;
};
#define isdigit(ch) ((ch) >= '0' && (ch) <= '9')
#define isxdigit(ch) (isdigit(ch) || ((ch) >= 'a' && (ch) <= 'f') || \
((ch) >= 'A' && (ch) <= 'F'))
/*
* Rather than duplicate this code ...
* (this code excerpted from the function that follows it)
*/
#define FINISH_COMP { \
ASSERT(compp); \
compp->pmc_lnames_sz = size; \
tp = compp->pmc_lname_buf = kmem_alloc(size, KM_SLEEP); \
compp->pmc_numlevels = level; \
compp->pmc_lnames = kmem_alloc(level * sizeof (char *), KM_SLEEP); \
compp->pmc_lvals = kmem_alloc(level * sizeof (int), KM_SLEEP); \
compp->pmc_thresh = kmem_alloc(level * sizeof (int), KM_SLEEP); \
/* copy string out of prop array into buffer */ \
for (j = 0; j < level; j++) { \
compp->pmc_thresh[j] = INT_MAX; /* only [0] sticks */ \
compp->pmc_lvals[j] = lvals[j]; \
(void) strcpy(tp, lnames[j]); \
compp->pmc_lnames[j] = tp; \
tp += lszs[j]; \
} \
ASSERT(tp > compp->pmc_lname_buf && tp <= \
compp->pmc_lname_buf + compp->pmc_lnames_sz); \
}
/*
* Create (empty) component data structures.
*/
static void
e_pm_create_components(dev_info_t *dip, int num_components)
{
struct pm_component *compp, *ocompp;
int i, size = 0;
ASSERT(!PM_IAM_LOCKING_DIP(dip));
ASSERT(!DEVI(dip)->devi_pm_components);
ASSERT(!(DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE));
size = sizeof (struct pm_component) * num_components;
compp = kmem_zalloc(size, KM_SLEEP);
ocompp = compp;
DEVI(dip)->devi_pm_comp_size = size;
DEVI(dip)->devi_pm_num_components = num_components;
PM_LOCK_BUSY(dip);
for (i = 0; i < num_components; i++) {
compp->pmc_timestamp = gethrestime_sec();
compp->pmc_norm_pwr = (uint_t)-1;
compp++;
}
PM_UNLOCK_BUSY(dip);
DEVI(dip)->devi_pm_components = ocompp;
DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_DONE;
}
/*
* Parse hex or decimal value from char string
*/
static char *
pm_parsenum(char *cp, int *valp)
{
int ch, offset;
char numbuf[256];
char *np = numbuf;
int value = 0;
ch = *cp++;
if (isdigit(ch)) {
if (ch == '0') {
if ((ch = *cp++) == 'x' || ch == 'X') {
ch = *cp++;
while (isxdigit(ch)) {
*np++ = (char)ch;
ch = *cp++;
}
*np = 0;
cp--;
goto hexval;
} else {
goto digit;
}
} else {
digit:
while (isdigit(ch)) {
*np++ = (char)ch;
ch = *cp++;
}
*np = 0;
cp--;
goto decval;
}
} else
return (NULL);
hexval:
for (np = numbuf; *np; np++) {
if (*np >= 'a' && *np <= 'f')
offset = 'a' - 10;
else if (*np >= 'A' && *np <= 'F')
offset = 'A' - 10;
else if (*np >= '0' && *np <= '9')
offset = '0';
value *= 16;
value += *np - offset;
}
*valp = value;
return (cp);
decval:
offset = '0';
for (np = numbuf; *np; np++) {
value *= 10;
value += *np - offset;
}
*valp = value;
return (cp);
}
/*
* Set max (previously documented as "normal") power.
*/
static void
e_pm_set_max_power(dev_info_t *dip, int component_number, int level)
{
PM_CP(dip, component_number)->pmc_norm_pwr = level;
}
/*
* Get max (previously documented as "normal") power.
*/
static int
e_pm_get_max_power(dev_info_t *dip, int component_number)
{
return (PM_CP(dip, component_number)->pmc_norm_pwr);
}
/*
* Internal routine for destroying components
* It is called even when there might not be any, so it must be forgiving.
*/
static void
e_pm_destroy_components(dev_info_t *dip)
{
int i;
struct pm_component *cp;
ASSERT(!PM_IAM_LOCKING_DIP(dip));
if (PM_NUMCMPTS(dip) == 0)
return;
cp = DEVI(dip)->devi_pm_components;
ASSERT(cp);
for (i = 0; i < PM_NUMCMPTS(dip); i++, cp++) {
int nlevels = cp->pmc_comp.pmc_numlevels;
kmem_free(cp->pmc_comp.pmc_lvals, nlevels * sizeof (int));
kmem_free(cp->pmc_comp.pmc_thresh, nlevels * sizeof (int));
/*
* For BC nodes, the rest is static in bc_comp, so skip it
*/
if (PM_ISBC(dip))
continue;
kmem_free(cp->pmc_comp.pmc_name, cp->pmc_comp.pmc_name_sz);
kmem_free(cp->pmc_comp.pmc_lnames, nlevels * sizeof (char *));
kmem_free(cp->pmc_comp.pmc_lname_buf,
cp->pmc_comp.pmc_lnames_sz);
}
kmem_free(DEVI(dip)->devi_pm_components, DEVI(dip)->devi_pm_comp_size);
DEVI(dip)->devi_pm_components = NULL;
DEVI(dip)->devi_pm_num_components = 0;
DEVI(dip)->devi_pm_flags &=
~(PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED);
}
/*
* Read the pm-components property (if there is one) and use it to set up
* components. Returns a pointer to an array of component structures if
* pm-components found and successfully parsed, else returns NULL.
* Sets error return *errp to true to indicate a failure (as opposed to no
* property being present).
*/
pm_comp_t *
pm_autoconfig(dev_info_t *dip, int *errp)
{
PMD_FUNC(pmf, "autoconfig")
uint_t nelems;
char **pp;
pm_comp_t *compp = NULL;
int i, j, level, components = 0;
size_t size = 0;
struct pm_comp_pkg *p, *ptail;
struct pm_comp_pkg *phead = NULL;
int *lvals = NULL;
int *lszs = NULL;
int *np = NULL;
int npi = 0;
char **lnames = NULL;
char *cp, *tp;
pm_comp_t *ret = NULL;
ASSERT(!PM_IAM_LOCKING_DIP(dip));
*errp = 0; /* assume success */
if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
(char *)pmcompstr, &pp, &nelems) != DDI_PROP_SUCCESS) {
return (NULL);
}
if (nelems < 3) { /* need at least one name and two levels */
goto errout;
}
/*
* pm_create_components is no longer allowed
*/
if (PM_NUMCMPTS(dip) != 0) {
PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) has %d comps\n",
pmf, PM_DEVICE(dip), PM_NUMCMPTS(dip)))
goto errout;
}
lvals = kmem_alloc(nelems * sizeof (int), KM_SLEEP);
lszs = kmem_alloc(nelems * sizeof (int), KM_SLEEP);
lnames = kmem_alloc(nelems * sizeof (char *), KM_SLEEP);
np = kmem_alloc(nelems * sizeof (int), KM_SLEEP);
level = 0;
phead = NULL;
for (i = 0; i < nelems; i++) {
cp = pp[i];
if (!isdigit(*cp)) { /* must be name */
if (strncmp(cp, namestr, nameln) != 0) {
goto errout;
}
if (i != 0) {
if (level == 0) { /* no level spec'd */
PMD(PMD_ERROR, ("%s: no level spec'd\n",
pmf))
goto errout;
}
np[npi++] = lvals[level - 1];
/* finish up previous component levels */
FINISH_COMP;
}
cp += nameln;
if (!*cp) {
PMD(PMD_ERROR, ("%s: nsa\n", pmf))
goto errout;
}
p = kmem_zalloc(sizeof (*phead), KM_SLEEP);
if (phead == NULL) {
phead = ptail = p;
} else {
ptail->next = p;
ptail = p;
}
compp = p->comp = kmem_zalloc(sizeof (pm_comp_t),
KM_SLEEP);
compp->pmc_name_sz = strlen(cp) + 1;
compp->pmc_name = kmem_zalloc(compp->pmc_name_sz,
KM_SLEEP);
(void) strncpy(compp->pmc_name, cp, compp->pmc_name_sz);
components++;
level = 0;
} else { /* better be power level <num>=<name> */
#ifdef DEBUG
tp = cp;
#endif
if (i == 0 ||
(cp = pm_parsenum(cp, &lvals[level])) == NULL) {
PMD(PMD_ERROR, ("%s: parsenum(%s)\n", pmf, tp))
goto errout;
}
#ifdef DEBUG
tp = cp;
#endif
if (*cp++ != '=' || !*cp) {
PMD(PMD_ERROR, ("%s: ex =, got %s\n", pmf, tp))
goto errout;
}
lszs[level] = strlen(cp) + 1;
size += lszs[level];
lnames[level] = cp; /* points into prop string */
level++;
}
}
np[npi++] = lvals[level - 1];
if (level == 0) { /* ended with a name */
PMD(PMD_ERROR, ("%s: ewn\n", pmf))
goto errout;
}
FINISH_COMP;
/*
* Now we have a list of components--we have to return instead an
* array of them, but we can just copy the top level and leave
* the rest as is
*/
(void) e_pm_create_components(dip, components);
for (i = 0; i < components; i++)
e_pm_set_max_power(dip, i, np[i]);
ret = kmem_zalloc(components * sizeof (pm_comp_t), KM_SLEEP);
for (i = 0, p = phead; i < components; i++) {
ASSERT(p);
/*
* Now sanity-check values: levels must be monotonically
* increasing
*/
if (p->comp->pmc_numlevels < 2) {
PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) only %d "
"levels\n", pmf,
p->comp->pmc_name, PM_DEVICE(dip),
p->comp->pmc_numlevels))
goto errout;
}
for (j = 0; j < p->comp->pmc_numlevels; j++) {
if ((p->comp->pmc_lvals[j] < 0) || ((j > 0) &&
(p->comp->pmc_lvals[j] <=
p->comp->pmc_lvals[j - 1]))) {
PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) "
"not mono. incr, %d follows %d\n", pmf,
p->comp->pmc_name, PM_DEVICE(dip),
p->comp->pmc_lvals[j],
p->comp->pmc_lvals[j - 1]))
goto errout;
}
}
ret[i] = *p->comp; /* struct assignment */
for (j = 0; j < i; j++) {
/*
* Test for unique component names
*/
if (strcmp(ret[j].pmc_name, ret[i].pmc_name) == 0) {
PMD(PMD_ERROR, ("%s: %s of %s@%s(%s#%d) not "
"unique\n", pmf, ret[j].pmc_name,
PM_DEVICE(dip)))
goto errout;
}
}
ptail = p;
p = p->next;
phead = p; /* errout depends on phead making sense */
kmem_free(ptail->comp, sizeof (*ptail->comp));
kmem_free(ptail, sizeof (*ptail));
}
out:
ddi_prop_free(pp);
if (lvals)
kmem_free(lvals, nelems * sizeof (int));
if (lszs)
kmem_free(lszs, nelems * sizeof (int));
if (lnames)
kmem_free(lnames, nelems * sizeof (char *));
if (np)
kmem_free(np, nelems * sizeof (int));
return (ret);
errout:
e_pm_destroy_components(dip);
*errp = 1; /* signal failure */
cmn_err(CE_CONT, "!pm: %s property ", pmcompstr);
for (i = 0; i < nelems - 1; i++)
cmn_err(CE_CONT, "!'%s', ", pp[i]);
if (nelems != 0)
cmn_err(CE_CONT, "!'%s'", pp[nelems - 1]);
cmn_err(CE_CONT, "! for %s@%s(%s#%d) is ill-formed.\n", PM_DEVICE(dip));
for (p = phead; p; ) {
pm_comp_t *pp;
int n;
ptail = p;
/*
* Free component data structures
*/
pp = p->comp;
n = pp->pmc_numlevels;
if (pp->pmc_name_sz) {
kmem_free(pp->pmc_name, pp->pmc_name_sz);
}
if (pp->pmc_lnames_sz) {
kmem_free(pp->pmc_lname_buf, pp->pmc_lnames_sz);
}
if (pp->pmc_lnames) {
kmem_free(pp->pmc_lnames, n * (sizeof (char *)));
}
if (pp->pmc_thresh) {
kmem_free(pp->pmc_thresh, n * (sizeof (int)));
}
if (pp->pmc_lvals) {
kmem_free(pp->pmc_lvals, n * (sizeof (int)));
}
p = ptail->next;
kmem_free(ptail, sizeof (*ptail));
}
if (ret != NULL)
kmem_free(ret, components * sizeof (pm_comp_t));
ret = NULL;
goto out;
}
/*
* Set threshold values for a devices components by dividing the target
* threshold (base) by the number of transitions and assign each transition
* that threshold. This will get the entire device down in the target time if
* all components are idle and even if there are dependencies among components.
*
* Devices may well get powered all the way down before the target time, but
* at least the EPA will be happy.
*/
void
pm_set_device_threshold(dev_info_t *dip, int base, int flag)
{
PMD_FUNC(pmf, "set_device_threshold")
int target_threshold = (base * 95) / 100;
int level, comp; /* loop counters */
int transitions = 0;
int ncomp = PM_NUMCMPTS(dip);
int thresh;
int remainder;
pm_comp_t *pmc;
int i, circ;
ASSERT(!PM_IAM_LOCKING_DIP(dip));
PM_LOCK_DIP(dip);
/*
* First we handle the easy one. If we're setting the default
* threshold for a node with children, then we set it to the
* default nexus threshold (currently 0) and mark it as default
* nexus threshold instead
*/
if (PM_IS_NEXUS(dip)) {
if (flag == PMC_DEF_THRESH) {
PMD(PMD_THRESH, ("%s: [%s@%s(%s#%d) NEXDEF]\n", pmf,
PM_DEVICE(dip)))
thresh = pm_default_nexus_threshold;
for (comp = 0; comp < ncomp; comp++) {
pmc = &PM_CP(dip, comp)->pmc_comp;
for (level = 1; level < pmc->pmc_numlevels;
level++) {
pmc->pmc_thresh[level] = thresh;
}
}
DEVI(dip)->devi_pm_dev_thresh =
pm_default_nexus_threshold;
/*
* If the nexus node is being reconfigured back to
* the default threshold, adjust the notlowest count.
*/
if (DEVI(dip)->devi_pm_flags &
(PMC_DEV_THRESH|PMC_COMP_THRESH)) {
PM_LOCK_POWER(dip, &circ);
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
if (PM_CURPOWER(dip, i) == 0)
continue;
mutex_enter(&pm_compcnt_lock);
ASSERT(pm_comps_notlowest);
pm_comps_notlowest--;
PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr "
"notlowest to %d\n", pmf,
PM_DEVICE(dip), pm_comps_notlowest))
if (pm_comps_notlowest == 0)
pm_ppm_notify_all_lowest(dip,
PM_ALL_LOWEST);
mutex_exit(&pm_compcnt_lock);
}
PM_UNLOCK_POWER(dip, circ);
}
DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE;
DEVI(dip)->devi_pm_flags |= PMC_NEXDEF_THRESH;
PM_UNLOCK_DIP(dip);
return;
} else if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) {
/*
* If the nexus node is being configured for a
* non-default threshold, include that node in
* the notlowest accounting.
*/
PM_LOCK_POWER(dip, &circ);
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
if (PM_CURPOWER(dip, i) == 0)
continue;
mutex_enter(&pm_compcnt_lock);
if (pm_comps_notlowest == 0)
pm_ppm_notify_all_lowest(dip,
PM_NOT_ALL_LOWEST);
pm_comps_notlowest++;
PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr "
"notlowest to %d\n", pmf,
PM_DEVICE(dip), pm_comps_notlowest))
mutex_exit(&pm_compcnt_lock);
}
PM_UNLOCK_POWER(dip, circ);
}
}
/*
* Compute the total number of transitions for all components
* of the device. Distribute the threshold evenly over them
*/
for (comp = 0; comp < ncomp; comp++) {
pmc = &PM_CP(dip, comp)->pmc_comp;
ASSERT(pmc->pmc_numlevels > 1);
transitions += pmc->pmc_numlevels - 1;
}
ASSERT(transitions);
thresh = target_threshold / transitions;
for (comp = 0; comp < ncomp; comp++) {
pmc = &PM_CP(dip, comp)->pmc_comp;
for (level = 1; level < pmc->pmc_numlevels; level++) {
pmc->pmc_thresh[level] = thresh;
}
}
#ifdef DEBUG
for (comp = 0; comp < ncomp; comp++) {
pmc = &PM_CP(dip, comp)->pmc_comp;
for (level = 1; level < pmc->pmc_numlevels; level++) {
PMD(PMD_THRESH, ("%s: thresh before %s@%s(%s#%d) "
"comp=%d, level=%d, %d\n", pmf, PM_DEVICE(dip),
comp, level, pmc->pmc_thresh[level]))
}
}
#endif
/*
* Distribute any remainder till they are all gone
*/
remainder = target_threshold - thresh * transitions;
level = 1;
#ifdef DEBUG
PMD(PMD_THRESH, ("%s: remainder=%d target_threshold=%d thresh=%d "
"trans=%d\n", pmf, remainder, target_threshold, thresh,
transitions))
#endif
while (remainder > 0) {
comp = 0;
while (remainder && (comp < ncomp)) {
pmc = &PM_CP(dip, comp)->pmc_comp;
if (level < pmc->pmc_numlevels) {
pmc->pmc_thresh[level] += 1;
remainder--;
}
comp++;
}
level++;
}
#ifdef DEBUG
for (comp = 0; comp < ncomp; comp++) {
pmc = &PM_CP(dip, comp)->pmc_comp;
for (level = 1; level < pmc->pmc_numlevels; level++) {
PMD(PMD_THRESH, ("%s: thresh after %s@%s(%s#%d) "
"comp=%d level=%d, %d\n", pmf, PM_DEVICE(dip),
comp, level, pmc->pmc_thresh[level]))
}
}
#endif
ASSERT(PM_IAM_LOCKING_DIP(dip));
DEVI(dip)->devi_pm_dev_thresh = base;
DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE;
DEVI(dip)->devi_pm_flags |= flag;
PM_UNLOCK_DIP(dip);
}
/*
* Called when there is no old-style platform power management driver
*/
static int
ddi_no_platform_power(power_req_t *req)
{
_NOTE(ARGUNUSED(req))
return (DDI_FAILURE);
}
/*
* This function calls the entry point supplied by the platform-specific
* pm driver to bring the device component 'pm_cmpt' to power level 'pm_level'.
* The use of global for getting the function name from platform-specific
* pm driver is not ideal, but it is simple and efficient.
* The previous property lookup was being done in the idle loop on swift
* systems without pmc chips and hurt deskbench performance as well as
* violating scheduler locking rules
*/
int (*pm_platform_power)(power_req_t *) = ddi_no_platform_power;
/*
* Old obsolete interface for a device to request a power change (but only
* an increase in power)
*/
int
ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level)
{
return (pm_raise_power(dip, cmpt, level));
}
/*
* The old obsolete interface to platform power management. Only used by
* Gypsy platform and APM on X86.
*/
int
ddi_power(dev_info_t *dip, int pm_cmpt, int pm_level)
{
power_req_t request;
request.request_type = PMR_SET_POWER;
request.req.set_power_req.who = dip;
request.req.set_power_req.cmpt = pm_cmpt;
request.req.set_power_req.level = pm_level;
return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL));
}
/*
* A driver can invoke this from its detach routine when DDI_SUSPEND is
* passed. Returns true if subsequent processing could result in power being
* removed from the device. The arg is not currently used because it is
* implicit in the operation of cpr/DR.
*/
int
ddi_removing_power(dev_info_t *dip)
{
_NOTE(ARGUNUSED(dip))
return (pm_powering_down);
}
/*
* Returns true if a device indicates that its parent handles suspend/resume
* processing for it.
*/
int
e_ddi_parental_suspend_resume(dev_info_t *dip)
{
return (DEVI(dip)->devi_pm_flags & PMC_PARENTAL_SR);
}
/*
* Called for devices which indicate that their parent does suspend/resume
* handling for them
*/
int
e_ddi_suspend(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
power_req_t request;
request.request_type = PMR_SUSPEND;
request.req.suspend_req.who = dip;
request.req.suspend_req.cmd = cmd;
return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL));
}
/*
* Called for devices which indicate that their parent does suspend/resume
* handling for them
*/
int
e_ddi_resume(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
power_req_t request;
request.request_type = PMR_RESUME;
request.req.resume_req.who = dip;
request.req.resume_req.cmd = cmd;
return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL));
}
/*
* Old obsolete exported interface for drivers to create components.
* This is now handled by exporting the pm-components property.
*/
int
pm_create_components(dev_info_t *dip, int num_components)
{
PMD_FUNC(pmf, "pm_create_components")
if (num_components < 1)
return (DDI_FAILURE);
if (!DEVI_IS_ATTACHING(dip)) {
return (DDI_FAILURE);
}
/* don't need to lock dip because attach is single threaded */
if (DEVI(dip)->devi_pm_components) {
PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) already has %d\n", pmf,
PM_DEVICE(dip), PM_NUMCMPTS(dip)))
return (DDI_FAILURE);
}
e_pm_create_components(dip, num_components);
DEVI(dip)->devi_pm_flags |= PMC_BC;
e_pm_default_components(dip, num_components);
return (DDI_SUCCESS);
}
/*
* Obsolete interface previously called by drivers to destroy their components
* at detach time. This is now done automatically. However, we need to keep
* this for the old drivers.
*/
void
pm_destroy_components(dev_info_t *dip)
{
PMD_FUNC(pmf, "pm_destroy_components")
dev_info_t *pdip = ddi_get_parent(dip);
PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
ASSERT(DEVI_IS_DETACHING(dip));
#ifdef DEBUG
if (!PM_ISBC(dip))
cmn_err(CE_WARN, "!driver exporting pm-components property "
"(%s@%s) calls pm_destroy_components", PM_NAME(dip),
PM_ADDR(dip));
#endif
/*
* We ignore this unless this is an old-style driver, except for
* printing the message above
*/
if (PM_NUMCMPTS(dip) == 0 || !PM_ISBC(dip)) {
PMD(PMD_REMDEV, ("%s: ignore %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
return;
}
ASSERT(PM_GET_PM_INFO(dip));
/*
* pm_unmanage will clear info pointer later, after dealing with
* dependencies
*/
ASSERT(!PM_GET_PM_SCAN(dip)); /* better be gone already */
/*
* Now adjust parent's kidsupcnt. We check only comp 0.
* Parents that get notification are not adjusted because their
* kidsupcnt is always 0 (or 1 during probe and attach).
*/
if ((PM_CURPOWER(dip, 0) != 0) && pdip && !PM_WANTS_NOTIFICATION(pdip))
pm_rele_power(pdip);
#ifdef DEBUG
else {
PMD(PMD_KIDSUP, ("%s: kuc stays %s@%s(%s#%d) comps gone\n",
pmf, PM_DEVICE(dip)))
}
#endif
e_pm_destroy_components(dip);
/*
* Forget we ever knew anything about the components of this device
*/
DEVI(dip)->devi_pm_flags &=
~(PMC_BC | PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED);
}
/*
* Exported interface for a driver to set a component busy.
*/
int
pm_busy_component(dev_info_t *dip, int cmpt)
{
struct pm_component *cp;
ASSERT(dip != NULL);
if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp))
return (DDI_FAILURE);
PM_LOCK_BUSY(dip);
cp->pmc_busycount++;
cp->pmc_timestamp = 0;
PM_UNLOCK_BUSY(dip);
return (DDI_SUCCESS);
}
/*
* Exported interface for a driver to set a component idle.
*/
int
pm_idle_component(dev_info_t *dip, int cmpt)
{
PMD_FUNC(pmf, "pm_idle_component")
struct pm_component *cp;
pm_scan_t *scanp = PM_GET_PM_SCAN(dip);
if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp))
return (DDI_FAILURE);
PM_LOCK_BUSY(dip);
if (cp->pmc_busycount) {
if (--(cp->pmc_busycount) == 0)
cp->pmc_timestamp = gethrestime_sec();
} else {
cp->pmc_timestamp = gethrestime_sec();
}
PM_UNLOCK_BUSY(dip);
/*
* if device becomes idle during idle down period, try scan it down
*/
if (scanp && PM_IS_PID(dip)) {
PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d) idle.\n", pmf,
PM_DEVICE(dip)))
pm_rescan(dip);
return (DDI_SUCCESS);
}
/*
* handle scan not running with nexus threshold == 0
*/
if (PM_IS_NEXUS(dip) && (cp->pmc_busycount == 0)) {
pm_rescan(dip);
}
return (DDI_SUCCESS);
}
/*
* This is the old obsolete interface called by drivers to set their normal
* power. Thus we can't fix its behavior or return a value.
* This functionality is replaced by the pm-component property.
* We'll only get components destroyed while no power management is
* going on (and the device is detached), so we don't need a mutex here
*/
void
pm_set_normal_power(dev_info_t *dip, int comp, int level)
{
PMD_FUNC(pmf, "set_normal_power")
#ifdef DEBUG
if (!PM_ISBC(dip))
cmn_err(CE_WARN, "!call to pm_set_normal_power() by %s@%s "
"(driver exporting pm-components property) ignored",
PM_NAME(dip), PM_ADDR(dip));
#endif
if (PM_ISBC(dip)) {
PMD(PMD_NORM, ("%s: %s@%s(%s#%d) set normal power comp=%d, "
"level=%d\n", pmf, PM_DEVICE(dip), comp, level))
e_pm_set_max_power(dip, comp, level);
e_pm_default_levels(dip, PM_CP(dip, comp), level);
}
}
/*
* Called on a successfully detached driver to free pm resources
*/
static void
pm_stop(dev_info_t *dip)
{
PMD_FUNC(pmf, "stop")
dev_info_t *pdip = ddi_get_parent(dip);
ASSERT(!PM_IAM_LOCKING_DIP(dip));
/* stopping scan, destroy scan data structure */
if (!PM_ISBC(dip)) {
pm_scan_stop(dip);
pm_scan_fini(dip);
}
if (PM_GET_PM_INFO(dip) != NULL) {
if (pm_unmanage(dip) == DDI_SUCCESS) {
/*
* Old style driver may have called
* pm_destroy_components already, but just in case ...
*/
e_pm_destroy_components(dip);
} else {
PMD(PMD_FAIL, ("%s: can't pm_unmanage %s@%s(%s#%d)\n",
pmf, PM_DEVICE(dip)))
}
} else {
if (PM_NUMCMPTS(dip))
e_pm_destroy_components(dip);
else {
if (DEVI(dip)->devi_pm_flags & PMC_NOPMKID) {
DEVI(dip)->devi_pm_flags &= ~PMC_NOPMKID;
if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
pm_rele_power(pdip);
} else if (pdip &&
MDI_VHCI(pdip) && MDI_CLIENT(dip)) {
(void) mdi_power(pdip,
MDI_PM_RELE_POWER,
(void *)dip, NULL, 0);
}
}
}
}
}
/*
* The node is the subject of a reparse pm props ioctl. Throw away the old
* info and start over.
*/
int
e_new_pm_props(dev_info_t *dip)
{
if (PM_GET_PM_INFO(dip) != NULL) {
pm_stop(dip);
if (e_pm_manage(dip, PM_STYLE_NEW) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
}
e_pm_props(dip);
return (DDI_SUCCESS);
}
/*
* Device has been attached, so process its pm properties
*/
void
e_pm_props(dev_info_t *dip)
{
char *pp;
int len;
int flags = 0;
int propflag = DDI_PROP_DONTPASS|DDI_PROP_CANSLEEP;
/*
* It doesn't matter if we do this more than once, we should always
* get the same answers, and if not, then the last one in is the
* best one.
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-hardware-state",
(caddr_t)&pp, &len) == DDI_PROP_SUCCESS) {
if (strcmp(pp, "needs-suspend-resume") == 0) {
flags = PMC_NEEDS_SR;
} else if (strcmp(pp, "no-suspend-resume") == 0) {
flags = PMC_NO_SR;
} else if (strcmp(pp, "parental-suspend-resume") == 0) {
flags = PMC_PARENTAL_SR;
} else {
cmn_err(CE_NOTE, "!device %s@%s has unrecognized "
"%s property value '%s'", PM_NAME(dip),
PM_ADDR(dip), "pm-hardware-state", pp);
}
kmem_free(pp, len);
}
/*
* This next segment (PMC_WANTS_NOTIFY) is in
* support of nexus drivers which will want to be involved in
* (or at least notified of) their child node's power level transitions.
* "pm-want-child-notification?" is defined by the parent.
*/
if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag,
"pm-want-child-notification?") && PM_HAS_BUS_POWER(dip))
flags |= PMC_WANTS_NOTIFY;
ASSERT(PM_HAS_BUS_POWER(dip) || !ddi_prop_exists(DDI_DEV_T_ANY,
dip, propflag, "pm-want-child-notification?"));
if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag,
"no-involuntary-power-cycles"))
flags |= PMC_NO_INVOL;
/*
* Is the device a CPU device?
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-class",
(caddr_t)&pp, &len) == DDI_PROP_SUCCESS) {
if (strcmp(pp, "CPU") == 0) {
flags |= PMC_CPU_DEVICE;
} else {
cmn_err(CE_NOTE, "!device %s@%s has unrecognized "
"%s property value '%s'", PM_NAME(dip),
PM_ADDR(dip), "pm-class", pp);
}
kmem_free(pp, len);
}
/* devfs single threads us */
DEVI(dip)->devi_pm_flags |= flags;
}
/*
* This is the DDI_CTLOPS_POWER handler that is used when there is no ppm
* driver which has claimed a node.
* Sets old_power in arg struct.
*/
static int
pm_default_ctlops(dev_info_t *dip, dev_info_t *rdip,
ddi_ctl_enum_t ctlop, void *arg, void *result)
{
_NOTE(ARGUNUSED(dip))
PMD_FUNC(pmf, "ctlops")
power_req_t *reqp = (power_req_t *)arg;
int retval;
dev_info_t *target_dip;
int new_level, old_level, cmpt;
#ifdef PMDDEBUG
char *format;
#endif
/*
* The interface for doing the actual power level changes is now
* through the DDI_CTLOPS_POWER bus_ctl, so that we can plug in
* different platform-specific power control drivers.
*
* This driver implements the "default" version of this interface.
* If no ppm driver has been installed then this interface is called
* instead.
*/
ASSERT(dip == NULL);
switch (ctlop) {
case DDI_CTLOPS_POWER:
switch (reqp->request_type) {
case PMR_PPM_SET_POWER:
{
target_dip = reqp->req.ppm_set_power_req.who;
ASSERT(target_dip == rdip);
new_level = reqp->req.ppm_set_power_req.new_level;
cmpt = reqp->req.ppm_set_power_req.cmpt;
/* pass back old power for the PM_LEVEL_UNKNOWN case */
old_level = PM_CURPOWER(target_dip, cmpt);
reqp->req.ppm_set_power_req.old_level = old_level;
retval = pm_power(target_dip, cmpt, new_level);
PMD(PMD_PPM, ("%s: PPM_SET_POWER %s@%s(%s#%d)[%d] %d->"
"%d %s\n", pmf, PM_DEVICE(target_dip), cmpt,
old_level, new_level, (retval == DDI_SUCCESS ?
"chd" : "no chg")))
return (retval);
}
case PMR_PPM_PRE_DETACH:
case PMR_PPM_POST_DETACH:
case PMR_PPM_PRE_ATTACH:
case PMR_PPM_POST_ATTACH:
case PMR_PPM_PRE_PROBE:
case PMR_PPM_POST_PROBE:
case PMR_PPM_PRE_RESUME:
case PMR_PPM_INIT_CHILD:
case PMR_PPM_UNINIT_CHILD:
#ifdef PMDDEBUG
switch (reqp->request_type) {
case PMR_PPM_PRE_DETACH:
format = "%s: PMR_PPM_PRE_DETACH "
"%s@%s(%s#%d)\n";
break;
case PMR_PPM_POST_DETACH:
format = "%s: PMR_PPM_POST_DETACH "
"%s@%s(%s#%d) rets %d\n";
break;
case PMR_PPM_PRE_ATTACH:
format = "%s: PMR_PPM_PRE_ATTACH "
"%s@%s(%s#%d)\n";
break;
case PMR_PPM_POST_ATTACH:
format = "%s: PMR_PPM_POST_ATTACH "
"%s@%s(%s#%d) rets %d\n";
break;
case PMR_PPM_PRE_PROBE:
format = "%s: PMR_PPM_PRE_PROBE "
"%s@%s(%s#%d)\n";
break;
case PMR_PPM_POST_PROBE:
format = "%s: PMR_PPM_POST_PROBE "
"%s@%s(%s#%d) rets %d\n";
break;
case PMR_PPM_PRE_RESUME:
format = "%s: PMR_PPM_PRE_RESUME "
"%s@%s(%s#%d) rets %d\n";
break;
case PMR_PPM_INIT_CHILD:
format = "%s: PMR_PPM_INIT_CHILD "
"%s@%s(%s#%d)\n";
break;
case PMR_PPM_UNINIT_CHILD:
format = "%s: PMR_PPM_UNINIT_CHILD "
"%s@%s(%s#%d)\n";
break;
default:
break;
}
PMD(PMD_PPM, (format, pmf, PM_DEVICE(rdip),
reqp->req.ppm_config_req.result))
#endif
return (DDI_SUCCESS);
case PMR_PPM_POWER_CHANGE_NOTIFY:
/*
* Nothing for us to do
*/
ASSERT(reqp->req.ppm_notify_level_req.who == rdip);
PMD(PMD_PPM, ("%s: PMR_PPM_POWER_CHANGE_NOTIFY "
"%s@%s(%s#%d)[%d] %d->%d\n", pmf,
PM_DEVICE(reqp->req.ppm_notify_level_req.who),
reqp->req.ppm_notify_level_req.cmpt,
PM_CURPOWER(reqp->req.ppm_notify_level_req.who,
reqp->req.ppm_notify_level_req.cmpt),
reqp->req.ppm_notify_level_req.new_level))
return (DDI_SUCCESS);
case PMR_PPM_UNMANAGE:
PMD(PMD_PPM, ("%s: PMR_PPM_UNMANAGE %s@%s(%s#%d)\n",
pmf, PM_DEVICE(rdip)))
return (DDI_SUCCESS);
case PMR_PPM_LOCK_POWER:
pm_lock_power_single(reqp->req.ppm_lock_power_req.who,
reqp->req.ppm_lock_power_req.circp);
return (DDI_SUCCESS);
case PMR_PPM_UNLOCK_POWER:
pm_unlock_power_single(
reqp->req.ppm_unlock_power_req.who,
reqp->req.ppm_unlock_power_req.circ);
return (DDI_SUCCESS);
case PMR_PPM_TRY_LOCK_POWER:
*(int *)result = pm_try_locking_power_single(
reqp->req.ppm_lock_power_req.who,
reqp->req.ppm_lock_power_req.circp);
return (DDI_SUCCESS);
case PMR_PPM_POWER_LOCK_OWNER:
target_dip = reqp->req.ppm_power_lock_owner_req.who;
ASSERT(target_dip == rdip);
reqp->req.ppm_power_lock_owner_req.owner =
DEVI(rdip)->devi_busy_thread;
return (DDI_SUCCESS);
default:
PMD(PMD_ERROR, ("%s: default!\n", pmf))
return (DDI_FAILURE);
}
default:
PMD(PMD_ERROR, ("%s: unknown\n", pmf))
return (DDI_FAILURE);
}
}
/*
* We overload the bus_ctl ops here--perhaps we ought to have a distinct
* power_ops struct for this functionality instead?
* However, we only ever do this on a ppm driver.
*/
int
pm_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v)
{
int (*fp)();
/* if no ppm handler, call the default routine */
if (d == NULL) {
return (pm_default_ctlops(d, r, op, a, v));
}
if (!d || !r)
return (DDI_FAILURE);
ASSERT(DEVI(d)->devi_ops && DEVI(d)->devi_ops->devo_bus_ops &&
DEVI(d)->devi_ops->devo_bus_ops->bus_ctl);
fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl;
return ((*fp)(d, r, op, a, v));
}
/*
* Called on a node when attach completes or the driver makes its first pm
* call (whichever comes first).
* In the attach case, device may not be power manageable at all.
* Don't need to lock the dip because we're single threaded by the devfs code
*/
static int
pm_start(dev_info_t *dip)
{
PMD_FUNC(pmf, "start")
int ret;
dev_info_t *pdip = ddi_get_parent(dip);
int e_pm_manage(dev_info_t *, int);
void pm_noinvol_specd(dev_info_t *dip);
e_pm_props(dip);
pm_noinvol_specd(dip);
/*
* If this dip has already been processed, don't mess with it
* (but decrement the speculative count we did above, as whatever
* code put it under pm already will have dealt with it)
*/
if (PM_GET_PM_INFO(dip)) {
PMD(PMD_KIDSUP, ("%s: pm already done for %s@%s(%s#%d)\n",
pmf, PM_DEVICE(dip)))
return (0);
}
ret = e_pm_manage(dip, PM_STYLE_UNKNOWN);
if (PM_GET_PM_INFO(dip) == NULL) {
/*
* keep the kidsupcount increment as is
*/
DEVI(dip)->devi_pm_flags |= PMC_NOPMKID;
if (pdip && !PM_WANTS_NOTIFICATION(pdip)) {
pm_hold_power(pdip);
} else if (pdip && MDI_VHCI(pdip) && MDI_CLIENT(dip)) {
(void) mdi_power(pdip, MDI_PM_HOLD_POWER,
(void *)dip, NULL, 0);
}
PMD(PMD_KIDSUP, ("%s: pm of %s@%s(%s#%d) failed, parent "
"left up\n", pmf, PM_DEVICE(dip)))
}
return (ret);
}
/*
* Keep a list of recorded thresholds. For now we just keep a list and
* search it linearly. We don't expect too many entries. Can always hash it
* later if we need to.
*/
void
pm_record_thresh(pm_thresh_rec_t *rp)
{
pm_thresh_rec_t *pptr, *ptr;
ASSERT(*rp->ptr_physpath);
rw_enter(&pm_thresh_rwlock, RW_WRITER);
for (pptr = NULL, ptr = pm_thresh_head;
ptr; pptr = ptr, ptr = ptr->ptr_next) {
if (strcmp(rp->ptr_physpath, ptr->ptr_physpath) == 0) {
/* replace this one */
rp->ptr_next = ptr->ptr_next;
if (pptr) {
pptr->ptr_next = rp;
} else {
pm_thresh_head = rp;
}
rw_exit(&pm_thresh_rwlock);
kmem_free(ptr, ptr->ptr_size);
return;
}
continue;
}
/*
* There was not a match in the list, insert this one in front
*/
if (pm_thresh_head) {
rp->ptr_next = pm_thresh_head;
pm_thresh_head = rp;
} else {
rp->ptr_next = NULL;
pm_thresh_head = rp;
}
rw_exit(&pm_thresh_rwlock);
}
/*
* Create a new dependency record and hang a new dependency entry off of it
*/
pm_pdr_t *
newpdr(char *kept, char *keeps, int isprop)
{
size_t size = strlen(kept) + strlen(keeps) + 2 + sizeof (pm_pdr_t);
pm_pdr_t *p = kmem_zalloc(size, KM_SLEEP);
p->pdr_size = size;
p->pdr_isprop = isprop;
p->pdr_kept_paths = NULL;
p->pdr_kept_count = 0;
p->pdr_kept = (char *)((intptr_t)p + sizeof (pm_pdr_t));
(void) strcpy(p->pdr_kept, kept);
p->pdr_keeper = (char *)((intptr_t)p->pdr_kept + strlen(kept) + 1);
(void) strcpy(p->pdr_keeper, keeps);
ASSERT((intptr_t)p->pdr_keeper + strlen(p->pdr_keeper) + 1 <=
(intptr_t)p + size);
ASSERT((intptr_t)p->pdr_kept + strlen(p->pdr_kept) + 1 <=
(intptr_t)p + size);
return (p);
}
/*
* Keep a list of recorded dependencies. We only keep the
* keeper -> kept list for simplification. At this point We do not
* care about whether the devices are attached or not yet,
* this would be done in pm_keeper() and pm_kept().
* If a PM_RESET_PM happens, then we tear down and forget the dependencies,
* and it is up to the user to issue the ioctl again if they want it
* (e.g. pmconfig)
* Returns true if dependency already exists in the list.
*/
int
pm_record_keeper(char *kept, char *keeper, int isprop)
{
PMD_FUNC(pmf, "record_keeper")
pm_pdr_t *npdr, *ppdr, *pdr;
PMD(PMD_KEEPS, ("%s: %s, %s\n", pmf, kept, keeper))
ASSERT(kept && keeper);
#ifdef DEBUG
if (pm_debug & PMD_KEEPS)
prdeps("pm_record_keeper entry");
#endif
for (ppdr = NULL, pdr = pm_dep_head; pdr;
ppdr = pdr, pdr = pdr->pdr_next) {
PMD(PMD_KEEPS, ("%s: check %s, %s\n", pmf, pdr->pdr_kept,
pdr->pdr_keeper))
if (strcmp(kept, pdr->pdr_kept) == 0 &&
strcmp(keeper, pdr->pdr_keeper) == 0) {
PMD(PMD_KEEPS, ("%s: match\n", pmf))
return (1);
}
}
/*
* We did not find any match, so we have to make an entry
*/
npdr = newpdr(kept, keeper, isprop);
if (ppdr) {
ASSERT(ppdr->pdr_next == NULL);
ppdr->pdr_next = npdr;
} else {
ASSERT(pm_dep_head == NULL);
pm_dep_head = npdr;
}
#ifdef DEBUG
if (pm_debug & PMD_KEEPS)
prdeps("pm_record_keeper after new record");
#endif
if (!isprop)
pm_unresolved_deps++;
else
pm_prop_deps++;
return (0);
}
/*
* Look up this device in the set of devices we've seen ioctls for
* to see if we are holding a threshold spec for it. If so, make it so.
* At ioctl time, we were given the physical path of the device.
*/
int
pm_thresh_specd(dev_info_t *dip)
{
void pm_apply_recorded_thresh(dev_info_t *, pm_thresh_rec_t *);
char *path = 0;
char pathbuf[MAXNAMELEN];
pm_thresh_rec_t *rp;
path = ddi_pathname(dip, pathbuf);
rw_enter(&pm_thresh_rwlock, RW_READER);
for (rp = pm_thresh_head; rp; rp = rp->ptr_next) {
if (strcmp(rp->ptr_physpath, path) != 0)
continue;
pm_apply_recorded_thresh(dip, rp);
rw_exit(&pm_thresh_rwlock);
return (1);
}
rw_exit(&pm_thresh_rwlock);
return (0);
}
static int
pm_set_keeping(dev_info_t *keeper, dev_info_t *kept)
{
PMD_FUNC(pmf, "set_keeping")
int j, up = 0, circ;
void prdeps(char *);
PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), kept=%s@%s(%s#%d)\n", pmf,
PM_DEVICE(keeper), PM_DEVICE(kept)))
#ifdef DEBUG
if (pm_debug & PMD_KEEPS)
prdeps("Before PAD\n");
#endif
ASSERT(keeper != kept);
if (PM_GET_PM_INFO(keeper) == NULL) {
cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device "
"%s@%s(%s#%d), but the former is not power managed",
PM_DEVICE(keeper), PM_DEVICE(kept));
PMD((PMD_FAIL | PMD_KEEPS), ("%s: keeper %s@%s(%s#%d) is not"
"power managed\n", pmf, PM_DEVICE(keeper)))
return (0);
}
if (PM_GET_PM_INFO(kept) == NULL) {
cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device "
"%s@%s(%s#%d), but the latter is not power managed",
PM_DEVICE(keeper), PM_DEVICE(kept));
PMD((PMD_FAIL | PMD_KEEPS), ("%s: kept %s@%s(%s#%d) is not"
"power managed\n", pmf, PM_DEVICE(kept)))
return (0);
}
PM_LOCK_POWER(keeper, &circ);
for (j = 0; j < PM_NUMCMPTS(keeper); j++) {
if (PM_CURPOWER(keeper, j)) {
up++;
break;
}
}
if (up) {
/* Bringup and maintain a hold on the kept */
PMD(PMD_KEEPS, ("%s: place a hold on kept %s@%s(%s#%d)\n", pmf,
PM_DEVICE(kept)))
bring_pmdep_up(kept, 1);
}
PM_UNLOCK_POWER(keeper, circ);
#ifdef DEBUG
if (pm_debug & PMD_KEEPS)
prdeps("After PAD\n");
#endif
return (1);
}
/*
* Should this device keep up another device?
* Look up this device in the set of devices we've seen ioctls for
* to see if we are holding a dependency spec for it. If so, make it so.
* Because we require the kept device to be attached already in order to
* make the list entry (and hold it), we only need to look for keepers.
* At ioctl time, we were given the physical path of the device.
*/
int
pm_keeper(char *keeper)
{
PMD_FUNC(pmf, "keeper")
int pm_apply_recorded_dep(dev_info_t *, pm_pdr_t *);
dev_info_t *dip;
pm_pdr_t *dp;
dev_info_t *kept = NULL;
int ret = 0;
int i;
if (!pm_unresolved_deps && !pm_prop_deps)
return (0);
ASSERT(keeper != NULL);
dip = pm_name_to_dip(keeper, 1);
if (dip == NULL)
return (0);
PMD(PMD_KEEPS, ("%s: keeper=%s\n", pmf, keeper))
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (!dp->pdr_isprop) {
if (!pm_unresolved_deps)
continue;
PMD(PMD_KEEPS, ("%s: keeper %s\n", pmf, dp->pdr_keeper))
if (dp->pdr_satisfied) {
PMD(PMD_KEEPS, ("%s: satisfied\n", pmf))
continue;
}
if (strcmp(dp->pdr_keeper, keeper) == 0) {
ret += pm_apply_recorded_dep(dip, dp);
}
} else {
if (strcmp(dp->pdr_keeper, keeper) != 0)
continue;
for (i = 0; i < dp->pdr_kept_count; i++) {
if (dp->pdr_kept_paths[i] == NULL)
continue;
kept = pm_name_to_dip(dp->pdr_kept_paths[i], 1);
if (kept == NULL)
continue;
ASSERT(ddi_prop_exists(DDI_DEV_T_ANY, kept,
DDI_PROP_DONTPASS, dp->pdr_kept));
PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), "
"kept=%s@%s(%s#%d) keptcnt=%d\n",
pmf, PM_DEVICE(dip), PM_DEVICE(kept),
dp->pdr_kept_count))
if (kept != dip) {
ret += pm_set_keeping(dip, kept);
}
ddi_release_devi(kept);
}
}
}
ddi_release_devi(dip);
return (ret);
}
/*
* Should this device be kept up by another device?
* Look up all dependency recorded from PM_ADD_DEPENDENT and
* PM_ADD_DEPENDENT_PROPERTY ioctls. Record down on the keeper's
* kept device lists.
*/
static int
pm_kept(char *keptp)
{
PMD_FUNC(pmf, "kept")
pm_pdr_t *dp;
int found = 0;
int ret = 0;
dev_info_t *keeper;
dev_info_t *kept;
size_t length;
int i;
char **paths;
char *path;
ASSERT(keptp != NULL);
kept = pm_name_to_dip(keptp, 1);
if (kept == NULL)
return (0);
PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(kept)))
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (dp->pdr_isprop) {
PMD(PMD_KEEPS, ("%s: property %s\n", pmf, dp->pdr_kept))
if (ddi_prop_exists(DDI_DEV_T_ANY, kept,
DDI_PROP_DONTPASS, dp->pdr_kept)) {
/*
* Dont allow self dependency.
*/
if (strcmp(dp->pdr_keeper, keptp) == 0)
continue;
keeper = pm_name_to_dip(dp->pdr_keeper, 1);
if (keeper == NULL)
continue;
PMD(PMD_KEEPS, ("%s: adding to kepts path list "
"%p\n", pmf, (void *)kept))
#ifdef DEBUG
if (pm_debug & PMD_DEP)
prdeps("Before Adding from pm_kept\n");
#endif
/*
* Add ourselves to the dip list.
*/
if (dp->pdr_kept_count == 0) {
length = strlen(keptp) + 1;
path =
kmem_alloc(length, KM_SLEEP);
paths = kmem_alloc(sizeof (char **),
KM_SLEEP);
(void) strcpy(path, keptp);
paths[0] = path;
dp->pdr_kept_paths = paths;
dp->pdr_kept_count++;
} else {
/* Check to see if already on list */
for (i = 0; i < dp->pdr_kept_count;
i++) {
if (strcmp(keptp,
dp->pdr_kept_paths[i])
== 0) {
found++;
break;
}
}
if (found) {
ddi_release_devi(keeper);
continue;
}
length = dp->pdr_kept_count *
sizeof (char **);
paths = kmem_alloc(
length + sizeof (char **),
KM_SLEEP);
if (dp->pdr_kept_count) {
bcopy(dp->pdr_kept_paths,
paths, length);
kmem_free(dp->pdr_kept_paths,
length);
}
dp->pdr_kept_paths = paths;
length = strlen(keptp) + 1;
path =
kmem_alloc(length, KM_SLEEP);
(void) strcpy(path, keptp);
dp->pdr_kept_paths[i] = path;
dp->pdr_kept_count++;
}
#ifdef DEBUG
if (pm_debug & PMD_DEP)
prdeps("After from pm_kept\n");
#endif
if (keeper) {
ret += pm_set_keeping(keeper, kept);
ddi_release_devi(keeper);
}
}
} else {
/*
* pm_keeper would be called later to do
* the actual pm_set_keeping.
*/
PMD(PMD_KEEPS, ("%s: adding to kepts path list %p\n",
pmf, (void *)kept))
#ifdef DEBUG
if (pm_debug & PMD_DEP)
prdeps("Before Adding from pm_kept\n");
#endif
if (strcmp(keptp, dp->pdr_kept) == 0) {
if (dp->pdr_kept_paths == NULL) {
length = strlen(keptp) + 1;
path =
kmem_alloc(length, KM_SLEEP);
paths = kmem_alloc(sizeof (char **),
KM_SLEEP);
(void) strcpy(path, keptp);
paths[0] = path;
dp->pdr_kept_paths = paths;
dp->pdr_kept_count++;
}
}
#ifdef DEBUG
if (pm_debug & PMD_DEP)
prdeps("After from pm_kept\n");
#endif
}
}
ddi_release_devi(kept);
return (ret);
}
/*
* Apply a recorded dependency. dp specifies the dependency, and
* keeper is already known to be the device that keeps up the other (kept) one.
* We have to the whole tree for the "kept" device, then apply
* the dependency (which may already be applied).
*/
int
pm_apply_recorded_dep(dev_info_t *keeper, pm_pdr_t *dp)
{
PMD_FUNC(pmf, "apply_recorded_dep")
dev_info_t *kept = NULL;
int ret = 0;
char *keptp = NULL;
/*
* Device to Device dependency can only be 1 to 1.
*/
if (dp->pdr_kept_paths == NULL)
return (0);
keptp = dp->pdr_kept_paths[0];
if (keptp == NULL)
return (0);
ASSERT(*keptp != '\0');
kept = pm_name_to_dip(keptp, 1);
if (kept == NULL)
return (0);
if (kept) {
PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf,
dp->pdr_keeper, keptp))
if (pm_set_keeping(keeper, kept)) {
ASSERT(dp->pdr_satisfied == 0);
dp->pdr_satisfied = 1;
ASSERT(pm_unresolved_deps);
pm_unresolved_deps--;
ret++;
}
}
ddi_release_devi(kept);
return (ret);
}
/*
* Called from common/io/pm.c
*/
int
pm_cur_power(pm_component_t *cp)
{
return (cur_power(cp));
}
/*
* External interface to sanity-check a power level.
*/
int
pm_valid_power(dev_info_t *dip, int comp, int level)
{
PMD_FUNC(pmf, "valid_power")
if (comp >= 0 && comp < PM_NUMCMPTS(dip) && level >= 0)
return (e_pm_valid_power(dip, comp, level));
else {
PMD(PMD_FAIL, ("%s: comp=%d, ncomp=%d, level=%d\n",
pmf, comp, PM_NUMCMPTS(dip), level))
return (0);
}
}
/*
* Called when a device that is direct power managed needs to change state.
* This routine arranges to block the request until the process managing
* the device makes the change (or some other incompatible change) or
* the process closes /dev/pm.
*/
static int
pm_block(dev_info_t *dip, int comp, int newpower, int oldpower)
{
pm_rsvp_t *new = kmem_zalloc(sizeof (*new), KM_SLEEP);
int ret = 0;
void pm_dequeue_blocked(pm_rsvp_t *);
void pm_enqueue_blocked(pm_rsvp_t *);
ASSERT(!pm_processes_stopped);
ASSERT(PM_IAM_LOCKING_DIP(dip));
new->pr_dip = dip;
new->pr_comp = comp;
new->pr_newlevel = newpower;
new->pr_oldlevel = oldpower;
cv_init(&new->pr_cv, NULL, CV_DEFAULT, NULL);
mutex_enter(&pm_rsvp_lock);
pm_enqueue_blocked(new);
pm_enqueue_notify(PSC_PENDING_CHANGE, dip, comp, newpower, oldpower,
PM_CANBLOCK_BLOCK);
PM_UNLOCK_DIP(dip);
/*
* truss may make the cv_wait_sig return prematurely
*/
while (ret == 0) {
/*
* Normally there will be no user context involved, but if
* there is (e.g. we are here via an ioctl call to a driver)
* then we should allow the process to abort the request,
* or we get an unkillable process if the same thread does
* PM_DIRECT_PM and pm_raise_power
*/
if (cv_wait_sig(&new->pr_cv, &pm_rsvp_lock) == 0) {
ret = PMP_FAIL;
} else {
ret = new->pr_retval;
}
}
pm_dequeue_blocked(new);
mutex_exit(&pm_rsvp_lock);
cv_destroy(&new->pr_cv);
kmem_free(new, sizeof (*new));
return (ret);
}
/*
* Returns true if the process is interested in power level changes (has issued
* PM_GET_STATE_CHANGE ioctl).
*/
int
pm_interest_registered(int clone)
{
ASSERT(clone >= 0 && clone < PM_MAX_CLONE - 1);
return (pm_interest[clone]);
}
static void pm_enqueue_pscc(pscc_t *, pscc_t **);
/*
* Process with clone has just done PM_DIRECT_PM on dip, or has asked to
* watch all state transitions (dip == NULL). Set up data
* structs to communicate with process about state changes.
*/
void
pm_register_watcher(int clone, dev_info_t *dip)
{
pscc_t *p;
psce_t *psce;
/*
* We definitely need a control struct, then we have to search to see
* there is already an entries struct (in the dip != NULL case).
*/
pscc_t *pscc = kmem_zalloc(sizeof (*pscc), KM_SLEEP);
pscc->pscc_clone = clone;
pscc->pscc_dip = dip;
if (dip) {
int found = 0;
rw_enter(&pm_pscc_direct_rwlock, RW_WRITER);
for (p = pm_pscc_direct; p; p = p->pscc_next) {
/*
* Already an entry for this clone, so just use it
* for the new one (for the case where a single
* process is watching multiple devices)
*/
if (p->pscc_clone == clone) {
pscc->pscc_entries = p->pscc_entries;
pscc->pscc_entries->psce_references++;
found++;
break;
}
}
if (!found) { /* create a new one */
psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP);
mutex_init(&psce->psce_lock, NULL, MUTEX_DEFAULT, NULL);
psce->psce_first =
kmem_zalloc(sizeof (pm_state_change_t) * PSCCOUNT,
KM_SLEEP);
psce->psce_in = psce->psce_out = psce->psce_first;
psce->psce_last = &psce->psce_first[PSCCOUNT - 1];
psce->psce_references = 1;
pscc->pscc_entries = psce;
}
pm_enqueue_pscc(pscc, &pm_pscc_direct);
rw_exit(&pm_pscc_direct_rwlock);
} else {
ASSERT(!pm_interest_registered(clone));
rw_enter(&pm_pscc_interest_rwlock, RW_WRITER);
#ifdef DEBUG
for (p = pm_pscc_interest; p; p = p->pscc_next) {
/*
* Should not be an entry for this clone!
*/
ASSERT(p->pscc_clone != clone);
}
#endif
psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP);
psce->psce_first = kmem_zalloc(sizeof (pm_state_change_t) *
PSCCOUNT, KM_SLEEP);
psce->psce_in = psce->psce_out = psce->psce_first;
psce->psce_last = &psce->psce_first[PSCCOUNT - 1];
psce->psce_references = 1;
pscc->pscc_entries = psce;
pm_enqueue_pscc(pscc, &pm_pscc_interest);
pm_interest[clone] = 1;
rw_exit(&pm_pscc_interest_rwlock);
}
}
/*
* Remove the given entry from the blocked list
*/
void
pm_dequeue_blocked(pm_rsvp_t *p)
{
ASSERT(MUTEX_HELD(&pm_rsvp_lock));
if (pm_blocked_list == p) {
ASSERT(p->pr_prev == NULL);
if (p->pr_next != NULL)
p->pr_next->pr_prev = NULL;
pm_blocked_list = p->pr_next;
} else {
ASSERT(p->pr_prev != NULL);
p->pr_prev->pr_next = p->pr_next;
if (p->pr_next != NULL)
p->pr_next->pr_prev = p->pr_prev;
}
}
/*
* Remove the given control struct from the given list
*/
static void
pm_dequeue_pscc(pscc_t *p, pscc_t **list)
{
if (*list == p) {
ASSERT(p->pscc_prev == NULL);
if (p->pscc_next != NULL)
p->pscc_next->pscc_prev = NULL;
*list = p->pscc_next;
} else {
ASSERT(p->pscc_prev != NULL);
p->pscc_prev->pscc_next = p->pscc_next;
if (p->pscc_next != NULL)
p->pscc_next->pscc_prev = p->pscc_prev;
}
}
/*
* Stick the control struct specified on the front of the list
*/
static void
pm_enqueue_pscc(pscc_t *p, pscc_t **list)
{
pscc_t *h; /* entry at head of list */
if ((h = *list) == NULL) {
*list = p;
ASSERT(p->pscc_next == NULL);
ASSERT(p->pscc_prev == NULL);
} else {
p->pscc_next = h;
ASSERT(h->pscc_prev == NULL);
h->pscc_prev = p;
ASSERT(p->pscc_prev == NULL);
*list = p;
}
}
/*
* If dip is NULL, process is closing "clone" clean up all its registrations.
* Otherwise only clean up those for dip because process is just giving up
* control of a direct device.
*/
void
pm_deregister_watcher(int clone, dev_info_t *dip)
{
pscc_t *p, *pn;
psce_t *psce;
int found = 0;
if (dip == NULL) {
rw_enter(&pm_pscc_interest_rwlock, RW_WRITER);
for (p = pm_pscc_interest; p; p = pn) {
pn = p->pscc_next;
if (p->pscc_clone == clone) {
pm_dequeue_pscc(p, &pm_pscc_interest);
psce = p->pscc_entries;
ASSERT(psce->psce_references == 1);
mutex_destroy(&psce->psce_lock);
kmem_free(psce->psce_first,
sizeof (pm_state_change_t) * PSCCOUNT);
kmem_free(psce, sizeof (*psce));
kmem_free(p, sizeof (*p));
}
}
pm_interest[clone] = 0;
rw_exit(&pm_pscc_interest_rwlock);
}
found = 0;
rw_enter(&pm_pscc_direct_rwlock, RW_WRITER);
for (p = pm_pscc_direct; p; p = pn) {
pn = p->pscc_next;
if ((dip && p->pscc_dip == dip) ||
(dip == NULL && clone == p->pscc_clone)) {
ASSERT(clone == p->pscc_clone);
found++;
/*
* Remove from control list
*/
pm_dequeue_pscc(p, &pm_pscc_direct);
/*
* If we're the last reference, free the
* entries struct.
*/
psce = p->pscc_entries;
ASSERT(psce);
if (psce->psce_references == 1) {
kmem_free(psce->psce_first,
PSCCOUNT * sizeof (pm_state_change_t));
kmem_free(psce, sizeof (*psce));
} else {
psce->psce_references--;
}
kmem_free(p, sizeof (*p));
}
}
ASSERT(dip == NULL || found);
rw_exit(&pm_pscc_direct_rwlock);
}
/*
* Search the indicated list for an entry that matches clone, and return a
* pointer to it. To be interesting, the entry must have something ready to
* be passed up to the controlling process.
* The returned entry will be locked upon return from this call.
*/
static psce_t *
pm_psc_find_clone(int clone, pscc_t **list, krwlock_t *lock)
{
pscc_t *p;
psce_t *psce;
rw_enter(lock, RW_READER);
for (p = *list; p; p = p->pscc_next) {
if (clone == p->pscc_clone) {
psce = p->pscc_entries;
mutex_enter(&psce->psce_lock);
if (psce->psce_out->size) {
rw_exit(lock);
return (psce);
} else {
mutex_exit(&psce->psce_lock);
}
}
}
rw_exit(lock);
return (NULL);
}
static psce_t *pm_psc_find_clone(int, pscc_t **, krwlock_t *);
/*
* Find an entry for a particular clone in the direct list.
*/
psce_t *
pm_psc_clone_to_direct(int clone)
{
return (pm_psc_find_clone(clone, &pm_pscc_direct,
&pm_pscc_direct_rwlock));
}
/*
* Find an entry for a particular clone in the interest list.
*/
psce_t *
pm_psc_clone_to_interest(int clone)
{
return (pm_psc_find_clone(clone, &pm_pscc_interest,
&pm_pscc_interest_rwlock));
}
/*
* Put the given entry at the head of the blocked list
*/
void
pm_enqueue_blocked(pm_rsvp_t *p)
{
ASSERT(MUTEX_HELD(&pm_rsvp_lock));
ASSERT(p->pr_next == NULL);
ASSERT(p->pr_prev == NULL);
if (pm_blocked_list != NULL) {
p->pr_next = pm_blocked_list;
ASSERT(pm_blocked_list->pr_prev == NULL);
pm_blocked_list->pr_prev = p;
pm_blocked_list = p;
} else {
pm_blocked_list = p;
}
}
/*
* Sets every power managed device back to its default threshold
*/
void
pm_all_to_default_thresholds(void)
{
ddi_walk_devs(ddi_root_node(), pm_set_dev_thr_walk,
(void *) &pm_system_idle_threshold);
}
static int
pm_set_dev_thr_walk(dev_info_t *dip, void *arg)
{
int thr = (int)(*(int *)arg);
if (!PM_GET_PM_INFO(dip))
return (DDI_WALK_CONTINUE);
pm_set_device_threshold(dip, thr, PMC_DEF_THRESH);
return (DDI_WALK_CONTINUE);
}
/*
* Returns the current threshold value (in seconds) for the indicated component
*/
int
pm_current_threshold(dev_info_t *dip, int comp, int *threshp)
{
if (comp < 0 || comp >= PM_NUMCMPTS(dip)) {
return (DDI_FAILURE);
} else {
*threshp = cur_threshold(dip, comp);
return (DDI_SUCCESS);
}
}
/*
* To be called when changing the power level of a component of a device.
* On some platforms, changing power on one device may require that power
* be changed on other, related devices in the same transaction. Thus, we
* always pass this request to the platform power manager so that all the
* affected devices will be locked.
*/
void
pm_lock_power(dev_info_t *dip, int *circp)
{
power_req_t power_req;
int result;
power_req.request_type = PMR_PPM_LOCK_POWER;
power_req.req.ppm_lock_power_req.who = dip;
power_req.req.ppm_lock_power_req.circp = circp;
(void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result);
}
/*
* Release the lock (or locks) acquired to change the power of a device.
* See comments for pm_lock_power.
*/
void
pm_unlock_power(dev_info_t *dip, int circ)
{
power_req_t power_req;
int result;
power_req.request_type = PMR_PPM_UNLOCK_POWER;
power_req.req.ppm_unlock_power_req.who = dip;
power_req.req.ppm_unlock_power_req.circ = circ;
(void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result);
}
/*
* Attempt (without blocking) to acquire the lock(s) needed to change the
* power of a component of a device. See comments for pm_lock_power.
*
* Return: 1 if lock(s) acquired, 0 if not.
*/
int
pm_try_locking_power(dev_info_t *dip, int *circp)
{
power_req_t power_req;
int result;
power_req.request_type = PMR_PPM_TRY_LOCK_POWER;
power_req.req.ppm_lock_power_req.who = dip;
power_req.req.ppm_lock_power_req.circp = circp;
(void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result);
return (result);
}
/*
* Lock power state of a device.
*
* The implementation handles a special case where another thread may have
* acquired the lock and created/launched this thread to do the work. If
* the lock cannot be acquired immediately, we check to see if this thread
* is registered as a borrower of the lock. If so, we may proceed without
* the lock. This assumes that the lending thread blocks on the completion
* of this thread.
*
* Note 1: for use by ppm only.
*
* Note 2: On failing to get the lock immediately, we search lock_loan list
* for curthread (as borrower of the lock). On a hit, we check that the
* lending thread already owns the lock we want. It is safe to compare
* devi_busy_thread and thread id of the lender because in the == case (the
* only one we care about) we know that the owner is blocked. Similarly,
* If we find that curthread isn't registered as a lock borrower, it is safe
* to use the blocking call (ndi_devi_enter) because we know that if we
* weren't already listed as a borrower (upstream on the call stack) we won't
* become one.
*/
void
pm_lock_power_single(dev_info_t *dip, int *circp)
{
lock_loan_t *cur;
/* if the lock is available, we are done. */
if (ndi_devi_tryenter(dip, circp))
return;
mutex_enter(&pm_loan_lock);
/* see if our thread is registered as a lock borrower. */
for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next)
if (cur->pmlk_borrower == curthread)
break;
mutex_exit(&pm_loan_lock);
/* if this thread not already registered, it is safe to block */
if (cur == NULL)
ndi_devi_enter(dip, circp);
else {
/* registered: does lender own the lock we want? */
if (cur->pmlk_lender == DEVI(dip)->devi_busy_thread) {
ASSERT(cur->pmlk_dip == NULL || cur->pmlk_dip == dip);
cur->pmlk_dip = dip;
} else /* no: just block for it */
ndi_devi_enter(dip, circp);
}
}
/*
* Drop the lock on the device's power state. See comment for
* pm_lock_power_single() for special implementation considerations.
*
* Note: for use by ppm only.
*/
void
pm_unlock_power_single(dev_info_t *dip, int circ)
{
lock_loan_t *cur;
/* optimization: mutex not needed to check empty list */
if (lock_loan_head.pmlk_next == NULL) {
ndi_devi_exit(dip, circ);
return;
}
mutex_enter(&pm_loan_lock);
/* see if our thread is registered as a lock borrower. */
for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next)
if (cur->pmlk_borrower == curthread)
break;
mutex_exit(&pm_loan_lock);
if (cur == NULL || cur->pmlk_dip != dip)
/* we acquired the lock directly, so return it */
ndi_devi_exit(dip, circ);
}
/*
* Try to take the lock for changing the power level of a component.
*
* Note: for use by ppm only.
*/
int
pm_try_locking_power_single(dev_info_t *dip, int *circp)
{
return (ndi_devi_tryenter(dip, circp));
}
#ifdef DEBUG
/*
* The following are used only to print out data structures for debugging
*/
void
prdeps(char *msg)
{
pm_pdr_t *rp;
int i;
pm_log("pm_dep_head %s %p\n", msg, (void *)pm_dep_head);
for (rp = pm_dep_head; rp; rp = rp->pdr_next) {
pm_log("%p: %s keeper %s, kept %s, kept count %d, next %p\n",
(void *)rp, (rp->pdr_isprop ? "property" : "device"),
rp->pdr_keeper, rp->pdr_kept, rp->pdr_kept_count,
(void *)rp->pdr_next);
if (rp->pdr_kept_count != 0) {
pm_log("kept list = ");
i = 0;
while (i < rp->pdr_kept_count) {
pm_log("%s ", rp->pdr_kept_paths[i]);
i++;
}
pm_log("\n");
}
}
}
void
pr_noinvol(char *hdr)
{
pm_noinvol_t *ip;
pm_log("%s\n", hdr);
rw_enter(&pm_noinvol_rwlock, RW_READER);
for (ip = pm_noinvol_head; ip; ip = ip->ni_next)
pm_log("\tmaj %d, flags %x, noinvolpm %d %s\n",
ip->ni_major, ip->ni_flags, ip->ni_noinvolpm, ip->ni_path);
rw_exit(&pm_noinvol_rwlock);
}
#endif
/*
* Attempt to apply the thresholds indicated by rp to the node specified by
* dip.
*/
void
pm_apply_recorded_thresh(dev_info_t *dip, pm_thresh_rec_t *rp)
{
PMD_FUNC(pmf, "apply_recorded_thresh")
int i, j;
int comps = PM_NUMCMPTS(dip);
struct pm_component *cp;
pm_pte_t *ep;
int pm_valid_thresh(dev_info_t *, pm_thresh_rec_t *);
PMD(PMD_THRESH, ("%s: part: %s@%s(%s#%d), rp %p, %s\n", pmf,
PM_DEVICE(dip), (void *)rp, rp->ptr_physpath))
PM_LOCK_DIP(dip);
if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip) || !pm_valid_thresh(dip, rp)) {
PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_GET_PM_INFO %p\n",
pmf, PM_DEVICE(dip), (void*)PM_GET_PM_INFO(dip)))
PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_ISBC %d\n",
pmf, PM_DEVICE(dip), PM_ISBC(dip)))
PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) pm_valid_thresh %d\n",
pmf, PM_DEVICE(dip), pm_valid_thresh(dip, rp)))
PM_UNLOCK_DIP(dip);
return;
}
ep = rp->ptr_entries;
/*
* Here we do the special case of a device threshold
*/
if (rp->ptr_numcomps == 0) { /* PM_SET_DEVICE_THRESHOLD product */
ASSERT(ep && ep->pte_numthresh == 1);
PMD(PMD_THRESH, ("%s: set dev thr %s@%s(%s#%d) to 0x%x\n",
pmf, PM_DEVICE(dip), ep->pte_thresh[0]))
PM_UNLOCK_DIP(dip);
pm_set_device_threshold(dip, ep->pte_thresh[0], PMC_DEV_THRESH);
if (PM_SCANABLE(dip))
pm_rescan(dip);
return;
}
for (i = 0; i < comps; i++) {
cp = PM_CP(dip, i);
for (j = 0; j < ep->pte_numthresh; j++) {
PMD(PMD_THRESH, ("%s: set thr %d for %s@%s(%s#%d)[%d] "
"to %x\n", pmf, j, PM_DEVICE(dip),
i, ep->pte_thresh[j]))
cp->pmc_comp.pmc_thresh[j + 1] = ep->pte_thresh[j];
}
ep++;
}
DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE;
DEVI(dip)->devi_pm_flags |= PMC_COMP_THRESH;
PM_UNLOCK_DIP(dip);
if (PM_SCANABLE(dip))
pm_rescan(dip);
}
/*
* Returns true if the threshold specified by rp could be applied to dip
* (that is, the number of components and transitions are the same)
*/
int
pm_valid_thresh(dev_info_t *dip, pm_thresh_rec_t *rp)
{
PMD_FUNC(pmf, "valid_thresh")
int comps, i;
pm_component_t *cp;
pm_pte_t *ep;
if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) {
PMD(PMD_ERROR, ("%s: %s: no pm_info or BC\n", pmf,
rp->ptr_physpath))
return (0);
}
/*
* Special case: we represent the PM_SET_DEVICE_THRESHOLD case by
* an entry with numcomps == 0, (since we don't know how many
* components there are in advance). This is always a valid
* spec.
*/
if (rp->ptr_numcomps == 0) {
ASSERT(rp->ptr_entries && rp->ptr_entries->pte_numthresh == 1);
return (1);
}
if (rp->ptr_numcomps != (comps = PM_NUMCMPTS(dip))) {
PMD(PMD_ERROR, ("%s: comp # mm (dip %d cmd %d) for %s\n",
pmf, PM_NUMCMPTS(dip), rp->ptr_numcomps, rp->ptr_physpath))
return (0);
}
ep = rp->ptr_entries;
for (i = 0; i < comps; i++) {
cp = PM_CP(dip, i);
if ((ep + i)->pte_numthresh !=
cp->pmc_comp.pmc_numlevels - 1) {
PMD(PMD_ERROR, ("%s: %s[%d]: thresh=%d, record=%d\n",
pmf, rp->ptr_physpath, i,
cp->pmc_comp.pmc_numlevels - 1,
(ep + i)->pte_numthresh))
return (0);
}
}
return (1);
}
/*
* Remove any recorded threshold for device physpath
* We know there will be at most one.
*/
void
pm_unrecord_threshold(char *physpath)
{
pm_thresh_rec_t *pptr, *ptr;
rw_enter(&pm_thresh_rwlock, RW_WRITER);
for (pptr = NULL, ptr = pm_thresh_head; ptr; ptr = ptr->ptr_next) {
if (strcmp(physpath, ptr->ptr_physpath) == 0) {
if (pptr) {
pptr->ptr_next = ptr->ptr_next;
} else {
ASSERT(pm_thresh_head == ptr);
pm_thresh_head = ptr->ptr_next;
}
kmem_free(ptr, ptr->ptr_size);
break;
}
pptr = ptr;
}
rw_exit(&pm_thresh_rwlock);
}
/*
* Discard all recorded thresholds. We are returning to the default pm state.
*/
void
pm_discard_thresholds(void)
{
pm_thresh_rec_t *rp;
rw_enter(&pm_thresh_rwlock, RW_WRITER);
while (pm_thresh_head) {
rp = pm_thresh_head;
pm_thresh_head = rp->ptr_next;
kmem_free(rp, rp->ptr_size);
}
rw_exit(&pm_thresh_rwlock);
}
/*
* Discard all recorded dependencies. We are returning to the default pm state.
*/
void
pm_discard_dependencies(void)
{
pm_pdr_t *rp;
int i;
size_t length;
#ifdef DEBUG
if (pm_debug & PMD_DEP)
prdeps("Before discard\n");
#endif
ddi_walk_devs(ddi_root_node(), pm_discard_dep_walk, NULL);
#ifdef DEBUG
if (pm_debug & PMD_DEP)
prdeps("After discard\n");
#endif
while (pm_dep_head) {
rp = pm_dep_head;
if (!rp->pdr_isprop) {
ASSERT(rp->pdr_satisfied == 0);
ASSERT(pm_unresolved_deps);
pm_unresolved_deps--;
} else {
ASSERT(pm_prop_deps);
pm_prop_deps--;
}
pm_dep_head = rp->pdr_next;
if (rp->pdr_kept_count) {
for (i = 0; i < rp->pdr_kept_count; i++) {
length = strlen(rp->pdr_kept_paths[i]) + 1;
kmem_free(rp->pdr_kept_paths[i], length);
}
kmem_free(rp->pdr_kept_paths,
rp->pdr_kept_count * sizeof (char **));
}
kmem_free(rp, rp->pdr_size);
}
}
static int
pm_discard_dep_walk(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
char *pathbuf;
if (PM_GET_PM_INFO(dip) == NULL)
return (DDI_WALK_CONTINUE);
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
pm_free_keeper(pathbuf, 0);
kmem_free(pathbuf, MAXPATHLEN);
return (DDI_WALK_CONTINUE);
}
static int
pm_kept_walk(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
char *pathbuf;
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
(void) pm_kept(pathbuf);
kmem_free(pathbuf, MAXPATHLEN);
return (DDI_WALK_CONTINUE);
}
static int
pm_keeper_walk(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
char *pathbuf;
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
(void) pm_keeper(pathbuf);
kmem_free(pathbuf, MAXPATHLEN);
return (DDI_WALK_CONTINUE);
}
static char *
pdw_type_decode(int type)
{
switch (type) {
case PM_DEP_WK_POWER_ON:
return ("power on");
case PM_DEP_WK_POWER_OFF:
return ("power off");
case PM_DEP_WK_DETACH:
return ("detach");
case PM_DEP_WK_REMOVE_DEP:
return ("remove dep");
case PM_DEP_WK_BRINGUP_SELF:
return ("bringup self");
case PM_DEP_WK_RECORD_KEEPER:
return ("add dependent");
case PM_DEP_WK_RECORD_KEEPER_PROP:
return ("add dependent property");
case PM_DEP_WK_KEPT:
return ("kept");
case PM_DEP_WK_KEEPER:
return ("keeper");
case PM_DEP_WK_ATTACH:
return ("attach");
case PM_DEP_WK_CHECK_KEPT:
return ("check kept");
case PM_DEP_WK_CPR_SUSPEND:
return ("suspend");
case PM_DEP_WK_CPR_RESUME:
return ("resume");
default:
return ("unknown");
}
}
static void
pm_rele_dep(char *keeper)
{
PMD_FUNC(pmf, "rele_dep")
pm_pdr_t *dp;
char *kept_path = NULL;
dev_info_t *kept = NULL;
int count = 0;
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (strcmp(dp->pdr_keeper, keeper) != 0)
continue;
for (count = 0; count < dp->pdr_kept_count; count++) {
kept_path = dp->pdr_kept_paths[count];
if (kept_path == NULL)
continue;
kept = pm_name_to_dip(kept_path, 1);
if (kept) {
PMD(PMD_KEEPS, ("%s: release kept=%s@%s(%s#%d) "
"of keeper=%s\n", pmf, PM_DEVICE(kept),
keeper))
ASSERT(DEVI(kept)->devi_pm_kidsupcnt > 0);
pm_rele_power(kept);
ddi_release_devi(kept);
}
}
}
}
/*
* Called when we are just released from direct PM. Bring ourself up
* if our keeper is up since dependency is not honored while a kept
* device is under direct PM.
*/
static void
pm_bring_self_up(char *keptpath)
{
PMD_FUNC(pmf, "bring_self_up")
dev_info_t *kept;
dev_info_t *keeper;
pm_pdr_t *dp;
int i, j;
int up = 0, circ;
kept = pm_name_to_dip(keptpath, 1);
if (kept == NULL)
return;
PMD(PMD_KEEPS, ("%s: kept=%s@%s(%s#%d)\n", pmf, PM_DEVICE(kept)))
for (dp = pm_dep_head; dp; dp = dp->pdr_next) {
if (dp->pdr_kept_count == 0)
continue;
for (i = 0; i < dp->pdr_kept_count; i++) {
if (strcmp(dp->pdr_kept_paths[i], keptpath) != 0)
continue;
keeper = pm_name_to_dip(dp->pdr_keeper, 1);
if (keeper) {
PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d)\n",
pmf, PM_DEVICE(keeper)))
PM_LOCK_POWER(keeper, &circ);
for (j = 0; j < PM_NUMCMPTS(keeper);
j++) {
if (PM_CURPOWER(keeper, j)) {
PMD(PMD_KEEPS, ("%s: comp="
"%d is up\n", pmf, j))
up++;
}
}
if (up) {
if (PM_SKBU(kept))
DEVI(kept)->devi_pm_flags &=
~PMC_SKIP_BRINGUP;
bring_pmdep_up(kept, 1);
}
PM_UNLOCK_POWER(keeper, circ);
ddi_release_devi(keeper);
}
}
}
ddi_release_devi(kept);
}
static void
pm_process_dep_request(pm_dep_wk_t *work)
{
PMD_FUNC(pmf, "dep_req")
int ret;
PMD(PMD_DEP, ("%s: work=%s\n", pmf,
pdw_type_decode(work->pdw_type)))
PMD(PMD_DEP, ("%s: keeper=%s, kept=%s\n", pmf,
(work->pdw_keeper ? work->pdw_keeper : "NULL"),
(work->pdw_kept ? work->pdw_kept : "NULL")))
switch (work->pdw_type) {
case PM_DEP_WK_POWER_ON:
/* Bring up the kept devices and put a hold on them */
bring_wekeeps_up(work->pdw_keeper);
break;
case PM_DEP_WK_POWER_OFF:
/* Release the kept devices */
pm_rele_dep(work->pdw_keeper);
break;
case PM_DEP_WK_DETACH:
pm_free_keeps(work->pdw_keeper, work->pdw_pwr);
break;
case PM_DEP_WK_REMOVE_DEP:
pm_discard_dependencies();
break;
case PM_DEP_WK_BRINGUP_SELF:
/*
* We deferred satisfying our dependency till now, so satisfy
* it again and bring ourselves up.
*/
pm_bring_self_up(work->pdw_kept);
break;
case PM_DEP_WK_RECORD_KEEPER:
(void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 0);
ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL);
ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL);
break;
case PM_DEP_WK_RECORD_KEEPER_PROP:
(void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 1);
ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL);
ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL);
break;
case PM_DEP_WK_KEPT:
ret = pm_kept(work->pdw_kept);
PMD(PMD_DEP, ("%s: PM_DEP_WK_KEPT: pm_kept returns %d\n", pmf,
ret))
break;
case PM_DEP_WK_KEEPER:
ret = pm_keeper(work->pdw_keeper);
PMD(PMD_DEP, ("%s: PM_DEP_WK_KEEPER: pm_keeper returns %d\n",
pmf, ret))
break;
case PM_DEP_WK_ATTACH:
ret = pm_keeper(work->pdw_keeper);
PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_keeper returns %d\n",
pmf, ret))
ret = pm_kept(work->pdw_kept);
PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_kept returns %d\n",
pmf, ret))
break;
case PM_DEP_WK_CHECK_KEPT:
ret = pm_is_kept(work->pdw_kept);
PMD(PMD_DEP, ("%s: PM_DEP_WK_CHECK_KEPT: kept=%s, ret=%d\n",
pmf, work->pdw_kept, ret))
break;
case PM_DEP_WK_CPR_SUSPEND:
pm_discard_dependencies();
break;
case PM_DEP_WK_CPR_RESUME:
ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL);
ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL);
break;
default:
ASSERT(0);
break;
}
/*
* Free the work structure if the requester is not waiting
* Otherwise it is the requester's responsiblity to free it.
*/
if (!work->pdw_wait) {
if (work->pdw_keeper)
kmem_free(work->pdw_keeper,
strlen(work->pdw_keeper) + 1);
if (work->pdw_kept)
kmem_free(work->pdw_kept, strlen(work->pdw_kept) + 1);
kmem_free(work, sizeof (pm_dep_wk_t));
} else {
/*
* Notify requester if it is waiting for it.
*/
work->pdw_ret = ret;
work->pdw_done = 1;
cv_signal(&work->pdw_cv);
}
}
/*
* Process PM dependency requests.
*/
static void
pm_dep_thread(void)
{
pm_dep_wk_t *work;
callb_cpr_t cprinfo;
CALLB_CPR_INIT(&cprinfo, &pm_dep_thread_lock, callb_generic_cpr,
"pm_dep_thread");
for (;;) {
mutex_enter(&pm_dep_thread_lock);
if (pm_dep_thread_workq == NULL) {
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&pm_dep_thread_cv, &pm_dep_thread_lock);
CALLB_CPR_SAFE_END(&cprinfo, &pm_dep_thread_lock);
}
work = pm_dep_thread_workq;
pm_dep_thread_workq = work->pdw_next;
if (pm_dep_thread_tail == work)
pm_dep_thread_tail = work->pdw_next;
mutex_exit(&pm_dep_thread_lock);
pm_process_dep_request(work);
}
/*NOTREACHED*/
}
/*
* Set the power level of the indicated device to unknown (if it is not a
* backwards compatible device), as it has just been resumed, and it won't
* know if the power was removed or not. Adjust parent's kidsupcnt if necessary.
*/
void
pm_forget_power_level(dev_info_t *dip)
{
dev_info_t *pdip = ddi_get_parent(dip);
int i, count = 0;
if (!PM_ISBC(dip)) {
for (i = 0; i < PM_NUMCMPTS(dip); i++)
count += (PM_CURPOWER(dip, i) == 0);
if (count && pdip && !PM_WANTS_NOTIFICATION(pdip))
e_pm_hold_rele_power(pdip, count);
/*
* Count this as a power cycle if we care
*/
if (DEVI(dip)->devi_pm_volpmd &&
PM_CP(dip, 0)->pmc_cur_pwr == 0)
DEVI(dip)->devi_pm_volpmd = 0;
for (i = 0; i < PM_NUMCMPTS(dip); i++)
e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN);
}
}
/*
* This function advises the caller whether it should make a power-off
* transition at this time or not. If the transition is not advised
* at this time, the time that the next power-off transition can
* be made from now is returned through "intervalp" pointer.
* This function returns:
*
* 1 power-off advised
* 0 power-off not advised, intervalp will point to seconds from
* now that a power-off is advised. If it is passed the number
* of years that policy specifies the device should last,
* a large number is returned as the time interval.
* -1 error
*/
int
pm_trans_check(struct pm_trans_data *datap, time_t *intervalp)
{
PMD_FUNC(pmf, "pm_trans_check")
char dbuf[DC_SCSI_MFR_LEN];
struct pm_scsi_cycles *scp;
int service_years, service_weeks, full_years;
time_t now, service_seconds, tdiff;
time_t within_year, when_allowed;
char *ptr;
int lower_bound_cycles, upper_bound_cycles, cycles_allowed;
int cycles_diff, cycles_over;
struct pm_smart_count *smart_p;
if (datap == NULL) {
PMD(PMD_TCHECK, ("%s: NULL data pointer!\n", pmf))
return (-1);
}
if (datap->format == DC_SCSI_FORMAT) {
/*
* Power cycles of the scsi drives are distributed
* over 5 years with the following percentage ratio:
*
* 30%, 25%, 20%, 15%, and 10%
*
* The power cycle quota for each year is distributed
* linearly through out the year. The equation for
* determining the expected cycles is:
*
* e = a * (n / y)
*
* e = expected cycles
* a = allocated cycles for this year
* n = number of seconds since beginning of this year
* y = number of seconds in a year
*
* Note that beginning of the year starts the day that
* the drive has been put on service.
*
* If the drive has passed its expected cycles, we
* can determine when it can start to power cycle
* again to keep it on track to meet the 5-year
* life expectancy. The equation for determining
* when to power cycle is:
*
* w = y * (c / a)
*
* w = when it can power cycle again
* y = number of seconds in a year
* c = current number of cycles
* a = allocated cycles for the year
*
*/
char pcnt[DC_SCSI_NPY] = { 30, 55, 75, 90, 100 };
scp = &datap->un.scsi_cycles;
PMD(PMD_TCHECK, ("%s: format=%d, lifemax=%d, ncycles=%d, "
"svc_date=%s, svc_flag=%d\n", pmf, datap->format,
scp->lifemax, scp->ncycles, scp->svc_date, scp->flag))
if (scp->ncycles < 0 || scp->flag != 0) {
PMD(PMD_TCHECK, ("%s: ncycles < 0 || flag != 0\n", pmf))
return (-1);
}
if (scp->ncycles > scp->lifemax) {
*intervalp = (LONG_MAX / hz);
return (0);
}
/*
* convert service date to time_t
*/
bcopy(scp->svc_date, dbuf, DC_SCSI_YEAR_LEN);
dbuf[DC_SCSI_YEAR_LEN] = '\0';
ptr = dbuf;
service_years = stoi(&ptr) - EPOCH_YEAR;
bcopy(&scp->svc_date[DC_SCSI_YEAR_LEN], dbuf,
DC_SCSI_WEEK_LEN);
dbuf[DC_SCSI_WEEK_LEN] = '\0';
/*
* scsi standard does not specify WW data,
* could be (00-51) or (01-52)
*/
ptr = dbuf;
service_weeks = stoi(&ptr);
if (service_years < 0 ||
service_weeks < 0 || service_weeks > 52) {
PMD(PMD_TCHECK, ("%s: service year %d and week %d\n",
pmf, service_years, service_weeks))
return (-1);
}
/*
* calculate service date in seconds-since-epoch,
* adding one day for each leap-year.
*
* (years-since-epoch + 2) fixes integer truncation,
* example: (8) leap-years during [1972, 2000]
* (2000 - 1970) = 30; and (30 + 2) / 4 = 8;
*/
service_seconds = (service_years * DC_SPY) +
(service_weeks * DC_SPW) +
(((service_years + 2) / 4) * DC_SPD);
now = gethrestime_sec();
/*
* since the granularity of 'svc_date' is day not second,
* 'now' should be rounded up to full day.
*/
now = ((now + DC_SPD -1) / DC_SPD) * DC_SPD;
if (service_seconds > now) {
PMD(PMD_TCHECK, ("%s: service date (%ld) later "
"than now (%ld)!\n", pmf, service_seconds, now))
return (-1);
}
tdiff = now - service_seconds;
PMD(PMD_TCHECK, ("%s: age is %ld sec\n", pmf, tdiff))
/*
* NOTE - Leap years are not considered in the calculations
* below.
*/
full_years = (tdiff / DC_SPY);
if ((full_years >= DC_SCSI_NPY) &&
(scp->ncycles <= scp->lifemax))
return (1);
/*
* Determine what is the normal cycle usage for the
* device at the beginning and the end of this year.
*/
lower_bound_cycles = (!full_years) ? 0 :
((scp->lifemax * pcnt[full_years - 1]) / 100);
upper_bound_cycles = (scp->lifemax * pcnt[full_years]) / 100;
if (scp->ncycles <= lower_bound_cycles)
return (1);
/*
* The linear slope that determines how many cycles
* are allowed this year is number of seconds
* passed this year over total number of seconds in a year.
*/
cycles_diff = (upper_bound_cycles - lower_bound_cycles);
within_year = (tdiff % DC_SPY);
cycles_allowed = lower_bound_cycles +
(((uint64_t)cycles_diff * (uint64_t)within_year) / DC_SPY);
PMD(PMD_TCHECK, ("%s: lived %d yrs and %ld secs\n", pmf,
full_years, within_year))
PMD(PMD_TCHECK, ("%s: # of cycles allowed %d\n", pmf,
cycles_allowed))
if (scp->ncycles <= cycles_allowed)
return (1);
/*
* The transition is not advised now but we can
* determine when the next transition can be made.
*
* Depending on how many cycles the device has been
* over-used, we may need to skip years with
* different percentage quota in order to determine
* when the next transition can be made.
*/
cycles_over = (scp->ncycles - lower_bound_cycles);
while (cycles_over > cycles_diff) {
full_years++;
if (full_years >= DC_SCSI_NPY) {
*intervalp = (LONG_MAX / hz);
return (0);
}
cycles_over -= cycles_diff;
lower_bound_cycles = upper_bound_cycles;
upper_bound_cycles =
(scp->lifemax * pcnt[full_years]) / 100;
cycles_diff = (upper_bound_cycles - lower_bound_cycles);
}
/*
* The linear slope that determines when the next transition
* can be made is the relative position of used cycles within a
* year over total number of cycles within that year.
*/
when_allowed = service_seconds + (full_years * DC_SPY) +
(((uint64_t)DC_SPY * (uint64_t)cycles_over) / cycles_diff);
*intervalp = (when_allowed - now);
if (*intervalp > (LONG_MAX / hz))
*intervalp = (LONG_MAX / hz);
PMD(PMD_TCHECK, ("%s: no cycle is allowed in %ld secs\n", pmf,
*intervalp))
return (0);
} else if (datap->format == DC_SMART_FORMAT) {
/*
* power cycles of SATA disks are reported from SMART
* attributes.
*/
smart_p = &datap->un.smart_count;
if (smart_p->consumed >= smart_p->allowed) {
*intervalp = (LONG_MAX / hz);
PMD(PMD_TCHECK, ("%s: exceeded lifemax cycles.\n", pmf))
return (0);
} else
return (1);
}
PMD(PMD_TCHECK, ("%s: unknown format!\n", pmf))
return (-1);
}
/*
* Nexus drivers call into pm framework to indicate which child driver is about
* to be installed. In some platforms, ppm may need to configure the hardware
* for successful installation of a driver.
*/
int
pm_init_child(dev_info_t *dip)
{
power_req_t power_req;
ASSERT(ddi_binding_name(dip));
ASSERT(ddi_get_name_addr(dip));
pm_ppm_claim(dip);
if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_INIT_CHILD;
power_req.req.ppm_config_req.who = dip;
ASSERT(PPM(dip) != NULL);
return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req,
NULL));
} else {
#ifdef DEBUG
/* pass it to the default handler so we can debug things */
power_req.request_type = PMR_PPM_INIT_CHILD;
power_req.req.ppm_config_req.who = dip;
(void) pm_ctlops(NULL, dip,
DDI_CTLOPS_POWER, &power_req, NULL);
#endif
}
return (DDI_SUCCESS);
}
/*
* Bring parent of a node that is about to be probed up to full power, and
* arrange for it to stay up until pm_post_probe() or pm_post_attach() decide
* it is time to let it go down again
*/
void
pm_pre_probe(dev_info_t *dip, pm_ppm_cookie_t *cp)
{
int result;
power_req_t power_req;
bzero(cp, sizeof (*cp));
cp->ppc_dip = dip;
pm_ppm_claim(dip);
if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_PRE_PROBE;
power_req.req.ppm_config_req.who = dip;
ASSERT(PPM(dip) != NULL);
(void) pm_ctlops(PPM(dip), dip,
DDI_CTLOPS_POWER, &power_req, &result);
cp->ppc_ppm = PPM(dip);
} else {
#ifdef DEBUG
/* pass it to the default handler so we can debug things */
power_req.request_type = PMR_PPM_PRE_PROBE;
power_req.req.ppm_config_req.who = dip;
(void) pm_ctlops(NULL, dip,
DDI_CTLOPS_POWER, &power_req, &result);
#endif
cp->ppc_ppm = NULL;
}
}
int
pm_pre_config(dev_info_t *dip, char *devnm)
{
PMD_FUNC(pmf, "pre_config")
int ret;
if (MDI_VHCI(dip)) {
PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
ret = mdi_power(dip, MDI_PM_PRE_CONFIG, NULL, devnm, 0);
return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
} else if (!PM_GET_PM_INFO(dip))
return (DDI_SUCCESS);
PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
pm_hold_power(dip);
ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK);
if (ret != DDI_SUCCESS)
pm_rele_power(dip);
return (ret);
}
/*
* This routine is called by devfs during its walk to unconfigue a node.
* If the call is due to auto mod_unloads and the dip is not at its
* full power, we return DDI_FAILURE to terminate the walk, otherwise
* return DDI_SUCCESS.
*/
int
pm_pre_unconfig(dev_info_t *dip, int flags, int *held, char *devnm)
{
PMD_FUNC(pmf, "pre_unconfig")
int ret;
if (MDI_VHCI(dip)) {
PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf,
PM_DEVICE(dip), flags))
ret = mdi_power(dip, MDI_PM_PRE_UNCONFIG, held, devnm, flags);
return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
} else if (!PM_GET_PM_INFO(dip))
return (DDI_SUCCESS);
PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, PM_DEVICE(dip),
flags))
*held = 0;
/*
* If the dip is a leaf node, don't power it up.
*/
if (!ddi_get_child(dip))
return (DDI_SUCCESS);
/*
* Do not power up the node if it is called due to auto-modunload.
*/
if ((flags & NDI_AUTODETACH) && !pm_all_at_normal(dip))
return (DDI_FAILURE);
pm_hold_power(dip);
*held = 1;
ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK);
if (ret != DDI_SUCCESS) {
pm_rele_power(dip);
*held = 0;
}
return (ret);
}
/*
* Notify ppm of attach action. Parent is already held at full power by
* probe action.
*/
void
pm_pre_attach(dev_info_t *dip, pm_ppm_cookie_t *cp, ddi_attach_cmd_t cmd)
{
static char *me = "pm_pre_attach";
power_req_t power_req;
int result;
/*
* Initialize and fill in the PPM cookie
*/
bzero(cp, sizeof (*cp));
cp->ppc_cmd = (int)cmd;
cp->ppc_ppm = PPM(dip);
cp->ppc_dip = dip;
/*
* DDI_ATTACH and DDI_RESUME cmds need to call platform specific
* Power Management stuff. DDI_RESUME also has to purge it's
* powerlevel information.
*/
switch (cmd) {
case DDI_ATTACH:
if (cp->ppc_ppm) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_PRE_ATTACH;
power_req.req.ppm_config_req.who = dip;
ASSERT(PPM(dip));
(void) pm_ctlops(cp->ppc_ppm, dip, DDI_CTLOPS_POWER,
&power_req, &result);
}
#ifdef DEBUG
else {
power_req.request_type = PMR_PPM_PRE_ATTACH;
power_req.req.ppm_config_req.who = dip;
(void) pm_ctlops(NULL, dip,
DDI_CTLOPS_POWER, &power_req, &result);
}
#endif
break;
case DDI_RESUME:
pm_forget_power_level(dip);
if (cp->ppc_ppm) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_PRE_RESUME;
power_req.req.resume_req.who = cp->ppc_dip;
power_req.req.resume_req.cmd =
(ddi_attach_cmd_t)cp->ppc_cmd;
ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
(void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip,
DDI_CTLOPS_POWER, &power_req, &result);
}
#ifdef DEBUG
else {
power_req.request_type = PMR_PPM_PRE_RESUME;
power_req.req.resume_req.who = cp->ppc_dip;
power_req.req.resume_req.cmd =
(ddi_attach_cmd_t)cp->ppc_cmd;
(void) pm_ctlops(NULL, cp->ppc_dip,
DDI_CTLOPS_POWER, &power_req, &result);
}
#endif
break;
case DDI_PM_RESUME:
break;
default:
panic(me);
}
}
/*
* Nexus drivers call into pm framework to indicate which child driver is
* being uninstalled. In some platforms, ppm may need to reconfigure the
* hardware since the device driver is no longer installed.
*/
int
pm_uninit_child(dev_info_t *dip)
{
power_req_t power_req;
ASSERT(ddi_binding_name(dip));
ASSERT(ddi_get_name_addr(dip));
pm_ppm_claim(dip);
if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_UNINIT_CHILD;
power_req.req.ppm_config_req.who = dip;
ASSERT(PPM(dip));
return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req,
NULL));
} else {
#ifdef DEBUG
/* pass it to the default handler so we can debug things */
power_req.request_type = PMR_PPM_UNINIT_CHILD;
power_req.req.ppm_config_req.who = dip;
(void) pm_ctlops(NULL, dip, DDI_CTLOPS_POWER, &power_req, NULL);
#endif
}
return (DDI_SUCCESS);
}
/*
* Decrement kidsupcnt so scan can turn the parent back off if it is idle
* Also notify ppm of result of probe if there is a ppm that cares
*/
void
pm_post_probe(pm_ppm_cookie_t *cp, int ret, int probe_failed)
{
_NOTE(ARGUNUSED(probe_failed))
int result;
power_req_t power_req;
if (cp->ppc_ppm) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_POST_PROBE;
power_req.req.ppm_config_req.who = cp->ppc_dip;
power_req.req.ppm_config_req.result = ret;
ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
(void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, DDI_CTLOPS_POWER,
&power_req, &result);
}
#ifdef DEBUG
else {
power_req.request_type = PMR_PPM_POST_PROBE;
power_req.req.ppm_config_req.who = cp->ppc_dip;
power_req.req.ppm_config_req.result = ret;
(void) pm_ctlops(NULL, cp->ppc_dip, DDI_CTLOPS_POWER,
&power_req, &result);
}
#endif
}
void
pm_post_config(dev_info_t *dip, char *devnm)
{
PMD_FUNC(pmf, "post_config")
if (MDI_VHCI(dip)) {
PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
(void) mdi_power(dip, MDI_PM_POST_CONFIG, NULL, devnm, 0);
return;
} else if (!PM_GET_PM_INFO(dip))
return;
PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
pm_rele_power(dip);
}
void
pm_post_unconfig(dev_info_t *dip, int held, char *devnm)
{
PMD_FUNC(pmf, "post_unconfig")
if (MDI_VHCI(dip)) {
PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf,
PM_DEVICE(dip), held))
(void) mdi_power(dip, MDI_PM_POST_UNCONFIG, &held, devnm, 0);
return;
} else if (!PM_GET_PM_INFO(dip))
return;
PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, PM_DEVICE(dip),
held))
if (!held)
return;
/*
* We have held power in pre_unconfig, release it here.
*/
pm_rele_power(dip);
}
/*
* Notify ppm of result of attach if there is a ppm that cares
*/
void
pm_post_attach(pm_ppm_cookie_t *cp, int ret)
{
int result;
power_req_t power_req;
dev_info_t *dip;
if (cp->ppc_cmd != DDI_ATTACH)
return;
dip = cp->ppc_dip;
if (ret == DDI_SUCCESS) {
/*
* Attach succeeded, so proceed to doing post-attach pm tasks
*/
if (PM_GET_PM_INFO(dip) == NULL)
(void) pm_start(dip);
} else {
/*
* Attach may have got pm started before failing
*/
pm_stop(dip);
}
if (cp->ppc_ppm) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_POST_ATTACH;
power_req.req.ppm_config_req.who = cp->ppc_dip;
power_req.req.ppm_config_req.result = ret;
ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
(void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip,
DDI_CTLOPS_POWER, &power_req, &result);
}
#ifdef DEBUG
else {
power_req.request_type = PMR_PPM_POST_ATTACH;
power_req.req.ppm_config_req.who = cp->ppc_dip;
power_req.req.ppm_config_req.result = ret;
(void) pm_ctlops(NULL, cp->ppc_dip,
DDI_CTLOPS_POWER, &power_req, &result);
}
#endif
}
/*
* Notify ppm of attach action. Parent is already held at full power by
* probe action.
*/
void
pm_pre_detach(dev_info_t *dip, ddi_detach_cmd_t cmd, pm_ppm_cookie_t *cp)
{
int result;
power_req_t power_req;
bzero(cp, sizeof (*cp));
cp->ppc_dip = dip;
cp->ppc_cmd = (int)cmd;
switch (cmd) {
case DDI_DETACH:
pm_detaching(dip); /* suspend pm while detaching */
if (pm_ppm_claimed(dip)) { /* if ppm driver claims node */
power_req.request_type = PMR_PPM_PRE_DETACH;
power_req.req.ppm_config_req.who = dip;
ASSERT(PPM(dip));
(void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER,
&power_req, &result);
cp->ppc_ppm = PPM(dip);
} else {
#ifdef DEBUG
/* pass to the default handler so we can debug things */
power_req.request_type = PMR_PPM_PRE_DETACH;
power_req.req.ppm_config_req.who = dip;
(void) pm_ctlops(NULL, dip,
DDI_CTLOPS_POWER, &power_req, &result);
#endif
cp->ppc_ppm = NULL;
}
break;
default:
break;
}
}
/*
* Dip is either a leaf node that exported "no-involuntary-power-cycles" prop.,
* (if devi_pm_noinvol count is 0) or an ancestor of such a node. We need to
* make an entry to record the details, which includes certain flag settings.
*/
static void
pm_record_invol_path(char *path, int flags, int noinvolpm, int volpmd,
int wasvolpmd, major_t major)
{
PMD_FUNC(pmf, "record_invol_path")
major_t pm_path_to_major(char *);
size_t plen;
pm_noinvol_t *ip, *np, *pp;
pp = NULL;
plen = strlen(path) + 1;
np = kmem_zalloc(sizeof (*np), KM_SLEEP);
np->ni_size = plen;
np->ni_path = kmem_alloc(plen, KM_SLEEP);
np->ni_noinvolpm = noinvolpm;
np->ni_volpmd = volpmd;
np->ni_wasvolpmd = wasvolpmd;
np->ni_flags = flags;
(void) strcpy(np->ni_path, path);
/*
* If we haven't actually seen the node attached, it is hard to figure
* out its major. If we could hold the node by path, we would be much
* happier here.
*/
if (major == DDI_MAJOR_T_NONE) {
np->ni_major = pm_path_to_major(path);
} else {
np->ni_major = major;
}
rw_enter(&pm_noinvol_rwlock, RW_WRITER);
for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
int comp = strcmp(path, ip->ni_path);
if (comp < 0) {
PMD(PMD_NOINVOL, ("%s: %s insert before %s\n",
pmf, path, ip->ni_path))
/* insert before current entry */
np->ni_next = ip;
if (pp) {
pp->ni_next = np;
} else {
pm_noinvol_head = np;
}
rw_exit(&pm_noinvol_rwlock);
#ifdef DEBUG
if (pm_debug & PMD_NOINVOL)
pr_noinvol("record_invol_path exit0");
#endif
return;
} else if (comp == 0) {
panic("%s already in pm_noinvol list", path);
}
}
/*
* If we did not find an entry in the list that this should go before,
* then it must go at the end
*/
if (pp) {
PMD(PMD_NOINVOL, ("%s: %s append after %s\n", pmf, path,
pp->ni_path))
ASSERT(pp->ni_next == 0);
pp->ni_next = np;
} else {
PMD(PMD_NOINVOL, ("%s: %s added to end-of-list\n", pmf, path))
ASSERT(!pm_noinvol_head);
pm_noinvol_head = np;
}
rw_exit(&pm_noinvol_rwlock);
#ifdef DEBUG
if (pm_debug & PMD_NOINVOL)
pr_noinvol("record_invol_path exit");
#endif
}
void
pm_record_invol(dev_info_t *dip)
{
char *pathbuf;
int pm_all_components_off(dev_info_t *);
int volpmd = (PM_NUMCMPTS(dip) > 0) && pm_all_components_off(dip);
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
pm_record_invol_path(pathbuf, (DEVI(dip)->devi_pm_flags &
(PMC_NO_INVOL | PMC_CONSOLE_FB)), DEVI(dip)->devi_pm_noinvolpm,
DEVI(dip)->devi_pm_volpmd, volpmd, PM_MAJOR(dip));
/*
* If this child's detach will be holding up its ancestors, then we
* allow for an exception to that if all children of this type have
* gone down voluntarily.
* Now walk down the tree incrementing devi_pm_noinvolpm
*/
(void) pm_noinvol_update(PM_BP_NOINVOL_DETACH, 0, volpmd, pathbuf,
dip);
kmem_free(pathbuf, MAXPATHLEN);
}
void
pm_post_detach(pm_ppm_cookie_t *cp, int ret)
{
dev_info_t *dip = cp->ppc_dip;
int result;
power_req_t power_req;
switch (cp->ppc_cmd) {
case DDI_DETACH:
if (cp->ppc_ppm) { /* if ppm driver claims the node */
power_req.request_type = PMR_PPM_POST_DETACH;
power_req.req.ppm_config_req.who = cp->ppc_dip;
power_req.req.ppm_config_req.result = ret;
ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm);
(void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip,
DDI_CTLOPS_POWER, &power_req, &result);
}
#ifdef DEBUG
else {
power_req.request_type = PMR_PPM_POST_DETACH;
power_req.req.ppm_config_req.who = cp->ppc_dip;
power_req.req.ppm_config_req.result = ret;
(void) pm_ctlops(NULL, cp->ppc_dip,
DDI_CTLOPS_POWER, &power_req, &result);
}
#endif
if (ret == DDI_SUCCESS) {
/*
* For hotplug detach we assume it is *really* gone
*/
if (cp->ppc_cmd == DDI_DETACH &&
((DEVI(dip)->devi_pm_flags &
(PMC_NO_INVOL | PMC_CONSOLE_FB)) ||
DEVI(dip)->devi_pm_noinvolpm))
pm_record_invol(dip);
DEVI(dip)->devi_pm_flags &=
~(PMC_NO_INVOL | PMC_NOINVOL_DONE);
/*
* If console fb is detaching, then we don't need to
* worry any more about it going off (pm_detaching has
* brought up all components)
*/
if (PM_IS_CFB(dip)) {
mutex_enter(&pm_cfb_lock);
ASSERT(cfb_dip_detaching);
ASSERT(cfb_dip == NULL);
ASSERT(pm_cfb_comps_off == 0);
cfb_dip_detaching = NULL;
mutex_exit(&pm_cfb_lock);
}
pm_stop(dip); /* make it permanent */
} else {
if (PM_IS_CFB(dip)) {
mutex_enter(&pm_cfb_lock);
ASSERT(cfb_dip_detaching);
ASSERT(cfb_dip == NULL);
ASSERT(pm_cfb_comps_off == 0);
cfb_dip = cfb_dip_detaching;
cfb_dip_detaching = NULL;
mutex_exit(&pm_cfb_lock);
}
pm_detach_failed(dip); /* resume power management */
}
break;
case DDI_PM_SUSPEND:
break;
case DDI_SUSPEND:
break; /* legal, but nothing to do */
default:
#ifdef DEBUG
panic("pm_post_detach: unrecognized cmd %d for detach",
cp->ppc_cmd);
/*NOTREACHED*/
#else
break;
#endif
}
}
/*
* Called after vfs_mountroot has got the clock started to fix up timestamps
* that were set when root bush drivers attached. hresttime was 0 then, so the
* devices look busy but have a 0 busycnt
*/
int
pm_adjust_timestamps(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
pm_info_t *info = PM_GET_PM_INFO(dip);
struct pm_component *cp;
int i;
if (!info)
return (DDI_WALK_CONTINUE);
PM_LOCK_BUSY(dip);
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
cp = PM_CP(dip, i);
if (cp->pmc_timestamp == 0 && cp->pmc_busycount == 0)
cp->pmc_timestamp = gethrestime_sec();
}
PM_UNLOCK_BUSY(dip);
return (DDI_WALK_CONTINUE);
}
/*
* Called at attach time to see if the device being attached has a record in
* the no involuntary power cycles list. If so, we do some bookkeeping on the
* parents and set a flag in the dip
*/
void
pm_noinvol_specd(dev_info_t *dip)
{
PMD_FUNC(pmf, "noinvol_specd")
char *pathbuf;
pm_noinvol_t *ip, *pp = NULL;
int wasvolpmd;
int found = 0;
if (DEVI(dip)->devi_pm_flags & PMC_NOINVOL_DONE)
return;
DEVI(dip)->devi_pm_flags |= PMC_NOINVOL_DONE;
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
PM_LOCK_DIP(dip);
DEVI(dip)->devi_pm_volpmd = 0;
DEVI(dip)->devi_pm_noinvolpm = 0;
rw_enter(&pm_noinvol_rwlock, RW_READER);
for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n",
pmf, pathbuf, ip->ni_path))
if (strcmp(pathbuf, ip->ni_path) == 0) {
found++;
break;
}
}
rw_exit(&pm_noinvol_rwlock);
if (!found) {
PM_UNLOCK_DIP(dip);
kmem_free(pathbuf, MAXPATHLEN);
return;
}
rw_enter(&pm_noinvol_rwlock, RW_WRITER);
pp = NULL;
for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n",
pmf, pathbuf, ip->ni_path))
if (strcmp(pathbuf, ip->ni_path) == 0) {
ip->ni_flags &= ~PMC_DRIVER_REMOVED;
DEVI(dip)->devi_pm_flags |= ip->ni_flags;
/*
* Handle special case of console fb
*/
if (PM_IS_CFB(dip)) {
mutex_enter(&pm_cfb_lock);
cfb_dip = dip;
PMD(PMD_CFB, ("%s: %s@%s(%s#%d) setting "
"cfb_dip\n", pmf, PM_DEVICE(dip)))
mutex_exit(&pm_cfb_lock);
}
DEVI(dip)->devi_pm_noinvolpm = ip->ni_noinvolpm;
ASSERT((DEVI(dip)->devi_pm_flags &
(PMC_NO_INVOL | PMC_CONSOLE_FB)) ||
DEVI(dip)->devi_pm_noinvolpm);
DEVI(dip)->devi_pm_volpmd = ip->ni_volpmd;
PMD(PMD_NOINVOL, ("%s: noinvol=%d, volpmd=%d, "
"wasvolpmd=%d, flags=%x, path=%s\n", pmf,
ip->ni_noinvolpm, ip->ni_volpmd,
ip->ni_wasvolpmd, ip->ni_flags, ip->ni_path))
/*
* free the entry in hopes the list will now be empty
* and we won't have to search it any more until the
* device detaches
*/
if (pp) {
PMD(PMD_NOINVOL, ("%s: free %s, prev %s\n",
pmf, ip->ni_path, pp->ni_path))
pp->ni_next = ip->ni_next;
} else {
PMD(PMD_NOINVOL, ("%s: free %s head\n",
pmf, ip->ni_path))
ASSERT(pm_noinvol_head == ip);
pm_noinvol_head = ip->ni_next;
}
PM_UNLOCK_DIP(dip);
wasvolpmd = ip->ni_wasvolpmd;
rw_exit(&pm_noinvol_rwlock);
kmem_free(ip->ni_path, ip->ni_size);
kmem_free(ip, sizeof (*ip));
/*
* Now walk up the tree decrementing devi_pm_noinvolpm
* (and volpmd if appropriate)
*/
(void) pm_noinvol_update(PM_BP_NOINVOL_ATTACH, 0,
wasvolpmd, pathbuf, dip);
#ifdef DEBUG
if (pm_debug & PMD_NOINVOL)
pr_noinvol("noinvol_specd exit");
#endif
kmem_free(pathbuf, MAXPATHLEN);
return;
}
}
kmem_free(pathbuf, MAXPATHLEN);
rw_exit(&pm_noinvol_rwlock);
PM_UNLOCK_DIP(dip);
}
int
pm_all_components_off(dev_info_t *dip)
{
int i;
pm_component_t *cp;
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
cp = PM_CP(dip, i);
if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN ||
cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr])
return (0);
}
return (1); /* all off */
}
/*
* Make sure that all "no involuntary power cycles" devices are attached.
* Called before doing a cpr suspend to make sure the driver has a say about
* the power cycle
*/
int
pm_reattach_noinvol(void)
{
PMD_FUNC(pmf, "reattach_noinvol")
pm_noinvol_t *ip;
char *path;
dev_info_t *dip;
/*
* Prevent the modunload thread from unloading any modules until we
* have completely stopped all kernel threads.
*/
modunload_disable();
for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
/*
* Forget we'v ever seen any entry
*/
ip->ni_persistent = 0;
}
restart:
rw_enter(&pm_noinvol_rwlock, RW_READER);
for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
#ifdef PMDDEBUG
major_t maj;
maj = ip->ni_major;
#endif
path = ip->ni_path;
if (path != NULL && !(ip->ni_flags & PMC_DRIVER_REMOVED)) {
if (ip->ni_persistent) {
/*
* If we weren't able to make this entry
* go away, then we give up, as
* holding/attaching the driver ought to have
* resulted in this entry being deleted
*/
PMD(PMD_NOINVOL, ("%s: can't reattach %s "
"(%s|%d)\n", pmf, ip->ni_path,
ddi_major_to_name(maj), (int)maj))
cmn_err(CE_WARN, "cpr: unable to reattach %s ",
ip->ni_path);
modunload_enable();
rw_exit(&pm_noinvol_rwlock);
return (0);
}
ip->ni_persistent++;
rw_exit(&pm_noinvol_rwlock);
PMD(PMD_NOINVOL, ("%s: holding %s\n", pmf, path))
dip = e_ddi_hold_devi_by_path(path, 0);
if (dip == NULL) {
PMD(PMD_NOINVOL, ("%s: can't hold (%s|%d)\n",
pmf, path, (int)maj))
cmn_err(CE_WARN, "cpr: unable to hold %s "
"driver", path);
modunload_enable();
return (0);
} else {
PMD(PMD_DHR, ("%s: release %s\n", pmf, path))
/*
* Since the modunload thread is stopped, we
* don't have to keep the driver held, which
* saves a ton of bookkeeping
*/
ddi_release_devi(dip);
goto restart;
}
} else {
PMD(PMD_NOINVOL, ("%s: skip %s; unknown major\n",
pmf, ip->ni_path))
continue;
}
}
rw_exit(&pm_noinvol_rwlock);
return (1);
}
void
pm_reattach_noinvol_fini(void)
{
modunload_enable();
}
/*
* Display pm support code
*/
/*
* console frame-buffer power-mgmt gets enabled when debugging
* services are not present or console fbpm override is set
*/
void
pm_cfb_setup(const char *stdout_path)
{
PMD_FUNC(pmf, "cfb_setup")
extern int obpdebug;
char *devname;
dev_info_t *dip;
int devname_len;
extern dev_info_t *fbdip;
/*
* By virtue of this function being called (from consconfig),
* we know stdout is a framebuffer.
*/
stdout_is_framebuffer = 1;
if (obpdebug || (boothowto & RB_DEBUG)) {
if (pm_cfb_override == 0) {
/*
* Console is frame buffer, but we want to suppress
* pm on it because of debugging setup
*/
pm_cfb_enabled = 0;
cmn_err(CE_NOTE, "Kernel debugger present: disabling "
"console power management.");
/*
* however, we still need to know which is the console
* fb in order to suppress pm on it
*/
} else {
cmn_err(CE_WARN, "Kernel debugger present: see "
"kmdb(1M) for interaction with power management.");
}
}
#ifdef DEBUG
/*
* IF console is fb and is power managed, don't do prom_printfs from
* pm debug macro
*/
if (pm_cfb_enabled && !pm_debug_to_console) {
if (pm_debug)
prom_printf("pm debug output will be to log only\n");
pm_divertdebug++;
}
#endif
devname = i_ddi_strdup((char *)stdout_path, KM_SLEEP);
devname_len = strlen(devname) + 1;
PMD(PMD_CFB, ("%s: stripped %s\n", pmf, devname))
/* if the driver is attached */
if ((dip = fbdip) != NULL) {
PMD(PMD_CFB, ("%s: attached: %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
/*
* We set up here as if the driver were power manageable in case
* we get a later attach of a pm'able driver (which would result
* in a panic later)
*/
cfb_dip = dip;
DEVI(dip)->devi_pm_flags |= (PMC_CONSOLE_FB | PMC_NO_INVOL);
PMD(PMD_CFB, ("%s: cfb_dip -> %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
#ifdef DEBUG
if (!(PM_GET_PM_INFO(dip) != NULL && PM_NUMCMPTS(dip))) {
PMD(PMD_CFB, ("%s: %s@%s(%s#%d) not power-managed\n",
pmf, PM_DEVICE(dip)))
}
#endif
} else {
char *ep;
PMD(PMD_CFB, ("%s: pntd %s failed\n", pmf, devname))
pm_record_invol_path(devname,
(PMC_CONSOLE_FB | PMC_NO_INVOL), 1, 0, 0,
DDI_MAJOR_T_NONE);
for (ep = strrchr(devname, '/'); ep != devname;
ep = strrchr(devname, '/')) {
PMD(PMD_CFB, ("%s: devname %s\n", pmf, devname))
*ep = '\0';
dip = pm_name_to_dip(devname, 0);
if (dip != NULL) {
/*
* Walk up the tree incrementing
* devi_pm_noinvolpm
*/
(void) pm_noinvol_update(PM_BP_NOINVOL_CFB,
0, 0, devname, dip);
break;
} else {
pm_record_invol_path(devname,
PMC_NO_INVOL, 1, 0, 0, DDI_MAJOR_T_NONE);
}
}
}
kmem_free(devname, devname_len);
}
void
pm_cfb_rele(void)
{
mutex_enter(&pm_cfb_lock);
/*
* this call isn't using the console any more, it is ok to take it
* down if the count goes to 0
*/
cfb_inuse--;
mutex_exit(&pm_cfb_lock);
}
/*
* software interrupt handler for fbpm; this function exists because we can't
* bring up the frame buffer power from above lock level. So if we need to,
* we instead schedule a softint that runs this routine and takes us into
* debug_enter (a bit delayed from the original request, but avoiding a panic).
*/
static uint_t
pm_cfb_softint(caddr_t int_handler_arg)
{
_NOTE(ARGUNUSED(int_handler_arg))
int rval = DDI_INTR_UNCLAIMED;
mutex_enter(&pm_cfb_lock);
if (pm_soft_pending) {
mutex_exit(&pm_cfb_lock);
debug_enter((char *)NULL);
/* acquired in debug_enter before calling pm_cfb_trigger */
pm_cfb_rele();
mutex_enter(&pm_cfb_lock);
pm_soft_pending = B_FALSE;
mutex_exit(&pm_cfb_lock);
rval = DDI_INTR_CLAIMED;
} else
mutex_exit(&pm_cfb_lock);
return (rval);
}
void
pm_cfb_setup_intr(void)
{
PMD_FUNC(pmf, "cfb_setup_intr")
extern void prom_set_outfuncs(void (*)(void), void (*)(void));
void pm_cfb_check_and_powerup(void);
mutex_init(&pm_cfb_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8));
#ifdef PMDDEBUG
mutex_init(&pm_debug_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8));
#endif
if (!stdout_is_framebuffer) {
PMD(PMD_CFB, ("%s: console not fb\n", pmf))
return;
}
/*
* setup software interrupt handler
*/
if (ddi_add_softintr(ddi_root_node(), DDI_SOFTINT_HIGH, &pm_soft_id,
NULL, NULL, pm_cfb_softint, NULL) != DDI_SUCCESS)
panic("pm: unable to register soft intr.");
prom_set_outfuncs(pm_cfb_check_and_powerup, pm_cfb_rele);
}
/*
* Checks to see if it is safe to write to the console wrt power management
* (i.e. if the console is a framebuffer, then it must be at full power)
* returns 1 when power is off (power-up is needed)
* returns 0 when power is on (power-up not needed)
*/
int
pm_cfb_check_and_hold(void)
{
/*
* cfb_dip is set iff console is a power manageable frame buffer
* device
*/
extern int modrootloaded;
mutex_enter(&pm_cfb_lock);
cfb_inuse++;
ASSERT(cfb_inuse); /* wrap? */
if (modrootloaded && cfb_dip) {
/*
* don't power down the frame buffer, the prom is using it
*/
if (pm_cfb_comps_off) {
mutex_exit(&pm_cfb_lock);
return (1);
}
}
mutex_exit(&pm_cfb_lock);
return (0);
}
/*
* turn on cfb power (which is known to be off).
* Must be called below lock level!
*/
void
pm_cfb_powerup(void)
{
pm_info_t *info;
int norm;
int ccount, ci;
int unused;
#ifdef DEBUG
/*
* Can't reenter prom_prekern, so suppress pm debug messages
* (still go to circular buffer).
*/
mutex_enter(&pm_debug_lock);
pm_divertdebug++;
mutex_exit(&pm_debug_lock);
#endif
info = PM_GET_PM_INFO(cfb_dip);
ASSERT(info);
ccount = PM_NUMCMPTS(cfb_dip);
for (ci = 0; ci < ccount; ci++) {
norm = pm_get_normal_power(cfb_dip, ci);
(void) pm_set_power(cfb_dip, ci, norm, PM_LEVEL_UPONLY,
PM_CANBLOCK_BYPASS, 0, &unused);
}
#ifdef DEBUG
mutex_enter(&pm_debug_lock);
pm_divertdebug--;
mutex_exit(&pm_debug_lock);
#endif
}
/*
* Check if the console framebuffer is powered up. If not power it up.
* Note: Calling pm_cfb_check_and_hold has put a hold on the power state which
* must be released by calling pm_cfb_rele when the console fb operation
* is completed.
*/
void
pm_cfb_check_and_powerup(void)
{
if (pm_cfb_check_and_hold())
pm_cfb_powerup();
}
/*
* Trigger a low level interrupt to power up console frame buffer.
*/
void
pm_cfb_trigger(void)
{
if (cfb_dip == NULL)
return;
mutex_enter(&pm_cfb_lock);
/*
* If the machine appears to be hung, pulling the keyboard connector of
* the console will cause a high level interrupt and go to debug_enter.
* But, if the fb is powered down, this routine will be called to bring
* it up (by generating a softint to do the work). If a second attempt
* at triggering this softint happens before the first one completes,
* we panic as softints are most likely not being handled.
*/
if (pm_soft_pending) {
panicstr = "pm_cfb_trigger: failed to enter the debugger";
panic(panicstr); /* does a power up at any intr level */
/* NOTREACHED */
}
pm_soft_pending = B_TRUE;
mutex_exit(&pm_cfb_lock);
ddi_trigger_softintr(pm_soft_id);
}
static major_t i_path_to_major(char *, char *);
major_t
pm_path_to_major(char *path)
{
PMD_FUNC(pmf, "path_to_major")
char *np, *ap, *bp;
major_t ret;
size_t len;
PMD(PMD_NOINVOL, ("%s: %s\n", pmf, path))
np = strrchr(path, '/');
if (np != NULL)
np++;
else
np = path;
len = strlen(np) + 1;
bp = kmem_alloc(len, KM_SLEEP);
(void) strcpy(bp, np);
if ((ap = strchr(bp, '@')) != NULL) {
*ap = '\0';
}
PMD(PMD_NOINVOL, ("%s: %d\n", pmf, ddi_name_to_major(np)))
ret = i_path_to_major(path, np);
kmem_free(bp, len);
return (ret);
}
#ifdef DEBUG
#ifndef sparc
clock_t pt_sleep = 1;
#endif
char *pm_msgp;
char *pm_bufend;
char *pm_msgbuf = NULL;
int pm_logpages = 0x100;
#include <sys/sunldi.h>
#include <sys/uio.h>
clock_t pm_log_sleep = 1000;
int pm_extra_cr = 1;
volatile int pm_tty = 1;
#define PMLOGPGS pm_logpages
#if defined(__x86)
void pm_printf(char *s);
#endif
/*PRINTFLIKE1*/
void
pm_log(const char *fmt, ...)
{
va_list adx;
size_t size;
mutex_enter(&pm_debug_lock);
if (pm_msgbuf == NULL) {
pm_msgbuf = kmem_zalloc(mmu_ptob(PMLOGPGS), KM_SLEEP);
pm_bufend = pm_msgbuf + mmu_ptob(PMLOGPGS) - 1;
pm_msgp = pm_msgbuf;
}
va_start(adx, fmt);
size = vsnprintf(NULL, 0, fmt, adx) + 1;
va_end(adx);
va_start(adx, fmt);
if (size > (pm_bufend - pm_msgp)) { /* wraps */
bzero(pm_msgp, pm_bufend - pm_msgp);
(void) vsnprintf(pm_msgbuf, size, fmt, adx);
if (!pm_divertdebug)
prom_printf("%s", pm_msgp);
#if defined(__x86)
if (pm_tty) {
pm_printf(pm_msgp);
if (pm_extra_cr)
pm_printf("\r");
}
#endif
pm_msgp = pm_msgbuf + size;
} else {
(void) vsnprintf(pm_msgp, size, fmt, adx);
#if defined(__x86)
if (pm_tty) {
pm_printf(pm_msgp);
if (pm_extra_cr)
pm_printf("\r");
}
#endif
if (!pm_divertdebug)
prom_printf("%s", pm_msgp);
pm_msgp += size;
}
va_end(adx);
mutex_exit(&pm_debug_lock);
drv_usecwait((clock_t)pm_log_sleep);
}
#endif /* DEBUG */
/*
* We want to save the state of any directly pm'd devices over the suspend/
* resume process so that we can put them back the way the controlling
* process left them.
*/
void
pm_save_direct_levels(void)
{
pm_processes_stopped = 1;
ddi_walk_devs(ddi_root_node(), pm_save_direct_lvl_walk, 0);
}
static int
pm_save_direct_lvl_walk(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
int i;
int *ip;
pm_info_t *info = PM_GET_PM_INFO(dip);
if (!info)
return (DDI_WALK_CONTINUE);
if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) {
if (PM_NUMCMPTS(dip) > 2) {
info->pmi_lp = kmem_alloc(PM_NUMCMPTS(dip) *
sizeof (int), KM_SLEEP);
ip = info->pmi_lp;
} else {
ip = info->pmi_levels;
}
/* autopm and processes are stopped, ok not to lock power */
for (i = 0; i < PM_NUMCMPTS(dip); i++)
*ip++ = PM_CURPOWER(dip, i);
/*
* There is a small window between stopping the
* processes and setting pm_processes_stopped where
* a driver could get hung up in a pm_raise_power()
* call. Free any such driver now.
*/
pm_proceed(dip, PMP_RELEASE, -1, -1);
}
return (DDI_WALK_CONTINUE);
}
void
pm_restore_direct_levels(void)
{
/*
* If cpr didn't call pm_save_direct_levels, (because stopping user
* threads failed) then we don't want to try to restore them
*/
if (!pm_processes_stopped)
return;
ddi_walk_devs(ddi_root_node(), pm_restore_direct_lvl_walk, 0);
pm_processes_stopped = 0;
}
static int
pm_restore_direct_lvl_walk(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
PMD_FUNC(pmf, "restore_direct_lvl_walk")
int i, nc, result;
int *ip;
pm_info_t *info = PM_GET_PM_INFO(dip);
if (!info)
return (DDI_WALK_CONTINUE);
if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) {
if ((nc = PM_NUMCMPTS(dip)) > 2) {
ip = &info->pmi_lp[nc - 1];
} else {
ip = &info->pmi_levels[nc - 1];
}
/*
* Because fb drivers fail attempts to turn off the
* fb when the monitor is on, but treat a request to
* turn on the monitor as a request to turn on the
* fb too, we process components in descending order
* Because autopm is disabled and processes aren't
* running, it is ok to examine current power outside
* of the power lock
*/
for (i = nc - 1; i >= 0; i--, ip--) {
if (PM_CURPOWER(dip, i) == *ip)
continue;
if (pm_set_power(dip, i, *ip, PM_LEVEL_EXACT,
PM_CANBLOCK_BYPASS, 0, &result) != DDI_SUCCESS) {
cmn_err(CE_WARN, "cpr: unable "
"to restore power level of "
"component %d of directly "
"power manged device %s@%s"
" to %d",
i, PM_NAME(dip),
PM_ADDR(dip), *ip);
PMD(PMD_FAIL, ("%s: failed to restore "
"%s@%s(%s#%d)[%d] exact(%d)->%d, "
"errno %d\n", pmf, PM_DEVICE(dip), i,
PM_CURPOWER(dip, i), *ip, result))
}
}
if (nc > 2) {
kmem_free(info->pmi_lp, nc * sizeof (int));
info->pmi_lp = NULL;
}
}
return (DDI_WALK_CONTINUE);
}
/*
* Stolen from the bootdev module
* attempt to convert a path to a major number
*/
static major_t
i_path_to_major(char *path, char *leaf_name)
{
extern major_t path_to_major(char *pathname);
major_t maj;
if ((maj = path_to_major(path)) == DDI_MAJOR_T_NONE) {
maj = ddi_name_to_major(leaf_name);
}
return (maj);
}
static void i_pm_driver_removed(major_t major);
/*
* When user calls rem_drv, we need to forget no-involuntary-power-cycles state
* An entry in the list means that the device is detached, so we need to
* adjust its ancestors as if they had just seen this attach, and any detached
* ancestors need to have their list entries adjusted.
*/
void
pm_driver_removed(major_t major)
{
/*
* Serialize removal of drivers. This is to keep ancestors of
* a node that is being deleted from getting deleted and added back
* with different counters.
*/
mutex_enter(&pm_remdrv_lock);
i_pm_driver_removed(major);
mutex_exit(&pm_remdrv_lock);
}
static void adjust_ancestors(char *, int);
static int pm_is_noinvol_ancestor(pm_noinvol_t *);
static void pm_noinvol_process_ancestors(char *);
/*
* This routine is called recursively by pm_noinvol_process_ancestors()
*/
static void
i_pm_driver_removed(major_t major)
{
PMD_FUNC(pmf, "driver_removed")
pm_noinvol_t *ip, *pp = NULL;
int wasvolpmd;
ASSERT(major != DDI_MAJOR_T_NONE);
PMD(PMD_NOINVOL, ("%s: %s\n", pmf, ddi_major_to_name(major)))
again:
rw_enter(&pm_noinvol_rwlock, RW_WRITER);
for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) {
if (major != ip->ni_major)
continue;
/*
* If it is an ancestor of no-invol node, which is
* not removed, skip it. This is to cover the case of
* ancestor removed without removing its descendants.
*/
if (pm_is_noinvol_ancestor(ip)) {
ip->ni_flags |= PMC_DRIVER_REMOVED;
continue;
}
wasvolpmd = ip->ni_wasvolpmd;
/*
* remove the entry from the list
*/
if (pp) {
PMD(PMD_NOINVOL, ("%s: freeing %s, prev is %s\n",
pmf, ip->ni_path, pp->ni_path))
pp->ni_next = ip->ni_next;
} else {
PMD(PMD_NOINVOL, ("%s: free %s head\n", pmf,
ip->ni_path))
ASSERT(pm_noinvol_head == ip);
pm_noinvol_head = ip->ni_next;
}
rw_exit(&pm_noinvol_rwlock);
adjust_ancestors(ip->ni_path, wasvolpmd);
/*
* Had an ancestor been removed before this node, it would have
* been skipped. Adjust the no-invol counters for such skipped
* ancestors.
*/
pm_noinvol_process_ancestors(ip->ni_path);
kmem_free(ip->ni_path, ip->ni_size);
kmem_free(ip, sizeof (*ip));
goto again;
}
rw_exit(&pm_noinvol_rwlock);
}
/*
* returns 1, if *aip is a ancestor of a no-invol node
* 0, otherwise
*/
static int
pm_is_noinvol_ancestor(pm_noinvol_t *aip)
{
pm_noinvol_t *ip;
ASSERT(strlen(aip->ni_path) != 0);
for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
if (ip == aip)
continue;
/*
* To be an ancestor, the path must be an initial substring of
* the descendent, and end just before a '/' in the
* descendent's path.
*/
if ((strstr(ip->ni_path, aip->ni_path) == ip->ni_path) &&
(ip->ni_path[strlen(aip->ni_path)] == '/'))
return (1);
}
return (0);
}
/*
* scan through the pm_noinvolpm list adjusting ancestors of the current
* node; Modifies string *path.
*/
static void
adjust_ancestors(char *path, int wasvolpmd)
{
PMD_FUNC(pmf, "adjust_ancestors")
char *cp;
pm_noinvol_t *lp;
pm_noinvol_t *pp = NULL;
major_t locked = DDI_MAJOR_T_NONE;
dev_info_t *dip;
char *pathbuf;
size_t pathbuflen = strlen(path) + 1;
/*
* First we look up the ancestor's dip. If we find it, then we
* adjust counts up the tree
*/
PMD(PMD_NOINVOL, ("%s: %s wasvolpmd %d\n", pmf, path, wasvolpmd))
pathbuf = kmem_alloc(pathbuflen, KM_SLEEP);
(void) strcpy(pathbuf, path);
cp = strrchr(pathbuf, '/');
if (cp == NULL) {
/* if no ancestors, then nothing to do */
kmem_free(pathbuf, pathbuflen);
return;
}
*cp = '\0';
dip = pm_name_to_dip(pathbuf, 1);
if (dip != NULL) {
locked = PM_MAJOR(dip);
(void) pm_noinvol_update(PM_BP_NOINVOL_REMDRV, 0, wasvolpmd,
path, dip);
if (locked != DDI_MAJOR_T_NONE)
ddi_release_devi(dip);
} else {
char *apath;
size_t len = strlen(pathbuf) + 1;
int lock_held = 1;
/*
* Now check for ancestors that exist only in the list
*/
apath = kmem_alloc(len, KM_SLEEP);
(void) strcpy(apath, pathbuf);
rw_enter(&pm_noinvol_rwlock, RW_WRITER);
for (lp = pm_noinvol_head; lp; pp = lp, lp = lp->ni_next) {
/*
* This can only happen once. Since we have to drop
* the lock, we need to extract the relevant info.
*/
if (strcmp(pathbuf, lp->ni_path) == 0) {
PMD(PMD_NOINVOL, ("%s: %s no %d -> %d\n", pmf,
lp->ni_path, lp->ni_noinvolpm,
lp->ni_noinvolpm - 1))
lp->ni_noinvolpm--;
if (wasvolpmd && lp->ni_volpmd) {
PMD(PMD_NOINVOL, ("%s: %s vol %d -> "
"%d\n", pmf, lp->ni_path,
lp->ni_volpmd, lp->ni_volpmd - 1))
lp->ni_volpmd--;
}
/*
* remove the entry from the list, if there
* are no more no-invol descendants and node
* itself is not a no-invol node.
*/
if (!(lp->ni_noinvolpm ||
(lp->ni_flags & PMC_NO_INVOL))) {
ASSERT(lp->ni_volpmd == 0);
if (pp) {
PMD(PMD_NOINVOL, ("%s: freeing "
"%s, prev is %s\n", pmf,
lp->ni_path, pp->ni_path))
pp->ni_next = lp->ni_next;
} else {
PMD(PMD_NOINVOL, ("%s: free %s "
"head\n", pmf, lp->ni_path))
ASSERT(pm_noinvol_head == lp);
pm_noinvol_head = lp->ni_next;
}
lock_held = 0;
rw_exit(&pm_noinvol_rwlock);
adjust_ancestors(apath, wasvolpmd);
/* restore apath */
(void) strcpy(apath, pathbuf);
kmem_free(lp->ni_path, lp->ni_size);
kmem_free(lp, sizeof (*lp));
}
break;
}
}
if (lock_held)
rw_exit(&pm_noinvol_rwlock);
adjust_ancestors(apath, wasvolpmd);
kmem_free(apath, len);
}
kmem_free(pathbuf, pathbuflen);
}
/*
* Do no-invol processing for any ancestors i.e. adjust counters of ancestors,
* which were skipped even though their drivers were removed.
*/
static void
pm_noinvol_process_ancestors(char *path)
{
pm_noinvol_t *lp;
rw_enter(&pm_noinvol_rwlock, RW_READER);
for (lp = pm_noinvol_head; lp; lp = lp->ni_next) {
if (strstr(path, lp->ni_path) &&
(lp->ni_flags & PMC_DRIVER_REMOVED)) {
rw_exit(&pm_noinvol_rwlock);
i_pm_driver_removed(lp->ni_major);
return;
}
}
rw_exit(&pm_noinvol_rwlock);
}
/*
* Returns true if (detached) device needs to be kept up because it exported the
* "no-involuntary-power-cycles" property or we're pretending it did (console
* fb case) or it is an ancestor of such a device and has used up the "one
* free cycle" allowed when all such leaf nodes have voluntarily powered down
* upon detach. In any event, we need an exact hit on the path or we return
* false.
*/
int
pm_noinvol_detached(char *path)
{
PMD_FUNC(pmf, "noinvol_detached")
pm_noinvol_t *ip;
int ret = 0;
rw_enter(&pm_noinvol_rwlock, RW_READER);
for (ip = pm_noinvol_head; ip; ip = ip->ni_next) {
if (strcmp(path, ip->ni_path) == 0) {
if (ip->ni_flags & PMC_CONSOLE_FB) {
PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB "
"%s\n", pmf, path))
ret = 1;
break;
}
#ifdef DEBUG
if (ip->ni_noinvolpm != ip->ni_volpmd)
PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s"
"\n", pmf, ip->ni_noinvolpm, ip->ni_volpmd,
path))
#endif
ret = (ip->ni_noinvolpm != ip->ni_volpmd);
break;
}
}
rw_exit(&pm_noinvol_rwlock);
return (ret);
}
int
pm_is_cfb(dev_info_t *dip)
{
return (dip == cfb_dip);
}
#ifdef DEBUG
/*
* Return true if all components of the console frame buffer are at
* "normal" power, i.e., fully on. For the case where the console is not
* a framebuffer, we also return true
*/
int
pm_cfb_is_up(void)
{
return (pm_cfb_comps_off == 0);
}
#endif
/*
* Preventing scan from powering down the node by incrementing the
* kidsupcnt.
*/
void
pm_hold_power(dev_info_t *dip)
{
e_pm_hold_rele_power(dip, 1);
}
/*
* Releasing the hold by decrementing the kidsupcnt allowing scan
* to power down the node if all conditions are met.
*/
void
pm_rele_power(dev_info_t *dip)
{
e_pm_hold_rele_power(dip, -1);
}
/*
* A wrapper of pm_all_to_normal() to power up a dip
* to its normal level
*/
int
pm_powerup(dev_info_t *dip)
{
PMD_FUNC(pmf, "pm_powerup")
PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
ASSERT(!(servicing_interrupt()));
/*
* in case this node is not already participating pm
*/
if (!PM_GET_PM_INFO(dip)) {
if (!DEVI_IS_ATTACHING(dip))
return (DDI_SUCCESS);
if (pm_start(dip) != DDI_SUCCESS)
return (DDI_FAILURE);
if (!PM_GET_PM_INFO(dip))
return (DDI_SUCCESS);
}
return (pm_all_to_normal(dip, PM_CANBLOCK_BLOCK));
}
int
pm_rescan_walk(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip))
return (DDI_WALK_CONTINUE);
/*
* Currently pm_cpr_callb/resume code is the only caller
* and it needs to make sure that stopped scan get
* reactivated. Otherwise, rescan walk needn't reactive
* stopped scan.
*/
pm_scan_init(dip);
(void) pm_rescan(dip);
return (DDI_WALK_CONTINUE);
}
static dev_info_t *
pm_get_next_descendent(dev_info_t *dip, dev_info_t *tdip)
{
dev_info_t *wdip, *pdip;
for (wdip = tdip; wdip != dip; wdip = pdip) {
pdip = ddi_get_parent(wdip);
if (pdip == dip)
return (wdip);
}
return (NULL);
}
int
pm_busop_bus_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op,
void *arg, void *result)
{
PMD_FUNC(pmf, "bp_bus_power")
dev_info_t *cdip;
pm_info_t *cinfo;
pm_bp_child_pwrchg_t *bpc;
pm_sp_misc_t *pspm;
pm_bp_nexus_pwrup_t *bpn;
pm_bp_child_pwrchg_t new_bpc;
pm_bp_noinvol_t *bpi;
dev_info_t *tdip;
char *pathbuf;
int ret = DDI_SUCCESS;
int errno = 0;
pm_component_t *cp;
PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip),
pm_decode_op(op)))
switch (op) {
case BUS_POWER_CHILD_PWRCHG:
bpc = (pm_bp_child_pwrchg_t *)arg;
pspm = (pm_sp_misc_t *)bpc->bpc_private;
tdip = bpc->bpc_dip;
cdip = pm_get_next_descendent(dip, tdip);
cinfo = PM_GET_PM_INFO(cdip);
if (cdip != tdip) {
/*
* If the node is an involved parent, it needs to
* power up the node as it is needed. There is nothing
* else the framework can do here.
*/
if (PM_WANTS_NOTIFICATION(cdip)) {
PMD(PMD_SET, ("%s: call bus_power for "
"%s@%s(%s#%d)\n", pmf, PM_DEVICE(cdip)))
return ((*PM_BUS_POWER_FUNC(cdip))(cdip,
impl_arg, op, arg, result));
}
ASSERT(pspm->pspm_direction == PM_LEVEL_UPONLY ||
pspm->pspm_direction == PM_LEVEL_DOWNONLY ||
pspm->pspm_direction == PM_LEVEL_EXACT);
/*
* we presume that the parent needs to be up in
* order for the child to change state (either
* because it must already be on if the child is on
* (and the pm_all_to_normal_nexus() will be a nop)
* or because it will need to be on for the child
* to come on; so we make the call regardless
*/
pm_hold_power(cdip);
if (cinfo) {
pm_canblock_t canblock = pspm->pspm_canblock;
ret = pm_all_to_normal_nexus(cdip, canblock);
if (ret != DDI_SUCCESS) {
pm_rele_power(cdip);
return (ret);
}
}
PMD(PMD_SET, ("%s: walk down to %s@%s(%s#%d)\n", pmf,
PM_DEVICE(cdip)))
ret = pm_busop_bus_power(cdip, impl_arg, op, arg,
result);
pm_rele_power(cdip);
} else {
ret = pm_busop_set_power(cdip, impl_arg, op, arg,
result);
}
return (ret);
case BUS_POWER_NEXUS_PWRUP:
bpn = (pm_bp_nexus_pwrup_t *)arg;
pspm = (pm_sp_misc_t *)bpn->bpn_private;
if (!e_pm_valid_info(dip, NULL) ||
!e_pm_valid_comp(dip, bpn->bpn_comp, &cp) ||
!e_pm_valid_power(dip, bpn->bpn_comp, bpn->bpn_level)) {
PMD(PMD_SET, ("%s: %s@%s(%s#%d) has no pm info; EIO\n",
pmf, PM_DEVICE(dip)))
*pspm->pspm_errnop = EIO;
*(int *)result = DDI_FAILURE;
return (DDI_FAILURE);
}
ASSERT(bpn->bpn_dip == dip);
PMD(PMD_SET, ("%s: nexus powerup for %s@%s(%s#%d)\n", pmf,
PM_DEVICE(dip)))
new_bpc.bpc_dip = dip;
pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
new_bpc.bpc_path = ddi_pathname(dip, pathbuf);
new_bpc.bpc_comp = bpn->bpn_comp;
new_bpc.bpc_olevel = PM_CURPOWER(dip, bpn->bpn_comp);
new_bpc.bpc_nlevel = bpn->bpn_level;
new_bpc.bpc_private = bpn->bpn_private;
((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_direction =
PM_LEVEL_UPONLY;
((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_errnop =
&errno;
ret = pm_busop_set_power(dip, impl_arg, BUS_POWER_CHILD_PWRCHG,
(void *)&new_bpc, result);
kmem_free(pathbuf, MAXPATHLEN);
return (ret);
case BUS_POWER_NOINVOL:
bpi = (pm_bp_noinvol_t *)arg;
tdip = bpi->bpni_dip;
cdip = pm_get_next_descendent(dip, tdip);
/* In case of rem_drv, the leaf node has been removed */
if (cdip == NULL)
return (DDI_SUCCESS);
cinfo = PM_GET_PM_INFO(cdip);
if (cdip != tdip) {
if (PM_WANTS_NOTIFICATION(cdip)) {
PMD(PMD_NOINVOL,
("%s: call bus_power for %s@%s(%s#%d)\n",
pmf, PM_DEVICE(cdip)))
ret = (*PM_BUS_POWER_FUNC(cdip))
(cdip, NULL, op, arg, result);
if ((cinfo) && (ret == DDI_SUCCESS))
(void) pm_noinvol_update_node(cdip,
bpi);
return (ret);
} else {
PMD(PMD_NOINVOL,
("%s: walk down to %s@%s(%s#%d)\n", pmf,
PM_DEVICE(cdip)))
ret = pm_busop_bus_power(cdip, NULL, op,
arg, result);
/*
* Update the current node.
*/
if ((cinfo) && (ret == DDI_SUCCESS))
(void) pm_noinvol_update_node(cdip,
bpi);
return (ret);
}
} else {
/*
* For attach, detach, power up:
* Do nothing for leaf node since its
* counts are already updated.
* For CFB and driver removal, since the
* path and the target dip passed in is up to and incl.
* the immediate ancestor, need to do the update.
*/
PMD(PMD_NOINVOL, ("%s: target %s@%s(%s#%d) is "
"reached\n", pmf, PM_DEVICE(cdip)))
if (cinfo && ((bpi->bpni_cmd == PM_BP_NOINVOL_REMDRV) ||
(bpi->bpni_cmd == PM_BP_NOINVOL_CFB)))
(void) pm_noinvol_update_node(cdip, bpi);
return (DDI_SUCCESS);
}
default:
PMD(PMD_SET, ("%s: operation %d is not supported!\n", pmf, op))
return (DDI_FAILURE);
}
}
static int
pm_busop_set_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op,
void *arg, void *resultp)
{
_NOTE(ARGUNUSED(impl_arg))
PMD_FUNC(pmf, "bp_set_power")
pm_ppm_devlist_t *devl = NULL;
int clevel, circ;
#ifdef DEBUG
int circ_db, ccirc_db;
#endif
int ret = DDI_SUCCESS;
dev_info_t *cdip;
pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg;
pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private;
pm_canblock_t canblock = pspm->pspm_canblock;
int scan = pspm->pspm_scan;
int comp = bpc->bpc_comp;
int olevel = bpc->bpc_olevel;
int nlevel = bpc->bpc_nlevel;
int comps_off_incr = 0;
dev_info_t *pdip = ddi_get_parent(dip);
int dodeps;
int direction = pspm->pspm_direction;
int *errnop = pspm->pspm_errnop;
#ifdef PMDDEBUG
char *dir = pm_decode_direction(direction);
#endif
int *iresp = (int *)resultp;
time_t idletime, thresh;
pm_component_t *cp = PM_CP(dip, comp);
int work_type;
*iresp = DDI_SUCCESS;
*errnop = 0;
ASSERT(op == BUS_POWER_CHILD_PWRCHG);
PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip),
pm_decode_op(op)))
/*
* The following set of conditions indicate we are here to handle a
* driver's pm_[raise|lower]_power request, but the device is being
* power managed (PM_DIRECT_PM) by a user process. For that case
* we want to pm_block and pass a status back to the caller based
* on whether the controlling process's next activity on the device
* matches the current request or not. This distinction tells
* downstream functions to avoid calling into a driver or changing
* the framework's power state. To actually block, we need:
*
* PM_ISDIRECT(dip)
* no reason to block unless a process is directly controlling dev
* direction != PM_LEVEL_EXACT
* EXACT is used by controlling proc's PM_SET_CURRENT_POWER ioctl
* !pm_processes_stopped
* don't block if controlling proc already be stopped for cpr
* canblock != PM_CANBLOCK_BYPASS
* our caller must not have explicitly prevented blocking
*/
if (direction != PM_LEVEL_EXACT && canblock != PM_CANBLOCK_BYPASS) {
PM_LOCK_DIP(dip);
while (PM_ISDIRECT(dip) && !pm_processes_stopped) {
/* releases dip lock */
ret = pm_busop_match_request(dip, bpc);
if (ret == EAGAIN) {
PM_LOCK_DIP(dip);
continue;
}
return (*iresp = ret);
}
PM_UNLOCK_DIP(dip);
}
/* BC device is never scanned, so power will stick until we are done */
if (PM_ISBC(dip) && comp != 0 && nlevel != 0 &&
direction != PM_LEVEL_DOWNONLY) {
int nrmpwr0 = pm_get_normal_power(dip, 0);
if (pm_set_power(dip, 0, nrmpwr0, direction,
canblock, 0, resultp) != DDI_SUCCESS) {
/* *resultp set by pm_set_power */
return (DDI_FAILURE);
}
}
if (PM_WANTS_NOTIFICATION(pdip)) {
PMD(PMD_SET, ("%s: pre_notify %s@%s(%s#%d) for child "
"%s@%s(%s#%d)\n", pmf, PM_DEVICE(pdip), PM_DEVICE(dip)))
ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL,
BUS_POWER_PRE_NOTIFICATION, bpc, resultp);
if (ret != DDI_SUCCESS) {
PMD(PMD_SET, ("%s: failed to pre_notify %s@%s(%s#%d)\n",
pmf, PM_DEVICE(pdip)))
return (DDI_FAILURE);
}
} else {
/*
* Since we don't know what the actual power level is,
* we place a power hold on the parent no matter what
* component and level is changing.
*/
pm_hold_power(pdip);
}
PM_LOCK_POWER(dip, &circ);
clevel = PM_CURPOWER(dip, comp);
/*
* It's possible that a call was made to pm_update_maxpower()
* on another thread before we took the lock above. So, we need to
* make sure that this request isn't processed after the
* change of power executed on behalf of pm_update_maxpower().
*/
if (nlevel > pm_get_normal_power(dip, comp)) {
PMD(PMD_SET, ("%s: requested level is higher than normal.\n",
pmf))
ret = DDI_FAILURE;
*iresp = DDI_FAILURE;
goto post_notify;
}
PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, olvl=%d, nlvl=%d, clvl=%d, "
"dir=%s\n", pmf, PM_DEVICE(dip), comp, bpc->bpc_olevel, nlevel,
clevel, dir))
switch (direction) {
case PM_LEVEL_UPONLY:
/* Powering up */
if (clevel >= nlevel) {
PMD(PMD_SET, ("%s: current level is already "
"at or above the requested level.\n", pmf))
*iresp = DDI_SUCCESS;
ret = DDI_SUCCESS;
goto post_notify;
}
break;
case PM_LEVEL_EXACT:
/* specific level request */
if (clevel == nlevel && !PM_ISBC(dip)) {
PMD(PMD_SET, ("%s: current level is already "
"at the requested level.\n", pmf))
*iresp = DDI_SUCCESS;
ret = DDI_SUCCESS;
goto post_notify;
} else if (PM_IS_CFB(dip) && (nlevel < clevel)) {
PMD(PMD_CFB, ("%s: powerdown of console\n", pmf))
if (!pm_cfb_enabled) {
PMD(PMD_ERROR | PMD_CFB,
("%s: !pm_cfb_enabled, fails\n", pmf))
*errnop = EINVAL;
*iresp = DDI_FAILURE;
ret = DDI_FAILURE;
goto post_notify;
}
mutex_enter(&pm_cfb_lock);
while (cfb_inuse) {
mutex_exit(&pm_cfb_lock);
if (delay_sig(1) == EINTR) {
ret = DDI_FAILURE;
*iresp = DDI_FAILURE;
*errnop = EINTR;
goto post_notify;
}
mutex_enter(&pm_cfb_lock);
}
mutex_exit(&pm_cfb_lock);
}
break;
case PM_LEVEL_DOWNONLY:
/* Powering down */
thresh = cur_threshold(dip, comp);
idletime = gethrestime_sec() - cp->pmc_timestamp;
if (scan && ((PM_KUC(dip) != 0) ||
(cp->pmc_busycount > 0) ||
((idletime < thresh) && !PM_IS_PID(dip)))) {
#ifdef DEBUG
if (DEVI(dip)->devi_pm_kidsupcnt != 0)
PMD(PMD_SET, ("%s: scan failed: "
"kidsupcnt != 0\n", pmf))
if (cp->pmc_busycount > 0)
PMD(PMD_SET, ("%s: scan failed: "
"device become busy\n", pmf))
if (idletime < thresh)
PMD(PMD_SET, ("%s: scan failed: device "
"hasn't been idle long enough\n", pmf))
#endif
*iresp = DDI_FAILURE;
*errnop = EBUSY;
ret = DDI_FAILURE;
goto post_notify;
} else if (clevel != PM_LEVEL_UNKNOWN && clevel <= nlevel) {
PMD(PMD_SET, ("%s: current level is already at "
"or below the requested level.\n", pmf))
*iresp = DDI_SUCCESS;
ret = DDI_SUCCESS;
goto post_notify;
}
break;
}
if (PM_IS_CFB(dip) && (comps_off_incr =
calc_cfb_comps_incr(dip, comp, clevel, nlevel)) > 0) {
/*
* Pre-adjust pm_cfb_comps_off if lowering a console fb
* component from full power. Remember that we tried to
* lower power in case it fails and we need to back out
* the adjustment.
*/
update_comps_off(comps_off_incr, dip);
PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d cfb_comps_off->%d\n",
pmf, PM_DEVICE(dip), comp, clevel, nlevel,
pm_cfb_comps_off))
}
if ((*iresp = power_dev(dip,
comp, nlevel, clevel, canblock, &devl)) == DDI_SUCCESS) {
#ifdef DEBUG
/*
* All descendents of this node should already be powered off.
*/
if (PM_CURPOWER(dip, comp) == 0) {
pm_desc_pwrchk_t pdpchk;
pdpchk.pdpc_dip = dip;
pdpchk.pdpc_par_involved = PM_WANTS_NOTIFICATION(dip);
ndi_devi_enter(dip, &circ_db);
for (cdip = ddi_get_child(dip); cdip != NULL;
cdip = ddi_get_next_sibling(cdip)) {
ndi_devi_enter(cdip, &ccirc_db);
ddi_walk_devs(cdip, pm_desc_pwrchk_walk,
(void *)&pdpchk);
ndi_devi_exit(cdip, ccirc_db);
}
ndi_devi_exit(dip, circ_db);
}
#endif
/*
* Post-adjust pm_cfb_comps_off if we brought an fb component
* back up to full power.
*/
if (PM_IS_CFB(dip) && comps_off_incr < 0) {
update_comps_off(comps_off_incr, dip);
PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d "
"cfb_comps_off->%d\n", pmf, PM_DEVICE(dip),
comp, clevel, nlevel, pm_cfb_comps_off))
}
dodeps = 0;
if (POWERING_OFF(clevel, nlevel)) {
if (PM_ISBC(dip)) {
dodeps = (comp == 0);
} else {
int i;
dodeps = 1;
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
/* if some component still on */
if (PM_CURPOWER(dip, i)) {
dodeps = 0;
break;
}
}
}
if (dodeps)
work_type = PM_DEP_WK_POWER_OFF;
} else if (POWERING_ON(clevel, nlevel)) {
if (PM_ISBC(dip)) {
dodeps = (comp == 0);
} else {
int i;
dodeps = 1;
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
if (i == comp)
continue;
if (PM_CURPOWER(dip, i) > 0) {
dodeps = 0;
break;
}
}
}
if (dodeps)
work_type = PM_DEP_WK_POWER_ON;
}
if (dodeps) {
char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathbuf);
pm_dispatch_to_dep_thread(work_type, pathbuf, NULL,
PM_DEP_NOWAIT, NULL, 0);
kmem_free(pathbuf, MAXPATHLEN);
}
if ((PM_CURPOWER(dip, comp) == nlevel) && pm_watchers()) {
int old;
/* If old power cached during deadlock, use it. */
old = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ?
cp->pmc_phc_pwr : olevel);
mutex_enter(&pm_rsvp_lock);
pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, nlevel,
old, canblock);
pm_enqueue_notify_others(&devl, canblock);
mutex_exit(&pm_rsvp_lock);
} else {
pm_ppm_devlist_t *p;
pm_ppm_devlist_t *next;
for (p = devl; p != NULL; p = next) {
next = p->ppd_next;
kmem_free(p, sizeof (pm_ppm_devlist_t));
}
devl = NULL;
}
/*
* If we are coming from a scan, don't do it again,
* else we can have infinite loops.
*/
if (!scan)
pm_rescan(dip);
} else {
/* if we incremented pm_comps_off_count, but failed */
if (comps_off_incr > 0) {
update_comps_off(-comps_off_incr, dip);
PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d "
"cfb_comps_off->%d\n", pmf, PM_DEVICE(dip),
comp, clevel, nlevel, pm_cfb_comps_off))
}
*errnop = EIO;
}
post_notify:
/*
* This thread may have been in deadlock with pm_power_has_changed.
* Before releasing power lock, clear the flag which marks this
* condition.
*/
cp->pmc_flags &= ~PM_PHC_WHILE_SET_POWER;
/*
* Update the old power level in the bus power structure with the
* actual power level before the transition was made to the new level.
* Some involved parents depend on this information to keep track of
* their children's power transition.
*/
if (*iresp != DDI_FAILURE)
bpc->bpc_olevel = clevel;
if (PM_WANTS_NOTIFICATION(pdip)) {
ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL,
BUS_POWER_POST_NOTIFICATION, bpc, resultp);
PM_UNLOCK_POWER(dip, circ);
PMD(PMD_SET, ("%s: post_notify %s@%s(%s#%d) for "
"child %s@%s(%s#%d), ret=%d\n", pmf, PM_DEVICE(pdip),
PM_DEVICE(dip), ret))
} else {
nlevel = cur_power(cp); /* in case phc deadlock updated pwr */
PM_UNLOCK_POWER(dip, circ);
/*
* Now that we know what power transition has occurred
* (if any), release the power hold. Leave the hold
* in effect in the case of OFF->ON transition.
*/
if (!(clevel == 0 && nlevel > 0 &&
(!PM_ISBC(dip) || comp == 0)))
pm_rele_power(pdip);
/*
* If the power transition was an ON->OFF transition,
* remove the power hold from the parent.
*/
if ((clevel > 0 || clevel == PM_LEVEL_UNKNOWN) &&
nlevel == 0 && (!PM_ISBC(dip) || comp == 0))
pm_rele_power(pdip);
}
if (*iresp != DDI_SUCCESS || ret != DDI_SUCCESS)
return (DDI_FAILURE);
else
return (DDI_SUCCESS);
}
/*
* If an app (SunVTS or Xsun) has taken control, then block until it
* gives it up or makes the requested power level change, unless
* we have other instructions about blocking. Returns DDI_SUCCESS,
* DDI_FAILURE or EAGAIN (owner released device from directpm).
*/
static int
pm_busop_match_request(dev_info_t *dip, void *arg)
{
PMD_FUNC(pmf, "bp_match_request")
pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg;
pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private;
int comp = bpc->bpc_comp;
int nlevel = bpc->bpc_nlevel;
pm_canblock_t canblock = pspm->pspm_canblock;
int direction = pspm->pspm_direction;
int clevel, circ;
ASSERT(PM_IAM_LOCKING_DIP(dip));
PM_LOCK_POWER(dip, &circ);
clevel = PM_CURPOWER(dip, comp);
PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, nlvl=%d, clvl=%d\n",
pmf, PM_DEVICE(dip), comp, nlevel, clevel))
if (direction == PM_LEVEL_UPONLY) {
if (clevel >= nlevel) {
PM_UNLOCK_POWER(dip, circ);
PM_UNLOCK_DIP(dip);
return (DDI_SUCCESS);
}
} else if (clevel == nlevel) {
PM_UNLOCK_POWER(dip, circ);
PM_UNLOCK_DIP(dip);
return (DDI_SUCCESS);
}
if (canblock == PM_CANBLOCK_FAIL) {
PM_UNLOCK_POWER(dip, circ);
PM_UNLOCK_DIP(dip);
return (DDI_FAILURE);
}
if (canblock == PM_CANBLOCK_BLOCK) {
/*
* To avoid a deadlock, we must not hold the
* power lock when we pm_block.
*/
PM_UNLOCK_POWER(dip, circ);
PMD(PMD_SET, ("%s: blocking\n", pmf))
/* pm_block releases dip lock */
switch (pm_block(dip, comp, nlevel, clevel)) {
case PMP_RELEASE:
return (EAGAIN);
case PMP_SUCCEED:
return (DDI_SUCCESS);
case PMP_FAIL:
return (DDI_FAILURE);
}
} else {
ASSERT(0);
}
_NOTE(NOTREACHED);
return (DDI_FAILURE); /* keep gcc happy */
}
static int
pm_all_to_normal_nexus(dev_info_t *dip, pm_canblock_t canblock)
{
PMD_FUNC(pmf, "all_to_normal_nexus")
int *normal;
int i, ncomps;
size_t size;
int changefailed = 0;
int ret, result = DDI_SUCCESS;
pm_bp_nexus_pwrup_t bpn;
pm_sp_misc_t pspm;
ASSERT(PM_GET_PM_INFO(dip));
PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) {
PMD(PMD_ALLNORM, ("%s: can't get norm pwrs\n", pmf))
return (DDI_FAILURE);
}
ncomps = PM_NUMCMPTS(dip);
for (i = 0; i < ncomps; i++) {
bpn.bpn_dip = dip;
bpn.bpn_comp = i;
bpn.bpn_level = normal[i];
pspm.pspm_canblock = canblock;
pspm.pspm_scan = 0;
bpn.bpn_private = &pspm;
ret = pm_busop_bus_power(dip, NULL, BUS_POWER_NEXUS_PWRUP,
(void *)&bpn, (void *)&result);
if (ret != DDI_SUCCESS || result != DDI_SUCCESS) {
PMD(PMD_FAIL | PMD_ALLNORM, ("%s: %s@%s(%s#%d)[%d] "
"->%d failure result %d\n", pmf, PM_DEVICE(dip),
i, normal[i], result))
changefailed++;
}
}
kmem_free(normal, size);
if (changefailed) {
PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) "
"full power\n", pmf, changefailed, PM_DEVICE(dip)))
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
int
pm_noinvol_update(int subcmd, int volpmd, int wasvolpmd, char *path,
dev_info_t *tdip)
{
PMD_FUNC(pmf, "noinvol_update")
pm_bp_noinvol_t args;
int ret;
int result = DDI_SUCCESS;
args.bpni_path = path;
args.bpni_dip = tdip;
args.bpni_cmd = subcmd;
args.bpni_wasvolpmd = wasvolpmd;
args.bpni_volpmd = volpmd;
PMD(PMD_NOINVOL, ("%s: update for path %s tdip %p subcmd %d "
"volpmd %d wasvolpmd %d\n", pmf,
path, (void *)tdip, subcmd, wasvolpmd, volpmd))
ret = pm_busop_bus_power(ddi_root_node(), NULL, BUS_POWER_NOINVOL,
&args, &result);
return (ret);
}
void
pm_noinvol_update_node(dev_info_t *dip, pm_bp_noinvol_t *req)
{
PMD_FUNC(pmf, "noinvol_update_node")
PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
switch (req->bpni_cmd) {
case PM_BP_NOINVOL_ATTACH:
PMD(PMD_NOINVOL, ("%s: PM_PB_NOINVOL_ATTACH %s@%s(%s#%d) "
"noinvol %d->%d\n", pmf, PM_DEVICE(dip),
DEVI(dip)->devi_pm_noinvolpm,
DEVI(dip)->devi_pm_noinvolpm - 1))
ASSERT(DEVI(dip)->devi_pm_noinvolpm);
PM_LOCK_DIP(dip);
DEVI(dip)->devi_pm_noinvolpm--;
if (req->bpni_wasvolpmd) {
PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_ATTACH "
"%s@%s(%s#%d) volpmd %d->%d\n", pmf,
PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd,
DEVI(dip)->devi_pm_volpmd - 1))
if (DEVI(dip)->devi_pm_volpmd)
DEVI(dip)->devi_pm_volpmd--;
}
PM_UNLOCK_DIP(dip);
break;
case PM_BP_NOINVOL_DETACH:
PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH %s@%s(%s#%d) "
"noinvolpm %d->%d\n", pmf, PM_DEVICE(dip),
DEVI(dip)->devi_pm_noinvolpm,
DEVI(dip)->devi_pm_noinvolpm + 1))
PM_LOCK_DIP(dip);
DEVI(dip)->devi_pm_noinvolpm++;
if (req->bpni_wasvolpmd) {
PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH "
"%s@%s(%s#%d) volpmd %d->%d\n", pmf,
PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd,
DEVI(dip)->devi_pm_volpmd + 1))
DEVI(dip)->devi_pm_volpmd++;
}
PM_UNLOCK_DIP(dip);
break;
case PM_BP_NOINVOL_REMDRV:
PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) "
"noinvol %d->%d\n", pmf, PM_DEVICE(dip),
DEVI(dip)->devi_pm_noinvolpm,
DEVI(dip)->devi_pm_noinvolpm - 1))
ASSERT(DEVI(dip)->devi_pm_noinvolpm);
PM_LOCK_DIP(dip);
DEVI(dip)->devi_pm_noinvolpm--;
if (req->bpni_wasvolpmd) {
PMD(PMD_NOINVOL,
("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) "
"volpmd %d->%d\n", pmf, PM_DEVICE(dip),
DEVI(dip)->devi_pm_volpmd,
DEVI(dip)->devi_pm_volpmd - 1))
/*
* A power up could come in between and
* clear the volpmd, if that's the case,
* volpmd would be clear.
*/
if (DEVI(dip)->devi_pm_volpmd)
DEVI(dip)->devi_pm_volpmd--;
}
PM_UNLOCK_DIP(dip);
break;
case PM_BP_NOINVOL_CFB:
PMD(PMD_NOINVOL,
("%s: PM_BP_NOIVOL_CFB %s@%s(%s#%d) noinvol %d->%d\n",
pmf, PM_DEVICE(dip), DEVI(dip)->devi_pm_noinvolpm,
DEVI(dip)->devi_pm_noinvolpm + 1))
PM_LOCK_DIP(dip);
DEVI(dip)->devi_pm_noinvolpm++;
PM_UNLOCK_DIP(dip);
break;
case PM_BP_NOINVOL_POWER:
PMD(PMD_NOINVOL,
("%s: PM_BP_NOIVOL_PWR %s@%s(%s#%d) volpmd %d->%d\n",
pmf, PM_DEVICE(dip),
DEVI(dip)->devi_pm_volpmd, DEVI(dip)->devi_pm_volpmd -
req->bpni_volpmd))
PM_LOCK_DIP(dip);
DEVI(dip)->devi_pm_volpmd -= req->bpni_volpmd;
PM_UNLOCK_DIP(dip);
break;
default:
break;
}
}
#ifdef DEBUG
static int
pm_desc_pwrchk_walk(dev_info_t *dip, void *arg)
{
PMD_FUNC(pmf, "desc_pwrchk")
pm_desc_pwrchk_t *pdpchk = (pm_desc_pwrchk_t *)arg;
pm_info_t *info = PM_GET_PM_INFO(dip);
int i;
/* LINTED */
int curpwr, ce_level;
if (!info)
return (DDI_WALK_CONTINUE);
PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip)))
for (i = 0; i < PM_NUMCMPTS(dip); i++) {
/* LINTED */
if ((curpwr = PM_CURPOWER(dip, i)) == 0)
continue;
/* E_FUNC_SET_NOT_USED */
ce_level = (pdpchk->pdpc_par_involved == 0) ? CE_PANIC :
CE_WARN;
PMD(PMD_SET, ("%s: %s@%s(%s#%d) is powered off while desc "
"%s@%s(%s#%d)[%d] is at %d\n", pmf,
PM_DEVICE(pdpchk->pdpc_dip), PM_DEVICE(dip), i, curpwr))
cmn_err(ce_level, "!device %s@%s(%s#%d) is powered on, "
"while its ancestor, %s@%s(%s#%d), is powering off!",
PM_DEVICE(dip), PM_DEVICE(pdpchk->pdpc_dip));
}
return (DDI_WALK_CONTINUE);
}
#endif
/*
* Record the fact that one thread is borrowing the lock on a device node.
* Use is restricted to the case where the lending thread will block until
* the borrowing thread (always curthread) completes.
*/
void
pm_borrow_lock(kthread_t *lender)
{
lock_loan_t *prev = &lock_loan_head;
lock_loan_t *cur = (lock_loan_t *)kmem_zalloc(sizeof (*cur), KM_SLEEP);
cur->pmlk_borrower = curthread;
cur->pmlk_lender = lender;
mutex_enter(&pm_loan_lock);
cur->pmlk_next = prev->pmlk_next;
prev->pmlk_next = cur;
mutex_exit(&pm_loan_lock);
}
/*
* Return the borrowed lock. A thread can borrow only one.
*/
void
pm_return_lock(void)
{
lock_loan_t *cur;
lock_loan_t *prev = &lock_loan_head;
mutex_enter(&pm_loan_lock);
ASSERT(prev->pmlk_next != NULL);
for (cur = prev->pmlk_next; cur; prev = cur, cur = cur->pmlk_next)
if (cur->pmlk_borrower == curthread)
break;
ASSERT(cur != NULL);
prev->pmlk_next = cur->pmlk_next;
mutex_exit(&pm_loan_lock);
kmem_free(cur, sizeof (*cur));
}
#if defined(__x86)
#define CPR_RXR 0x1
#define CPR_TXR 0x20
#define CPR_DATAREG 0x3f8
#define CPR_LSTAT 0x3fd
#define CPR_INTRCTL 0x3f9
char
pm_getchar(void)
{
while ((inb(CPR_LSTAT) & CPR_RXR) != CPR_RXR)
drv_usecwait(10);
return (inb(CPR_DATAREG));
}
void
pm_putchar(char c)
{
while ((inb(CPR_LSTAT) & CPR_TXR) == 0)
drv_usecwait(10);
outb(CPR_DATAREG, c);
}
void
pm_printf(char *s)
{
while (*s) {
pm_putchar(*s++);
}
}
#endif
int
pm_ppm_searchlist(pm_searchargs_t *sp)
{
power_req_t power_req;
int result = 0;
/* LINTED */
int ret;
power_req.request_type = PMR_PPM_SEARCH_LIST;
power_req.req.ppm_search_list_req.searchlist = sp;
ASSERT(DEVI(ddi_root_node())->devi_pm_ppm);
ret = pm_ctlops((dev_info_t *)DEVI(ddi_root_node())->devi_pm_ppm,
ddi_root_node(), DDI_CTLOPS_POWER, &power_req, &result);
PMD(PMD_SX, ("pm_ppm_searchlist returns %d, result %d\n",
ret, result))
return (result);
}