/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/signal.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <sys/cred.h>
#include <sys/user.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/session.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/stropts.h>
#include <sys/poll.h>
#include <sys/systm.h>
#include <sys/cpuvar.h>
#include <sys/uio.h>
#include <sys/cmn_err.h>
#include <sys/priocntl.h>
#include <sys/procset.h>
#include <sys/vmem.h>
#include <sys/bitmap.h>
#include <sys/kmem.h>
#include <sys/siginfo.h>
#include <sys/vtrace.h>
#include <sys/callb.h>
#include <sys/debug.h>
#include <sys/modctl.h>
#include <sys/vmsystm.h>
#include <vm/page.h>
#include <sys/atomic.h>
#include <sys/suntpi.h>
#include <sys/strlog.h>
#include <sys/promif.h>
#include <sys/project.h>
#include <sys/vm.h>
#include <sys/taskq.h>
#include <sys/sunddi.h>
#include <sys/sunldi_impl.h>
#include <sys/strsun.h>
#include <sys/isa_defs.h>
#include <sys/multidata.h>
#include <sys/pattr.h>
#include <sys/strft.h>
#include <sys/fs/snode.h>
#include <sys/zone.h>
#include <sys/open.h>
#include <sys/sunldi.h>
#include <sys/sad.h>
#include <sys/netstack.h>
#define O_SAMESTR(q) (((q)->q_next) && \
(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
/*
* WARNING:
* The variables and routines in this file are private, belonging
* to the STREAMS subsystem. These should not be used by modules
* or drivers. Compatibility will not be guaranteed.
*/
/*
* Id value used to distinguish between different multiplexor links.
*/
static int32_t lnk_id = 0;
#define STREAMS_LOPRI MINCLSYSPRI
static pri_t streams_lopri = STREAMS_LOPRI;
#define STRSTAT(x) (str_statistics.x.value.ui64++)
typedef struct str_stat {
kstat_named_t sqenables;
kstat_named_t stenables;
kstat_named_t syncqservice;
kstat_named_t freebs;
kstat_named_t qwr_outer;
kstat_named_t rservice;
kstat_named_t strwaits;
kstat_named_t taskqfails;
kstat_named_t bufcalls;
kstat_named_t qhelps;
kstat_named_t qremoved;
kstat_named_t sqremoved;
kstat_named_t bcwaits;
kstat_named_t sqtoomany;
} str_stat_t;
static str_stat_t str_statistics = {
{ "sqenables", KSTAT_DATA_UINT64 },
{ "stenables", KSTAT_DATA_UINT64 },
{ "syncqservice", KSTAT_DATA_UINT64 },
{ "freebs", KSTAT_DATA_UINT64 },
{ "qwr_outer", KSTAT_DATA_UINT64 },
{ "rservice", KSTAT_DATA_UINT64 },
{ "strwaits", KSTAT_DATA_UINT64 },
{ "taskqfails", KSTAT_DATA_UINT64 },
{ "bufcalls", KSTAT_DATA_UINT64 },
{ "qhelps", KSTAT_DATA_UINT64 },
{ "qremoved", KSTAT_DATA_UINT64 },
{ "sqremoved", KSTAT_DATA_UINT64 },
{ "bcwaits", KSTAT_DATA_UINT64 },
{ "sqtoomany", KSTAT_DATA_UINT64 },
};
static kstat_t *str_kstat;
/*
* qrunflag was used previously to control background scheduling of queues. It
* is not used anymore, but kept here in case some module still wants to access
* it via qready() and setqsched macros.
*/
char qrunflag; /* Unused */
/*
* Most of the streams scheduling is done via task queues. Task queues may fail
* for non-sleep dispatches, so there are two backup threads servicing failed
* requests for queues and syncqs. Both of these threads also service failed
* dispatches freebs requests. Queues are put in the list specified by `qhead'
* and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
* requests are put into `freebs_list' which has no tail pointer. All three
* lists are protected by a single `service_queue' lock and use
* `services_to_run' condition variable for signaling background threads. Use of
* a single lock should not be a problem because it is only used under heavy
* loads when task queues start to fail and at that time it may be a good idea
* to throttle scheduling requests.
*
* NOTE: queues and syncqs should be scheduled by two separate threads because
* queue servicing may be blocked waiting for a syncq which may be also
* scheduled for background execution. This may create a deadlock when only one
* thread is used for both.
*/
static taskq_t *streams_taskq; /* Used for most STREAMS scheduling */
static kmutex_t service_queue; /* protects all of servicing vars */
static kcondvar_t services_to_run; /* wake up background service thread */
static kcondvar_t syncqs_to_run; /* wake up background service thread */
/*
* List of queues scheduled for background processing due to lack of resources
* in the task queues. Protected by service_queue lock;
*/
static struct queue *qhead;
static struct queue *qtail;
/*
* Same list for syncqs
*/
static syncq_t *sqhead;
static syncq_t *sqtail;
static mblk_t *freebs_list; /* list of buffers to free */
/*
* Backup threads for servicing queues and syncqs
*/
kthread_t *streams_qbkgrnd_thread;
kthread_t *streams_sqbkgrnd_thread;
/*
* Bufcalls related variables.
*/
struct bclist strbcalls; /* list of waiting bufcalls */
kmutex_t strbcall_lock; /* protects bufcall list (strbcalls) */
kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */
kmutex_t bcall_monitor; /* sleep/wakeup style monitor */
kcondvar_t bcall_cv; /* wait 'till executing bufcall completes */
kthread_t *bc_bkgrnd_thread; /* Thread to service bufcall requests */
kmutex_t strresources; /* protects global resources */
kmutex_t muxifier; /* single-threads multiplexor creation */
static void *str_stack_init(netstackid_t stackid, netstack_t *ns);
static void str_stack_shutdown(netstackid_t stackid, void *arg);
static void str_stack_fini(netstackid_t stackid, void *arg);
/*
* run_queues is no longer used, but is kept in case some 3rd party
* module/driver decides to use it.
*/
int run_queues = 0;
/*
* sq_max_size is the depth of the syncq (in number of messages) before
* qfill_syncq() starts QFULL'ing destination queues. As its primary
* consumer - IP is no longer D_MTPERMOD, but there may be other
* modules/drivers depend on this syncq flow control, we prefer to
* choose a large number as the default value. For potential
* performance gain, this value is tunable in /etc/system.
*/
int sq_max_size = 10000;
/*
* The number of ciputctrl structures per syncq and stream we create when
* needed.
*/
int n_ciputctrl;
int max_n_ciputctrl = 16;
/*
* If n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
*/
int min_n_ciputctrl = 2;
/*
* Per-driver/module syncqs
* ========================
*
* For drivers/modules that use PERMOD or outer syncqs we keep a list of
* perdm structures, new entries being added (and new syncqs allocated) when
* setq() encounters a module/driver with a streamtab that it hasn't seen
* before.
* The reason for this mechanism is that some modules and drivers share a
* common streamtab and it is necessary for those modules and drivers to also
* share a common PERMOD syncq.
*
* perdm_list --> dm_str == streamtab_1
* dm_sq == syncq_1
* dm_ref
* dm_next --> dm_str == streamtab_2
* dm_sq == syncq_2
* dm_ref
* dm_next --> ... NULL
*
* The dm_ref field is incremented for each new driver/module that takes
* a reference to the perdm structure and hence shares the syncq.
* References are held in the fmodsw_impl_t structure for each STREAMS module
* or the dev_impl array (indexed by device major number) for each driver.
*
* perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
* ^ ^ ^ ^
* | ______________/ | |
* | / | |
* dev_impl: ...|x|y|... module A module B
*
* When a module/driver is unloaded the reference count is decremented and,
* when it falls to zero, the perdm structure is removed from the list and
* the syncq is freed (see rele_dm()).
*/
perdm_t *perdm_list = NULL;
static krwlock_t perdm_rwlock;
cdevsw_impl_t *devimpl;
extern struct qinit strdata;
extern struct qinit stwdata;
static void runservice(queue_t *);
static void streams_bufcall_service(void);
static void streams_qbkgrnd_service(void);
static void streams_sqbkgrnd_service(void);
static syncq_t *new_syncq(void);
static void free_syncq(syncq_t *);
static void outer_insert(syncq_t *, syncq_t *);
static void outer_remove(syncq_t *, syncq_t *);
static void write_now(syncq_t *);
static void clr_qfull(queue_t *);
static void runbufcalls(void);
static void sqenable(syncq_t *);
static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
static void wait_q_syncq(queue_t *);
static void backenable_insertedq(queue_t *);
static void queue_service(queue_t *);
static void stream_service(stdata_t *);
static void syncq_service(syncq_t *);
static void qwriter_outer_service(syncq_t *);
static void mblk_free(mblk_t *);
#ifdef DEBUG
static int qprocsareon(queue_t *);
#endif
static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
static void reset_nfsrv_ptr(queue_t *, queue_t *);
void set_qfull(queue_t *);
static void sq_run_events(syncq_t *);
static int propagate_syncq(queue_t *);
static void blocksq(syncq_t *, ushort_t, int);
static void unblocksq(syncq_t *, ushort_t, int);
static int dropsq(syncq_t *, uint16_t);
static void emptysq(syncq_t *);
static sqlist_t *sqlist_alloc(struct stdata *, int);
static void sqlist_free(sqlist_t *);
static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t);
static void sqlist_insert(sqlist_t *, syncq_t *);
static void sqlist_insertall(sqlist_t *, queue_t *);
static void strsetuio(stdata_t *);
struct kmem_cache *stream_head_cache;
struct kmem_cache *queue_cache;
struct kmem_cache *syncq_cache;
struct kmem_cache *qband_cache;
struct kmem_cache *linkinfo_cache;
struct kmem_cache *ciputctrl_cache = NULL;
static linkinfo_t *linkinfo_list;
/* Global esballoc throttling queue */
static esb_queue_t system_esbq;
/* Array of esballoc throttling queues, of length esbq_nelem */
static esb_queue_t *volatile system_esbq_array;
static int esbq_nelem;
static kmutex_t esbq_lock;
static int esbq_log2_cpus_per_q = 0;
/* Scale the system_esbq length by setting number of CPUs per queue. */
uint_t esbq_cpus_per_q = 1;
/*
* esballoc tunable parameters.
*/
int esbq_max_qlen = 0x16; /* throttled queue length */
clock_t esbq_timeout = 0x8; /* timeout to process esb queue */
/*
* Routines to handle esballoc queueing.
*/
static void esballoc_process_queue(esb_queue_t *);
static void esballoc_enqueue_mblk(mblk_t *);
static void esballoc_timer(void *);
static void esballoc_set_timer(esb_queue_t *, clock_t);
static void esballoc_mblk_free(mblk_t *);
/*
* Qinit structure and Module_info structures
* for passthru read and write queues
*/
static void pass_wput(queue_t *, mblk_t *);
static queue_t *link_addpassthru(stdata_t *);
static void link_rempassthru(queue_t *);
struct module_info passthru_info = {
0,
"passthru",
0,
INFPSZ,
STRHIGH,
STRLOW
};
struct qinit passthru_rinit = {
(int (*)())putnext,
NULL,
NULL,
NULL,
NULL,
&passthru_info,
NULL
};
struct qinit passthru_winit = {
(int (*)()) pass_wput,
NULL,
NULL,
NULL,
NULL,
&passthru_info,
NULL
};
/*
* Verify correctness of list head/tail pointers.
*/
#define LISTCHECK(head, tail, link) { \
EQUIV(head, tail); \
IMPLY(tail != NULL, tail->link == NULL); \
}
/*
* Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
* using a `link' field.
*/
#define ENQUEUE(el, head, tail, link) { \
ASSERT(el->link == NULL); \
LISTCHECK(head, tail, link); \
if (head == NULL) \
head = el; \
else \
tail->link = el; \
tail = el; \
}
/*
* Dequeue the first element of the list denoted by `head' and `tail' pointers
* using a `link' field and put result into `el'.
*/
#define DQ(el, head, tail, link) { \
LISTCHECK(head, tail, link); \
el = head; \
if (head != NULL) { \
head = head->link; \
if (head == NULL) \
tail = NULL; \
el->link = NULL; \
} \
}
/*
* Remove `el' from the list using `chase' and `curr' pointers and return result
* in `succeed'.
*/
#define RMQ(el, head, tail, link, chase, curr, succeed) { \
LISTCHECK(head, tail, link); \
chase = NULL; \
succeed = 0; \
for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
chase = curr; \
if (curr != NULL) { \
succeed = 1; \
ASSERT(curr == el); \
if (chase != NULL) \
chase->link = curr->link; \
else \
head = curr->link; \
curr->link = NULL; \
if (curr == tail) \
tail = chase; \
} \
LISTCHECK(head, tail, link); \
}
/* Handling of delayed messages on the inner syncq. */
/*
* DEBUG versions should use function versions (to simplify tracing) and
* non-DEBUG kernels should use macro versions.
*/
/*
* Put a queue on the syncq list of queues.
* Assumes SQLOCK held.
*/
#define SQPUT_Q(sq, qp) \
{ \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if (!(qp->q_sqflags & Q_SQQUEUED)) { \
/* The queue should not be linked anywhere */ \
ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
/* Head and tail may only be NULL simultaneously */ \
EQUIV(sq->sq_head, sq->sq_tail); \
/* Queue may be only enqueued on its syncq */ \
ASSERT(sq == qp->q_syncq); \
/* Check the correctness of SQ_MESSAGES flag */ \
EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES)); \
/* Sanity check first/last elements of the list */ \
IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
/* \
* Sanity check of priority field: empty queue should \
* have zero priority \
* and nqueues equal to zero. \
*/ \
IMPLY(sq->sq_head == NULL, sq->sq_pri == 0); \
/* Sanity check of sq_nqueues field */ \
EQUIV(sq->sq_head, sq->sq_nqueues); \
if (sq->sq_head == NULL) { \
sq->sq_head = sq->sq_tail = qp; \
sq->sq_flags |= SQ_MESSAGES; \
} else if (qp->q_spri == 0) { \
qp->q_sqprev = sq->sq_tail; \
sq->sq_tail->q_sqnext = qp; \
sq->sq_tail = qp; \
} else { \
/* \
* Put this queue in priority order: higher \
* priority gets closer to the head. \
*/ \
queue_t **qpp = &sq->sq_tail; \
queue_t *qnext = NULL; \
\
while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
qnext = *qpp; \
qpp = &(*qpp)->q_sqprev; \
} \
qp->q_sqnext = qnext; \
qp->q_sqprev = *qpp; \
if (*qpp != NULL) { \
(*qpp)->q_sqnext = qp; \
} else { \
sq->sq_head = qp; \
sq->sq_pri = sq->sq_head->q_spri; \
} \
*qpp = qp; \
} \
qp->q_sqflags |= Q_SQQUEUED; \
qp->q_sqtstamp = ddi_get_lbolt(); \
sq->sq_nqueues++; \
} \
}
/*
* Remove a queue from the syncq list
* Assumes SQLOCK held.
*/
#define SQRM_Q(sq, qp) \
{ \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
ASSERT(qp->q_sqflags & Q_SQQUEUED); \
ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL); \
ASSERT((sq->sq_flags & SQ_MESSAGES) != 0); \
/* Check that the queue is actually in the list */ \
ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp); \
ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp); \
ASSERT(sq->sq_nqueues != 0); \
if (qp->q_sqprev == NULL) { \
/* First queue on list, make head q_sqnext */ \
sq->sq_head = qp->q_sqnext; \
} else { \
/* Make prev->next == next */ \
qp->q_sqprev->q_sqnext = qp->q_sqnext; \
} \
if (qp->q_sqnext == NULL) { \
/* Last queue on list, make tail sqprev */ \
sq->sq_tail = qp->q_sqprev; \
} else { \
/* Make next->prev == prev */ \
qp->q_sqnext->q_sqprev = qp->q_sqprev; \
} \
/* clear out references on this queue */ \
qp->q_sqprev = qp->q_sqnext = NULL; \
qp->q_sqflags &= ~Q_SQQUEUED; \
/* If there is nothing queued, clear SQ_MESSAGES */ \
if (sq->sq_head != NULL) { \
sq->sq_pri = sq->sq_head->q_spri; \
} else { \
sq->sq_flags &= ~SQ_MESSAGES; \
sq->sq_pri = 0; \
} \
sq->sq_nqueues--; \
ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL || \
(sq->sq_flags & SQ_QUEUED) == 0); \
}
/* Hide the definition from the header file. */
#ifdef SQPUT_MP
#undef SQPUT_MP
#endif
/*
* Put a message on the queue syncq.
* Assumes QLOCK held.
*/
#define SQPUT_MP(qp, mp) \
{ \
ASSERT(MUTEX_HELD(QLOCK(qp))); \
ASSERT(qp->q_sqhead == NULL || \
(qp->q_sqtail != NULL && \
qp->q_sqtail->b_next == NULL)); \
qp->q_syncqmsgs++; \
ASSERT(qp->q_syncqmsgs != 0); /* Wraparound */ \
if (qp->q_sqhead == NULL) { \
qp->q_sqhead = qp->q_sqtail = mp; \
} else { \
qp->q_sqtail->b_next = mp; \
qp->q_sqtail = mp; \
} \
ASSERT(qp->q_syncqmsgs > 0); \
set_qfull(qp); \
}
#define SQ_PUTCOUNT_SETFAST_LOCKED(sq) { \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int nlocks = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= nlocks; i++) { \
ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
cip[i].ciputctrl_count |= SQ_FASTPUT; \
} \
} \
}
#define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) { \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int nlocks = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= nlocks; i++) { \
ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
cip[i].ciputctrl_count &= ~SQ_FASTPUT; \
} \
} \
}
/*
* Run service procedures for all queues in the stream head.
*/
#define STR_SERVICE(stp, q) { \
ASSERT(MUTEX_HELD(&stp->sd_qlock)); \
while (stp->sd_qhead != NULL) { \
DQ(q, stp->sd_qhead, stp->sd_qtail, q_link); \
ASSERT(stp->sd_nqueues > 0); \
stp->sd_nqueues--; \
ASSERT(!(q->q_flag & QINSERVICE)); \
mutex_exit(&stp->sd_qlock); \
queue_service(q); \
mutex_enter(&stp->sd_qlock); \
} \
ASSERT(stp->sd_nqueues == 0); \
ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL)); \
}
/*
* Constructor/destructor routines for the stream head cache
*/
/* ARGSUSED */
static int
stream_head_constructor(void *buf, void *cdrarg, int kmflags)
{
stdata_t *stp = buf;
mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
stp->sd_wrq = NULL;
return (0);
}
/* ARGSUSED */
static void
stream_head_destructor(void *buf, void *cdrarg)
{
stdata_t *stp = buf;
mutex_destroy(&stp->sd_lock);
mutex_destroy(&stp->sd_reflock);
mutex_destroy(&stp->sd_qlock);
cv_destroy(&stp->sd_monitor);
cv_destroy(&stp->sd_iocmonitor);
cv_destroy(&stp->sd_refmonitor);
cv_destroy(&stp->sd_qcv);
cv_destroy(&stp->sd_zcopy_wait);
}
/*
* Constructor/destructor routines for the queue cache
*/
/* ARGSUSED */
static int
queue_constructor(void *buf, void *cdrarg, int kmflags)
{
queinfo_t *qip = buf;
queue_t *qp = &qip->qu_rqueue;
queue_t *wqp = &qip->qu_wqueue;
syncq_t *sq = &qip->qu_syncq;
qp->q_first = NULL;
qp->q_link = NULL;
qp->q_count = 0;
qp->q_mblkcnt = 0;
qp->q_sqhead = NULL;
qp->q_sqtail = NULL;
qp->q_sqnext = NULL;
qp->q_sqprev = NULL;
qp->q_sqflags = 0;
qp->q_rwcnt = 0;
qp->q_spri = 0;
mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
wqp->q_first = NULL;
wqp->q_link = NULL;
wqp->q_count = 0;
wqp->q_mblkcnt = 0;
wqp->q_sqhead = NULL;
wqp->q_sqtail = NULL;
wqp->q_sqnext = NULL;
wqp->q_sqprev = NULL;
wqp->q_sqflags = 0;
wqp->q_rwcnt = 0;
wqp->q_spri = 0;
mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
sq->sq_head = NULL;
sq->sq_tail = NULL;
sq->sq_evhead = NULL;
sq->sq_evtail = NULL;
sq->sq_callbpend = NULL;
sq->sq_outer = NULL;
sq->sq_onext = NULL;
sq->sq_oprev = NULL;
sq->sq_next = NULL;
sq->sq_svcflags = 0;
sq->sq_servcount = 0;
sq->sq_needexcl = 0;
sq->sq_nqueues = 0;
sq->sq_pri = 0;
mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
return (0);
}
/* ARGSUSED */
static void
queue_destructor(void *buf, void *cdrarg)
{
queinfo_t *qip = buf;
queue_t *qp = &qip->qu_rqueue;
queue_t *wqp = &qip->qu_wqueue;
syncq_t *sq = &qip->qu_syncq;
ASSERT(qp->q_sqhead == NULL);
ASSERT(wqp->q_sqhead == NULL);
ASSERT(qp->q_sqnext == NULL);
ASSERT(wqp->q_sqnext == NULL);
ASSERT(qp->q_rwcnt == 0);
ASSERT(wqp->q_rwcnt == 0);
mutex_destroy(&qp->q_lock);
cv_destroy(&qp->q_wait);
mutex_destroy(&wqp->q_lock);
cv_destroy(&wqp->q_wait);
mutex_destroy(&sq->sq_lock);
cv_destroy(&sq->sq_wait);
cv_destroy(&sq->sq_exitwait);
}
/*
* Constructor/destructor routines for the syncq cache
*/
/* ARGSUSED */
static int
syncq_constructor(void *buf, void *cdrarg, int kmflags)
{
syncq_t *sq = buf;
bzero(buf, sizeof (syncq_t));
mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
return (0);
}
/* ARGSUSED */
static void
syncq_destructor(void *buf, void *cdrarg)
{
syncq_t *sq = buf;
ASSERT(sq->sq_head == NULL);
ASSERT(sq->sq_tail == NULL);
ASSERT(sq->sq_evhead == NULL);
ASSERT(sq->sq_evtail == NULL);
ASSERT(sq->sq_callbpend == NULL);
ASSERT(sq->sq_callbflags == 0);
ASSERT(sq->sq_outer == NULL);
ASSERT(sq->sq_onext == NULL);
ASSERT(sq->sq_oprev == NULL);
ASSERT(sq->sq_next == NULL);
ASSERT(sq->sq_needexcl == 0);
ASSERT(sq->sq_svcflags == 0);
ASSERT(sq->sq_servcount == 0);
ASSERT(sq->sq_nqueues == 0);
ASSERT(sq->sq_pri == 0);
ASSERT(sq->sq_count == 0);
ASSERT(sq->sq_rmqcount == 0);
ASSERT(sq->sq_cancelid == 0);
ASSERT(sq->sq_ciputctrl == NULL);
ASSERT(sq->sq_nciputctrl == 0);
ASSERT(sq->sq_type == 0);
ASSERT(sq->sq_flags == 0);
mutex_destroy(&sq->sq_lock);
cv_destroy(&sq->sq_wait);
cv_destroy(&sq->sq_exitwait);
}
/* ARGSUSED */
static int
ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
{
ciputctrl_t *cip = buf;
int i;
for (i = 0; i < n_ciputctrl; i++) {
cip[i].ciputctrl_count = SQ_FASTPUT;
mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
}
return (0);
}
/* ARGSUSED */
static void
ciputctrl_destructor(void *buf, void *cdrarg)
{
ciputctrl_t *cip = buf;
int i;
for (i = 0; i < n_ciputctrl; i++) {
ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
mutex_destroy(&cip[i].ciputctrl_lock);
}
}
/*
* Init routine run from main at boot time.
*/
void
strinit(void)
{
int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
stream_head_cache = kmem_cache_create("stream_head_cache",
sizeof (stdata_t), 0,
stream_head_constructor, stream_head_destructor, NULL,
NULL, NULL, 0);
queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
qband_cache = kmem_cache_create("qband_cache",
sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
linkinfo_cache = kmem_cache_create("linkinfo_cache",
sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
n_ciputctrl = ncpus;
n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
ASSERT(n_ciputctrl >= 1);
n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
if (n_ciputctrl >= min_n_ciputctrl) {
ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
sizeof (ciputctrl_t) * n_ciputctrl,
sizeof (ciputctrl_t), ciputctrl_constructor,
ciputctrl_destructor, NULL, NULL, NULL, 0);
}
streams_taskq = system_taskq;
if (streams_taskq == NULL)
panic("strinit: no memory for streams taskq!");
bc_bkgrnd_thread = thread_create(NULL, 0,
streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
streams_qbkgrnd_thread = thread_create(NULL, 0,
streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
streams_sqbkgrnd_thread = thread_create(NULL, 0,
streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
/*
* Create STREAMS kstats.
*/
str_kstat = kstat_create("streams", 0, "strstat",
"net", KSTAT_TYPE_NAMED,
sizeof (str_statistics) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
if (str_kstat != NULL) {
str_kstat->ks_data = &str_statistics;
kstat_install(str_kstat);
}
/*
* TPI support routine initialisation.
*/
tpi_init();
/*
* Handle to have autopush and persistent link information per
* zone.
* Note: uses shutdown hook instead of destroy hook so that the
* persistent links can be torn down before the destroy hooks
* in the TCP/IP stack are called.
*/
netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
str_stack_fini);
}
void
str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
{
struct stdata *stp;
ASSERT(vp->v_stream);
stp = vp->v_stream;
/* Have to hold sd_lock to prevent siglist from changing */
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & event)
strsendsig(stp->sd_siglist, event, band, error);
mutex_exit(&stp->sd_lock);
}
/*
* Send the "sevent" set of signals to a process.
* This might send more than one signal if the process is registered
* for multiple events. The caller should pass in an sevent that only
* includes the events for which the process has registered.
*/
static void
dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
uchar_t band, int error)
{
ASSERT(MUTEX_HELD(&proc->p_lock));
info->si_band = 0;
info->si_errno = 0;
if (sevent & S_ERROR) {
sevent &= ~S_ERROR;
info->si_code = POLL_ERR;
info->si_errno = error;
TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
"strsendsig:proc %p info %p", proc, info);
sigaddq(proc, NULL, info, KM_NOSLEEP);
info->si_errno = 0;
}
if (sevent & S_HANGUP) {
sevent &= ~S_HANGUP;
info->si_code = POLL_HUP;
TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
"strsendsig:proc %p info %p", proc, info);
sigaddq(proc, NULL, info, KM_NOSLEEP);
}
if (sevent & S_HIPRI) {
sevent &= ~S_HIPRI;
info->si_code = POLL_PRI;
TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
"strsendsig:proc %p info %p", proc, info);
sigaddq(proc, NULL, info, KM_NOSLEEP);
}
if (sevent & S_RDBAND) {
sevent &= ~S_RDBAND;
if (events & S_BANDURG)
sigtoproc(proc, NULL, SIGURG);
else
sigtoproc(proc, NULL, SIGPOLL);
}
if (sevent & S_WRBAND) {
sevent &= ~S_WRBAND;
sigtoproc(proc, NULL, SIGPOLL);
}
if (sevent & S_INPUT) {
sevent &= ~S_INPUT;
info->si_code = POLL_IN;
info->si_band = band;
TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
"strsendsig:proc %p info %p", proc, info);
sigaddq(proc, NULL, info, KM_NOSLEEP);
info->si_band = 0;
}
if (sevent & S_OUTPUT) {
sevent &= ~S_OUTPUT;
info->si_code = POLL_OUT;
info->si_band = band;
TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
"strsendsig:proc %p info %p", proc, info);
sigaddq(proc, NULL, info, KM_NOSLEEP);
info->si_band = 0;
}
if (sevent & S_MSG) {
sevent &= ~S_MSG;
info->si_code = POLL_MSG;
info->si_band = band;
TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
"strsendsig:proc %p info %p", proc, info);
sigaddq(proc, NULL, info, KM_NOSLEEP);
info->si_band = 0;
}
if (sevent & S_RDNORM) {
sevent &= ~S_RDNORM;
sigtoproc(proc, NULL, SIGPOLL);
}
if (sevent != 0) {
panic("strsendsig: unknown event(s) %x", sevent);
}
}
/*
* Send SIGPOLL/SIGURG signal to all processes and process groups
* registered on the given signal list that want a signal for at
* least one of the specified events.
*
* Must be called with exclusive access to siglist (caller holding sd_lock).
*
* strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
* sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
* while it is in the siglist.
*
* For performance reasons (MP scalability) the code drops pidlock
* when sending signals to a single process.
* When sending to a process group the code holds
* pidlock to prevent the membership in the process group from changing
* while walking the p_pglink list.
*/
void
strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
{
strsig_t *ssp;
k_siginfo_t info;
struct pid *pidp;
proc_t *proc;
info.si_signo = SIGPOLL;
info.si_errno = 0;
for (ssp = siglist; ssp; ssp = ssp->ss_next) {
int sevent;
sevent = ssp->ss_events & event;
if (sevent == 0)
continue;
if ((pidp = ssp->ss_pidp) == NULL) {
/* pid was released but still on event list */
continue;
}
if (ssp->ss_pid > 0) {
/*
* XXX This unfortunately still generates
* a signal when a fd is closed but
* the proc is active.
*/
ASSERT(ssp->ss_pid == pidp->pid_id);
mutex_enter(&pidlock);
proc = prfind_zone(pidp->pid_id, ALL_ZONES);
if (proc == NULL) {
mutex_exit(&pidlock);
continue;
}
mutex_enter(&proc->p_lock);
mutex_exit(&pidlock);
dosendsig(proc, ssp->ss_events, sevent, &info,
band, error);
mutex_exit(&proc->p_lock);
} else {
/*
* Send to process group. Hold pidlock across
* calls to dosendsig().
*/
pid_t pgrp = -ssp->ss_pid;
mutex_enter(&pidlock);
proc = pgfind_zone(pgrp, ALL_ZONES);
while (proc != NULL) {
mutex_enter(&proc->p_lock);
dosendsig(proc, ssp->ss_events, sevent,
&info, band, error);
mutex_exit(&proc->p_lock);
proc = proc->p_pglink;
}
mutex_exit(&pidlock);
}
}
}
/*
* Attach a stream device or module.
* qp is a read queue; the new queue goes in so its next
* read ptr is the argument, and the write queue corresponding
* to the argument points to this queue. Return 0 on success,
* or a non-zero errno on failure.
*/
int
qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
boolean_t is_insert)
{
major_t major;
cdevsw_impl_t *dp;
struct streamtab *str;
queue_t *rq;
queue_t *wrq;
uint32_t qflag;
uint32_t sqtype;
perdm_t *dmp;
int error;
int sflag;
rq = allocq();
wrq = _WR(rq);
STREAM(rq) = STREAM(wrq) = STREAM(qp);
if (fp != NULL) {
str = fp->f_str;
qflag = fp->f_qflag;
sqtype = fp->f_sqtype;
dmp = fp->f_dmp;
IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
sflag = MODOPEN;
/*
* stash away a pointer to the module structure so we can
* unref it in qdetach.
*/
rq->q_fp = fp;
} else {
ASSERT(!is_insert);
major = getmajor(*devp);
dp = &devimpl[major];
str = dp->d_str;
ASSERT(str == STREAMSTAB(major));
qflag = dp->d_qflag;
ASSERT(qflag & QISDRV);
sqtype = dp->d_sqtype;
/* create perdm_t if needed */
if (NEED_DM(dp->d_dmp, qflag))
dp->d_dmp = hold_dm(str, qflag, sqtype);
dmp = dp->d_dmp;
sflag = 0;
}
TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
"qattach:qflag == %X(%X)", qflag, *devp);
/* setq might sleep in allocator - avoid holding locks. */
setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
/*
* Before calling the module's open routine, set up the q_next
* pointer for inserting a module in the middle of a stream.
*
* Note that we can always set _QINSERTING and set up q_next
* pointer for both inserting and pushing a module. Then there
* is no need for the is_insert parameter. In insertq(), called
* by qprocson(), assume that q_next of the new module always points
* to the correct queue and use it for insertion. Everything should
* work out fine. But in the first release of _I_INSERT, we
* distinguish between inserting and pushing to make sure that
* pushing a module follows the same code path as before.
*/
if (is_insert) {
rq->q_flag |= _QINSERTING;
rq->q_next = qp;
}
/*
* If there is an outer perimeter get exclusive access during
* the open procedure. Bump up the reference count on the queue.
*/
entersq(rq->q_syncq, SQ_OPENCLOSE);
error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
if (error != 0)
goto failed;
leavesq(rq->q_syncq, SQ_OPENCLOSE);
ASSERT(qprocsareon(rq));
return (0);
failed:
rq->q_flag &= ~_QINSERTING;
if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
qprocsoff(rq);
leavesq(rq->q_syncq, SQ_OPENCLOSE);
rq->q_next = wrq->q_next = NULL;
qdetach(rq, 0, 0, crp, B_FALSE);
return (error);
}
/*
* Handle second open of stream. For modules, set the
* last argument to MODOPEN and do not pass any open flags.
* Ignore dummydev since this is not the first open.
*/
int
qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
{
int error;
dev_t dummydev;
queue_t *wqp = _WR(qp);
ASSERT(qp->q_flag & QREADR);
entersq(qp->q_syncq, SQ_OPENCLOSE);
dummydev = *devp;
if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
(wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
leavesq(qp->q_syncq, SQ_OPENCLOSE);
mutex_enter(&STREAM(qp)->sd_lock);
qp->q_stream->sd_flag |= STREOPENFAIL;
mutex_exit(&STREAM(qp)->sd_lock);
return (error);
}
leavesq(qp->q_syncq, SQ_OPENCLOSE);
/*
* successful open should have done qprocson()
*/
ASSERT(qprocsareon(_RD(qp)));
return (0);
}
/*
* Detach a stream module or device.
* If clmode == 1 then the module or driver was opened and its
* close routine must be called. If clmode == 0, the module
* or driver was never opened or the open failed, and so its close
* should not be called.
*/
void
qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
{
queue_t *wqp = _WR(qp);
ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
if (STREAM_NEEDSERVICE(STREAM(qp)))
stream_runservice(STREAM(qp));
if (clmode) {
/*
* Make sure that all the messages on the write side syncq are
* processed and nothing is left. Since we are closing, no new
* messages may appear there.
*/
wait_q_syncq(wqp);
entersq(qp->q_syncq, SQ_OPENCLOSE);
if (is_remove) {
mutex_enter(QLOCK(qp));
qp->q_flag |= _QREMOVING;
mutex_exit(QLOCK(qp));
}
(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
/*
* Check that qprocsoff() was actually called.
*/
ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
leavesq(qp->q_syncq, SQ_OPENCLOSE);
} else {
disable_svc(qp);
}
/*
* Allow any threads blocked in entersq to proceed and discover
* the QWCLOSE is set.
* Note: This assumes that all users of entersq check QWCLOSE.
* Currently runservice is the only entersq that can happen
* after removeq has finished.
* Removeq will have discarded all messages destined to the closing
* pair of queues from the syncq.
* NOTE: Calling a function inside an assert is unconventional.
* However, it does not cause any problem since flush_syncq() does
* not change any state except when it returns non-zero i.e.
* when the assert will trigger.
*/
ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
ASSERT((qp->q_flag & QPERMOD) ||
((qp->q_syncq->sq_head == NULL) &&
(wqp->q_syncq->sq_head == NULL)));
/* release any fmodsw_impl_t structure held on behalf of the queue */
ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
if (qp->q_fp != NULL)
fmodsw_rele(qp->q_fp);
/* freeq removes us from the outer perimeter if any */
freeq(qp);
}
/* Prevent service procedures from being called */
void
disable_svc(queue_t *qp)
{
queue_t *wqp = _WR(qp);
ASSERT(qp->q_flag & QREADR);
mutex_enter(QLOCK(qp));
qp->q_flag |= QWCLOSE;
mutex_exit(QLOCK(qp));
mutex_enter(QLOCK(wqp));
wqp->q_flag |= QWCLOSE;
mutex_exit(QLOCK(wqp));
}
/* Allow service procedures to be called again */
void
enable_svc(queue_t *qp)
{
queue_t *wqp = _WR(qp);
ASSERT(qp->q_flag & QREADR);
mutex_enter(QLOCK(qp));
qp->q_flag &= ~QWCLOSE;
mutex_exit(QLOCK(qp));
mutex_enter(QLOCK(wqp));
wqp->q_flag &= ~QWCLOSE;
mutex_exit(QLOCK(wqp));
}
/*
* Remove queue from qhead/qtail if it is enabled.
* Only reset QENAB if the queue was removed from the runlist.
* A queue goes through 3 stages:
* It is on the service list and QENAB is set.
* It is removed from the service list but QENAB is still set.
* QENAB gets changed to QINSERVICE.
* QINSERVICE is reset (when the service procedure is done)
* Thus we can not reset QENAB unless we actually removed it from the service
* queue.
*/
void
remove_runlist(queue_t *qp)
{
if (qp->q_flag & QENAB && qhead != NULL) {
queue_t *q_chase;
queue_t *q_curr;
int removed;
mutex_enter(&service_queue);
RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
mutex_exit(&service_queue);
if (removed) {
STRSTAT(qremoved);
qp->q_flag &= ~QENAB;
}
}
}
/*
* Wait for any pending service processing to complete.
* The removal of queues from the runlist is not atomic with the
* clearing of the QENABLED flag and setting the INSERVICE flag.
* consequently it is possible for remove_runlist in strclose
* to not find the queue on the runlist but for it to be QENABLED
* and not yet INSERVICE -> hence wait_svc needs to check QENABLED
* as well as INSERVICE.
*/
void
wait_svc(queue_t *qp)
{
queue_t *wqp = _WR(qp);
ASSERT(qp->q_flag & QREADR);
/*
* Try to remove queues from qhead/qtail list.
*/
if (qhead != NULL) {
remove_runlist(qp);
remove_runlist(wqp);
}
/*
* Wait till the syncqs associated with the queue disappear from the
* background processing list.
* This only needs to be done for non-PERMOD perimeters since
* for PERMOD perimeters the syncq may be shared and will only be freed
* when the last module/driver is unloaded.
* If for PERMOD perimeters queue was on the syncq list, removeq()
* should call propagate_syncq() or drain_syncq() for it. Both of these
* functions remove the queue from its syncq list, so sqthread will not
* try to access the queue.
*/
if (!(qp->q_flag & QPERMOD)) {
syncq_t *rsq = qp->q_syncq;
syncq_t *wsq = wqp->q_syncq;
/*
* Disable rsq and wsq and wait for any background processing of
* syncq to complete.
*/
wait_sq_svc(rsq);
if (wsq != rsq)
wait_sq_svc(wsq);
}
mutex_enter(QLOCK(qp));
while (qp->q_flag & (QINSERVICE|QENAB))
cv_wait(&qp->q_wait, QLOCK(qp));
mutex_exit(QLOCK(qp));
mutex_enter(QLOCK(wqp));
while (wqp->q_flag & (QINSERVICE|QENAB))
cv_wait(&wqp->q_wait, QLOCK(wqp));
mutex_exit(QLOCK(wqp));
}
/*
* Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
* `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
* also be set, and is passed through to allocb_cred_wait().
*
* Returns errno on failure, zero on success.
*/
int
putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
{
mblk_t *tmp;
ssize_t count;
int error = 0;
ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
(flag & (U_TO_K | K_TO_K)) == K_TO_K);
if (bp->b_datap->db_type == M_IOCTL) {
count = ((struct iocblk *)bp->b_rptr)->ioc_count;
} else {
ASSERT(bp->b_datap->db_type == M_COPYIN);
count = ((struct copyreq *)bp->b_rptr)->cq_size;
}
/*
* strdoioctl validates ioc_count, so if this assert fails it
* cannot be due to user error.
*/
ASSERT(count >= 0);
if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
curproc->p_pid)) == NULL) {
return (error);
}
error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
if (error != 0) {
freeb(tmp);
return (error);
}
DB_CPID(tmp) = curproc->p_pid;
tmp->b_wptr += count;
bp->b_cont = tmp;
return (0);
}
/*
* Copy ioctl data to user-land. Return non-zero errno on failure,
* 0 for success.
*/
int
getiocd(mblk_t *bp, char *arg, int copymode)
{
ssize_t count;
size_t n;
int error;
if (bp->b_datap->db_type == M_IOCACK)
count = ((struct iocblk *)bp->b_rptr)->ioc_count;
else {
ASSERT(bp->b_datap->db_type == M_COPYOUT);
count = ((struct copyreq *)bp->b_rptr)->cq_size;
}
ASSERT(count >= 0);
for (bp = bp->b_cont; bp && count;
count -= n, bp = bp->b_cont, arg += n) {
n = MIN(count, bp->b_wptr - bp->b_rptr);
error = strcopyout(bp->b_rptr, arg, n, copymode);
if (error)
return (error);
}
ASSERT(count == 0);
return (0);
}
/*
* Allocate a linkinfo entry given the write queue of the
* bottom module of the top stream and the write queue of the
* stream head of the bottom stream.
*/
linkinfo_t *
alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
{
linkinfo_t *linkp;
linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
linkp->li_lblk.l_qtop = qup;
linkp->li_lblk.l_qbot = qdown;
linkp->li_fpdown = fpdown;
mutex_enter(&strresources);
linkp->li_next = linkinfo_list;
linkp->li_prev = NULL;
if (linkp->li_next)
linkp->li_next->li_prev = linkp;
linkinfo_list = linkp;
linkp->li_lblk.l_index = ++lnk_id;
ASSERT(lnk_id != 0); /* this should never wrap in practice */
mutex_exit(&strresources);
return (linkp);
}
/*
* Free a linkinfo entry.
*/
void
lbfree(linkinfo_t *linkp)
{
mutex_enter(&strresources);
if (linkp->li_next)
linkp->li_next->li_prev = linkp->li_prev;
if (linkp->li_prev)
linkp->li_prev->li_next = linkp->li_next;
else
linkinfo_list = linkp->li_next;
mutex_exit(&strresources);
kmem_cache_free(linkinfo_cache, linkp);
}
/*
* Check for a potential linking cycle.
* Return 1 if a link will result in a cycle,
* and 0 otherwise.
*/
int
linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
{
struct mux_node *np;
struct mux_edge *ep;
int i;
major_t lomaj;
major_t upmaj;
/*
* if the lower stream is a pipe/FIFO, return, since link
* cycles can not happen on pipes/FIFOs
*/
if (lostp->sd_vnode->v_type == VFIFO)
return (0);
for (i = 0; i < ss->ss_devcnt; i++) {
np = &ss->ss_mux_nodes[i];
MUX_CLEAR(np);
}
lomaj = getmajor(lostp->sd_vnode->v_rdev);
upmaj = getmajor(upstp->sd_vnode->v_rdev);
np = &ss->ss_mux_nodes[lomaj];
for (;;) {
if (!MUX_DIDVISIT(np)) {
if (np->mn_imaj == upmaj)
return (1);
if (np->mn_outp == NULL) {
MUX_VISIT(np);
if (np->mn_originp == NULL)
return (0);
np = np->mn_originp;
continue;
}
MUX_VISIT(np);
np->mn_startp = np->mn_outp;
} else {
if (np->mn_startp == NULL) {
if (np->mn_originp == NULL)
return (0);
else {
np = np->mn_originp;
continue;
}
}
/*
* If ep->me_nodep is a FIFO (me_nodep == NULL),
* ignore the edge and move on. ep->me_nodep gets
* set to NULL in mux_addedge() if it is a FIFO.
*
*/
ep = np->mn_startp;
np->mn_startp = ep->me_nextp;
if (ep->me_nodep == NULL)
continue;
ep->me_nodep->mn_originp = np;
np = ep->me_nodep;
}
}
}
/*
* Find linkinfo entry corresponding to the parameters.
*/
linkinfo_t *
findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
{
linkinfo_t *linkp;
struct mux_edge *mep;
struct mux_node *mnp;
queue_t *qup;
mutex_enter(&strresources);
if ((type & LINKTYPEMASK) == LINKNORMAL) {
qup = getendq(stp->sd_wrq);
for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
if ((qup == linkp->li_lblk.l_qtop) &&
(!index || (index == linkp->li_lblk.l_index))) {
mutex_exit(&strresources);
return (linkp);
}
}
} else {
ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
mep = mnp->mn_outp;
while (mep) {
if ((index == 0) || (index == mep->me_muxid))
break;
mep = mep->me_nextp;
}
if (!mep) {
mutex_exit(&strresources);
return (NULL);
}
for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
if ((!linkp->li_lblk.l_qtop) &&
(mep->me_muxid == linkp->li_lblk.l_index)) {
mutex_exit(&strresources);
return (linkp);
}
}
}
mutex_exit(&strresources);
return (NULL);
}
/*
* Given a queue ptr, follow the chain of q_next pointers until you reach the
* last queue on the chain and return it.
*/
queue_t *
getendq(queue_t *q)
{
ASSERT(q != NULL);
while (_SAMESTR(q))
q = q->q_next;
return (q);
}
/*
* Wait for the syncq count to drop to zero.
* sq could be either outer or inner.
*/
static void
wait_syncq(syncq_t *sq)
{
uint16_t count;
mutex_enter(SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
while (count != 0) {
sq->sq_flags |= SQ_WANTWAKEUP;
SQ_PUTLOCKS_EXIT(sq);
cv_wait(&sq->sq_wait, SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
}
SQ_PUTLOCKS_EXIT(sq);
mutex_exit(SQLOCK(sq));
}
/*
* Wait while there are any messages for the queue in its syncq.
*/
static void
wait_q_syncq(queue_t *q)
{
if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
syncq_t *sq = q->q_syncq;
mutex_enter(SQLOCK(sq));
while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
sq->sq_flags |= SQ_WANTWAKEUP;
cv_wait(&sq->sq_wait, SQLOCK(sq));
}
mutex_exit(SQLOCK(sq));
}
}
int
mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
int lhlink)
{
struct stdata *stp;
struct strioctl strioc;
struct linkinfo *linkp;
struct stdata *stpdown;
struct streamtab *str;
queue_t *passq;
syncq_t *passyncq;
queue_t *rq;
cdevsw_impl_t *dp;
uint32_t qflag;
uint32_t sqtype;
perdm_t *dmp;
int error = 0;
netstack_t *ns;
str_stack_t *ss;
stp = vp->v_stream;
TRACE_1(TR_FAC_STREAMS_FR,
TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
/*
* Test for invalid upper stream
*/
if (stp->sd_flag & STRHUP) {
return (ENXIO);
}
if (vp->v_type == VFIFO) {
return (EINVAL);
}
if (stp->sd_strtab == NULL) {
return (EINVAL);
}
if (!stp->sd_strtab->st_muxwinit) {
return (EINVAL);
}
if (fpdown == NULL) {
return (EBADF);
}
ns = netstack_find_by_cred(crp);
ASSERT(ns != NULL);
ss = ns->netstack_str;
ASSERT(ss != NULL);
if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
netstack_rele(ss->ss_netstack);
return (EINVAL);
}
mutex_enter(&muxifier);
if (stp->sd_flag & STPLEX) {
mutex_exit(&muxifier);
netstack_rele(ss->ss_netstack);
return (ENXIO);
}
/*
* Test for invalid lower stream.
* The check for the v_type != VFIFO and having a major
* number not >= devcnt is done to avoid problems with
* adding mux_node entry past the end of mux_nodes[].
* For FIFO's we don't add an entry so this isn't a
* problem.
*/
if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
(stpdown == stp) || (stpdown->sd_flag &
(STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
((stpdown->sd_vnode->v_type != VFIFO) &&
(getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
linkcycle(stp, stpdown, ss)) {
mutex_exit(&muxifier);
netstack_rele(ss->ss_netstack);
return (EINVAL);
}
TRACE_1(TR_FAC_STREAMS_FR,
TR_STPDOWN, "stpdown:%p", stpdown);
rq = getendq(stp->sd_wrq);
if (cmd == I_PLINK)
rq = NULL;
linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
strioc.ic_cmd = cmd;
strioc.ic_timout = INFTIM;
strioc.ic_len = sizeof (struct linkblk);
strioc.ic_dp = (char *)&linkp->li_lblk;
/*
* STRPLUMB protects plumbing changes and should be set before
* link_addpassthru()/link_rempassthru() are called, so it is set here
* and cleared in the end of mlink when passthru queue is removed.
* Setting of STRPLUMB prevents reopens of the stream while passthru
* queue is in-place (it is not a proper module and doesn't have open
* entry point).
*
* STPLEX prevents any threads from entering the stream from above. It
* can't be set before the call to link_addpassthru() because putnext
* from below may cause stream head I/O routines to be called and these
* routines assert that STPLEX is not set. After link_addpassthru()
* nothing may come from below since the pass queue syncq is blocked.
* Note also that STPLEX should be cleared before the call to
* link_rempassthru() since when messages start flowing to the stream
* head (e.g. because of message propagation from the pass queue) stream
* head I/O routines may be called with STPLEX flag set.
*
* When STPLEX is set, nothing may come into the stream from above and
* it is safe to do a setq which will change stream head. So, the
* correct sequence of actions is:
*
* 1) Set STRPLUMB
* 2) Call link_addpassthru()
* 3) Set STPLEX
* 4) Call setq and update the stream state
* 5) Clear STPLEX
* 6) Call link_rempassthru()
* 7) Clear STRPLUMB
*
* The same sequence applies to munlink() code.
*/
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag |= STRPLUMB;
mutex_exit(&stpdown->sd_lock);
/*
* Add passthru queue below lower mux. This will block
* syncqs of lower muxs read queue during I_LINK/I_UNLINK.
*/
passq = link_addpassthru(stpdown);
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag |= STPLEX;
mutex_exit(&stpdown->sd_lock);
rq = _RD(stpdown->sd_wrq);
/*
* There may be messages in the streamhead's syncq due to messages
* that arrived before link_addpassthru() was done. To avoid
* background processing of the syncq happening simultaneous with
* setq processing, we disable the streamhead syncq and wait until
* existing background thread finishes working on it.
*/
wait_sq_svc(rq->q_syncq);
passyncq = passq->q_syncq;
if (!(passyncq->sq_flags & SQ_BLOCKED))
blocksq(passyncq, SQ_BLOCKED, 0);
ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
rq->q_ptr = _WR(rq)->q_ptr = NULL;
/* setq might sleep in allocator - avoid holding locks. */
/* Note: we are holding muxifier here. */
str = stp->sd_strtab;
dp = &devimpl[getmajor(vp->v_rdev)];
ASSERT(dp->d_str == str);
qflag = dp->d_qflag;
sqtype = dp->d_sqtype;
/* create perdm_t if needed */
if (NEED_DM(dp->d_dmp, qflag))
dp->d_dmp = hold_dm(str, qflag, sqtype);
dmp = dp->d_dmp;
setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
B_TRUE);
/*
* XXX Remove any "odd" messages from the queue.
* Keep only M_DATA, M_PROTO, M_PCPROTO.
*/
error = strdoioctl(stp, &strioc, FNATIVE,
K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
if (error != 0) {
lbfree(linkp);
if (!(passyncq->sq_flags & SQ_BLOCKED))
blocksq(passyncq, SQ_BLOCKED, 0);
/*
* Restore the stream head queue and then remove
* the passq. Turn off STPLEX before we turn on
* the stream by removing the passq.
*/
rq->q_ptr = _WR(rq)->q_ptr = stpdown;
setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
B_TRUE);
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag &= ~STPLEX;
mutex_exit(&stpdown->sd_lock);
link_rempassthru(passq);
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag &= ~STRPLUMB;
/* Wakeup anyone waiting for STRPLUMB to clear. */
cv_broadcast(&stpdown->sd_monitor);
mutex_exit(&stpdown->sd_lock);
mutex_exit(&muxifier);
netstack_rele(ss->ss_netstack);
return (error);
}
mutex_enter(&fpdown->f_tlock);
fpdown->f_count++;
mutex_exit(&fpdown->f_tlock);
/*
* if we've made it here the linkage is all set up so we should also
* set up the layered driver linkages
*/
ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
if (cmd == I_LINK) {
ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
} else {
ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
}
link_rempassthru(passq);
mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
/*
* Mark the upper stream as having dependent links
* so that strclose can clean it up.
*/
if (cmd == I_LINK) {
mutex_enter(&stp->sd_lock);
stp->sd_flag |= STRHASLINKS;
mutex_exit(&stp->sd_lock);
}
/*
* Wake up any other processes that may have been
* waiting on the lower stream. These will all
* error out.
*/
mutex_enter(&stpdown->sd_lock);
/* The passthru module is removed so we may release STRPLUMB */
stpdown->sd_flag &= ~STRPLUMB;
cv_broadcast(&rq->q_wait);
cv_broadcast(&_WR(rq)->q_wait);
cv_broadcast(&stpdown->sd_monitor);
mutex_exit(&stpdown->sd_lock);
mutex_exit(&muxifier);
*rvalp = linkp->li_lblk.l_index;
netstack_rele(ss->ss_netstack);
return (0);
}
int
mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
{
int ret;
struct file *fpdown;
fpdown = getf(arg);
ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
if (fpdown != NULL)
releasef(arg);
return (ret);
}
/*
* Unlink a multiplexor link. Stp is the controlling stream for the
* link, and linkp points to the link's entry in the linkinfo list.
* The muxifier lock must be held on entry and is dropped on exit.
*
* NOTE : Currently it is assumed that mux would process all the messages
* sitting on it's queue before ACKing the UNLINK. It is the responsibility
* of the mux to handle all the messages that arrive before UNLINK.
* If the mux has to send down messages on its lower stream before
* ACKing I_UNLINK, then it *should* know to handle messages even
* after the UNLINK is acked (actually it should be able to handle till we
* re-block the read side of the pass queue here). If the mux does not
* open up the lower stream, any messages that arrive during UNLINK
* will be put in the stream head. In the case of lower stream opening
* up, some messages might land in the stream head depending on when
* the message arrived and when the read side of the pass queue was
* re-blocked.
*/
int
munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
str_stack_t *ss)
{
struct strioctl strioc;
struct stdata *stpdown;
queue_t *rq, *wrq;
queue_t *passq;
syncq_t *passyncq;
int error = 0;
file_t *fpdown;
ASSERT(MUTEX_HELD(&muxifier));
stpdown = linkp->li_fpdown->f_vnode->v_stream;
/*
* See the comment in mlink() concerning STRPLUMB/STPLEX flags.
*/
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag |= STRPLUMB;
mutex_exit(&stpdown->sd_lock);
/*
* Add passthru queue below lower mux. This will block
* syncqs of lower muxs read queue during I_LINK/I_UNLINK.
*/
passq = link_addpassthru(stpdown);
if ((flag & LINKTYPEMASK) == LINKNORMAL)
strioc.ic_cmd = I_UNLINK;
else
strioc.ic_cmd = I_PUNLINK;
strioc.ic_timout = INFTIM;
strioc.ic_len = sizeof (struct linkblk);
strioc.ic_dp = (char *)&linkp->li_lblk;
error = strdoioctl(stp, &strioc, FNATIVE,
K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
/*
* If there was an error and this is not called via strclose,
* return to the user. Otherwise, pretend there was no error
* and close the link.
*/
if (error) {
if (flag & LINKCLOSE) {
cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
"unlink ioctl, closing anyway (%d)\n", error);
} else {
link_rempassthru(passq);
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag &= ~STRPLUMB;
cv_broadcast(&stpdown->sd_monitor);
mutex_exit(&stpdown->sd_lock);
mutex_exit(&muxifier);
return (error);
}
}
mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
fpdown = linkp->li_fpdown;
lbfree(linkp);
/*
* We go ahead and drop muxifier here--it's a nasty global lock that
* can slow others down. It's okay to since attempts to mlink() this
* stream will be stopped because STPLEX is still set in the stdata
* structure, and munlink() is stopped because mux_rmvedge() and
* lbfree() have removed it from mux_nodes[] and linkinfo_list,
* respectively. Note that we defer the closef() of fpdown until
* after we drop muxifier since strclose() can call munlinkall().
*/
mutex_exit(&muxifier);
wrq = stpdown->sd_wrq;
rq = _RD(wrq);
/*
* Get rid of outstanding service procedure runs, before we make
* it a stream head, since a stream head doesn't have any service
* procedure.
*/
disable_svc(rq);
wait_svc(rq);
/*
* Since we don't disable the syncq for QPERMOD, we wait for whatever
* is queued up to be finished. mux should take care that nothing is
* send down to this queue. We should do it now as we're going to block
* passyncq if it was unblocked.
*/
if (wrq->q_flag & QPERMOD) {
syncq_t *sq = wrq->q_syncq;
mutex_enter(SQLOCK(sq));
while (wrq->q_sqflags & Q_SQQUEUED) {
sq->sq_flags |= SQ_WANTWAKEUP;
cv_wait(&sq->sq_wait, SQLOCK(sq));
}
mutex_exit(SQLOCK(sq));
}
passyncq = passq->q_syncq;
if (!(passyncq->sq_flags & SQ_BLOCKED)) {
syncq_t *sq, *outer;
/*
* Messages could be flowing from underneath. We will
* block the read side of the passq. This would be
* sufficient for QPAIR and QPERQ muxes to ensure
* that no data is flowing up into this queue
* and hence no thread active in this instance of
* lower mux. But for QPERMOD and QMTOUTPERIM there
* could be messages on the inner and outer/inner
* syncqs respectively. We will wait for them to drain.
* Because passq is blocked messages end up in the syncq
* And qfill_syncq could possibly end up setting QFULL
* which will access the rq->q_flag. Hence, we have to
* acquire the QLOCK in setq.
*
* XXX Messages can also flow from top into this
* queue though the unlink is over (Ex. some instance
* in putnext() called from top that has still not
* accessed this queue. And also putq(lowerq) ?).
* Solution : How about blocking the l_qtop queue ?
* Do we really care about such pure D_MP muxes ?
*/
blocksq(passyncq, SQ_BLOCKED, 0);
sq = rq->q_syncq;
if ((outer = sq->sq_outer) != NULL) {
/*
* We have to just wait for the outer sq_count
* drop to zero. As this does not prevent new
* messages to enter the outer perimeter, this
* is subject to starvation.
*
* NOTE :Because of blocksq above, messages could
* be in the inner syncq only because of some
* thread holding the outer perimeter exclusively.
* Hence it would be sufficient to wait for the
* exclusive holder of the outer perimeter to drain
* the inner and outer syncqs. But we will not depend
* on this feature and hence check the inner syncqs
* separately.
*/
wait_syncq(outer);
}
/*
* There could be messages destined for
* this queue. Let the exclusive holder
* drain it.
*/
wait_syncq(sq);
ASSERT((rq->q_flag & QPERMOD) ||
((rq->q_syncq->sq_head == NULL) &&
(_WR(rq)->q_syncq->sq_head == NULL)));
}
/*
* We haven't taken care of QPERMOD case yet. QPERMOD is a special
* case as we don't disable its syncq or remove it off the syncq
* service list.
*/
if (rq->q_flag & QPERMOD) {
syncq_t *sq = rq->q_syncq;
mutex_enter(SQLOCK(sq));
while (rq->q_sqflags & Q_SQQUEUED) {
sq->sq_flags |= SQ_WANTWAKEUP;
cv_wait(&sq->sq_wait, SQLOCK(sq));
}
mutex_exit(SQLOCK(sq));
}
/*
* flush_syncq changes states only when there are some messages to
* free, i.e. when it returns non-zero value to return.
*/
ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
/*
* Nobody else should know about this queue now.
* If the mux did not process the messages before
* acking the I_UNLINK, free them now.
*/
flushq(rq, FLUSHALL);
flushq(_WR(rq), FLUSHALL);
/*
* Convert the mux lower queue into a stream head queue.
* Turn off STPLEX before we turn on the stream by removing the passq.
*/
rq->q_ptr = wrq->q_ptr = stpdown;
setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
enable_svc(rq);
/*
* Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
* needs to be set to prevent reopen() of the stream - such reopen may
* try to call non-existent pass queue open routine and panic.
*/
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag &= ~STPLEX;
mutex_exit(&stpdown->sd_lock);
ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
((flag & LINKTYPEMASK) == LINKPERSIST));
/* clean up the layered driver linkages */
if ((flag & LINKTYPEMASK) == LINKNORMAL) {
ldi_munlink_fp(stp, fpdown, LINKNORMAL);
} else {
ldi_munlink_fp(stp, fpdown, LINKPERSIST);
}
link_rempassthru(passq);
/*
* Now all plumbing changes are finished and STRPLUMB is no
* longer needed.
*/
mutex_enter(&stpdown->sd_lock);
stpdown->sd_flag &= ~STRPLUMB;
cv_broadcast(&stpdown->sd_monitor);
mutex_exit(&stpdown->sd_lock);
(void) closef(fpdown);
return (0);
}
/*
* Unlink all multiplexor links for which stp is the controlling stream.
* Return 0, or a non-zero errno on failure.
*/
int
munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
{
linkinfo_t *linkp;
int error = 0;
mutex_enter(&muxifier);
while (linkp = findlinks(stp, 0, flag, ss)) {
/*
* munlink() releases the muxifier lock.
*/
if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
return (error);
mutex_enter(&muxifier);
}
mutex_exit(&muxifier);
return (0);
}
/*
* A multiplexor link has been made. Add an
* edge to the directed graph.
*/
void
mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
{
struct mux_node *np;
struct mux_edge *ep;
major_t upmaj;
major_t lomaj;
upmaj = getmajor(upstp->sd_vnode->v_rdev);
lomaj = getmajor(lostp->sd_vnode->v_rdev);
np = &ss->ss_mux_nodes[upmaj];
if (np->mn_outp) {
ep = np->mn_outp;
while (ep->me_nextp)
ep = ep->me_nextp;
ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
ep = ep->me_nextp;
} else {
np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
ep = np->mn_outp;
}
ep->me_nextp = NULL;
ep->me_muxid = muxid;
/*
* Save the dev_t for the purposes of str_stack_shutdown.
* str_stack_shutdown assumes that the device allows reopen, since
* this dev_t is the one after any cloning by xx_open().
* Would prefer finding the dev_t from before any cloning,
* but specfs doesn't retain that.
*/
ep->me_dev = upstp->sd_vnode->v_rdev;
if (lostp->sd_vnode->v_type == VFIFO)
ep->me_nodep = NULL;
else
ep->me_nodep = &ss->ss_mux_nodes[lomaj];
}
/*
* A multiplexor link has been removed. Remove the
* edge in the directed graph.
*/
void
mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
{
struct mux_node *np;
struct mux_edge *ep;
struct mux_edge *pep = NULL;
major_t upmaj;
upmaj = getmajor(upstp->sd_vnode->v_rdev);
np = &ss->ss_mux_nodes[upmaj];
ASSERT(np->mn_outp != NULL);
ep = np->mn_outp;
while (ep) {
if (ep->me_muxid == muxid) {
if (pep)
pep->me_nextp = ep->me_nextp;
else
np->mn_outp = ep->me_nextp;
kmem_free(ep, sizeof (struct mux_edge));
return;
}
pep = ep;
ep = ep->me_nextp;
}
ASSERT(0); /* should not reach here */
}
/*
* Translate the device flags (from conf.h) to the corresponding
* qflag and sq_flag (type) values.
*/
int
devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
uint32_t *sqtypep)
{
uint32_t qflag = 0;
uint32_t sqtype = 0;
if (devflag & _D_OLD)
goto bad;
/* Inner perimeter presence and scope */
switch (devflag & D_MTINNER_MASK) {
case D_MP:
qflag |= QMTSAFE;
sqtype |= SQ_CI;
break;
case D_MTPERQ|D_MP:
qflag |= QPERQ;
break;
case D_MTQPAIR|D_MP:
qflag |= QPAIR;
break;
case D_MTPERMOD|D_MP:
qflag |= QPERMOD;
break;
default:
goto bad;
}
/* Outer perimeter */
if (devflag & D_MTOUTPERIM) {
switch (devflag & D_MTINNER_MASK) {
case D_MP:
case D_MTPERQ|D_MP:
case D_MTQPAIR|D_MP:
break;
default:
goto bad;
}
qflag |= QMTOUTPERIM;
}
/* Inner perimeter modifiers */
if (devflag & D_MTINNER_MOD) {
switch (devflag & D_MTINNER_MASK) {
case D_MP:
goto bad;
default:
break;
}
if (devflag & D_MTPUTSHARED)
sqtype |= SQ_CIPUT;
if (devflag & _D_MTOCSHARED) {
/*
* The code in putnext assumes that it has the
* highest concurrency by not checking sq_count.
* Thus _D_MTOCSHARED can only be supported when
* D_MTPUTSHARED is set.
*/
if (!(devflag & D_MTPUTSHARED))
goto bad;
sqtype |= SQ_CIOC;
}
if (devflag & _D_MTCBSHARED) {
/*
* The code in putnext assumes that it has the
* highest concurrency by not checking sq_count.
* Thus _D_MTCBSHARED can only be supported when
* D_MTPUTSHARED is set.
*/
if (!(devflag & D_MTPUTSHARED))
goto bad;
sqtype |= SQ_CICB;
}
if (devflag & _D_MTSVCSHARED) {
/*
* The code in putnext assumes that it has the
* highest concurrency by not checking sq_count.
* Thus _D_MTSVCSHARED can only be supported when
* D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
* supported only for QPERMOD.
*/
if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
goto bad;
sqtype |= SQ_CISVC;
}
}
/* Default outer perimeter concurrency */
sqtype |= SQ_CO;
/* Outer perimeter modifiers */
if (devflag & D_MTOCEXCL) {
if (!(devflag & D_MTOUTPERIM)) {
/* No outer perimeter */
goto bad;
}
sqtype &= ~SQ_COOC;
}
/* Synchronous Streams extended qinit structure */
if (devflag & D_SYNCSTR)
qflag |= QSYNCSTR;
/*
* Private flag used by a transport module to indicate
* to sockfs that it supports direct-access mode without
* having to go through STREAMS.
*/
if (devflag & _D_DIRECT) {
/* Reject unless the module is fully-MT (no perimeter) */
if ((qflag & QMT_TYPEMASK) != QMTSAFE)
goto bad;
qflag |= _QDIRECT;
}
*qflagp = qflag;
*sqtypep = sqtype;
return (0);
bad:
cmn_err(CE_WARN,
"stropen: bad MT flags (0x%x) in driver '%s'",
(int)(qflag & D_MTSAFETY_MASK),
stp->st_rdinit->qi_minfo->mi_idname);
return (EINVAL);
}
/*
* Set the interface values for a pair of queues (qinit structure,
* packet sizes, water marks).
* setq assumes that the caller does not have a claim (entersq or claimq)
* on the queue.
*/
void
setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
{
queue_t *wq;
syncq_t *sq, *outer;
ASSERT(rq->q_flag & QREADR);
ASSERT((qflag & QMT_TYPEMASK) != 0);
IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
wq = _WR(rq);
rq->q_qinfo = rinit;
rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
rq->q_lowat = rinit->qi_minfo->mi_lowat;
rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
wq->q_qinfo = winit;
wq->q_hiwat = winit->qi_minfo->mi_hiwat;
wq->q_lowat = winit->qi_minfo->mi_lowat;
wq->q_minpsz = winit->qi_minfo->mi_minpsz;
wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
/* Remove old syncqs */
sq = rq->q_syncq;
outer = sq->sq_outer;
if (outer != NULL) {
ASSERT(wq->q_syncq->sq_outer == outer);
outer_remove(outer, rq->q_syncq);
if (wq->q_syncq != rq->q_syncq)
outer_remove(outer, wq->q_syncq);
}
ASSERT(sq->sq_outer == NULL);
ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
if (sq != SQ(rq)) {
if (!(rq->q_flag & QPERMOD))
free_syncq(sq);
if (wq->q_syncq == rq->q_syncq)
wq->q_syncq = NULL;
rq->q_syncq = NULL;
}
if (wq->q_syncq != NULL && wq->q_syncq != sq &&
wq->q_syncq != SQ(rq)) {
free_syncq(wq->q_syncq);
wq->q_syncq = NULL;
}
ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
rq->q_syncq->sq_tail == NULL));
ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
wq->q_syncq->sq_tail == NULL));
if (!(rq->q_flag & QPERMOD) &&
rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
rq->q_syncq->sq_nciputctrl, 0);
ASSERT(ciputctrl_cache != NULL);
kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
rq->q_syncq->sq_ciputctrl = NULL;
rq->q_syncq->sq_nciputctrl = 0;
}
if (!(wq->q_flag & QPERMOD) &&
wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
wq->q_syncq->sq_nciputctrl, 0);
ASSERT(ciputctrl_cache != NULL);
kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
wq->q_syncq->sq_ciputctrl = NULL;
wq->q_syncq->sq_nciputctrl = 0;
}
sq = SQ(rq);
ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
ASSERT(sq->sq_outer == NULL);
ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
/*
* Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
* bits in sq_flag based on the sqtype.
*/
ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
rq->q_syncq = wq->q_syncq = sq;
sq->sq_type = sqtype;
sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
/*
* We are making sq_svcflags zero,
* resetting SQ_DISABLED in case it was set by
* wait_svc() in the munlink path.
*
*/
ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
sq->sq_svcflags = 0;
/*
* We need to acquire the lock here for the mlink and munlink case,
* where canputnext, backenable, etc can access the q_flag.
*/
if (lock_needed) {
mutex_enter(QLOCK(rq));
rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
mutex_exit(QLOCK(rq));
mutex_enter(QLOCK(wq));
wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
mutex_exit(QLOCK(wq));
} else {
rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
}
if (qflag & QPERQ) {
/* Allocate a separate syncq for the write side */
sq = new_syncq();
sq->sq_type = rq->q_syncq->sq_type;
sq->sq_flags = rq->q_syncq->sq_flags;
ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
sq->sq_oprev == NULL);
wq->q_syncq = sq;
}
if (qflag & QPERMOD) {
sq = dmp->dm_sq;
/*
* Assert that we do have an inner perimeter syncq and that it
* does not have an outer perimeter associated with it.
*/
ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
sq->sq_oprev == NULL);
rq->q_syncq = wq->q_syncq = sq;
}
if (qflag & QMTOUTPERIM) {
outer = dmp->dm_sq;
ASSERT(outer->sq_outer == NULL);
outer_insert(outer, rq->q_syncq);
if (wq->q_syncq != rq->q_syncq)
outer_insert(outer, wq->q_syncq);
}
ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
(rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
(wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
/*
* Initialize struio() types.
*/
rq->q_struiot =
(rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
wq->q_struiot =
(wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
}
perdm_t *
hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
{
syncq_t *sq;
perdm_t **pp;
perdm_t *p;
perdm_t *dmp;
ASSERT(str != NULL);
ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
rw_enter(&perdm_rwlock, RW_READER);
for (p = perdm_list; p != NULL; p = p->dm_next) {
if (p->dm_str == str) { /* found one */
atomic_inc_32(&(p->dm_ref));
rw_exit(&perdm_rwlock);
return (p);
}
}
rw_exit(&perdm_rwlock);
sq = new_syncq();
if (qflag & QPERMOD) {
sq->sq_type = sqtype | SQ_PERMOD;
sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
} else {
ASSERT(qflag & QMTOUTPERIM);
sq->sq_onext = sq->sq_oprev = sq;
}
dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
dmp->dm_sq = sq;
dmp->dm_str = str;
dmp->dm_ref = 1;
dmp->dm_next = NULL;
rw_enter(&perdm_rwlock, RW_WRITER);
for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
if (p->dm_str == str) { /* already present */
p->dm_ref++;
rw_exit(&perdm_rwlock);
free_syncq(sq);
kmem_free(dmp, sizeof (perdm_t));
return (p);
}
}
*pp = dmp;
rw_exit(&perdm_rwlock);
return (dmp);
}
void
rele_dm(perdm_t *dmp)
{
perdm_t **pp;
perdm_t *p;
rw_enter(&perdm_rwlock, RW_WRITER);
ASSERT(dmp->dm_ref > 0);
if (--dmp->dm_ref > 0) {
rw_exit(&perdm_rwlock);
return;
}
for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
if (p == dmp)
break;
ASSERT(p == dmp);
*pp = p->dm_next;
rw_exit(&perdm_rwlock);
/*
* Wait for any background processing that relies on the
* syncq to complete before it is freed.
*/
wait_sq_svc(p->dm_sq);
free_syncq(p->dm_sq);
kmem_free(p, sizeof (perdm_t));
}
/*
* Make a protocol message given control and data buffers.
* n.b., this can block; be careful of what locks you hold when calling it.
*
* If sd_maxblk is less than *iosize this routine can fail part way through
* (due to an allocation failure). In this case on return *iosize will contain
* the amount that was consumed. Otherwise *iosize will not be modified
* i.e. it will contain the amount that was consumed.
*/
int
strmakemsg(
struct strbuf *mctl,
ssize_t *iosize,
struct uio *uiop,
stdata_t *stp,
int32_t flag,
mblk_t **mpp)
{
mblk_t *mpctl = NULL;
mblk_t *mpdata = NULL;
int error;
ASSERT(uiop != NULL);
*mpp = NULL;
/* Create control part, if any */
if ((mctl != NULL) && (mctl->len >= 0)) {
error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
if (error)
return (error);
}
/* Create data part, if any */
if (*iosize >= 0) {
error = strmakedata(iosize, uiop, stp, flag, &mpdata);
if (error) {
freemsg(mpctl);
return (error);
}
}
if (mpctl != NULL) {
if (mpdata != NULL)
linkb(mpctl, mpdata);
*mpp = mpctl;
} else {
*mpp = mpdata;
}
return (0);
}
/*
* Make the control part of a protocol message given a control buffer.
* n.b., this can block; be careful of what locks you hold when calling it.
*/
int
strmakectl(
struct strbuf *mctl,
int32_t flag,
int32_t fflag,
mblk_t **mpp)
{
mblk_t *bp = NULL;
unsigned char msgtype;
int error = 0;
cred_t *cr = CRED();
/* We do not support interrupt threads using the stream head to send */
ASSERT(cr != NULL);
*mpp = NULL;
/*
* Create control part of message, if any.
*/
if ((mctl != NULL) && (mctl->len >= 0)) {
caddr_t base;
int ctlcount;
int allocsz;
if (flag & RS_HIPRI)
msgtype = M_PCPROTO;
else
msgtype = M_PROTO;
ctlcount = mctl->len;
base = mctl->buf;
/*
* Give modules a better chance to reuse M_PROTO/M_PCPROTO
* blocks by increasing the size to something more usable.
*/
allocsz = MAX(ctlcount, 64);
/*
* Range checking has already been done; simply try
* to allocate a message block for the ctl part.
*/
while ((bp = allocb_cred(allocsz, cr,
curproc->p_pid)) == NULL) {
if (fflag & (FNDELAY|FNONBLOCK))
return (EAGAIN);
if (error = strwaitbuf(allocsz, BPRI_MED))
return (error);
}
bp->b_datap->db_type = msgtype;
if (copyin(base, bp->b_wptr, ctlcount)) {
freeb(bp);
return (EFAULT);
}
bp->b_wptr += ctlcount;
}
*mpp = bp;
return (0);
}
/*
* Make a protocol message given data buffers.
* n.b., this can block; be careful of what locks you hold when calling it.
*
* If sd_maxblk is less than *iosize this routine can fail part way through
* (due to an allocation failure). In this case on return *iosize will contain
* the amount that was consumed. Otherwise *iosize will not be modified
* i.e. it will contain the amount that was consumed.
*/
int
strmakedata(
ssize_t *iosize,
struct uio *uiop,
stdata_t *stp,
int32_t flag,
mblk_t **mpp)
{
mblk_t *mp = NULL;
mblk_t *bp;
int wroff = (int)stp->sd_wroff;
int tail_len = (int)stp->sd_tail;
int extra = wroff + tail_len;
int error = 0;
ssize_t maxblk;
ssize_t count = *iosize;
cred_t *cr;
*mpp = NULL;
if (count < 0)
return (0);
/* We do not support interrupt threads using the stream head to send */
cr = CRED();
ASSERT(cr != NULL);
maxblk = stp->sd_maxblk;
if (maxblk == INFPSZ)
maxblk = count;
/*
* Create data part of message, if any.
*/
do {
ssize_t size;
dblk_t *dp;
ASSERT(uiop);
size = MIN(count, maxblk);
while ((bp = allocb_cred(size + extra, cr,
curproc->p_pid)) == NULL) {
error = EAGAIN;
if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
(error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
if (count == *iosize) {
freemsg(mp);
return (error);
} else {
*iosize -= count;
*mpp = mp;
return (0);
}
}
}
dp = bp->b_datap;
dp->db_cpid = curproc->p_pid;
ASSERT(wroff <= dp->db_lim - bp->b_wptr);
bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
if (flag & STRUIO_POSTPONE) {
/*
* Setup the stream uio portion of the
* dblk for subsequent use by struioget().
*/
dp->db_struioflag = STRUIO_SPEC;
dp->db_cksumstart = 0;
dp->db_cksumstuff = 0;
dp->db_cksumend = size;
*(long long *)dp->db_struioun.data = 0ll;
bp->b_wptr += size;
} else {
if (stp->sd_copyflag & STRCOPYCACHED)
uiop->uio_extflg |= UIO_COPY_CACHED;
if (size != 0) {
error = uiomove(bp->b_wptr, size, UIO_WRITE,
uiop);
if (error != 0) {
freeb(bp);
freemsg(mp);
return (error);
}
}
bp->b_wptr += size;
if (stp->sd_wputdatafunc != NULL) {
mblk_t *newbp;
newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
bp, NULL, NULL, NULL, NULL);
if (newbp == NULL) {
freeb(bp);
freemsg(mp);
return (ECOMM);
}
bp = newbp;
}
}
count -= size;
if (mp == NULL)
mp = bp;
else
linkb(mp, bp);
} while (count > 0);
*mpp = mp;
return (0);
}
/*
* Wait for a buffer to become available. Return non-zero errno
* if not able to wait, 0 if buffer is probably there.
*/
int
strwaitbuf(size_t size, int pri)
{
bufcall_id_t id;
mutex_enter(&bcall_monitor);
if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
&ttoproc(curthread)->p_flag_cv)) == 0) {
mutex_exit(&bcall_monitor);
return (ENOSR);
}
if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
unbufcall(id);
mutex_exit(&bcall_monitor);
return (EINTR);
}
unbufcall(id);
mutex_exit(&bcall_monitor);
return (0);
}
/*
* This function waits for a read or write event to happen on a stream.
* fmode can specify FNDELAY and/or FNONBLOCK.
* The timeout is in ms with -1 meaning infinite.
* The flag values work as follows:
* READWAIT Check for read side errors, send M_READ
* GETWAIT Check for read side errors, no M_READ
* WRITEWAIT Check for write side errors.
* NOINTR Do not return error if nonblocking or timeout.
* STR_NOERROR Ignore all errors except STPLEX.
* STR_NOSIG Ignore/hold signals during the duration of the call.
* STR_PEEK Pass through the strgeterr().
*/
int
strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
int *done)
{
int slpflg, errs;
int error;
kcondvar_t *sleepon;
mblk_t *mp;
ssize_t *rd_count;
clock_t rval;
ASSERT(MUTEX_HELD(&stp->sd_lock));
if ((flag & READWAIT) || (flag & GETWAIT)) {
slpflg = RSLEEP;
sleepon = &_RD(stp->sd_wrq)->q_wait;
errs = STRDERR|STPLEX;
} else {
slpflg = WSLEEP;
sleepon = &stp->sd_wrq->q_wait;
errs = STWRERR|STRHUP|STPLEX;
}
if (flag & STR_NOERROR)
errs = STPLEX;
if (stp->sd_wakeq & slpflg) {
/*
* A strwakeq() is pending, no need to sleep.
*/
stp->sd_wakeq &= ~slpflg;
*done = 0;
return (0);
}
if (stp->sd_flag & errs) {
/*
* Check for errors before going to sleep since the
* caller might not have checked this while holding
* sd_lock.
*/
error = strgeterr(stp, errs, (flag & STR_PEEK));
if (error != 0) {
*done = 1;
return (error);
}
}
/*
* If any module downstream has requested read notification
* by setting SNDMREAD flag using M_SETOPTS, send a message
* down stream.
*/
if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
mutex_exit(&stp->sd_lock);
if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
(flag & STR_NOSIG), &error))) {
mutex_enter(&stp->sd_lock);
*done = 1;
return (error);
}
mp->b_datap->db_type = M_READ;
rd_count = (ssize_t *)mp->b_wptr;
*rd_count = count;
mp->b_wptr += sizeof (ssize_t);
/*
* Send the number of bytes requested by the
* read as the argument to M_READ.
*/
stream_willservice(stp);
putnext(stp->sd_wrq, mp);
stream_runservice(stp);
mutex_enter(&stp->sd_lock);
/*
* If any data arrived due to inline processing
* of putnext(), don't sleep.
*/
if (_RD(stp->sd_wrq)->q_first != NULL) {
*done = 0;
return (0);
}
}
if (fmode & (FNDELAY|FNONBLOCK)) {
if (!(flag & NOINTR))
error = EAGAIN;
else
error = 0;
*done = 1;
return (error);
}
stp->sd_flag |= slpflg;
TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
"strwaitq sleeps (2):%p, %X, %lX, %X, %p",
stp, flag, count, fmode, done);
rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
if (rval > 0) {
/* EMPTY */
TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
"strwaitq awakes(2):%X, %X, %X, %X, %X",
stp, flag, count, fmode, done);
} else if (rval == 0) {
TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
"strwaitq interrupt #2:%p, %X, %lX, %X, %p",
stp, flag, count, fmode, done);
stp->sd_flag &= ~slpflg;
cv_broadcast(sleepon);
if (!(flag & NOINTR))
error = EINTR;
else
error = 0;
*done = 1;
return (error);
} else {
/* timeout */
TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
"strwaitq timeout:%p, %X, %lX, %X, %p",
stp, flag, count, fmode, done);
*done = 1;
if (!(flag & NOINTR))
return (ETIME);
else
return (0);
}
/*
* If the caller implements delayed errors (i.e. queued after data)
* we can not check for errors here since data as well as an
* error might have arrived at the stream head. We return to
* have the caller check the read queue before checking for errors.
*/
if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
error = strgeterr(stp, errs, (flag & STR_PEEK));
if (error != 0) {
*done = 1;
return (error);
}
}
*done = 0;
return (0);
}
/*
* Perform job control discipline access checks.
* Return 0 for success and the errno for failure.
*/
#define cantsend(p, t, sig) \
(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
int
straccess(struct stdata *stp, enum jcaccess mode)
{
extern kcondvar_t lbolt_cv; /* XXX: should be in a header file */
kthread_t *t = curthread;
proc_t *p = ttoproc(t);
sess_t *sp;
ASSERT(mutex_owned(&stp->sd_lock));
if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
return (0);
mutex_enter(&p->p_lock); /* protects p_pgidp */
for (;;) {
mutex_enter(&p->p_splock); /* protects p->p_sessp */
sp = p->p_sessp;
mutex_enter(&sp->s_lock); /* protects sp->* */
/*
* If this is not the calling process's controlling terminal
* or if the calling process is already in the foreground
* then allow access.
*/
if (sp->s_dev != stp->sd_vnode->v_rdev ||
p->p_pgidp == stp->sd_pgidp) {
mutex_exit(&sp->s_lock);
mutex_exit(&p->p_splock);
mutex_exit(&p->p_lock);
return (0);
}
/*
* Check to see if controlling terminal has been deallocated.
*/
if (sp->s_vp == NULL) {
if (!cantsend(p, t, SIGHUP))
sigtoproc(p, t, SIGHUP);
mutex_exit(&sp->s_lock);
mutex_exit(&p->p_splock);
mutex_exit(&p->p_lock);
return (EIO);
}
mutex_exit(&sp->s_lock);
mutex_exit(&p->p_splock);
if (mode == JCGETP) {
mutex_exit(&p->p_lock);
return (0);
}
if (mode == JCREAD) {
if (p->p_detached || cantsend(p, t, SIGTTIN)) {
mutex_exit(&p->p_lock);
return (EIO);
}
mutex_exit(&p->p_lock);
mutex_exit(&stp->sd_lock);
pgsignal(p->p_pgidp, SIGTTIN);
mutex_enter(&stp->sd_lock);
mutex_enter(&p->p_lock);
} else { /* mode == JCWRITE or JCSETP */
if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
cantsend(p, t, SIGTTOU)) {
mutex_exit(&p->p_lock);
return (0);
}
if (p->p_detached) {
mutex_exit(&p->p_lock);
return (EIO);
}
mutex_exit(&p->p_lock);
mutex_exit(&stp->sd_lock);
pgsignal(p->p_pgidp, SIGTTOU);
mutex_enter(&stp->sd_lock);
mutex_enter(&p->p_lock);
}
/*
* We call cv_wait_sig_swap() to cause the appropriate
* action for the jobcontrol signal to take place.
* If the signal is being caught, we will take the
* EINTR error return. Otherwise, the default action
* of causing the process to stop will take place.
* In this case, we rely on the periodic cv_broadcast() on
* &lbolt_cv to wake us up to loop around and test again.
* We can't get here if the signal is ignored or
* if the current thread is blocking the signal.
*/
mutex_exit(&stp->sd_lock);
if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
mutex_exit(&p->p_lock);
mutex_enter(&stp->sd_lock);
return (EINTR);
}
mutex_exit(&p->p_lock);
mutex_enter(&stp->sd_lock);
mutex_enter(&p->p_lock);
}
}
/*
* Return size of message of block type (bp->b_datap->db_type)
*/
size_t
xmsgsize(mblk_t *bp)
{
unsigned char type;
size_t count = 0;
type = bp->b_datap->db_type;
for (; bp; bp = bp->b_cont) {
if (type != bp->b_datap->db_type)
break;
ASSERT(bp->b_wptr >= bp->b_rptr);
count += bp->b_wptr - bp->b_rptr;
}
return (count);
}
/*
* Allocate a stream head.
*/
struct stdata *
shalloc(queue_t *qp)
{
stdata_t *stp;
stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
stp->sd_wrq = _WR(qp);
stp->sd_strtab = NULL;
stp->sd_iocid = 0;
stp->sd_mate = NULL;
stp->sd_freezer = NULL;
stp->sd_refcnt = 0;
stp->sd_wakeq = 0;
stp->sd_anchor = 0;
stp->sd_struiowrq = NULL;
stp->sd_struiordq = NULL;
stp->sd_struiodnak = 0;
stp->sd_struionak = NULL;
stp->sd_t_audit_data = NULL;
stp->sd_rput_opt = 0;
stp->sd_wput_opt = 0;
stp->sd_read_opt = 0;
stp->sd_rprotofunc = strrput_proto;
stp->sd_rmiscfunc = strrput_misc;
stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
stp->sd_ciputctrl = NULL;
stp->sd_nciputctrl = 0;
stp->sd_qhead = NULL;
stp->sd_qtail = NULL;
stp->sd_servid = NULL;
stp->sd_nqueues = 0;
stp->sd_svcflags = 0;
stp->sd_copyflag = 0;
return (stp);
}
/*
* Free a stream head.
*/
void
shfree(stdata_t *stp)
{
ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
stp->sd_wrq = NULL;
mutex_enter(&stp->sd_qlock);
while (stp->sd_svcflags & STRS_SCHEDULED) {
STRSTAT(strwaits);
cv_wait(&stp->sd_qcv, &stp->sd_qlock);
}
mutex_exit(&stp->sd_qlock);
if (stp->sd_ciputctrl != NULL) {
ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
stp->sd_nciputctrl, 0);
ASSERT(ciputctrl_cache != NULL);
kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
stp->sd_ciputctrl = NULL;
stp->sd_nciputctrl = 0;
}
ASSERT(stp->sd_qhead == NULL);
ASSERT(stp->sd_qtail == NULL);
ASSERT(stp->sd_nqueues == 0);
kmem_cache_free(stream_head_cache, stp);
}
/*
* Allocate a pair of queues and a syncq for the pair
*/
queue_t *
allocq(void)
{
queinfo_t *qip;
queue_t *qp, *wqp;
syncq_t *sq;
qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
qp = &qip->qu_rqueue;
wqp = &qip->qu_wqueue;
sq = &qip->qu_syncq;
qp->q_last = NULL;
qp->q_next = NULL;
qp->q_ptr = NULL;
qp->q_flag = QUSE | QREADR;
qp->q_bandp = NULL;
qp->q_stream = NULL;
qp->q_syncq = sq;
qp->q_nband = 0;
qp->q_nfsrv = NULL;
qp->q_draining = 0;
qp->q_syncqmsgs = 0;
qp->q_spri = 0;
qp->q_qtstamp = 0;
qp->q_sqtstamp = 0;
qp->q_fp = NULL;
wqp->q_last = NULL;
wqp->q_next = NULL;
wqp->q_ptr = NULL;
wqp->q_flag = QUSE;
wqp->q_bandp = NULL;
wqp->q_stream = NULL;
wqp->q_syncq = sq;
wqp->q_nband = 0;
wqp->q_nfsrv = NULL;
wqp->q_draining = 0;
wqp->q_syncqmsgs = 0;
wqp->q_qtstamp = 0;
wqp->q_sqtstamp = 0;
wqp->q_spri = 0;
sq->sq_count = 0;
sq->sq_rmqcount = 0;
sq->sq_flags = 0;
sq->sq_type = 0;
sq->sq_callbflags = 0;
sq->sq_cancelid = 0;
sq->sq_ciputctrl = NULL;
sq->sq_nciputctrl = 0;
sq->sq_needexcl = 0;
sq->sq_svcflags = 0;
return (qp);
}
/*
* Free a pair of queues and the "attached" syncq.
* Discard any messages left on the syncq(s), remove the syncq(s) from the
* outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
*/
void
freeq(queue_t *qp)
{
qband_t *qbp, *nqbp;
syncq_t *sq, *outer;
queue_t *wqp = _WR(qp);
ASSERT(qp->q_flag & QREADR);
/*
* If a previously dispatched taskq job is scheduled to run
* sync_service() or a service routine is scheduled for the
* queues about to be freed, wait here until all service is
* done on the queue and all associated queues and syncqs.
*/
wait_svc(qp);
(void) flush_syncq(qp->q_syncq, qp);
(void) flush_syncq(wqp->q_syncq, wqp);
ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
/*
* Flush the queues before q_next is set to NULL This is needed
* in order to backenable any downstream queue before we go away.
* Note: we are already removed from the stream so that the
* backenabling will not cause any messages to be delivered to our
* put procedures.
*/
flushq(qp, FLUSHALL);
flushq(wqp, FLUSHALL);
/* Tidy up - removeq only does a half-remove from stream */
qp->q_next = wqp->q_next = NULL;
ASSERT(!(qp->q_flag & QENAB));
ASSERT(!(wqp->q_flag & QENAB));
outer = qp->q_syncq->sq_outer;
if (outer != NULL) {
outer_remove(outer, qp->q_syncq);
if (wqp->q_syncq != qp->q_syncq)
outer_remove(outer, wqp->q_syncq);
}
/*
* Free any syncqs that are outside what allocq returned.
*/
if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
free_syncq(qp->q_syncq);
if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
free_syncq(wqp->q_syncq);
ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
sq = SQ(qp);
ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
ASSERT(sq->sq_outer == NULL);
ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
ASSERT(sq->sq_callbpend == NULL);
ASSERT(sq->sq_needexcl == 0);
if (sq->sq_ciputctrl != NULL) {
ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
sq->sq_nciputctrl, 0);
ASSERT(ciputctrl_cache != NULL);
kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
sq->sq_ciputctrl = NULL;
sq->sq_nciputctrl = 0;
}
ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
ASSERT(qp->q_count == 0 && wqp->q_count == 0);
ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
qp->q_flag &= ~QUSE;
wqp->q_flag &= ~QUSE;
/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
qbp = qp->q_bandp;
while (qbp) {
nqbp = qbp->qb_next;
freeband(qbp);
qbp = nqbp;
}
qbp = wqp->q_bandp;
while (qbp) {
nqbp = qbp->qb_next;
freeband(qbp);
qbp = nqbp;
}
kmem_cache_free(queue_cache, qp);
}
/*
* Allocate a qband structure.
*/
qband_t *
allocband(void)
{
qband_t *qbp;
qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
if (qbp == NULL)
return (NULL);
qbp->qb_next = NULL;
qbp->qb_count = 0;
qbp->qb_mblkcnt = 0;
qbp->qb_first = NULL;
qbp->qb_last = NULL;
qbp->qb_flag = 0;
return (qbp);
}
/*
* Free a qband structure.
*/
void
freeband(qband_t *qbp)
{
kmem_cache_free(qband_cache, qbp);
}
/*
* Just like putnextctl(9F), except that allocb_wait() is used.
*
* Consolidation Private, and of course only callable from the stream head or
* routines that may block.
*/
int
putnextctl_wait(queue_t *q, int type)
{
mblk_t *bp;
int error;
if ((datamsg(type) && (type != M_DELAY)) ||
(bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
return (0);
bp->b_datap->db_type = (unsigned char)type;
putnext(q, bp);
return (1);
}
/*
* Run any possible bufcalls.
*/
void
runbufcalls(void)
{
strbufcall_t *bcp;
mutex_enter(&bcall_monitor);
mutex_enter(&strbcall_lock);
if (strbcalls.bc_head) {
size_t count;
int nevent;
/*
* count how many events are on the list
* now so we can check to avoid looping
* in low memory situations
*/
nevent = 0;
for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
nevent++;
/*
* get estimate of available memory from kmem_avail().
* awake all bufcall functions waiting for
* memory whose request could be satisfied
* by 'count' memory and let 'em fight for it.
*/
count = kmem_avail();
while ((bcp = strbcalls.bc_head) != NULL && nevent) {
STRSTAT(bufcalls);
--nevent;
if (bcp->bc_size <= count) {
bcp->bc_executor = curthread;
mutex_exit(&strbcall_lock);
(*bcp->bc_func)(bcp->bc_arg);
mutex_enter(&strbcall_lock);
bcp->bc_executor = NULL;
cv_broadcast(&bcall_cv);
strbcalls.bc_head = bcp->bc_next;
kmem_free(bcp, sizeof (strbufcall_t));
} else {
/*
* too big, try again later - note
* that nevent was decremented above
* so we won't retry this one on this
* iteration of the loop
*/
if (bcp->bc_next != NULL) {
strbcalls.bc_head = bcp->bc_next;
bcp->bc_next = NULL;
strbcalls.bc_tail->bc_next = bcp;
strbcalls.bc_tail = bcp;
}
}
}
if (strbcalls.bc_head == NULL)
strbcalls.bc_tail = NULL;
}
mutex_exit(&strbcall_lock);
mutex_exit(&bcall_monitor);
}
/*
* Actually run queue's service routine.
*/
static void
runservice(queue_t *q)
{
qband_t *qbp;
ASSERT(q->q_qinfo->qi_srvp);
again:
entersq(q->q_syncq, SQ_SVC);
TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
"runservice starts:%p", q);
if (!(q->q_flag & QWCLOSE))
(*q->q_qinfo->qi_srvp)(q);
TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
"runservice ends:(%p)", q);
leavesq(q->q_syncq, SQ_SVC);
mutex_enter(QLOCK(q));
if (q->q_flag & QENAB) {
q->q_flag &= ~QENAB;
mutex_exit(QLOCK(q));
goto again;
}
q->q_flag &= ~QINSERVICE;
q->q_flag &= ~QBACK;
for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
qbp->qb_flag &= ~QB_BACK;
/*
* Wakeup thread waiting for the service procedure
* to be run (strclose and qdetach).
*/
cv_broadcast(&q->q_wait);
mutex_exit(QLOCK(q));
}
/*
* Background processing of bufcalls.
*/
void
streams_bufcall_service(void)
{
callb_cpr_t cprinfo;
CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
"streams_bufcall_service");
mutex_enter(&strbcall_lock);
for (;;) {
if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
mutex_exit(&strbcall_lock);
runbufcalls();
mutex_enter(&strbcall_lock);
}
if (strbcalls.bc_head != NULL) {
STRSTAT(bcwaits);
/* Wait for memory to become available */
CALLB_CPR_SAFE_BEGIN(&cprinfo);
(void) cv_reltimedwait(&memavail_cv, &strbcall_lock,
SEC_TO_TICK(60), TR_CLOCK_TICK);
CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
}
/* Wait for new work to arrive */
if (strbcalls.bc_head == NULL) {
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&strbcall_cv, &strbcall_lock);
CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
}
}
}
/*
* Background processing of streams background tasks which failed
* taskq_dispatch.
*/
static void
streams_qbkgrnd_service(void)
{
callb_cpr_t cprinfo;
queue_t *q;
CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
"streams_bkgrnd_service");
mutex_enter(&service_queue);
for (;;) {
/*
* Wait for work to arrive.
*/
while ((freebs_list == NULL) && (qhead == NULL)) {
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&services_to_run, &service_queue);
CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
}
/*
* Handle all pending freebs requests to free memory.
*/
while (freebs_list != NULL) {
mblk_t *mp = freebs_list;
freebs_list = mp->b_next;
mutex_exit(&service_queue);
mblk_free(mp);
mutex_enter(&service_queue);
}
/*
* Run pending queues.
*/
while (qhead != NULL) {
DQ(q, qhead, qtail, q_link);
ASSERT(q != NULL);
mutex_exit(&service_queue);
queue_service(q);
mutex_enter(&service_queue);
}
ASSERT(qhead == NULL && qtail == NULL);
}
}
/*
* Background processing of streams background tasks which failed
* taskq_dispatch.
*/
static void
streams_sqbkgrnd_service(void)
{
callb_cpr_t cprinfo;
syncq_t *sq;
CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
"streams_sqbkgrnd_service");
mutex_enter(&service_queue);
for (;;) {
/*
* Wait for work to arrive.
*/
while (sqhead == NULL) {
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&syncqs_to_run, &service_queue);
CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
}
/*
* Run pending syncqs.
*/
while (sqhead != NULL) {
DQ(sq, sqhead, sqtail, sq_next);
ASSERT(sq != NULL);
ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
mutex_exit(&service_queue);
syncq_service(sq);
mutex_enter(&service_queue);
}
}
}
/*
* Disable the syncq and wait for background syncq processing to complete.
* If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
* list.
*/
void
wait_sq_svc(syncq_t *sq)
{
mutex_enter(SQLOCK(sq));
sq->sq_svcflags |= SQ_DISABLED;
if (sq->sq_svcflags & SQ_BGTHREAD) {
syncq_t *sq_chase;
syncq_t *sq_curr;
int removed;
ASSERT(sq->sq_servcount == 1);
mutex_enter(&service_queue);
RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
mutex_exit(&service_queue);
if (removed) {
sq->sq_svcflags &= ~SQ_BGTHREAD;
sq->sq_servcount = 0;
STRSTAT(sqremoved);
goto done;
}
}
while (sq->sq_servcount != 0) {
sq->sq_flags |= SQ_WANTWAKEUP;
cv_wait(&sq->sq_wait, SQLOCK(sq));
}
done:
mutex_exit(SQLOCK(sq));
}
/*
* Put a syncq on the list of syncq's to be serviced by the sqthread.
* Add the argument to the end of the sqhead list and set the flag
* indicating this syncq has been enabled. If it has already been
* enabled, don't do anything.
* This routine assumes that SQLOCK is held.
* NOTE that the lock order is to have the SQLOCK first,
* so if the service_syncq lock is held, we need to release it
* before acquiring the SQLOCK (mostly relevant for the background
* thread, and this seems to be common among the STREAMS global locks).
* Note that the sq_svcflags are protected by the SQLOCK.
*/
void
sqenable(syncq_t *sq)
{
/*
* This is probably not important except for where I believe it
* is being called. At that point, it should be held (and it
* is a pain to release it just for this routine, so don't do
* it).
*/
ASSERT(MUTEX_HELD(SQLOCK(sq)));
IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
/*
* Do not put on list if background thread is scheduled or
* syncq is disabled.
*/
if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
return;
/*
* Check whether we should enable sq at all.
* Non PERMOD syncqs may be drained by at most one thread.
* PERMOD syncqs may be drained by several threads but we limit the
* total amount to the lesser of
* Number of queues on the squeue and
* Number of CPUs.
*/
if (sq->sq_servcount != 0) {
if (((sq->sq_type & SQ_PERMOD) == 0) ||
(sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
STRSTAT(sqtoomany);
return;
}
}
sq->sq_tstamp = ddi_get_lbolt();
STRSTAT(sqenables);
/* Attempt a taskq dispatch */
sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
(task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
if (sq->sq_servid != NULL) {
sq->sq_servcount++;
return;
}
/*
* This taskq dispatch failed, but a previous one may have succeeded.
* Don't try to schedule on the background thread whilst there is
* outstanding taskq processing.
*/
if (sq->sq_servcount != 0)
return;
/*
* System is low on resources and can't perform a non-sleeping
* dispatch. Schedule the syncq for a background thread and mark the
* syncq to avoid any further taskq dispatch attempts.
*/
mutex_enter(&service_queue);
STRSTAT(taskqfails);
ENQUEUE(sq, sqhead, sqtail, sq_next);
sq->sq_svcflags |= SQ_BGTHREAD;
sq->sq_servcount = 1;
cv_signal(&syncqs_to_run);
mutex_exit(&service_queue);
}
/*
* Note: fifo_close() depends on the mblk_t on the queue being freed
* asynchronously. The asynchronous freeing of messages breaks the
* recursive call chain of fifo_close() while there are I_SENDFD type of
* messages referring to other file pointers on the queue. Then when
* closing pipes it can avoid stack overflow in case of daisy-chained
* pipes, and also avoid deadlock in case of fifonode_t pairs (which
* share the same fifolock_t).
*
* No need to kpreempt_disable to access cpu_seqid. If we migrate and
* the esb queue does not match the new CPU, that is OK.
*/
void
freebs_enqueue(mblk_t *mp, dblk_t *dbp)
{
int qindex = CPU->cpu_seqid >> esbq_log2_cpus_per_q;
esb_queue_t *eqp;
ASSERT(dbp->db_mblk == mp);
ASSERT(qindex < esbq_nelem);
eqp = system_esbq_array;
if (eqp != NULL) {
eqp += qindex;
} else {
mutex_enter(&esbq_lock);
if (kmem_ready && system_esbq_array == NULL)
system_esbq_array = (esb_queue_t *)kmem_zalloc(
esbq_nelem * sizeof (esb_queue_t), KM_NOSLEEP);
mutex_exit(&esbq_lock);
eqp = system_esbq_array;
if (eqp != NULL)
eqp += qindex;
else
eqp = &system_esbq;
}
/*
* Check data sanity. The dblock should have non-empty free function.
* It is better to panic here then later when the dblock is freed
* asynchronously when the context is lost.
*/
if (dbp->db_frtnp->free_func == NULL) {
panic("freebs_enqueue: dblock %p has a NULL free callback",
(void *)dbp);
}
mutex_enter(&eqp->eq_lock);
/* queue the new mblk on the esballoc queue */
if (eqp->eq_head == NULL) {
eqp->eq_head = eqp->eq_tail = mp;
} else {
eqp->eq_tail->b_next = mp;
eqp->eq_tail = mp;
}
eqp->eq_len++;
/* If we're the first thread to reach the threshold, process */
if (eqp->eq_len >= esbq_max_qlen &&
!(eqp->eq_flags & ESBQ_PROCESSING))
esballoc_process_queue(eqp);
esballoc_set_timer(eqp, esbq_timeout);
mutex_exit(&eqp->eq_lock);
}
static void
esballoc_process_queue(esb_queue_t *eqp)
{
mblk_t *mp;
ASSERT(MUTEX_HELD(&eqp->eq_lock));
eqp->eq_flags |= ESBQ_PROCESSING;
do {
/*
* Detach the message chain for processing.
*/
mp = eqp->eq_head;
eqp->eq_tail->b_next = NULL;
eqp->eq_head = eqp->eq_tail = NULL;
eqp->eq_len = 0;
mutex_exit(&eqp->eq_lock);
/*
* Process the message chain.
*/
esballoc_enqueue_mblk(mp);
mutex_enter(&eqp->eq_lock);
} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
eqp->eq_flags &= ~ESBQ_PROCESSING;
}
/*
* taskq callback routine to free esballoced mblk's
*/
static void
esballoc_mblk_free(mblk_t *mp)
{
mblk_t *nextmp;
for (; mp != NULL; mp = nextmp) {
nextmp = mp->b_next;
mp->b_next = NULL;
mblk_free(mp);
}
}
static void
esballoc_enqueue_mblk(mblk_t *mp)
{
if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
TQ_NOSLEEP) == NULL) {
mblk_t *first_mp = mp;
/*
* System is low on resources and can't perform a non-sleeping
* dispatch. Schedule for a background thread.
*/
mutex_enter(&service_queue);
STRSTAT(taskqfails);
while (mp->b_next != NULL)
mp = mp->b_next;
mp->b_next = freebs_list;
freebs_list = first_mp;
cv_signal(&services_to_run);
mutex_exit(&service_queue);
}
}
static void
esballoc_timer(void *arg)
{
esb_queue_t *eqp = arg;
mutex_enter(&eqp->eq_lock);
eqp->eq_flags &= ~ESBQ_TIMER;
if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
eqp->eq_len > 0)
esballoc_process_queue(eqp);
esballoc_set_timer(eqp, esbq_timeout);
mutex_exit(&eqp->eq_lock);
}
static void
esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
{
ASSERT(MUTEX_HELD(&eqp->eq_lock));
if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
(void) timeout(esballoc_timer, eqp, eq_timeout);
eqp->eq_flags |= ESBQ_TIMER;
}
}
/*
* Setup esbq array length based upon NCPU scaled by CPUs per
* queue. Use static system_esbq until kmem_ready and we can
* create an array in freebs_enqueue().
*/
void
esballoc_queue_init(void)
{
esbq_log2_cpus_per_q = highbit(esbq_cpus_per_q - 1);
esbq_cpus_per_q = 1 << esbq_log2_cpus_per_q;
esbq_nelem = howmany(NCPU, esbq_cpus_per_q);
system_esbq.eq_len = 0;
system_esbq.eq_head = system_esbq.eq_tail = NULL;
system_esbq.eq_flags = 0;
}
/*
* Set the QBACK or QB_BACK flag in the given queue for
* the given priority band.
*/
void
setqback(queue_t *q, unsigned char pri)
{
int i;
qband_t *qbp;
qband_t **qbpp;
ASSERT(MUTEX_HELD(QLOCK(q)));
if (pri != 0) {
if (pri > q->q_nband) {
qbpp = &q->q_bandp;
while (*qbpp)
qbpp = &(*qbpp)->qb_next;
while (pri > q->q_nband) {
if ((*qbpp = allocband()) == NULL) {
cmn_err(CE_WARN,
"setqback: can't allocate qband\n");
return;
}
(*qbpp)->qb_hiwat = q->q_hiwat;
(*qbpp)->qb_lowat = q->q_lowat;
q->q_nband++;
qbpp = &(*qbpp)->qb_next;
}
}
qbp = q->q_bandp;
i = pri;
while (--i)
qbp = qbp->qb_next;
qbp->qb_flag |= QB_BACK;
} else {
q->q_flag |= QBACK;
}
}
int
strcopyin(void *from, void *to, size_t len, int copyflag)
{
if (copyflag & U_TO_K) {
ASSERT((copyflag & K_TO_K) == 0);
if (copyin(from, to, len))
return (EFAULT);
} else {
ASSERT(copyflag & K_TO_K);
bcopy(from, to, len);
}
return (0);
}
int
strcopyout(void *from, void *to, size_t len, int copyflag)
{
if (copyflag & U_TO_K) {
if (copyout(from, to, len))
return (EFAULT);
} else {
ASSERT(copyflag & K_TO_K);
bcopy(from, to, len);
}
return (0);
}
/*
* strsignal_nolock() posts a signal to the process(es) at the stream head.
* It assumes that the stream head lock is already held, whereas strsignal()
* acquires the lock first. This routine was created because a few callers
* release the stream head lock before calling only to re-acquire it after
* it returns.
*/
void
strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
{
ASSERT(MUTEX_HELD(&stp->sd_lock));
switch (sig) {
case SIGPOLL:
if (stp->sd_sigflags & S_MSG)
strsendsig(stp->sd_siglist, S_MSG, band, 0);
break;
default:
if (stp->sd_pgidp)
pgsignal(stp->sd_pgidp, sig);
break;
}
}
void
strsignal(stdata_t *stp, int sig, int32_t band)
{
TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
"strsignal:%p, %X, %X", stp, sig, band);
mutex_enter(&stp->sd_lock);
switch (sig) {
case SIGPOLL:
if (stp->sd_sigflags & S_MSG)
strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
break;
default:
if (stp->sd_pgidp) {
pgsignal(stp->sd_pgidp, sig);
}
break;
}
mutex_exit(&stp->sd_lock);
}
void
strhup(stdata_t *stp)
{
ASSERT(mutex_owned(&stp->sd_lock));
pollwakeup(&stp->sd_pollist, POLLHUP);
if (stp->sd_sigflags & S_HANGUP)
strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
}
/*
* Backenable the first queue upstream from `q' with a service procedure.
*/
void
backenable(queue_t *q, uchar_t pri)
{
queue_t *nq;
/*
* Our presence might not prevent other modules in our own
* stream from popping/pushing since the caller of getq might not
* have a claim on the queue (some drivers do a getq on somebody
* else's queue - they know that the queue itself is not going away
* but the framework has to guarantee q_next in that stream).
*/
claimstr(q);
/* Find nearest back queue with service proc */
for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
}
if (nq) {
kthread_t *freezer;
/*
* backenable can be called either with no locks held
* or with the stream frozen (the latter occurs when a module
* calls rmvq with the stream frozen). If the stream is frozen
* by the caller the caller will hold all qlocks in the stream.
* Note that a frozen stream doesn't freeze a mated stream,
* so we explicitly check for that.
*/
freezer = STREAM(q)->sd_freezer;
if (freezer != curthread || STREAM(q) != STREAM(nq)) {
mutex_enter(QLOCK(nq));
}
#ifdef DEBUG
else {
ASSERT(frozenstr(q));
ASSERT(MUTEX_HELD(QLOCK(q)));
ASSERT(MUTEX_HELD(QLOCK(nq)));
}
#endif
setqback(nq, pri);
qenable_locked(nq);
if (freezer != curthread || STREAM(q) != STREAM(nq))
mutex_exit(QLOCK(nq));
}
releasestr(q);
}
/*
* Return the appropriate errno when one of flags_to_check is set
* in sd_flags. Uses the exported error routines if they are set.
* Will return 0 if non error is set (or if the exported error routines
* do not return an error).
*
* If there is both a read and write error to check, we prefer the read error.
* Also, give preference to recorded errno's over the error functions.
* The flags that are handled are:
* STPLEX return EINVAL
* STRDERR return sd_rerror (and clear if STRDERRNONPERSIST)
* STWRERR return sd_werror (and clear if STWRERRNONPERSIST)
* STRHUP return sd_werror
*
* If the caller indicates that the operation is a peek, a nonpersistent error
* is not cleared.
*/
int
strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
{
int32_t sd_flag = stp->sd_flag & flags_to_check;
int error = 0;
ASSERT(MUTEX_HELD(&stp->sd_lock));
ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
if (sd_flag & STPLEX)
error = EINVAL;
else if (sd_flag & STRDERR) {
error = stp->sd_rerror;
if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
/*
* Read errors are non-persistent i.e. discarded once
* returned to a non-peeking caller,
*/
stp->sd_rerror = 0;
stp->sd_flag &= ~STRDERR;
}
if (error == 0 && stp->sd_rderrfunc != NULL) {
int clearerr = 0;
error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
&clearerr);
if (clearerr) {
stp->sd_flag &= ~STRDERR;
stp->sd_rderrfunc = NULL;
}
}
} else if (sd_flag & STWRERR) {
error = stp->sd_werror;
if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
/*
* Write errors are non-persistent i.e. discarded once
* returned to a non-peeking caller,
*/
stp->sd_werror = 0;
stp->sd_flag &= ~STWRERR;
}
if (error == 0 && stp->sd_wrerrfunc != NULL) {
int clearerr = 0;
error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
&clearerr);
if (clearerr) {
stp->sd_flag &= ~STWRERR;
stp->sd_wrerrfunc = NULL;
}
}
} else if (sd_flag & STRHUP) {
/* sd_werror set when STRHUP */
error = stp->sd_werror;
}
return (error);
}
/*
* Single-thread open/close/push/pop
* for twisted streams also
*/
int
strstartplumb(stdata_t *stp, int flag, int cmd)
{
int waited = 1;
int error = 0;
if (STRMATED(stp)) {
struct stdata *stmatep = stp->sd_mate;
STRLOCKMATES(stp);
while (waited) {
waited = 0;
while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
if ((cmd == I_POP) &&
(flag & (FNDELAY|FNONBLOCK))) {
STRUNLOCKMATES(stp);
return (EAGAIN);
}
waited = 1;
mutex_exit(&stp->sd_lock);
if (!cv_wait_sig(&stmatep->sd_monitor,
&stmatep->sd_lock)) {
mutex_exit(&stmatep->sd_lock);
return (EINTR);
}
mutex_exit(&stmatep->sd_lock);
STRLOCKMATES(stp);
}
while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
if ((cmd == I_POP) &&
(flag & (FNDELAY|FNONBLOCK))) {
STRUNLOCKMATES(stp);
return (EAGAIN);
}
waited = 1;
mutex_exit(&stmatep->sd_lock);
if (!cv_wait_sig(&stp->sd_monitor,
&stp->sd_lock)) {
mutex_exit(&stp->sd_lock);
return (EINTR);
}
mutex_exit(&stp->sd_lock);
STRLOCKMATES(stp);
}
if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
error = strgeterr(stp,
STRDERR|STWRERR|STRHUP|STPLEX, 0);
if (error != 0) {
STRUNLOCKMATES(stp);
return (error);
}
}
}
stp->sd_flag |= STRPLUMB;
STRUNLOCKMATES(stp);
} else {
mutex_enter(&stp->sd_lock);
while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
(flag & (FNDELAY|FNONBLOCK))) {
mutex_exit(&stp->sd_lock);
return (EAGAIN);
}
if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
mutex_exit(&stp->sd_lock);
return (EINTR);
}
if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
error = strgeterr(stp,
STRDERR|STWRERR|STRHUP|STPLEX, 0);
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
}
stp->sd_flag |= STRPLUMB;
mutex_exit(&stp->sd_lock);
}
return (0);
}
/*
* Complete the plumbing operation associated with stream `stp'.
*/
void
strendplumb(stdata_t *stp)
{
ASSERT(MUTEX_HELD(&stp->sd_lock));
ASSERT(stp->sd_flag & STRPLUMB);
stp->sd_flag &= ~STRPLUMB;
cv_broadcast(&stp->sd_monitor);
}
/*
* This describes how the STREAMS framework handles synchronization
* during open/push and close/pop.
* The key interfaces for open and close are qprocson and qprocsoff,
* respectively. While the close case in general is harder both open
* have close have significant similarities.
*
* During close the STREAMS framework has to both ensure that there
* are no stale references to the queue pair (and syncq) that
* are being closed and also provide the guarantees that are documented
* in qprocsoff(9F).
* If there are stale references to the queue that is closing it can
* result in kernel memory corruption or kernel panics.
*
* Note that is it up to the module/driver to ensure that it itself
* does not have any stale references to the closing queues once its close
* routine returns. This includes:
* - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
* associated with the queues. For timeout and bufcall callbacks the
* module/driver also has to ensure (or wait for) any callbacks that
* are in progress.
* - If the module/driver is using esballoc it has to ensure that any
* esballoc free functions do not refer to a queue that has closed.
* (Note that in general the close routine can not wait for the esballoc'ed
* messages to be freed since that can cause a deadlock.)
* - Cancelling any interrupts that refer to the closing queues and
* also ensuring that there are no interrupts in progress that will
* refer to the closing queues once the close routine returns.
* - For multiplexors removing any driver global state that refers to
* the closing queue and also ensuring that there are no threads in
* the multiplexor that has picked up a queue pointer but not yet
* finished using it.
*
* In addition, a driver/module can only reference the q_next pointer
* in its open, close, put, or service procedures or in a
* qtimeout/qbufcall callback procedure executing "on" the correct
* stream. Thus it can not reference the q_next pointer in an interrupt
* routine or a timeout, bufcall or esballoc callback routine. Likewise
* it can not reference q_next of a different queue e.g. in a mux that
* passes messages from one queues put/service procedure to another queue.
* In all the cases when the driver/module can not access the q_next
* field it must use the *next* versions e.g. canputnext instead of
* canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
*
*
* Assuming that the driver/module conforms to the above constraints
* the STREAMS framework has to avoid stale references to q_next for all
* the framework internal cases which include (but are not limited to):
* - Threads in canput/canputnext/backenable and elsewhere that are
* walking q_next.
* - Messages on a syncq that have a reference to the queue through b_queue.
* - Messages on an outer perimeter (syncq) that have a reference to the
* queue through b_queue.
* - Threads that use q_nfsrv (e.g. canput) to find a queue.
* Note that only canput and bcanput use q_nfsrv without any locking.
*
* The STREAMS framework providing the qprocsoff(9F) guarantees means that
* after qprocsoff returns, the framework has to ensure that no threads can
* enter the put or service routines for the closing read or write-side queue.
* In addition to preventing "direct" entry into the put procedures
* the framework also has to prevent messages being drained from
* the syncq or the outer perimeter.
* XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
* mechanism to prevent qwriter(PERIM_OUTER) from running after
* qprocsoff has returned.
* Note that if a module/driver uses put(9F) on one of its own queues
* it is up to the module/driver to ensure that the put() doesn't
* get called when the queue is closing.
*
*
* The framework aspects of the above "contract" is implemented by
* qprocsoff, removeq, and strlock:
* - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
* entering the service procedures.
* - strlock acquires the sd_lock and sd_reflock to prevent putnext,
* canputnext, backenable etc from dereferencing the q_next that will
* soon change.
* - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
* or other q_next walker that uses claimstr/releasestr to finish.
* - optionally for every syncq in the stream strlock acquires all the
* sq_lock's and waits for all sq_counts to drop to a value that indicates
* that no thread executes in the put or service procedures and that no
* thread is draining into the module/driver. This ensures that no
* open, close, put, service, or qtimeout/qbufcall callback procedure is
* currently executing hence no such thread can end up with the old stale
* q_next value and no canput/backenable can have the old stale
* q_nfsrv/q_next.
* - qdetach (wait_svc) makes sure that any scheduled or running threads
* have either finished or observed the QWCLOSE flag and gone away.
*/
/*
* Get all the locks necessary to change q_next.
*
* Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
* sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
* the only threads inside the syncq are threads currently calling removeq().
* Since threads calling removeq() are in the process of removing their queues
* from the stream, we do not need to worry about them accessing a stale q_next
* pointer and thus we do not need to wait for them to exit (in fact, waiting
* for them can cause deadlock).
*
* This routine is subject to starvation since it does not set any flag to
* prevent threads from entering a module in the stream (i.e. sq_count can
* increase on some syncq while it is waiting on some other syncq).
*
* Assumes that only one thread attempts to call strlock for a given
* stream. If this is not the case the two threads would deadlock.
* This assumption is guaranteed since strlock is only called by insertq
* and removeq and streams plumbing changes are single-threaded for
* a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
*
* For pipes, it is not difficult to atomically designate a pair of streams
* to be mated. Once mated atomically by the framework the twisted pair remain
* configured that way until dismantled atomically by the framework.
* When plumbing takes place on a twisted stream it is necessary to ensure that
* this operation is done exclusively on the twisted stream since two such
* operations, each initiated on different ends of the pipe will deadlock
* waiting for each other to complete.
*
* On entry, no locks should be held.
* The locks acquired and held by strlock depends on a few factors.
* - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
* and held on exit and all sq_count are at an acceptable level.
* - In all cases, sd_lock and sd_reflock are acquired and held on exit with
* sd_refcnt being zero.
*/
static void
strlock(struct stdata *stp, sqlist_t *sqlist)
{
syncql_t *sql, *sql2;
retry:
/*
* Wait for any claimstr to go away.
*/
if (STRMATED(stp)) {
struct stdata *stp1, *stp2;
STRLOCKMATES(stp);
/*
* Note that the selection of locking order is not
* important, just that they are always acquired in
* the same order. To assure this, we choose this
* order based on the value of the pointer, and since
* the pointer will not change for the life of this
* pair, we will always grab the locks in the same
* order (and hence, prevent deadlocks).
*/
if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
stp1 = stp;
stp2 = stp->sd_mate;
} else {
stp2 = stp;
stp1 = stp->sd_mate;
}
mutex_enter(&stp1->sd_reflock);
if (stp1->sd_refcnt > 0) {
STRUNLOCKMATES(stp);
cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
mutex_exit(&stp1->sd_reflock);
goto retry;
}
mutex_enter(&stp2->sd_reflock);
if (stp2->sd_refcnt > 0) {
STRUNLOCKMATES(stp);
mutex_exit(&stp1->sd_reflock);
cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
mutex_exit(&stp2->sd_reflock);
goto retry;
}
STREAM_PUTLOCKS_ENTER(stp1);
STREAM_PUTLOCKS_ENTER(stp2);
} else {
mutex_enter(&stp->sd_lock);
mutex_enter(&stp->sd_reflock);
while (stp->sd_refcnt > 0) {
mutex_exit(&stp->sd_lock);
cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
if (mutex_tryenter(&stp->sd_lock) == 0) {
mutex_exit(&stp->sd_reflock);
mutex_enter(&stp->sd_lock);
mutex_enter(&stp->sd_reflock);
}
}
STREAM_PUTLOCKS_ENTER(stp);
}
if (sqlist == NULL)
return;
for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
syncq_t *sq = sql->sql_sq;
uint16_t count;
mutex_enter(SQLOCK(sq));
count = sq->sq_count;
ASSERT(sq->sq_rmqcount <= count);
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
if (count == sq->sq_rmqcount)
continue;
/* Failed - drop all locks that we have acquired so far */
if (STRMATED(stp)) {
STREAM_PUTLOCKS_EXIT(stp);
STREAM_PUTLOCKS_EXIT(stp->sd_mate);
STRUNLOCKMATES(stp);
mutex_exit(&stp->sd_reflock);
mutex_exit(&stp->sd_mate->sd_reflock);
} else {
STREAM_PUTLOCKS_EXIT(stp);
mutex_exit(&stp->sd_lock);
mutex_exit(&stp->sd_reflock);
}
for (sql2 = sqlist->sqlist_head; sql2 != sql;
sql2 = sql2->sql_next) {
SQ_PUTLOCKS_EXIT(sql2->sql_sq);
mutex_exit(SQLOCK(sql2->sql_sq));
}
/*
* The wait loop below may starve when there are many threads
* claiming the syncq. This is especially a problem with permod
* syncqs (IP). To lessen the impact of the problem we increment
* sq_needexcl and clear fastbits so that putnexts will slow
* down and call sqenable instead of draining right away.
*/
sq->sq_needexcl++;
SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
while (count > sq->sq_rmqcount) {
sq->sq_flags |= SQ_WANTWAKEUP;
SQ_PUTLOCKS_EXIT(sq);
cv_wait(&sq->sq_wait, SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
}
sq->sq_needexcl--;
if (sq->sq_needexcl == 0)
SQ_PUTCOUNT_SETFAST_LOCKED(sq);
SQ_PUTLOCKS_EXIT(sq);
ASSERT(count == sq->sq_rmqcount);
mutex_exit(SQLOCK(sq));
goto retry;
}
}
/*
* Drop all the locks that strlock acquired.
*/
static void
strunlock(struct stdata *stp, sqlist_t *sqlist)
{
syncql_t *sql;
if (STRMATED(stp)) {
STREAM_PUTLOCKS_EXIT(stp);
STREAM_PUTLOCKS_EXIT(stp->sd_mate);
STRUNLOCKMATES(stp);
mutex_exit(&stp->sd_reflock);
mutex_exit(&stp->sd_mate->sd_reflock);
} else {
STREAM_PUTLOCKS_EXIT(stp);
mutex_exit(&stp->sd_lock);
mutex_exit(&stp->sd_reflock);
}
if (sqlist == NULL)
return;
for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
SQ_PUTLOCKS_EXIT(sql->sql_sq);
mutex_exit(SQLOCK(sql->sql_sq));
}
}
/*
* When the module has service procedure, we need check if the next
* module which has service procedure is in flow control to trigger
* the backenable.
*/
static void
backenable_insertedq(queue_t *q)
{
qband_t *qbp;
claimstr(q);
if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
if (q->q_next->q_nfsrv->q_flag & QWANTW)
backenable(q, 0);
qbp = q->q_next->q_nfsrv->q_bandp;
for (; qbp != NULL; qbp = qbp->qb_next)
if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
backenable(q, qbp->qb_first->b_band);
}
releasestr(q);
}
/*
* Given two read queues, insert a new single one after another.
*
* This routine acquires all the necessary locks in order to change
* q_next and related pointer using strlock().
* It depends on the stream head ensuring that there are no concurrent
* insertq or removeq on the same stream. The stream head ensures this
* using the flags STWOPEN, STRCLOSE, and STRPLUMB.
*
* Note that no syncq locks are held during the q_next change. This is
* applied to all streams since, unlike removeq, there is no problem of stale
* pointers when adding a module to the stream. Thus drivers/modules that do a
* canput(rq->q_next) would never get a closed/freed queue pointer even if we
* applied this optimization to all streams.
*/
void
insertq(struct stdata *stp, queue_t *new)
{
queue_t *after;
queue_t *wafter;
queue_t *wnew = _WR(new);
boolean_t have_fifo = B_FALSE;
if (new->q_flag & _QINSERTING) {
ASSERT(stp->sd_vnode->v_type != VFIFO);
after = new->q_next;
wafter = _WR(new->q_next);
} else {
after = _RD(stp->sd_wrq);
wafter = stp->sd_wrq;
}
TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
"insertq:%p, %p", after, new);
ASSERT(after->q_flag & QREADR);
ASSERT(new->q_flag & QREADR);
strlock(stp, NULL);
/* Do we have a FIFO? */
if (wafter->q_next == after) {
have_fifo = B_TRUE;
wnew->q_next = new;
} else {
wnew->q_next = wafter->q_next;
}
new->q_next = after;
set_nfsrv_ptr(new, wnew, after, wafter);
/*
* set_nfsrv_ptr() needs to know if this is an insertion or not,
* so only reset this flag after calling it.
*/
new->q_flag &= ~_QINSERTING;
if (have_fifo) {
wafter->q_next = wnew;
} else {
if (wafter->q_next)
_OTHERQ(wafter->q_next)->q_next = new;
wafter->q_next = wnew;
}
set_qend(new);
/* The QEND flag might have to be updated for the upstream guy */
set_qend(after);
ASSERT(_SAMESTR(new) == O_SAMESTR(new));
ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
ASSERT(_SAMESTR(after) == O_SAMESTR(after));
ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
strsetuio(stp);
/*
* If this was a module insertion, bump the push count.
*/
if (!(new->q_flag & QISDRV))
stp->sd_pushcnt++;
strunlock(stp, NULL);
/* check if the write Q needs backenable */
backenable_insertedq(wnew);
/* check if the read Q needs backenable */
backenable_insertedq(new);
}
/*
* Given a read queue, unlink it from any neighbors.
*
* This routine acquires all the necessary locks in order to
* change q_next and related pointers and also guard against
* stale references (e.g. through q_next) to the queue that
* is being removed. It also plays part of the role in ensuring
* that the module's/driver's put procedure doesn't get called
* after qprocsoff returns.
*
* Removeq depends on the stream head ensuring that there are
* no concurrent insertq or removeq on the same stream. The
* stream head ensures this using the flags STWOPEN, STRCLOSE and
* STRPLUMB.
*
* The set of locks needed to remove the queue is different in
* different cases:
*
* Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
* waiting for the syncq reference count to drop to 0 indicating that no
* non-close threads are present anywhere in the stream. This ensures that any
* module/driver can reference q_next in its open, close, put, or service
* procedures.
*
* The sq_rmqcount counter tracks the number of threads inside removeq().
* strlock() ensures that there is either no threads executing inside perimeter
* or there is only a thread calling qprocsoff().
*
* strlock() compares the value of sq_count with the number of threads inside
* removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
* any threads waiting in strlock() when the sq_rmqcount increases.
*/
void
removeq(queue_t *qp)
{
queue_t *wqp = _WR(qp);
struct stdata *stp = STREAM(qp);
sqlist_t *sqlist = NULL;
boolean_t isdriver;
int moved;
syncq_t *sq = qp->q_syncq;
syncq_t *wsq = wqp->q_syncq;
ASSERT(stp);
TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
"removeq:%p %p", qp, wqp);
ASSERT(qp->q_flag&QREADR);
/*
* For queues using Synchronous streams, we must wait for all threads in
* rwnext() to drain out before proceeding.
*/
if (qp->q_flag & QSYNCSTR) {
/* First, we need wakeup any threads blocked in rwnext() */
mutex_enter(SQLOCK(sq));
if (sq->sq_flags & SQ_WANTWAKEUP) {
sq->sq_flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
mutex_exit(SQLOCK(sq));
if (wsq != sq) {
mutex_enter(SQLOCK(wsq));
if (wsq->sq_flags & SQ_WANTWAKEUP) {
wsq->sq_flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&wsq->sq_wait);
}
mutex_exit(SQLOCK(wsq));
}
mutex_enter(QLOCK(qp));
while (qp->q_rwcnt > 0) {
qp->q_flag |= QWANTRMQSYNC;
cv_wait(&qp->q_wait, QLOCK(qp));
}
mutex_exit(QLOCK(qp));
mutex_enter(QLOCK(wqp));
while (wqp->q_rwcnt > 0) {
wqp->q_flag |= QWANTRMQSYNC;
cv_wait(&wqp->q_wait, QLOCK(wqp));
}
mutex_exit(QLOCK(wqp));
}
mutex_enter(SQLOCK(sq));
sq->sq_rmqcount++;
if (sq->sq_flags & SQ_WANTWAKEUP) {
sq->sq_flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
mutex_exit(SQLOCK(sq));
isdriver = (qp->q_flag & QISDRV);
sqlist = sqlist_build(qp, stp, STRMATED(stp));
strlock(stp, sqlist);
reset_nfsrv_ptr(qp, wqp);
ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
/* Do we have a FIFO? */
if (wqp->q_next == qp) {
stp->sd_wrq->q_next = _RD(stp->sd_wrq);
} else {
if (wqp->q_next)
backq(qp)->q_next = qp->q_next;
if (qp->q_next)
backq(wqp)->q_next = wqp->q_next;
}
/* The QEND flag might have to be updated for the upstream guy */
if (qp->q_next)
set_qend(qp->q_next);
ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
/*
* Move any messages destined for the put procedures to the next
* syncq in line. Otherwise free them.
*/
moved = 0;
/*
* Quick check to see whether there are any messages or events.
*/
if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
moved += propagate_syncq(qp);
if (wqp->q_syncqmsgs != 0 ||
(wqp->q_syncq->sq_flags & SQ_EVENTS))
moved += propagate_syncq(wqp);
strsetuio(stp);
/*
* If this was a module removal, decrement the push count.
*/
if (!isdriver)
stp->sd_pushcnt--;
strunlock(stp, sqlist);
sqlist_free(sqlist);
/*
* Make sure any messages that were propagated are drained.
* Also clear any QFULL bit caused by messages that were propagated.
*/
if (qp->q_next != NULL) {
clr_qfull(qp);
/*
* For the driver calling qprocsoff, propagate_syncq
* frees all the messages instead of putting it in
* the stream head
*/
if (!isdriver && (moved > 0))
emptysq(qp->q_next->q_syncq);
}
if (wqp->q_next != NULL) {
clr_qfull(wqp);
/*
* We come here for any pop of a module except for the
* case of driver being removed. We don't call emptysq
* if we did not move any messages. This will avoid holding
* PERMOD syncq locks in emptysq
*/
if (moved > 0)
emptysq(wqp->q_next->q_syncq);
}
mutex_enter(SQLOCK(sq));
sq->sq_rmqcount--;
mutex_exit(SQLOCK(sq));
}
/*
* Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
* SQ_WRITER) on a syncq.
* If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
* sync queue and waits until sq_count reaches maxcnt.
*
* If maxcnt is -1 there's no need to grab sq_putlocks since the caller
* does not care about putnext threads that are in the middle of calling put
* entry points.
*
* This routine is used for both inner and outer syncqs.
*/
static void
blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
{
uint16_t count = 0;
mutex_enter(SQLOCK(sq));
/*
* Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
* SQ_FROZEN will be set if there is a frozen stream that has a
* queue which also refers to this "shared" syncq.
* SQ_BLOCKED will be set if there is "off" queue which also
* refers to this "shared" syncq.
*/
if (maxcnt != -1) {
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
SUM_SQ_PUTCOUNTS(sq, count);
}
sq->sq_needexcl++;
ASSERT(sq->sq_needexcl != 0); /* wraparound */
while ((sq->sq_flags & flag) ||
(maxcnt != -1 && count > (unsigned)maxcnt)) {
sq->sq_flags |= SQ_WANTWAKEUP;
if (maxcnt != -1) {
SQ_PUTLOCKS_EXIT(sq);
}
cv_wait(&sq->sq_wait, SQLOCK(sq));
if (maxcnt != -1) {
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
}
}
sq->sq_needexcl--;
sq->sq_flags |= flag;
ASSERT(maxcnt == -1 || count == maxcnt);
if (maxcnt != -1) {
if (sq->sq_needexcl == 0) {
SQ_PUTCOUNT_SETFAST_LOCKED(sq);
}
SQ_PUTLOCKS_EXIT(sq);
} else if (sq->sq_needexcl == 0) {
SQ_PUTCOUNT_SETFAST(sq);
}
mutex_exit(SQLOCK(sq));
}
/*
* Reset a flag that was set with blocksq.
*
* Can not use this routine to reset SQ_WRITER.
*
* If "isouter" is set then the syncq is assumed to be an outer perimeter
* and drain_syncq is not called. Instead we rely on the qwriter_outer thread
* to handle the queued qwriter operations.
*
* No need to grab sq_putlocks here. See comment in strsubr.h that explains when
* sq_putlocks are used.
*/
static void
unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
{
uint16_t flags;
mutex_enter(SQLOCK(sq));
ASSERT(resetflag != SQ_WRITER);
ASSERT(sq->sq_flags & resetflag);
flags = sq->sq_flags & ~resetflag;
sq->sq_flags = flags;
if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
sq->sq_flags = flags;
if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
if (!isouter) {
/* drain_syncq drops SQLOCK */
drain_syncq(sq);
return;
}
}
}
mutex_exit(SQLOCK(sq));
}
/*
* Reset a flag that was set with blocksq.
* Does not drain the syncq. Use emptysq() for that.
* Returns 1 if SQ_QUEUED is set. Otherwise 0.
*
* No need to grab sq_putlocks here. See comment in strsubr.h that explains when
* sq_putlocks are used.
*/
static int
dropsq(syncq_t *sq, uint16_t resetflag)
{
uint16_t flags;
mutex_enter(SQLOCK(sq));
ASSERT(sq->sq_flags & resetflag);
flags = sq->sq_flags & ~resetflag;
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
sq->sq_flags = flags;
mutex_exit(SQLOCK(sq));
if (flags & SQ_QUEUED)
return (1);
return (0);
}
/*
* Empty all the messages on a syncq.
*
* No need to grab sq_putlocks here. See comment in strsubr.h that explains when
* sq_putlocks are used.
*/
static void
emptysq(syncq_t *sq)
{
uint16_t flags;
mutex_enter(SQLOCK(sq));
flags = sq->sq_flags;
if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
/*
* To prevent potential recursive invocation of drain_syncq we
* do not call drain_syncq if count is non-zero.
*/
if (sq->sq_count == 0) {
/* drain_syncq() drops SQLOCK */
drain_syncq(sq);
return;
} else
sqenable(sq);
}
mutex_exit(SQLOCK(sq));
}
/*
* Ordered insert while removing duplicates.
*/
static void
sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
{
syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
prev_sqlpp = &sqlist->sqlist_head;
while ((sqlp = *prev_sqlpp) != NULL) {
if (sqlp->sql_sq >= sqp) {
if (sqlp->sql_sq == sqp) /* duplicate */
return;
break;
}
prev_sqlpp = &sqlp->sql_next;
}
new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
new_sqlp->sql_next = sqlp;
new_sqlp->sql_sq = sqp;
*prev_sqlpp = new_sqlp;
}
/*
* Walk the write side queues until we hit either the driver
* or a twist in the stream (_SAMESTR will return false in both
* these cases) then turn around and walk the read side queues
* back up to the stream head.
*/
static void
sqlist_insertall(sqlist_t *sqlist, queue_t *q)
{
while (q != NULL) {
sqlist_insert(sqlist, q->q_syncq);
if (_SAMESTR(q))
q = q->q_next;
else if (!(q->q_flag & QREADR))
q = _RD(q);
else
q = NULL;
}
}
/*
* Allocate and build a list of all syncqs in a stream and the syncq(s)
* associated with the "q" parameter. The resulting list is sorted in a
* canonical order and is free of duplicates.
* Assumes the passed queue is a _RD(q).
*/
static sqlist_t *
sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
{
sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
/*
* start with the current queue/qpair
*/
ASSERT(q->q_flag & QREADR);
sqlist_insert(sqlist, q->q_syncq);
sqlist_insert(sqlist, _WR(q)->q_syncq);
sqlist_insertall(sqlist, stp->sd_wrq);
if (do_twist)
sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
return (sqlist);
}
static sqlist_t *
sqlist_alloc(struct stdata *stp, int kmflag)
{
size_t sqlist_size;
sqlist_t *sqlist;
/*
* Allocate 2 syncql_t's for each pushed module. Note that
* the sqlist_t structure already has 4 syncql_t's built in:
* 2 for the stream head, and 2 for the driver/other stream head.
*/
sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
sizeof (sqlist_t);
if (STRMATED(stp))
sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
sqlist = kmem_alloc(sqlist_size, kmflag);
sqlist->sqlist_head = NULL;
sqlist->sqlist_size = sqlist_size;
sqlist->sqlist_index = 0;
return (sqlist);
}
/*
* Free the list created by sqlist_alloc()
*/
static void
sqlist_free(sqlist_t *sqlist)
{
kmem_free(sqlist, sqlist->sqlist_size);
}
/*
* Prevent any new entries into any syncq in this stream.
* Used by freezestr.
*/
void
strblock(queue_t *q)
{
struct stdata *stp;
syncql_t *sql;
sqlist_t *sqlist;
q = _RD(q);
stp = STREAM(q);
ASSERT(stp != NULL);
/*
* Get a sorted list with all the duplicates removed containing
* all the syncqs referenced by this stream.
*/
sqlist = sqlist_build(q, stp, B_FALSE);
for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
blocksq(sql->sql_sq, SQ_FROZEN, -1);
sqlist_free(sqlist);
}
/*
* Release the block on new entries into this stream
*/
void
strunblock(queue_t *q)
{
struct stdata *stp;
syncql_t *sql;
sqlist_t *sqlist;
int drain_needed;
q = _RD(q);
/*
* Get a sorted list with all the duplicates removed containing
* all the syncqs referenced by this stream.
* Have to drop the SQ_FROZEN flag on all the syncqs before
* starting to drain them; otherwise the draining might
* cause a freezestr in some module on the stream (which
* would deadlock).
*/
stp = STREAM(q);
ASSERT(stp != NULL);
sqlist = sqlist_build(q, stp, B_FALSE);
drain_needed = 0;
for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
if (drain_needed) {
for (sql = sqlist->sqlist_head; sql != NULL;
sql = sql->sql_next)
emptysq(sql->sql_sq);
}
sqlist_free(sqlist);
}
#ifdef DEBUG
static int
qprocsareon(queue_t *rq)
{
if (rq->q_next == NULL)
return (0);
return (_WR(rq->q_next)->q_next == _WR(rq));
}
int
qclaimed(queue_t *q)
{
uint_t count;
count = q->q_syncq->sq_count;
SUM_SQ_PUTCOUNTS(q->q_syncq, count);
return (count != 0);
}
/*
* Check if anyone has frozen this stream with freezestr
*/
int
frozenstr(queue_t *q)
{
return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
}
#endif /* DEBUG */
/*
* Enter a queue.
* Obsoleted interface. Should not be used.
*/
void
enterq(queue_t *q)
{
entersq(q->q_syncq, SQ_CALLBACK);
}
void
leaveq(queue_t *q)
{
leavesq(q->q_syncq, SQ_CALLBACK);
}
/*
* Enter a perimeter. c_inner and c_outer specifies which concurrency bits
* to check.
* Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
* calls and the running of open, close and service procedures.
*
* If c_inner bit is set no need to grab sq_putlocks since we don't care
* if other threads have entered or are entering put entry point.
*
* If c_inner bit is set it might have been possible to use
* sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
* open/close path for IP) but since the count may need to be decremented in
* qwait() we wouldn't know which counter to decrement. Currently counter is
* selected by current cpu_seqid and current CPU can change at any moment. XXX
* in the future we might use curthread id bits to select the counter and this
* would stay constant across routine calls.
*/
void
entersq(syncq_t *sq, int entrypoint)
{
uint16_t count = 0;
uint16_t flags;
uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
uint16_t type;
uint_t c_inner = entrypoint & SQ_CI;
uint_t c_outer = entrypoint & SQ_CO;
/*
* Increment ref count to keep closes out of this queue.
*/
ASSERT(sq);
ASSERT(c_inner && c_outer);
mutex_enter(SQLOCK(sq));
flags = sq->sq_flags;
type = sq->sq_type;
if (!(type & c_inner)) {
/* Make sure all putcounts now use slowlock. */
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
SUM_SQ_PUTCOUNTS(sq, count);
sq->sq_needexcl++;
ASSERT(sq->sq_needexcl != 0); /* wraparound */
waitflags |= SQ_MESSAGES;
}
/*
* Wait until we can enter the inner perimeter.
* If we want exclusive access we wait until sq_count is 0.
* We have to do this before entering the outer perimeter in order
* to preserve put/close message ordering.
*/
while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
sq->sq_flags = flags | SQ_WANTWAKEUP;
if (!(type & c_inner)) {
SQ_PUTLOCKS_EXIT(sq);
}
cv_wait(&sq->sq_wait, SQLOCK(sq));
if (!(type & c_inner)) {
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
}
flags = sq->sq_flags;
}
if (!(type & c_inner)) {
ASSERT(sq->sq_needexcl > 0);
sq->sq_needexcl--;
if (sq->sq_needexcl == 0) {
SQ_PUTCOUNT_SETFAST_LOCKED(sq);
}
}
/* Check if we need to enter the outer perimeter */
if (!(type & c_outer)) {
/*
* We have to enter the outer perimeter exclusively before
* we can increment sq_count to avoid deadlock. This implies
* that we have to re-check sq_flags and sq_count.
*
* is it possible to have c_inner set when c_outer is not set?
*/
if (!(type & c_inner)) {
SQ_PUTLOCKS_EXIT(sq);
}
mutex_exit(SQLOCK(sq));
outer_enter(sq->sq_outer, SQ_GOAWAY);
mutex_enter(SQLOCK(sq));
flags = sq->sq_flags;
/*
* there should be no need to recheck sq_putcounts
* because outer_enter() has already waited for them to clear
* after setting SQ_WRITER.
*/
count = sq->sq_count;
#ifdef DEBUG
/*
* SUMCHECK_SQ_PUTCOUNTS should return the sum instead
* of doing an ASSERT internally. Others should do
* something like
* ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
* without the need to #ifdef DEBUG it.
*/
SUMCHECK_SQ_PUTCOUNTS(sq, 0);
#endif
while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
(!(type & c_inner) && count != 0)) {
sq->sq_flags = flags | SQ_WANTWAKEUP;
cv_wait(&sq->sq_wait, SQLOCK(sq));
count = sq->sq_count;
flags = sq->sq_flags;
}
}
sq->sq_count++;
ASSERT(sq->sq_count != 0); /* Wraparound */
if (!(type & c_inner)) {
/* Exclusive entry */
ASSERT(sq->sq_count == 1);
sq->sq_flags |= SQ_EXCL;
if (type & c_outer) {
SQ_PUTLOCKS_EXIT(sq);
}
}
mutex_exit(SQLOCK(sq));
}
/*
* Leave a syncq. Announce to framework that closes may proceed.
* c_inner and c_outer specify which concurrency bits to check.
*
* Must never be called from driver or module put entry point.
*
* No need to grab sq_putlocks here. See comment in strsubr.h that explains when
* sq_putlocks are used.
*/
void
leavesq(syncq_t *sq, int entrypoint)
{
uint16_t flags;
uint16_t type;
uint_t c_outer = entrypoint & SQ_CO;
#ifdef DEBUG
uint_t c_inner = entrypoint & SQ_CI;
#endif
/*
* Decrement ref count, drain the syncq if possible, and wake up
* any waiting close.
*/
ASSERT(sq);
ASSERT(c_inner && c_outer);
mutex_enter(SQLOCK(sq));
flags = sq->sq_flags;
type = sq->sq_type;
if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
if (flags & SQ_WANTEXWAKEUP) {
flags &= ~SQ_WANTEXWAKEUP;
cv_broadcast(&sq->sq_exitwait);
}
if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
/*
* The syncq needs to be drained. "Exit" the syncq
* before calling drain_syncq.
*/
ASSERT(sq->sq_count != 0);
sq->sq_count--;
ASSERT((flags & SQ_EXCL) || (type & c_inner));
sq->sq_flags = flags & ~SQ_EXCL;
drain_syncq(sq);
ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
/* Check if we need to exit the outer perimeter */
/* XXX will this ever be true? */
if (!(type & c_outer))
outer_exit(sq->sq_outer);
return;
}
}
ASSERT(sq->sq_count != 0);
sq->sq_count--;
ASSERT((flags & SQ_EXCL) || (type & c_inner));
sq->sq_flags = flags & ~SQ_EXCL;
mutex_exit(SQLOCK(sq));
/* Check if we need to exit the outer perimeter */
if (!(sq->sq_type & c_outer))
outer_exit(sq->sq_outer);
}
/*
* Prevent q_next from changing in this stream by incrementing sq_count.
*
* No need to grab sq_putlocks here. See comment in strsubr.h that explains when
* sq_putlocks are used.
*/
void
claimq(queue_t *qp)
{
syncq_t *sq = qp->q_syncq;
mutex_enter(SQLOCK(sq));
sq->sq_count++;
ASSERT(sq->sq_count != 0); /* Wraparound */
mutex_exit(SQLOCK(sq));
}
/*
* Undo claimq.
*
* No need to grab sq_putlocks here. See comment in strsubr.h that explains when
* sq_putlocks are used.
*/
void
releaseq(queue_t *qp)
{
syncq_t *sq = qp->q_syncq;
uint16_t flags;
mutex_enter(SQLOCK(sq));
ASSERT(sq->sq_count > 0);
sq->sq_count--;
flags = sq->sq_flags;
if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
sq->sq_flags = flags;
if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
/*
* To prevent potential recursive invocation of
* drain_syncq we do not call drain_syncq if count is
* non-zero.
*/
if (sq->sq_count == 0) {
drain_syncq(sq);
return;
} else
sqenable(sq);
}
}
mutex_exit(SQLOCK(sq));
}
/*
* Prevent q_next from changing in this stream by incrementing sd_refcnt.
*/
void
claimstr(queue_t *qp)
{
struct stdata *stp = STREAM(qp);
mutex_enter(&stp->sd_reflock);
stp->sd_refcnt++;
ASSERT(stp->sd_refcnt != 0); /* Wraparound */
mutex_exit(&stp->sd_reflock);
}
/*
* Undo claimstr.
*/
void
releasestr(queue_t *qp)
{
struct stdata *stp = STREAM(qp);
mutex_enter(&stp->sd_reflock);
ASSERT(stp->sd_refcnt != 0);
if (--stp->sd_refcnt == 0)
cv_broadcast(&stp->sd_refmonitor);
mutex_exit(&stp->sd_reflock);
}
static syncq_t *
new_syncq(void)
{
return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
}
static void
free_syncq(syncq_t *sq)
{
ASSERT(sq->sq_head == NULL);
ASSERT(sq->sq_outer == NULL);
ASSERT(sq->sq_callbpend == NULL);
ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
(sq->sq_onext == sq && sq->sq_oprev == sq));
if (sq->sq_ciputctrl != NULL) {
ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
sq->sq_nciputctrl, 0);
ASSERT(ciputctrl_cache != NULL);
kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
}
sq->sq_tail = NULL;
sq->sq_evhead = NULL;
sq->sq_evtail = NULL;
sq->sq_ciputctrl = NULL;
sq->sq_nciputctrl = 0;
sq->sq_count = 0;
sq->sq_rmqcount = 0;
sq->sq_callbflags = 0;
sq->sq_cancelid = 0;
sq->sq_next = NULL;
sq->sq_needexcl = 0;
sq->sq_svcflags = 0;
sq->sq_nqueues = 0;
sq->sq_pri = 0;
sq->sq_onext = NULL;
sq->sq_oprev = NULL;
sq->sq_flags = 0;
sq->sq_type = 0;
sq->sq_servcount = 0;
kmem_cache_free(syncq_cache, sq);
}
/* Outer perimeter code */
/*
* The outer syncq uses the fields and flags in the syncq slightly
* differently from the inner syncqs.
* sq_count Incremented when there are pending or running
* writers at the outer perimeter to prevent the set of
* inner syncqs that belong to the outer perimeter from
* changing.
* sq_head/tail List of deferred qwriter(OUTER) operations.
*
* SQ_BLOCKED Set to prevent traversing of sq_next,sq_prev while
* inner syncqs are added to or removed from the
* outer perimeter.
* SQ_QUEUED sq_head/tail has messages or events queued.
*
* SQ_WRITER A thread is currently traversing all the inner syncqs
* setting the SQ_WRITER flag.
*/
/*
* Get write access at the outer perimeter.
* Note that read access is done by entersq, putnext, and put by simply
* incrementing sq_count in the inner syncq.
*
* Waits until "flags" is no longer set in the outer to prevent multiple
* threads from having write access at the same time. SQ_WRITER has to be part
* of "flags".
*
* Increases sq_count on the outer syncq to keep away outer_insert/remove
* until the outer_exit is finished.
*
* outer_enter is vulnerable to starvation since it does not prevent new
* threads from entering the inner syncqs while it is waiting for sq_count to
* go to zero.
*/
void
outer_enter(syncq_t *outer, uint16_t flags)
{
syncq_t *sq;
int wait_needed;
uint16_t count;
ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
outer->sq_oprev != NULL);
ASSERT(flags & SQ_WRITER);
retry:
mutex_enter(SQLOCK(outer));
while (outer->sq_flags & flags) {
outer->sq_flags |= SQ_WANTWAKEUP;
cv_wait(&outer->sq_wait, SQLOCK(outer));
}
ASSERT(!(outer->sq_flags & SQ_WRITER));
outer->sq_flags |= SQ_WRITER;
outer->sq_count++;
ASSERT(outer->sq_count != 0); /* wraparound */
wait_needed = 0;
/*
* Set SQ_WRITER on all the inner syncqs while holding
* the SQLOCK on the outer syncq. This ensures that the changing
* of SQ_WRITER is atomic under the outer SQLOCK.
*/
for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
mutex_enter(SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
sq->sq_flags |= SQ_WRITER;
SUM_SQ_PUTCOUNTS(sq, count);
if (count != 0)
wait_needed = 1;
SQ_PUTLOCKS_EXIT(sq);
mutex_exit(SQLOCK(sq));
}
mutex_exit(SQLOCK(outer));
/*
* Get everybody out of the syncqs sequentially.
* Note that we don't actually need to acquire the PUTLOCKS, since
* we have already cleared the fastbit, and set QWRITER. By
* definition, the count can not increase since putnext will
* take the slowlock path (and the purpose of acquiring the
* putlocks was to make sure it didn't increase while we were
* waiting).
*
* Note that we still acquire the PUTLOCKS to be safe.
*/
if (wait_needed) {
for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
mutex_enter(SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
while (count != 0) {
sq->sq_flags |= SQ_WANTWAKEUP;
SQ_PUTLOCKS_EXIT(sq);
cv_wait(&sq->sq_wait, SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
}
SQ_PUTLOCKS_EXIT(sq);
mutex_exit(SQLOCK(sq));
}
/*
* Verify that none of the flags got set while we
* were waiting for the sq_counts to drop.
* If this happens we exit and retry entering the
* outer perimeter.
*/
mutex_enter(SQLOCK(outer));
if (outer->sq_flags & (flags & ~SQ_WRITER)) {
mutex_exit(SQLOCK(outer));
outer_exit(outer);
goto retry;
}
mutex_exit(SQLOCK(outer));
}
}
/*
* Drop the write access at the outer perimeter.
* Read access is dropped implicitly (by putnext, put, and leavesq) by
* decrementing sq_count.
*/
void
outer_exit(syncq_t *outer)
{
syncq_t *sq;
int drain_needed;
uint16_t flags;
ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
outer->sq_oprev != NULL);
ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
/*
* Atomically (from the perspective of threads calling become_writer)
* drop the write access at the outer perimeter by holding
* SQLOCK(outer) across all the dropsq calls and the resetting of
* SQ_WRITER.
* This defines a locking order between the outer perimeter
* SQLOCK and the inner perimeter SQLOCKs.
*/
mutex_enter(SQLOCK(outer));
flags = outer->sq_flags;
ASSERT(outer->sq_flags & SQ_WRITER);
if (flags & SQ_QUEUED) {
write_now(outer);
flags = outer->sq_flags;
}
/*
* sq_onext is stable since sq_count has not yet been decreased.
* Reset the SQ_WRITER flags in all syncqs.
* After dropping SQ_WRITER on the outer syncq we empty all the
* inner syncqs.
*/
drain_needed = 0;
for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
drain_needed += dropsq(sq, SQ_WRITER);
ASSERT(!(outer->sq_flags & SQ_QUEUED));
flags &= ~SQ_WRITER;
if (drain_needed) {
outer->sq_flags = flags;
mutex_exit(SQLOCK(outer));
for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
emptysq(sq);
mutex_enter(SQLOCK(outer));
flags = outer->sq_flags;
}
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&outer->sq_wait);
}
outer->sq_flags = flags;
ASSERT(outer->sq_count > 0);
outer->sq_count--;
mutex_exit(SQLOCK(outer));
}
/*
* Add another syncq to an outer perimeter.
* Block out all other access to the outer perimeter while it is being
* changed using blocksq.
* Assumes that the caller has *not* done an outer_enter.
*
* Vulnerable to starvation in blocksq.
*/
static void
outer_insert(syncq_t *outer, syncq_t *sq)
{
ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
outer->sq_oprev != NULL);
ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
sq->sq_oprev == NULL); /* Can't be in an outer perimeter */
/* Get exclusive access to the outer perimeter list */
blocksq(outer, SQ_BLOCKED, 0);
ASSERT(outer->sq_flags & SQ_BLOCKED);
ASSERT(!(outer->sq_flags & SQ_WRITER));
mutex_enter(SQLOCK(sq));
sq->sq_outer = outer;
outer->sq_onext->sq_oprev = sq;
sq->sq_onext = outer->sq_onext;
outer->sq_onext = sq;
sq->sq_oprev = outer;
mutex_exit(SQLOCK(sq));
unblocksq(outer, SQ_BLOCKED, 1);
}
/*
* Remove a syncq from an outer perimeter.
* Block out all other access to the outer perimeter while it is being
* changed using blocksq.
* Assumes that the caller has *not* done an outer_enter.
*
* Vulnerable to starvation in blocksq.
*/
static void
outer_remove(syncq_t *outer, syncq_t *sq)
{
ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
outer->sq_oprev != NULL);
ASSERT(sq->sq_outer == outer);
/* Get exclusive access to the outer perimeter list */
blocksq(outer, SQ_BLOCKED, 0);
ASSERT(outer->sq_flags & SQ_BLOCKED);
ASSERT(!(outer->sq_flags & SQ_WRITER));
mutex_enter(SQLOCK(sq));
sq->sq_outer = NULL;
sq->sq_onext->sq_oprev = sq->sq_oprev;
sq->sq_oprev->sq_onext = sq->sq_onext;
sq->sq_oprev = sq->sq_onext = NULL;
mutex_exit(SQLOCK(sq));
unblocksq(outer, SQ_BLOCKED, 1);
}
/*
* Queue a deferred qwriter(OUTER) callback for this outer perimeter.
* If this is the first callback for this outer perimeter then add
* this outer perimeter to the list of outer perimeters that
* the qwriter_outer_thread will process.
*
* Increments sq_count in the outer syncq to prevent the membership
* of the outer perimeter (in terms of inner syncqs) to change while
* the callback is pending.
*/
static void
queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
{
ASSERT(MUTEX_HELD(SQLOCK(outer)));
mp->b_prev = (mblk_t *)func;
mp->b_queue = q;
mp->b_next = NULL;
outer->sq_count++; /* Decremented when dequeued */
ASSERT(outer->sq_count != 0); /* Wraparound */
if (outer->sq_evhead == NULL) {
/* First message. */
outer->sq_evhead = outer->sq_evtail = mp;
outer->sq_flags |= SQ_EVENTS;
mutex_exit(SQLOCK(outer));
STRSTAT(qwr_outer);
(void) taskq_dispatch(streams_taskq,
(task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
} else {
ASSERT(outer->sq_flags & SQ_EVENTS);
outer->sq_evtail->b_next = mp;
outer->sq_evtail = mp;
mutex_exit(SQLOCK(outer));
}
}
/*
* Try and upgrade to write access at the outer perimeter. If this can
* not be done without blocking then queue the callback to be done
* by the qwriter_outer_thread.
*
* This routine can only be called from put or service procedures plus
* asynchronous callback routines that have properly entered the queue (with
* entersq). Thus qwriter(OUTER) assumes the caller has one claim on the syncq
* associated with q.
*/
void
qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
{
syncq_t *osq, *sq, *outer;
int failed;
uint16_t flags;
osq = q->q_syncq;
outer = osq->sq_outer;
if (outer == NULL)
panic("qwriter(PERIM_OUTER): no outer perimeter");
ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
outer->sq_oprev != NULL);
mutex_enter(SQLOCK(outer));
flags = outer->sq_flags;
/*
* If some thread is traversing sq_next, or if we are blocked by
* outer_insert or outer_remove, or if the we already have queued
* callbacks, then queue this callback for later processing.
*
* Also queue the qwriter for an interrupt thread in order
* to reduce the time spent running at high IPL.
* to identify there are events.
*/
if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
/*
* Queue the become_writer request.
* The queueing is atomic under SQLOCK(outer) in order
* to synchronize with outer_exit.
* queue_writer will drop the outer SQLOCK
*/
if (flags & SQ_BLOCKED) {
/* Must set SQ_WRITER on inner perimeter */
mutex_enter(SQLOCK(osq));
osq->sq_flags |= SQ_WRITER;
mutex_exit(SQLOCK(osq));
} else {
if (!(flags & SQ_WRITER)) {
/*
* The outer could have been SQ_BLOCKED thus
* SQ_WRITER might not be set on the inner.
*/
mutex_enter(SQLOCK(osq));
osq->sq_flags |= SQ_WRITER;
mutex_exit(SQLOCK(osq));
}
ASSERT(osq->sq_flags & SQ_WRITER);
}
queue_writer(outer, func, q, mp);
return;
}
/*
* We are half-way to exclusive access to the outer perimeter.
* Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
* while the inner syncqs are traversed.
*/
outer->sq_count++;
ASSERT(outer->sq_count != 0); /* wraparound */
flags |= SQ_WRITER;
/*
* Check if we can run the function immediately. Mark all
* syncqs with the writer flag to prevent new entries into
* put and service procedures.
*
* Set SQ_WRITER on all the inner syncqs while holding
* the SQLOCK on the outer syncq. This ensures that the changing
* of SQ_WRITER is atomic under the outer SQLOCK.
*/
failed = 0;
for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
uint16_t count;
uint_t maxcnt = (sq == osq) ? 1 : 0;
mutex_enter(SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
if (sq->sq_count > maxcnt)
failed = 1;
sq->sq_flags |= SQ_WRITER;
SQ_PUTLOCKS_EXIT(sq);
mutex_exit(SQLOCK(sq));
}
if (failed) {
/*
* Some other thread has a read claim on the outer perimeter.
* Queue the callback for deferred processing.
*
* queue_writer will set SQ_QUEUED before we drop SQ_WRITER
* so that other qwriter(OUTER) calls will queue their
* callbacks as well. queue_writer increments sq_count so we
* decrement to compensate for the our increment.
*
* Dropping SQ_WRITER enables the writer thread to work
* on this outer perimeter.
*/
outer->sq_flags = flags;
queue_writer(outer, func, q, mp);
/* queue_writer dropper the lock */
mutex_enter(SQLOCK(outer));
ASSERT(outer->sq_count > 0);
outer->sq_count--;
ASSERT(outer->sq_flags & SQ_WRITER);
flags = outer->sq_flags;
flags &= ~SQ_WRITER;
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&outer->sq_wait);
}
outer->sq_flags = flags;
mutex_exit(SQLOCK(outer));
return;
} else {
outer->sq_flags = flags;
mutex_exit(SQLOCK(outer));
}
/* Can run it immediately */
(*func)(q, mp);
outer_exit(outer);
}
/*
* Dequeue all writer callbacks from the outer perimeter and run them.
*/
static void
write_now(syncq_t *outer)
{
mblk_t *mp;
queue_t *q;
void (*func)();
ASSERT(MUTEX_HELD(SQLOCK(outer)));
ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
outer->sq_oprev != NULL);
while ((mp = outer->sq_evhead) != NULL) {
/*
* queues cannot be placed on the queuelist on the outer
* perimeter.
*/
ASSERT(!(outer->sq_flags & SQ_MESSAGES));
ASSERT((outer->sq_flags & SQ_EVENTS));
outer->sq_evhead = mp->b_next;
if (outer->sq_evhead == NULL) {
outer->sq_evtail = NULL;
outer->sq_flags &= ~SQ_EVENTS;
}
ASSERT(outer->sq_count != 0);
outer->sq_count--; /* Incremented when enqueued. */
mutex_exit(SQLOCK(outer));
/*
* Drop the message if the queue is closing.
* Make sure that the queue is "claimed" when the callback
* is run in order to satisfy various ASSERTs.
*/
q = mp->b_queue;
func = (void (*)())mp->b_prev;
ASSERT(func != NULL);
mp->b_next = mp->b_prev = NULL;
if (q->q_flag & QWCLOSE) {
freemsg(mp);
} else {
claimq(q);
(*func)(q, mp);
releaseq(q);
}
mutex_enter(SQLOCK(outer));
}
ASSERT(MUTEX_HELD(SQLOCK(outer)));
}
/*
* The list of messages on the inner syncq is effectively hashed
* by destination queue. These destination queues are doubly
* linked lists (hopefully) in priority order. Messages are then
* put on the queue referenced by the q_sqhead/q_sqtail elements.
* Additional messages are linked together by the b_next/b_prev
* elements in the mblk, with (similar to putq()) the first message
* having a NULL b_prev and the last message having a NULL b_next.
*
* Events, such as qwriter callbacks, are put onto a list in FIFO
* order referenced by sq_evhead, and sq_evtail. This is a singly
* linked list, and messages here MUST be processed in the order queued.
*/
/*
* Run the events on the syncq event list (sq_evhead).
* Assumes there is only one claim on the syncq, it is
* already exclusive (SQ_EXCL set), and the SQLOCK held.
* Messages here are processed in order, with the SQ_EXCL bit
* held all the way through till the last message is processed.
*/
void
sq_run_events(syncq_t *sq)
{
mblk_t *bp;
queue_t *qp;
uint16_t flags = sq->sq_flags;
void (*func)();
ASSERT(MUTEX_HELD(SQLOCK(sq)));
ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
sq->sq_oprev == NULL) ||
(sq->sq_outer != NULL && sq->sq_onext != NULL &&
sq->sq_oprev != NULL));
ASSERT(flags & SQ_EXCL);
ASSERT(sq->sq_count == 1);
/*
* We need to process all of the events on this list. It
* is possible that new events will be added while we are
* away processing a callback, so on every loop, we start
* back at the beginning of the list.
*/
/*
* We have to reaccess sq_evhead since there is a
* possibility of a new entry while we were running
* the callback.
*/
for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
ASSERT(bp->b_queue->q_syncq == sq);
ASSERT(sq->sq_flags & SQ_EVENTS);
qp = bp->b_queue;
func = (void (*)())bp->b_prev;
ASSERT(func != NULL);
/*
* Messages from the event queue must be taken off in
* FIFO order.
*/
ASSERT(sq->sq_evhead == bp);
sq->sq_evhead = bp->b_next;
if (bp->b_next == NULL) {
/* Deleting last */
ASSERT(sq->sq_evtail == bp);
sq->sq_evtail = NULL;
sq->sq_flags &= ~SQ_EVENTS;
}
bp->b_prev = bp->b_next = NULL;
ASSERT(bp->b_datap->db_ref != 0);
mutex_exit(SQLOCK(sq));
(*func)(qp, bp);
mutex_enter(SQLOCK(sq));
/*
* re-read the flags, since they could have changed.
*/
flags = sq->sq_flags;
ASSERT(flags & SQ_EXCL);
}
ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
ASSERT(!(sq->sq_flags & SQ_EVENTS));
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
if (flags & SQ_WANTEXWAKEUP) {
flags &= ~SQ_WANTEXWAKEUP;
cv_broadcast(&sq->sq_exitwait);
}
sq->sq_flags = flags;
}
/*
* Put messages on the event list.
* If we can go exclusive now, do so and process the event list, otherwise
* let the last claim service this list (or wake the sqthread).
* This procedure assumes SQLOCK is held. To run the event list, it
* must be called with no claims.
*/
static void
sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
{
uint16_t count;
ASSERT(MUTEX_HELD(SQLOCK(sq)));
ASSERT(func != NULL);
/*
* This is a callback. Add it to the list of callbacks
* and see about upgrading.
*/
mp->b_prev = (mblk_t *)func;
mp->b_queue = q;
mp->b_next = NULL;
if (sq->sq_evhead == NULL) {
sq->sq_evhead = sq->sq_evtail = mp;
sq->sq_flags |= SQ_EVENTS;
} else {
ASSERT(sq->sq_evtail != NULL);
ASSERT(sq->sq_evtail->b_next == NULL);
ASSERT(sq->sq_flags & SQ_EVENTS);
sq->sq_evtail->b_next = mp;
sq->sq_evtail = mp;
}
/*
* We have set SQ_EVENTS, so threads will have to
* unwind out of the perimeter, and new entries will
* not grab a putlock. But we still need to know
* how many threads have already made a claim to the
* syncq, so grab the putlocks, and sum the counts.
* If there are no claims on the syncq, we can upgrade
* to exclusive, and run the event list.
* NOTE: We hold the SQLOCK, so we can just grab the
* putlocks.
*/
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
/*
* We have no claim, so we need to check if there
* are no others, then we can upgrade.
*/
/*
* There are currently no claims on
* the syncq by this thread (at least on this entry). The thread who has
* the claim should drain syncq.
*/
if (count > 0) {
/*
* Can't upgrade - other threads inside.
*/
SQ_PUTLOCKS_EXIT(sq);
mutex_exit(SQLOCK(sq));
return;
}
/*
* Need to set SQ_EXCL and make a claim on the syncq.
*/
ASSERT((sq->sq_flags & SQ_EXCL) == 0);
sq->sq_flags |= SQ_EXCL;
ASSERT(sq->sq_count == 0);
sq->sq_count++;
SQ_PUTLOCKS_EXIT(sq);
/* Process the events list */
sq_run_events(sq);
/*
* Release our claim...
*/
sq->sq_count--;
/*
* And release SQ_EXCL.
* We don't need to acquire the putlocks to release
* SQ_EXCL, since we are exclusive, and hold the SQLOCK.
*/
sq->sq_flags &= ~SQ_EXCL;
/*
* sq_run_events should have released SQ_EXCL
*/
ASSERT(!(sq->sq_flags & SQ_EXCL));
/*
* If anything happened while we were running the
* events (or was there before), we need to process
* them now. We shouldn't be exclusive sine we
* released the perimeter above (plus, we asserted
* for it).
*/
if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
drain_syncq(sq);
else
mutex_exit(SQLOCK(sq));
}
/*
* Perform delayed processing. The caller has to make sure that it is safe
* to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
* set).
*
* Assume that the caller has NO claims on the syncq. However, a claim
* on the syncq does not indicate that a thread is draining the syncq.
* There may be more claims on the syncq than there are threads draining
* (i.e. #_threads_draining <= sq_count)
*
* drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
* in order to preserve qwriter(OUTER) ordering constraints.
*
* sq_putcount only needs to be checked when dispatching the queued
* writer call for CIPUT sync queue, but this is handled in sq_run_events.
*/
void
drain_syncq(syncq_t *sq)
{
queue_t *qp;
uint16_t count;
uint16_t type = sq->sq_type;
uint16_t flags = sq->sq_flags;
boolean_t bg_service = sq->sq_svcflags & SQ_SERVICE;
TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
"drain_syncq start:%p", sq);
ASSERT(MUTEX_HELD(SQLOCK(sq)));
ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
sq->sq_oprev == NULL) ||
(sq->sq_outer != NULL && sq->sq_onext != NULL &&
sq->sq_oprev != NULL));
/*
* Drop SQ_SERVICE flag.
*/
if (bg_service)
sq->sq_svcflags &= ~SQ_SERVICE;
/*
* If SQ_EXCL is set, someone else is processing this syncq - let him
* finish the job.
*/
if (flags & SQ_EXCL) {
if (bg_service) {
ASSERT(sq->sq_servcount != 0);
sq->sq_servcount--;
}
mutex_exit(SQLOCK(sq));
return;
}
/*
* This routine can be called by a background thread if
* it was scheduled by a hi-priority thread. SO, if there are
* NOT messages queued, return (remember, we have the SQLOCK,
* and it cannot change until we release it). Wakeup any waiters also.
*/
if (!(flags & SQ_QUEUED)) {
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
if (flags & SQ_WANTEXWAKEUP) {
flags &= ~SQ_WANTEXWAKEUP;
cv_broadcast(&sq->sq_exitwait);
}
sq->sq_flags = flags;
if (bg_service) {
ASSERT(sq->sq_servcount != 0);
sq->sq_servcount--;
}
mutex_exit(SQLOCK(sq));
return;
}
/*
* If this is not a concurrent put perimeter, we need to
* become exclusive to drain. Also, if not CIPUT, we would
* not have acquired a putlock, so we don't need to check
* the putcounts. If not entering with a claim, we test
* for sq_count == 0.
*/
type = sq->sq_type;
if (!(type & SQ_CIPUT)) {
if (sq->sq_count > 1) {
if (bg_service) {
ASSERT(sq->sq_servcount != 0);
sq->sq_servcount--;
}
mutex_exit(SQLOCK(sq));
return;
}
sq->sq_flags |= SQ_EXCL;
}
/*
* This is where we make a claim to the syncq.
* This can either be done by incrementing a putlock, or
* the sq_count. But since we already have the SQLOCK
* here, we just bump the sq_count.
*
* Note that after we make a claim, we need to let the code
* fall through to the end of this routine to clean itself
* up. A return in the while loop will put the syncq in a
* very bad state.
*/
sq->sq_count++;
ASSERT(sq->sq_count != 0); /* wraparound */
while ((flags = sq->sq_flags) & SQ_QUEUED) {
/*
* If we are told to stayaway or went exclusive,
* we are done.
*/
if (flags & (SQ_STAYAWAY)) {
break;
}
/*
* If there are events to run, do so.
* We have one claim to the syncq, so if there are
* more than one, other threads are running.
*/
if (sq->sq_evhead != NULL) {
ASSERT(sq->sq_flags & SQ_EVENTS);
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
if (count > 1) {
SQ_PUTLOCKS_EXIT(sq);
/* Can't upgrade - other threads inside */
break;
}
ASSERT((flags & SQ_EXCL) == 0);
sq->sq_flags = flags | SQ_EXCL;
SQ_PUTLOCKS_EXIT(sq);
/*
* we have the only claim, run the events,
* sq_run_events will clear the SQ_EXCL flag.
*/
sq_run_events(sq);
/*
* If this is a CIPUT perimeter, we need
* to drop the SQ_EXCL flag so we can properly
* continue draining the syncq.
*/
if (type & SQ_CIPUT) {
ASSERT(sq->sq_flags & SQ_EXCL);
sq->sq_flags &= ~SQ_EXCL;
}
/*
* And go back to the beginning just in case
* anything changed while we were away.
*/
ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
continue;
}
ASSERT(sq->sq_evhead == NULL);
ASSERT(!(sq->sq_flags & SQ_EVENTS));
/*
* Find the queue that is not draining.
*
* q_draining is protected by QLOCK which we do not hold.
* But if it was set, then a thread was draining, and if it gets
* cleared, then it was because the thread has successfully
* drained the syncq, or a GOAWAY state occurred. For the GOAWAY
* state to happen, a thread needs the SQLOCK which we hold, and
* if there was such a flag, we would have already seen it.
*/
for (qp = sq->sq_head;
qp != NULL && (qp->q_draining ||
(qp->q_sqflags & Q_SQDRAINING));
qp = qp->q_sqnext)
;
if (qp == NULL)
break;
/*
* We have a queue to work on, and we hold the
* SQLOCK and one claim, call qdrain_syncq.
* This means we need to release the SQLOCK and
* acquire the QLOCK (OK since we have a claim).
* Note that qdrain_syncq will actually dequeue
* this queue from the sq_head list when it is
* convinced all the work is done and release
* the QLOCK before returning.
*/
qp->q_sqflags |= Q_SQDRAINING;
mutex_exit(SQLOCK(sq));
mutex_enter(QLOCK(qp));
qdrain_syncq(sq, qp);
mutex_enter(SQLOCK(sq));
/* The queue is drained */
ASSERT(qp->q_sqflags & Q_SQDRAINING);
qp->q_sqflags &= ~Q_SQDRAINING;
/*
* NOTE: After this point qp should not be used since it may be
* closed.
*/
}
ASSERT(MUTEX_HELD(SQLOCK(sq)));
flags = sq->sq_flags;
/*
* sq->sq_head cannot change because we hold the
* sqlock. However, a thread CAN decide that it is no longer
* going to drain that queue. However, this should be due to
* a GOAWAY state, and we should see that here.
*
* This loop is not very efficient. One solution may be adding a second
* pointer to the "draining" queue, but it is difficult to do when
* queues are inserted in the middle due to priority ordering. Another
* possibility is to yank the queue out of the sq list and put it onto
* the "draining list" and then put it back if it can't be drained.
*/
ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
(type & SQ_CI) || sq->sq_head->q_draining);
/* Drop SQ_EXCL for non-CIPUT perimeters */
if (!(type & SQ_CIPUT))
flags &= ~SQ_EXCL;
ASSERT((flags & SQ_EXCL) == 0);
/* Wake up any waiters. */
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
if (flags & SQ_WANTEXWAKEUP) {
flags &= ~SQ_WANTEXWAKEUP;
cv_broadcast(&sq->sq_exitwait);
}
sq->sq_flags = flags;
ASSERT(sq->sq_count != 0);
/* Release our claim. */
sq->sq_count--;
if (bg_service) {
ASSERT(sq->sq_servcount != 0);
sq->sq_servcount--;
}
mutex_exit(SQLOCK(sq));
TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
"drain_syncq end:%p", sq);
}
/*
*
* qdrain_syncq can be called (currently) from only one of two places:
* drain_syncq
* putnext (or some variation of it).
* and eventually
* qwait(_sig)
*
* If called from drain_syncq, we found it in the list of queues needing
* service, so there is work to be done (or it wouldn't be in the list).
*
* If called from some putnext variation, it was because the
* perimeter is open, but messages are blocking a putnext and
* there is not a thread working on it. Now a thread could start
* working on it while we are getting ready to do so ourself, but
* the thread would set the q_draining flag, and we can spin out.
*
* As for qwait(_sig), I think I shall let it continue to call
* drain_syncq directly (after all, it will get here eventually).
*
* qdrain_syncq has to terminate when:
* - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
* - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
*
* ASSUMES:
* One claim
* QLOCK held
* SQLOCK not held
* Will release QLOCK before returning
*/
void
qdrain_syncq(syncq_t *sq, queue_t *q)
{
mblk_t *bp;
#ifdef DEBUG
uint16_t count;
#endif
TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
"drain_syncq start:%p", sq);
ASSERT(q->q_syncq == sq);
ASSERT(MUTEX_HELD(QLOCK(q)));
ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
/*
* For non-CIPUT perimeters, we should be called with the exclusive bit
* set already. For CIPUT perimeters, we will be doing a concurrent
* drain, so it better not be set.
*/
ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
/*
* All outer pointers are set, or none of them are
*/
ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
sq->sq_oprev == NULL) ||
(sq->sq_outer != NULL && sq->sq_onext != NULL &&
sq->sq_oprev != NULL));
#ifdef DEBUG
count = sq->sq_count;
/*
* This is OK without the putlocks, because we have one
* claim either from the sq_count, or a putcount. We could
* get an erroneous value from other counts, but ours won't
* change, so one way or another, we will have at least a
* value of one.
*/
SUM_SQ_PUTCOUNTS(sq, count);
ASSERT(count >= 1);
#endif /* DEBUG */
/*
* The first thing to do is find out if a thread is already draining
* this queue. If so, we are done, just return.
*/
if (q->q_draining) {
mutex_exit(QLOCK(q));
return;
}
/*
* If the perimeter is exclusive, there is nothing we can do right now,
* go away. Note that there is nothing to prevent this case from
* changing right after this check, but the spin-out will catch it.
*/
/* Tell other threads that we are draining this queue */
q->q_draining = 1; /* Protected by QLOCK */
/*
* If there is nothing to do, clear QFULL as necessary. This caters for
* the case where an empty queue was enqueued onto the syncq.
*/
if (q->q_sqhead == NULL) {
ASSERT(q->q_syncqmsgs == 0);
mutex_exit(QLOCK(q));
clr_qfull(q);
mutex_enter(QLOCK(q));
}
/*
* Note that q_sqhead must be re-checked here in case another message
* was enqueued whilst QLOCK was dropped during the call to clr_qfull.
*/
for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
/*
* Because we can enter this routine just because a putnext is
* blocked, we need to spin out if the perimeter wants to go
* exclusive as well as just blocked. We need to spin out also
* if events are queued on the syncq.
* Don't check for SQ_EXCL, because non-CIPUT perimeters would
* set it, and it can't become exclusive while we hold a claim.
*/
if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
break;
}
#ifdef DEBUG
/*
* Since we are in qdrain_syncq, we already know the queue,
* but for sanity, we want to check this against the qp that
* was passed in by bp->b_queue.
*/
ASSERT(bp->b_queue == q);
ASSERT(bp->b_queue->q_syncq == sq);
bp->b_queue = NULL;
/*
* We would have the following check in the DEBUG code:
*
* if (bp->b_prev != NULL) {
* ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
* }
*
* This can't be done, however, since IP modifies qinfo
* structure at run-time (switching between IPv4 qinfo and IPv6
* qinfo), invalidating the check.
* So the assignment to func is left here, but the ASSERT itself
* is removed until the whole issue is resolved.
*/
#endif
ASSERT(q->q_sqhead == bp);
q->q_sqhead = bp->b_next;
bp->b_prev = bp->b_next = NULL;
ASSERT(q->q_syncqmsgs > 0);
mutex_exit(QLOCK(q));
ASSERT(bp->b_datap->db_ref != 0);
(void) (*q->q_qinfo->qi_putp)(q, bp);
mutex_enter(QLOCK(q));
/*
* q_syncqmsgs should only be decremented after executing the
* put procedure to avoid message re-ordering. This is due to an
* optimisation in putnext() which can call the put procedure
* directly if it sees q_syncqmsgs == 0 (despite Q_SQQUEUED
* being set).
*
* We also need to clear QFULL in the next service procedure
* queue if this is the last message destined for that queue.
*
* It would make better sense to have some sort of tunable for
* the low water mark, but these semantics are not yet defined.
* So, alas, we use a constant.
*/
if (--q->q_syncqmsgs == 0) {
mutex_exit(QLOCK(q));
clr_qfull(q);
mutex_enter(QLOCK(q));
}
/*
* Always clear SQ_EXCL when CIPUT in order to handle
* qwriter(INNER). The putp() can call qwriter and get exclusive
* access IFF this is the only claim. So, we need to test for
* this possibility, acquire the mutex and clear the bit.
*/
if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
mutex_enter(SQLOCK(sq));
sq->sq_flags &= ~SQ_EXCL;
mutex_exit(SQLOCK(sq));
}
}
/*
* We should either have no messages on this queue, or we were told to
* goaway by a waiter (which we will wake up at the end of this
* function).
*/
ASSERT((q->q_sqhead == NULL) ||
(sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
ASSERT(MUTEX_HELD(QLOCK(q)));
ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
/* Remove the q from the syncq list if all the messages are drained. */
if (q->q_sqhead == NULL) {
ASSERT(q->q_syncqmsgs == 0);
mutex_enter(SQLOCK(sq));
if (q->q_sqflags & Q_SQQUEUED)
SQRM_Q(sq, q);
mutex_exit(SQLOCK(sq));
/*
* Since the queue is removed from the list, reset its priority.
*/
q->q_spri = 0;
}
/*
* Remember, the q_draining flag is used to let another thread know
* that there is a thread currently draining the messages for a queue.
* Since we are now done with this queue (even if there may be messages
* still there), we need to clear this flag so some thread will work on
* it if needed.
*/
ASSERT(q->q_draining);
q->q_draining = 0;
/* Called with a claim, so OK to drop all locks. */
mutex_exit(QLOCK(q));
TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
"drain_syncq end:%p", sq);
}
/* END OF QDRAIN_SYNCQ */
/*
* This is the mate to qdrain_syncq, except that it is putting the message onto
* the queue instead of draining. Since the message is destined for the queue
* that is selected, there is no need to identify the function because the
* message is intended for the put routine for the queue. For debug kernels,
* this routine will do it anyway just in case.
*
* After the message is enqueued on the syncq, it calls putnext_tail()
* which will schedule a background thread to actually process the message.
*
* Assumes that there is a claim on the syncq (sq->sq_count > 0) and
* SQLOCK(sq) and QLOCK(q) are not held.
*/
void
qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
{
ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
ASSERT(sq->sq_count > 0);
ASSERT(q->q_syncq == sq);
ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
sq->sq_oprev == NULL) ||
(sq->sq_outer != NULL && sq->sq_onext != NULL &&
sq->sq_oprev != NULL));
mutex_enter(QLOCK(q));
#ifdef DEBUG
/*
* This is used for debug in the qfill_syncq/qdrain_syncq case
* to trace the queue that the message is intended for. Note
* that the original use was to identify the queue and function
* to call on the drain. In the new syncq, we have the context
* of the queue that we are draining, so call it's putproc and
* don't rely on the saved values. But for debug this is still
* useful information.
*/
mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
mp->b_queue = q;
mp->b_next = NULL;
#endif
ASSERT(q->q_syncq == sq);
/*
* Enqueue the message on the list.
* SQPUT_MP() accesses q_syncqmsgs. We are already holding QLOCK to
* protect it. So it's ok to acquire SQLOCK after SQPUT_MP().
*/
SQPUT_MP(q, mp);
mutex_enter(SQLOCK(sq));
/*
* And queue on syncq for scheduling, if not already queued.
* Note that we need the SQLOCK for this, and for testing flags
* at the end to see if we will drain. So grab it now, and
* release it before we call qdrain_syncq or return.
*/
if (!(q->q_sqflags & Q_SQQUEUED)) {
q->q_spri = curthread->t_pri;
SQPUT_Q(sq, q);
}
#ifdef DEBUG
else {
/*
* All of these conditions MUST be true!
*/
ASSERT(sq->sq_tail != NULL);
if (sq->sq_tail == sq->sq_head) {
ASSERT((q->q_sqprev == NULL) &&
(q->q_sqnext == NULL));
} else {
ASSERT((q->q_sqprev != NULL) ||
(q->q_sqnext != NULL));
}
ASSERT(sq->sq_flags & SQ_QUEUED);
ASSERT(q->q_syncqmsgs != 0);
ASSERT(q->q_sqflags & Q_SQQUEUED);
}
#endif
mutex_exit(QLOCK(q));
/*
* SQLOCK is still held, so sq_count can be safely decremented.
*/
sq->sq_count--;
putnext_tail(sq, q, 0);
/* Should not reference sq or q after this point. */
}
/* End of qfill_syncq */
/*
* Remove all messages from a syncq (if qp is NULL) or remove all messages
* that would be put into qp by drain_syncq.
* Used when deleting the syncq (qp == NULL) or when detaching
* a queue (qp != NULL).
* Return non-zero if one or more messages were freed.
*
* No need to grab sq_putlocks here. See comment in strsubr.h that explains when
* sq_putlocks are used.
*
* NOTE: This function assumes that it is called from the close() context and
* that all the queues in the syncq are going away. For this reason it doesn't
* acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
* currently valid, but it is useful to rethink this function to behave properly
* in other cases.
*/
int
flush_syncq(syncq_t *sq, queue_t *qp)
{
mblk_t *bp, *mp_head, *mp_next, *mp_prev;
queue_t *q;
int ret = 0;
mutex_enter(SQLOCK(sq));
/*
* Before we leave, we need to make sure there are no
* events listed for this queue. All events for this queue
* will just be freed.
*/
if (qp != NULL && sq->sq_evhead != NULL) {
ASSERT(sq->sq_flags & SQ_EVENTS);
mp_prev = NULL;
for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
mp_next = bp->b_next;
if (bp->b_queue == qp) {
/* Delete this message */
if (mp_prev != NULL) {
mp_prev->b_next = mp_next;
/*
* Update sq_evtail if the last element
* is removed.
*/
if (bp == sq->sq_evtail) {
ASSERT(mp_next == NULL);
sq->sq_evtail = mp_prev;
}
} else
sq->sq_evhead = mp_next;
if (sq->sq_evhead == NULL)
sq->sq_flags &= ~SQ_EVENTS;
bp->b_prev = bp->b_next = NULL;
freemsg(bp);
ret++;
} else {
mp_prev = bp;
}
}
}
/*
* Walk sq_head and:
* - match qp if qp is set, remove it's messages
* - all if qp is not set
*/
q = sq->sq_head;
while (q != NULL) {
ASSERT(q->q_syncq == sq);
if ((qp == NULL) || (qp == q)) {
/*
* Yank the messages as a list off the queue
*/
mp_head = q->q_sqhead;
/*
* We do not have QLOCK(q) here (which is safe due to
* assumptions mentioned above). To obtain the lock we
* need to release SQLOCK which may allow lots of things
* to change upon us. This place requires more analysis.
*/
q->q_sqhead = q->q_sqtail = NULL;
ASSERT(mp_head->b_queue &&
mp_head->b_queue->q_syncq == sq);
/*
* Free each of the messages.
*/
for (bp = mp_head; bp != NULL; bp = mp_next) {
mp_next = bp->b_next;
bp->b_prev = bp->b_next = NULL;
freemsg(bp);
ret++;
}
/*
* Now remove the queue from the syncq.
*/
ASSERT(q->q_sqflags & Q_SQQUEUED);
SQRM_Q(sq, q);
q->q_spri = 0;
q->q_syncqmsgs = 0;
/*
* If qp was specified, we are done with it and are
* going to drop SQLOCK(sq) and return. We wakeup syncq
* waiters while we still have the SQLOCK.
*/
if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
sq->sq_flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
/* Drop SQLOCK across clr_qfull */
mutex_exit(SQLOCK(sq));
/*
* We avoid doing the test that drain_syncq does and
* unconditionally clear qfull for every flushed
* message. Since flush_syncq is only called during
* close this should not be a problem.
*/
clr_qfull(q);
if (qp != NULL) {
return (ret);
} else {
mutex_enter(SQLOCK(sq));
/*
* The head was removed by SQRM_Q above.
* reread the new head and flush it.
*/
q = sq->sq_head;
}
} else {
q = q->q_sqnext;
}
ASSERT(MUTEX_HELD(SQLOCK(sq)));
}
if (sq->sq_flags & SQ_WANTWAKEUP) {
sq->sq_flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
mutex_exit(SQLOCK(sq));
return (ret);
}
/*
* Propagate all messages from a syncq to the next syncq that are associated
* with the specified queue. If the queue is attached to a driver or if the
* messages have been added due to a qwriter(PERIM_INNER), free the messages.
*
* Assumes that the stream is strlock()'ed. We don't come here if there
* are no messages to propagate.
*
* NOTE : If the queue is attached to a driver, all the messages are freed
* as there is no point in propagating the messages from the driver syncq
* to the closing stream head which will in turn get freed later.
*/
static int
propagate_syncq(queue_t *qp)
{
mblk_t *bp, *head, *tail, *prev, *next;
syncq_t *sq;
queue_t *nqp;
syncq_t *nsq;
boolean_t isdriver;
int moved = 0;
uint16_t flags;
pri_t priority = curthread->t_pri;
#ifdef DEBUG
void (*func)();
#endif
sq = qp->q_syncq;
ASSERT(MUTEX_HELD(SQLOCK(sq)));
/* debug macro */
SQ_PUTLOCKS_HELD(sq);
/*
* As entersq() does not increment the sq_count for
* the write side, check sq_count for non-QPERQ
* perimeters alone.
*/
ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
/*
* propagate_syncq() can be called because of either messages on the
* queue syncq or because on events on the queue syncq. Do actual
* message propagations if there are any messages.
*/
if (qp->q_syncqmsgs) {
isdriver = (qp->q_flag & QISDRV);
if (!isdriver) {
nqp = qp->q_next;
nsq = nqp->q_syncq;
ASSERT(MUTEX_HELD(SQLOCK(nsq)));
/* debug macro */
SQ_PUTLOCKS_HELD(nsq);
#ifdef DEBUG
func = (void (*)())nqp->q_qinfo->qi_putp;
#endif
}
SQRM_Q(sq, qp);
priority = MAX(qp->q_spri, priority);
qp->q_spri = 0;
head = qp->q_sqhead;
tail = qp->q_sqtail;
qp->q_sqhead = qp->q_sqtail = NULL;
qp->q_syncqmsgs = 0;
/*
* Walk the list of messages, and free them if this is a driver,
* otherwise reset the b_prev and b_queue value to the new putp.
* Afterward, we will just add the head to the end of the next
* syncq, and point the tail to the end of this one.
*/
for (bp = head; bp != NULL; bp = next) {
next = bp->b_next;
if (isdriver) {
bp->b_prev = bp->b_next = NULL;
freemsg(bp);
continue;
}
/* Change the q values for this message */
bp->b_queue = nqp;
#ifdef DEBUG
bp->b_prev = (mblk_t *)func;
#endif
moved++;
}
/*
* Attach list of messages to the end of the new queue (if there
* is a list of messages).
*/
if (!isdriver && head != NULL) {
ASSERT(tail != NULL);
if (nqp->q_sqhead == NULL) {
nqp->q_sqhead = head;
} else {
ASSERT(nqp->q_sqtail != NULL);
nqp->q_sqtail->b_next = head;
}
nqp->q_sqtail = tail;
/*
* When messages are moved from high priority queue to
* another queue, the destination queue priority is
* upgraded.
*/
if (priority > nqp->q_spri)
nqp->q_spri = priority;
SQPUT_Q(nsq, nqp);
nqp->q_syncqmsgs += moved;
ASSERT(nqp->q_syncqmsgs != 0);
}
}
/*
* Before we leave, we need to make sure there are no
* events listed for this queue. All events for this queue
* will just be freed.
*/
if (sq->sq_evhead != NULL) {
ASSERT(sq->sq_flags & SQ_EVENTS);
prev = NULL;
for (bp = sq->sq_evhead; bp != NULL; bp = next) {
next = bp->b_next;
if (bp->b_queue == qp) {
/* Delete this message */
if (prev != NULL) {
prev->b_next = next;
/*
* Update sq_evtail if the last element
* is removed.
*/
if (bp == sq->sq_evtail) {
ASSERT(next == NULL);
sq->sq_evtail = prev;
}
} else
sq->sq_evhead = next;
if (sq->sq_evhead == NULL)
sq->sq_flags &= ~SQ_EVENTS;
bp->b_prev = bp->b_next = NULL;
freemsg(bp);
} else {
prev = bp;
}
}
}
flags = sq->sq_flags;
/* Wake up any waiter before leaving. */
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
sq->sq_flags = flags;
return (moved);
}
/*
* Try and upgrade to exclusive access at the inner perimeter. If this can
* not be done without blocking then request will be queued on the syncq
* and drain_syncq will run it later.
*
* This routine can only be called from put or service procedures plus
* asynchronous callback routines that have properly entered the queue (with
* entersq). Thus qwriter_inner assumes the caller has one claim on the syncq
* associated with q.
*/
void
qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
{
syncq_t *sq = q->q_syncq;
uint16_t count;
mutex_enter(SQLOCK(sq));
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
ASSERT(count >= 1);
ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
if (count == 1) {
/*
* Can upgrade. This case also handles nested qwriter calls
* (when the qwriter callback function calls qwriter). In that
* case SQ_EXCL is already set.
*/
sq->sq_flags |= SQ_EXCL;
SQ_PUTLOCKS_EXIT(sq);
mutex_exit(SQLOCK(sq));
(*func)(q, mp);
/*
* Assumes that leavesq, putnext, and drain_syncq will reset
* SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
* until putnext, leavesq, or drain_syncq drops it.
* That way we handle nested qwriter(INNER) without dropping
* SQ_EXCL until the outermost qwriter callback routine is
* done.
*/
return;
}
SQ_PUTLOCKS_EXIT(sq);
sqfill_events(sq, q, mp, func);
}
/*
* Synchronous callback support functions
*/
/*
* Allocate a callback parameter structure.
* Assumes that caller initializes the flags and the id.
* Acquires SQLOCK(sq) if non-NULL is returned.
*/
callbparams_t *
callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
{
callbparams_t *cbp;
size_t size = sizeof (callbparams_t);
cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
/*
* Only try tryhard allocation if the caller is ready to panic.
* Otherwise just fail.
*/
if (cbp == NULL) {
if (kmflags & KM_PANIC)
cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
&size, kmflags);
else
return (NULL);
}
ASSERT(size >= sizeof (callbparams_t));
cbp->cbp_size = size;
cbp->cbp_sq = sq;
cbp->cbp_func = func;
cbp->cbp_arg = arg;
mutex_enter(SQLOCK(sq));
cbp->cbp_next = sq->sq_callbpend;
sq->sq_callbpend = cbp;
return (cbp);
}
void
callbparams_free(syncq_t *sq, callbparams_t *cbp)
{
callbparams_t **pp, *p;
ASSERT(MUTEX_HELD(SQLOCK(sq)));
for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
if (p == cbp) {
*pp = p->cbp_next;
kmem_free(p, p->cbp_size);
return;
}
}
(void) (STRLOG(0, 0, 0, SL_CONSOLE,
"callbparams_free: not found\n"));
}
void
callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
{
callbparams_t **pp, *p;
ASSERT(MUTEX_HELD(SQLOCK(sq)));
for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
if (p->cbp_id == id && p->cbp_flags == flag) {
*pp = p->cbp_next;
kmem_free(p, p->cbp_size);
return;
}
}
(void) (STRLOG(0, 0, 0, SL_CONSOLE,
"callbparams_free_id: not found\n"));
}
/*
* Callback wrapper function used by once-only callbacks that can be
* cancelled (qtimeout and qbufcall)
* Contains inline version of entersq(sq, SQ_CALLBACK) that can be
* cancelled by the qun* functions.
*/
void
qcallbwrapper(void *arg)
{
callbparams_t *cbp = arg;
syncq_t *sq;
uint16_t count = 0;
uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
uint16_t type;
sq = cbp->cbp_sq;
mutex_enter(SQLOCK(sq));
type = sq->sq_type;
if (!(type & SQ_CICB)) {
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
SUM_SQ_PUTCOUNTS(sq, count);
sq->sq_needexcl++;
ASSERT(sq->sq_needexcl != 0); /* wraparound */
waitflags |= SQ_MESSAGES;
}
/* Can not handle exclusive entry at outer perimeter */
ASSERT(type & SQ_COCB);
while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
if ((sq->sq_callbflags & cbp->cbp_flags) &&
(sq->sq_cancelid == cbp->cbp_id)) {
/* timeout has been cancelled */
sq->sq_callbflags |= SQ_CALLB_BYPASSED;
callbparams_free(sq, cbp);
if (!(type & SQ_CICB)) {
ASSERT(sq->sq_needexcl > 0);
sq->sq_needexcl--;
if (sq->sq_needexcl == 0) {
SQ_PUTCOUNT_SETFAST_LOCKED(sq);
}
SQ_PUTLOCKS_EXIT(sq);
}
mutex_exit(SQLOCK(sq));
return;
}
sq->sq_flags |= SQ_WANTWAKEUP;
if (!(type & SQ_CICB)) {
SQ_PUTLOCKS_EXIT(sq);
}
cv_wait(&sq->sq_wait, SQLOCK(sq));
if (!(type & SQ_CICB)) {
count = sq->sq_count;
SQ_PUTLOCKS_ENTER(sq);
SUM_SQ_PUTCOUNTS(sq, count);
}
}
sq->sq_count++;
ASSERT(sq->sq_count != 0); /* Wraparound */
if (!(type & SQ_CICB)) {
ASSERT(count == 0);
sq->sq_flags |= SQ_EXCL;
ASSERT(sq->sq_needexcl > 0);
sq->sq_needexcl--;
if (sq->sq_needexcl == 0) {
SQ_PUTCOUNT_SETFAST_LOCKED(sq);
}
SQ_PUTLOCKS_EXIT(sq);
}
mutex_exit(SQLOCK(sq));
cbp->cbp_func(cbp->cbp_arg);
/*
* We drop the lock only for leavesq to re-acquire it.
* Possible optimization is inline of leavesq.
*/
mutex_enter(SQLOCK(sq));
callbparams_free(sq, cbp);
mutex_exit(SQLOCK(sq));
leavesq(sq, SQ_CALLBACK);
}
/*
* No need to grab sq_putlocks here. See comment in strsubr.h that
* explains when sq_putlocks are used.
*
* sq_count (or one of the sq_putcounts) has already been
* decremented by the caller, and if SQ_QUEUED, we need to call
* drain_syncq (the global syncq drain).
* If putnext_tail is called with the SQ_EXCL bit set, we are in
* one of two states, non-CIPUT perimeter, and we need to clear
* it, or we went exclusive in the put procedure. In any case,
* we want to clear the bit now, and it is probably easier to do
* this at the beginning of this function (remember, we hold
* the SQLOCK). Lastly, if there are other messages queued
* on the syncq (and not for our destination), enable the syncq
* for background work.
*/
/* ARGSUSED */
void
putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
{
uint16_t flags = sq->sq_flags;
ASSERT(MUTEX_HELD(SQLOCK(sq)));
ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
/* Clear SQ_EXCL if set in passflags */
if (passflags & SQ_EXCL) {
flags &= ~SQ_EXCL;
}
if (flags & SQ_WANTWAKEUP) {
flags &= ~SQ_WANTWAKEUP;
cv_broadcast(&sq->sq_wait);
}
if (flags & SQ_WANTEXWAKEUP) {
flags &= ~SQ_WANTEXWAKEUP;
cv_broadcast(&sq->sq_exitwait);
}
sq->sq_flags = flags;
/*
* We have cleared SQ_EXCL if we were asked to, and started
* the wakeup process for waiters. If there are no writers
* then we need to drain the syncq if we were told to, or
* enable the background thread to do it.
*/
if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
if ((passflags & SQ_QUEUED) ||
(sq->sq_svcflags & SQ_DISABLED)) {
/* drain_syncq will take care of events in the list */
drain_syncq(sq);
return;
} else if (flags & SQ_QUEUED) {
sqenable(sq);
}
}
/* Drop the SQLOCK on exit */
mutex_exit(SQLOCK(sq));
TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
"putnext_end:(%p, %p, %p) done", NULL, qp, sq);
}
void
set_qend(queue_t *q)
{
mutex_enter(QLOCK(q));
if (!O_SAMESTR(q))
q->q_flag |= QEND;
else
q->q_flag &= ~QEND;
mutex_exit(QLOCK(q));
q = _OTHERQ(q);
mutex_enter(QLOCK(q));
if (!O_SAMESTR(q))
q->q_flag |= QEND;
else
q->q_flag &= ~QEND;
mutex_exit(QLOCK(q));
}
/*
* Set QFULL in next service procedure queue (that cares) if not already
* set and if there are already more messages on the syncq than
* sq_max_size. If sq_max_size is 0, no flow control will be asserted on
* any syncq.
*
* The fq here is the next queue with a service procedure. This is where
* we would fail canputnext, so this is where we need to set QFULL.
* In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
*
* We already have QLOCK at this point. To avoid cross-locks with
* freezestr() which grabs all QLOCKs and with strlock() which grabs both
* SQLOCK and sd_reflock, we need to drop respective locks first.
*/
void
set_qfull(queue_t *q)
{
queue_t *fq = NULL;
ASSERT(MUTEX_HELD(QLOCK(q)));
if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
(q->q_syncqmsgs > sq_max_size)) {
if ((fq = q->q_nfsrv) == q) {
fq->q_flag |= QFULL;
} else {
mutex_exit(QLOCK(q));
mutex_enter(QLOCK(fq));
fq->q_flag |= QFULL;
mutex_exit(QLOCK(fq));
mutex_enter(QLOCK(q));
}
}
}
void
clr_qfull(queue_t *q)
{
queue_t *oq = q;
q = q->q_nfsrv;
/* Fast check if there is any work to do before getting the lock. */
if ((q->q_flag & (QFULL|QWANTW)) == 0) {
return;
}
/*
* Do not reset QFULL (and backenable) if the q_count is the reason
* for QFULL being set.
*/
mutex_enter(QLOCK(q));
/*
* If queue is empty i.e q_mblkcnt is zero, queue can not be full.
* Hence clear the QFULL.
* If both q_count and q_mblkcnt are less than the hiwat mark,
* clear the QFULL.
*/
if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
(q->q_mblkcnt < q->q_hiwat))) {
q->q_flag &= ~QFULL;
/*
* A little more confusing, how about this way:
* if someone wants to write,
* AND
* both counts are less than the lowat mark
* OR
* the lowat mark is zero
* THEN
* backenable
*/
if ((q->q_flag & QWANTW) &&
(((q->q_count < q->q_lowat) &&
(q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
q->q_flag &= ~QWANTW;
mutex_exit(QLOCK(q));
backenable(oq, 0);
} else
mutex_exit(QLOCK(q));
} else
mutex_exit(QLOCK(q));
}
/*
* Set the forward service procedure pointer.
*
* Called at insert-time to cache a queue's next forward service procedure in
* q_nfsrv; used by canput() and canputnext(). If the queue to be inserted
* has a service procedure then q_nfsrv points to itself. If the queue to be
* inserted does not have a service procedure, then q_nfsrv points to the next
* queue forward that has a service procedure. If the queue is at the logical
* end of the stream (driver for write side, stream head for the read side)
* and does not have a service procedure, then q_nfsrv also points to itself.
*/
void
set_nfsrv_ptr(
queue_t *rnew, /* read queue pointer to new module */
queue_t *wnew, /* write queue pointer to new module */
queue_t *prev_rq, /* read queue pointer to the module above */
queue_t *prev_wq) /* write queue pointer to the module above */
{
queue_t *qp;
if (prev_wq->q_next == NULL) {
/*
* Insert the driver, initialize the driver and stream head.
* In this case, prev_rq/prev_wq should be the stream head.
* _I_INSERT does not allow inserting a driver. Make sure
* that it is not an insertion.
*/
ASSERT(!(rnew->q_flag & _QINSERTING));
wnew->q_nfsrv = wnew;
if (rnew->q_qinfo->qi_srvp)
rnew->q_nfsrv = rnew;
else
rnew->q_nfsrv = prev_rq;
prev_rq->q_nfsrv = prev_rq;
prev_wq->q_nfsrv = prev_wq;
} else {
/*
* set up read side q_nfsrv pointer. This MUST be done
* before setting the write side, because the setting of
* the write side for a fifo may depend on it.
*
* Suppose we have a fifo that only has pipemod pushed.
* pipemod has no read or write service procedures, so
* nfsrv for both pipemod queues points to prev_rq (the
* stream read head). Now push bufmod (which has only a
* read service procedure). Doing the write side first,
* wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
* is WRONG; the next queue forward from wnew with a
* service procedure will be rnew, not the stream read head.
* Since the downstream queue (which in the case of a fifo
* is the read queue rnew) can affect upstream queues, it
* needs to be done first. Setting up the read side first
* sets nfsrv for both pipemod queues to rnew and then
* when the write side is set up, wnew-q_nfsrv will also
* point to rnew.
*/
if (rnew->q_qinfo->qi_srvp) {
/*
* use _OTHERQ() because, if this is a pipe, next
* module may have been pushed from other end and
* q_next could be a read queue.
*/
qp = _OTHERQ(prev_wq->q_next);
while (qp && qp->q_nfsrv != qp) {
qp->q_nfsrv = rnew;
qp = backq(qp);
}
rnew->q_nfsrv = rnew;
} else
rnew->q_nfsrv = prev_rq->q_nfsrv;
/* set up write side q_nfsrv pointer */
if (wnew->q_qinfo->qi_srvp) {
wnew->q_nfsrv = wnew;
/*
* For insertion, need to update nfsrv of the modules
* above which do not have a service routine.
*/
if (rnew->q_flag & _QINSERTING) {
for (qp = prev_wq;
qp != NULL && qp->q_nfsrv != qp;
qp = backq(qp)) {
qp->q_nfsrv = wnew->q_nfsrv;
}
}
} else {
if (prev_wq->q_next == prev_rq)
/*
* Since prev_wq/prev_rq are the middle of a
* fifo, wnew/rnew will also be the middle of
* a fifo and wnew's nfsrv is same as rnew's.
*/
wnew->q_nfsrv = rnew->q_nfsrv;
else
wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
}
}
}
/*
* Reset the forward service procedure pointer; called at remove-time.
*/
void
reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
{
queue_t *tmp_qp;
/* Reset the write side q_nfsrv pointer for _I_REMOVE */
if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
for (tmp_qp = backq(wqp);
tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
tmp_qp = backq(tmp_qp)) {
tmp_qp->q_nfsrv = wqp->q_nfsrv;
}
}
/* reset the read side q_nfsrv pointer */
if (rqp->q_qinfo->qi_srvp) {
if (wqp->q_next) { /* non-driver case */
tmp_qp = _OTHERQ(wqp->q_next);
while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
/* Note that rqp->q_next cannot be NULL */
ASSERT(rqp->q_next != NULL);
tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
tmp_qp = backq(tmp_qp);
}
}
}
}
/*
* This routine should be called after all stream geometry changes to update
* the stream head cached struio() rd/wr queue pointers. Note must be called
* with the streamlock()ed.
*
* Note: only enables Synchronous STREAMS for a side of a Stream which has
* an explicit synchronous barrier module queue. That is, a queue that
* has specified a struio() type.
*/
static void
strsetuio(stdata_t *stp)
{
queue_t *wrq;
if (stp->sd_flag & STPLEX) {
/*
* Not streamhead, but a mux, so no Synchronous STREAMS.
*/
stp->sd_struiowrq = NULL;
stp->sd_struiordq = NULL;
return;
}
/*
* Scan the write queue(s) while synchronous
* until we find a qinfo uio type specified.
*/
wrq = stp->sd_wrq->q_next;
while (wrq) {
if (wrq->q_struiot == STRUIOT_NONE) {
wrq = 0;
break;
}
if (wrq->q_struiot != STRUIOT_DONTCARE)
break;
if (! _SAMESTR(wrq)) {
wrq = 0;
break;
}
wrq = wrq->q_next;
}
stp->sd_struiowrq = wrq;
/*
* Scan the read queue(s) while synchronous
* until we find a qinfo uio type specified.
*/
wrq = stp->sd_wrq->q_next;
while (wrq) {
if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
wrq = 0;
break;
}
if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
break;
if (! _SAMESTR(wrq)) {
wrq = 0;
break;
}
wrq = wrq->q_next;
}
stp->sd_struiordq = wrq ? _RD(wrq) : 0;
}
/*
* pass_wput, unblocks the passthru queues, so that
* messages can arrive at muxs lower read queue, before
* I_LINK/I_UNLINK is acked/nacked.
*/
static void
pass_wput(queue_t *q, mblk_t *mp)
{
syncq_t *sq;
sq = _RD(q)->q_syncq;
if (sq->sq_flags & SQ_BLOCKED)
unblocksq(sq, SQ_BLOCKED, 0);
putnext(q, mp);
}
/*
* Set up queues for the link/unlink.
* Create a new queue and block it and then insert it
* below the stream head on the lower stream.
* This prevents any messages from arriving during the setq
* as well as while the mux is processing the LINK/I_UNLINK.
* The blocked passq is unblocked once the LINK/I_UNLINK has
* been acked or nacked or if a message is generated and sent
* down muxs write put procedure.
* See pass_wput().
*
* After the new queue is inserted, all messages coming from below are
* blocked. The call to strlock will ensure that all activity in the stream head
* read queue syncq is stopped (sq_count drops to zero).
*/
static queue_t *
link_addpassthru(stdata_t *stpdown)
{
queue_t *passq;
sqlist_t sqlist;
passq = allocq();
STREAM(passq) = STREAM(_WR(passq)) = stpdown;
/* setq might sleep in allocator - avoid holding locks. */
setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
SQ_CI|SQ_CO, B_FALSE);
claimq(passq);
blocksq(passq->q_syncq, SQ_BLOCKED, 1);
insertq(STREAM(passq), passq);
/*
* Use strlock() to wait for the stream head sq_count to drop to zero
* since we are going to change q_ptr in the stream head. Note that
* insertq() doesn't wait for any syncq counts to drop to zero.
*/
sqlist.sqlist_head = NULL;
sqlist.sqlist_index = 0;
sqlist.sqlist_size = sizeof (sqlist_t);
sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
strlock(stpdown, &sqlist);
strunlock(stpdown, &sqlist);
releaseq(passq);
return (passq);
}
/*
* Let messages flow up into the mux by removing
* the passq.
*/
static void
link_rempassthru(queue_t *passq)
{
claimq(passq);
removeq(passq);
releaseq(passq);
freeq(passq);
}
/*
* Wait for the condition variable pointed to by `cvp' to be signaled,
* or for `tim' milliseconds to elapse, whichever comes first. If `tim'
* is negative, then there is no time limit. If `nosigs' is non-zero,
* then the wait will be non-interruptible.
*
* Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
*/
clock_t
str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
{
clock_t ret;
if (tim < 0) {
if (nosigs) {
cv_wait(cvp, mp);
ret = 1;
} else {
ret = cv_wait_sig(cvp, mp);
}
} else if (tim > 0) {
/*
* convert milliseconds to clock ticks
*/
if (nosigs) {
ret = cv_reltimedwait(cvp, mp,
MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
} else {
ret = cv_reltimedwait_sig(cvp, mp,
MSEC_TO_TICK_ROUNDUP(tim), TR_CLOCK_TICK);
}
} else {
ret = -1;
}
return (ret);
}
/*
* Wait until the stream head can determine if it is at the mark but
* don't wait forever to prevent a race condition between the "mark" state
* in the stream head and any mark state in the caller/user of this routine.
*
* This is used by sockets and for a socket it would be incorrect
* to return a failure for SIOCATMARK when there is no data in the receive
* queue and the marked urgent data is traveling up the stream.
*
* This routine waits until the mark is known by waiting for one of these
* three events:
* The stream head read queue becoming non-empty (including an EOF).
* The STRATMARK flag being set (due to a MSGMARKNEXT message).
* The STRNOTATMARK flag being set (which indicates that the transport
* has sent a MSGNOTMARKNEXT message to indicate that it is not at
* the mark).
*
* The routine returns 1 if the stream is at the mark; 0 if it can
* be determined that the stream is not at the mark.
* If the wait times out and it can't determine
* whether or not the stream might be at the mark the routine will return -1.
*
* Note: This routine should only be used when a mark is pending i.e.,
* in the socket case the SIGURG has been posted.
* Note2: This can not wakeup just because synchronous streams indicate
* that data is available since it is not possible to use the synchronous
* streams interfaces to determine the b_flag value for the data queued below
* the stream head.
*/
int
strwaitmark(vnode_t *vp)
{
struct stdata *stp = vp->v_stream;
queue_t *rq = _RD(stp->sd_wrq);
int mark;
mutex_enter(&stp->sd_lock);
while (rq->q_first == NULL &&
!(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
stp->sd_flag |= RSLEEP;
/* Wait for 100 milliseconds for any state change. */
if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
mutex_exit(&stp->sd_lock);
return (-1);
}
}
if (stp->sd_flag & STRATMARK)
mark = 1;
else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
mark = 1;
else
mark = 0;
mutex_exit(&stp->sd_lock);
return (mark);
}
/*
* Set a read side error. If persist is set change the socket error
* to persistent. If errfunc is set install the function as the exported
* error handler.
*/
void
strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
{
struct stdata *stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
stp->sd_rerror = error;
if (error == 0 && errfunc == NULL)
stp->sd_flag &= ~STRDERR;
else
stp->sd_flag |= STRDERR;
if (persist) {
stp->sd_flag &= ~STRDERRNONPERSIST;
} else {
stp->sd_flag |= STRDERRNONPERSIST;
}
stp->sd_rderrfunc = errfunc;
if (error != 0 || errfunc != NULL) {
cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
cv_broadcast(&stp->sd_monitor); /* ioctllers */
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, POLLERR);
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & S_ERROR)
strsendsig(stp->sd_siglist, S_ERROR, 0, error);
}
mutex_exit(&stp->sd_lock);
}
/*
* Set a write side error. If persist is set change the socket error
* to persistent.
*/
void
strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
{
struct stdata *stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
stp->sd_werror = error;
if (error == 0 && errfunc == NULL)
stp->sd_flag &= ~STWRERR;
else
stp->sd_flag |= STWRERR;
if (persist) {
stp->sd_flag &= ~STWRERRNONPERSIST;
} else {
stp->sd_flag |= STWRERRNONPERSIST;
}
stp->sd_wrerrfunc = errfunc;
if (error != 0 || errfunc != NULL) {
cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
cv_broadcast(&stp->sd_monitor); /* ioctllers */
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, POLLERR);
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & S_ERROR)
strsendsig(stp->sd_siglist, S_ERROR, 0, error);
}
mutex_exit(&stp->sd_lock);
}
/*
* Make the stream return 0 (EOF) when all data has been read.
* No effect on write side.
*/
void
strseteof(vnode_t *vp, int eof)
{
struct stdata *stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
if (!eof) {
stp->sd_flag &= ~STREOF;
mutex_exit(&stp->sd_lock);
return;
}
stp->sd_flag |= STREOF;
if (stp->sd_flag & RSLEEP) {
stp->sd_flag &= ~RSLEEP;
cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
}
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
mutex_exit(&stp->sd_lock);
}
void
strflushrq(vnode_t *vp, int flag)
{
struct stdata *stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
flushq(_RD(stp->sd_wrq), flag);
mutex_exit(&stp->sd_lock);
}
void
strsetrputhooks(vnode_t *vp, uint_t flags,
msgfunc_t protofunc, msgfunc_t miscfunc)
{
struct stdata *stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
if (protofunc == NULL)
stp->sd_rprotofunc = strrput_proto;
else
stp->sd_rprotofunc = protofunc;
if (miscfunc == NULL)
stp->sd_rmiscfunc = strrput_misc;
else
stp->sd_rmiscfunc = miscfunc;
if (flags & SH_CONSOL_DATA)
stp->sd_rput_opt |= SR_CONSOL_DATA;
else
stp->sd_rput_opt &= ~SR_CONSOL_DATA;
if (flags & SH_SIGALLDATA)
stp->sd_rput_opt |= SR_SIGALLDATA;
else
stp->sd_rput_opt &= ~SR_SIGALLDATA;
if (flags & SH_IGN_ZEROLEN)
stp->sd_rput_opt |= SR_IGN_ZEROLEN;
else
stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
mutex_exit(&stp->sd_lock);
}
void
strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
{
struct stdata *stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
stp->sd_closetime = closetime;
if (flags & SH_SIGPIPE)
stp->sd_wput_opt |= SW_SIGPIPE;
else
stp->sd_wput_opt &= ~SW_SIGPIPE;
if (flags & SH_RECHECK_ERR)
stp->sd_wput_opt |= SW_RECHECK_ERR;
else
stp->sd_wput_opt &= ~SW_RECHECK_ERR;
mutex_exit(&stp->sd_lock);
}
void
strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
{
struct stdata *stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
stp->sd_rputdatafunc = rdatafunc;
stp->sd_wputdatafunc = wdatafunc;
mutex_exit(&stp->sd_lock);
}
/* Used within framework when the queue is already locked */
void
qenable_locked(queue_t *q)
{
stdata_t *stp = STREAM(q);
ASSERT(MUTEX_HELD(QLOCK(q)));
if (!q->q_qinfo->qi_srvp)
return;
/*
* Do not place on run queue if already enabled or closing.
*/
if (q->q_flag & (QWCLOSE|QENAB))
return;
/*
* mark queue enabled and place on run list if it is not already being
* serviced. If it is serviced, the runservice() function will detect
* that QENAB is set and call service procedure before clearing
* QINSERVICE flag.
*/
q->q_flag |= QENAB;
if (q->q_flag & QINSERVICE)
return;
/* Record the time of qenable */
q->q_qtstamp = ddi_get_lbolt();
/*
* Put the queue in the stp list and schedule it for background
* processing if it is not already scheduled or if stream head does not
* intent to process it in the foreground later by setting
* STRS_WILLSERVICE flag.
*/
mutex_enter(&stp->sd_qlock);
/*
* If there are already something on the list, stp flags should show
* intention to drain it.
*/
IMPLY(STREAM_NEEDSERVICE(stp),
(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
stp->sd_nqueues++;
/*
* If no one will drain this stream we are the first producer and
* need to schedule it for background thread.
*/
if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
/*
* No one will service this stream later, so we have to
* schedule it now.
*/
STRSTAT(stenables);
stp->sd_svcflags |= STRS_SCHEDULED;
stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
(task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
if (stp->sd_servid == NULL) {
/*
* Task queue failed so fail over to the backup
* servicing thread.
*/
STRSTAT(taskqfails);
/*
* It is safe to clear STRS_SCHEDULED flag because it
* was set by this thread above.
*/
stp->sd_svcflags &= ~STRS_SCHEDULED;
/*
* Failover scheduling is protected by service_queue
* lock.
*/
mutex_enter(&service_queue);
ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
ASSERT(q->q_link == NULL);
/*
* Append the queue to qhead/qtail list.
*/
if (qhead == NULL)
qhead = q;
else
qtail->q_link = q;
qtail = q;
/*
* Clear stp queue list.
*/
stp->sd_qhead = stp->sd_qtail = NULL;
stp->sd_nqueues = 0;
/*
* Wakeup background queue processing thread.
*/
cv_signal(&services_to_run);
mutex_exit(&service_queue);
}
}
mutex_exit(&stp->sd_qlock);
}
static void
queue_service(queue_t *q)
{
/*
* The queue in the list should have
* QENAB flag set and should not have
* QINSERVICE flag set. QINSERVICE is
* set when the queue is dequeued and
* qenable_locked doesn't enqueue a
* queue with QINSERVICE set.
*/
ASSERT(!(q->q_flag & QINSERVICE));
ASSERT((q->q_flag & QENAB));
mutex_enter(QLOCK(q));
q->q_flag &= ~QENAB;
q->q_flag |= QINSERVICE;
mutex_exit(QLOCK(q));
runservice(q);
}
static void
syncq_service(syncq_t *sq)
{
STRSTAT(syncqservice);
mutex_enter(SQLOCK(sq));
ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
ASSERT(sq->sq_servcount != 0);
ASSERT(sq->sq_next == NULL);
/* if we came here from the background thread, clear the flag */
if (sq->sq_svcflags & SQ_BGTHREAD)
sq->sq_svcflags &= ~SQ_BGTHREAD;
/* let drain_syncq know that it's being called in the background */
sq->sq_svcflags |= SQ_SERVICE;
drain_syncq(sq);
}
static void
qwriter_outer_service(syncq_t *outer)
{
/*
* Note that SQ_WRITER is used on the outer perimeter
* to signal that a qwriter(OUTER) is either investigating
* running or that it is actually running a function.
*/
outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
/*
* All inner syncq are empty and have SQ_WRITER set
* to block entering the outer perimeter.
*
* We do not need to explicitly call write_now since
* outer_exit does it for us.
*/
outer_exit(outer);
}
static void
mblk_free(mblk_t *mp)
{
dblk_t *dbp = mp->b_datap;
frtn_t *frp = dbp->db_frtnp;
mp->b_next = NULL;
if (dbp->db_fthdr != NULL)
str_ftfree(dbp);
ASSERT(dbp->db_fthdr == NULL);
frp->free_func(frp->free_arg);
ASSERT(dbp->db_mblk == mp);
if (dbp->db_credp != NULL) {
crfree(dbp->db_credp);
dbp->db_credp = NULL;
}
dbp->db_cpid = -1;
dbp->db_struioflag = 0;
dbp->db_struioun.cksum.flags = 0;
kmem_cache_free(dbp->db_cache, dbp);
}
/*
* Background processing of the stream queue list.
*/
static void
stream_service(stdata_t *stp)
{
queue_t *q;
mutex_enter(&stp->sd_qlock);
STR_SERVICE(stp, q);
stp->sd_svcflags &= ~STRS_SCHEDULED;
stp->sd_servid = NULL;
cv_signal(&stp->sd_qcv);
mutex_exit(&stp->sd_qlock);
}
/*
* Foreground processing of the stream queue list.
*/
void
stream_runservice(stdata_t *stp)
{
queue_t *q;
mutex_enter(&stp->sd_qlock);
STRSTAT(rservice);
/*
* We are going to drain this stream queue list, so qenable_locked will
* not schedule it until we finish.
*/
stp->sd_svcflags |= STRS_WILLSERVICE;
STR_SERVICE(stp, q);
stp->sd_svcflags &= ~STRS_WILLSERVICE;
mutex_exit(&stp->sd_qlock);
/*
* Help backup background thread to drain the qhead/qtail list.
*/
while (qhead != NULL) {
STRSTAT(qhelps);
mutex_enter(&service_queue);
DQ(q, qhead, qtail, q_link);
mutex_exit(&service_queue);
if (q != NULL)
queue_service(q);
}
}
void
stream_willservice(stdata_t *stp)
{
mutex_enter(&stp->sd_qlock);
stp->sd_svcflags |= STRS_WILLSERVICE;
mutex_exit(&stp->sd_qlock);
}
/*
* Replace the cred currently in the mblk with a different one.
* Also update db_cpid.
*/
void
mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
{
dblk_t *dbp = mp->b_datap;
cred_t *ocr = dbp->db_credp;
ASSERT(cr != NULL);
if (cr != ocr) {
crhold(dbp->db_credp = cr);
if (ocr != NULL)
crfree(ocr);
}
/* Don't overwrite with NOPID */
if (cpid != NOPID)
dbp->db_cpid = cpid;
}
/*
* If the src message has a cred, then replace the cred currently in the mblk
* with it.
* Also update db_cpid.
*/
void
mblk_copycred(mblk_t *mp, const mblk_t *src)
{
dblk_t *dbp = mp->b_datap;
cred_t *cr, *ocr;
pid_t cpid;
cr = msg_getcred(src, &cpid);
if (cr == NULL)
return;
ocr = dbp->db_credp;
if (cr != ocr) {
crhold(dbp->db_credp = cr);
if (ocr != NULL)
crfree(ocr);
}
/* Don't overwrite with NOPID */
if (cpid != NOPID)
dbp->db_cpid = cpid;
}
int
hcksum_assoc(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
uint32_t flags, int km_flags)
{
int rc = 0;
ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
if (mp->b_datap->db_type == M_DATA) {
/* Associate values for M_DATA type */
DB_CKSUMSTART(mp) = (intptr_t)start;
DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
DB_CKSUMEND(mp) = (intptr_t)end;
DB_CKSUMFLAGS(mp) = flags;
DB_CKSUM16(mp) = (uint16_t)value;
} else {
pattrinfo_t pa_info;
ASSERT(mmd != NULL);
pa_info.type = PATTR_HCKSUM;
pa_info.len = sizeof (pattr_hcksum_t);
if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
hck->hcksum_start_offset = start;
hck->hcksum_stuff_offset = stuff;
hck->hcksum_end_offset = end;
hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
hck->hcksum_flags = flags;
} else {
rc = -1;
}
}
return (rc);
}
void
hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
uint32_t *start, uint32_t *stuff, uint32_t *end,
uint32_t *value, uint32_t *flags)
{
ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
if (mp->b_datap->db_type == M_DATA) {
if (flags != NULL) {
*flags = DB_CKSUMFLAGS(mp) & HCK_FLAGS;
if ((*flags & (HCK_PARTIALCKSUM |
HCK_FULLCKSUM)) != 0) {
if (value != NULL)
*value = (uint32_t)DB_CKSUM16(mp);
if ((*flags & HCK_PARTIALCKSUM) != 0) {
if (start != NULL)
*start =
(uint32_t)DB_CKSUMSTART(mp);
if (stuff != NULL)
*stuff =
(uint32_t)DB_CKSUMSTUFF(mp);
if (end != NULL)
*end =
(uint32_t)DB_CKSUMEND(mp);
}
}
}
} else {
pattrinfo_t hck_attr = {PATTR_HCKSUM};
ASSERT(mmd != NULL);
/* get hardware checksum attribute */
if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
if (flags != NULL)
*flags = hck->hcksum_flags;
if (start != NULL)
*start = hck->hcksum_start_offset;
if (stuff != NULL)
*stuff = hck->hcksum_stuff_offset;
if (end != NULL)
*end = hck->hcksum_end_offset;
if (value != NULL)
*value = (uint32_t)
hck->hcksum_cksum_val.inet_cksum;
}
}
}
void
lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
{
ASSERT(DB_TYPE(mp) == M_DATA);
ASSERT((flags & ~HW_LSO_FLAGS) == 0);
/* Set the flags */
DB_LSOFLAGS(mp) |= flags;
DB_LSOMSS(mp) = mss;
}
void
lso_info_cleanup(mblk_t *mp)
{
ASSERT(DB_TYPE(mp) == M_DATA);
/* Clear the flags */
DB_LSOFLAGS(mp) &= ~HW_LSO_FLAGS;
DB_LSOMSS(mp) = 0;
}
/*
* Checksum buffer *bp for len bytes with psum partial checksum,
* or 0 if none, and return the 16 bit partial checksum.
*/
unsigned
bcksum(uchar_t *bp, int len, unsigned int psum)
{
int odd = len & 1;
extern unsigned int ip_ocsum();
if (((intptr_t)bp & 1) == 0 && !odd) {
/*
* Bp is 16 bit aligned and len is multiple of 16 bit word.
*/
return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
}
if (((intptr_t)bp & 1) != 0) {
/*
* Bp isn't 16 bit aligned.
*/
unsigned int tsum;
#ifdef _LITTLE_ENDIAN
psum += *bp;
#else
psum += *bp << 8;
#endif
len--;
bp++;
tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
psum += (tsum << 8) & 0xffff | (tsum >> 8);
if (len & 1) {
bp += len - 1;
#ifdef _LITTLE_ENDIAN
psum += *bp << 8;
#else
psum += *bp;
#endif
}
} else {
/*
* Bp is 16 bit aligned.
*/
psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
if (odd) {
bp += len - 1;
#ifdef _LITTLE_ENDIAN
psum += *bp;
#else
psum += *bp << 8;
#endif
}
}
/*
* Normalize psum to 16 bits before returning the new partial
* checksum. The max psum value before normalization is 0x3FDFE.
*/
return ((psum >> 16) + (psum & 0xFFFF));
}
boolean_t
is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
{
boolean_t rc;
ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
if (DB_TYPE(mp) == M_DATA) {
rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
} else {
pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
ASSERT(mmd != NULL);
rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
}
return (rc);
}
void
freemsgchain(mblk_t *mp)
{
mblk_t *next;
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
freemsg(mp);
mp = next;
}
}
mblk_t *
copymsgchain(mblk_t *mp)
{
mblk_t *nmp = NULL;
mblk_t **nmpp = &nmp;
for (; mp != NULL; mp = mp->b_next) {
if ((*nmpp = copymsg(mp)) == NULL) {
freemsgchain(nmp);
return (NULL);
}
nmpp = &((*nmpp)->b_next);
}
return (nmp);
}
/* NOTE: Do not add code after this point. */
#undef QLOCK
/*
* Replacement for QLOCK macro for those that can't use it.
*/
kmutex_t *
QLOCK(queue_t *q)
{
return (&(q)->q_lock);
}
/*
* Dummy runqueues/queuerun functions functions for backwards compatibility.
*/
#undef runqueues
void
runqueues(void)
{
}
#undef queuerun
void
queuerun(void)
{
}
/*
* Initialize the STR stack instance, which tracks autopush and persistent
* links.
*/
/* ARGSUSED */
static void *
str_stack_init(netstackid_t stackid, netstack_t *ns)
{
str_stack_t *ss;
int i;
ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
ss->ss_netstack = ns;
/*
* set up autopush
*/
sad_initspace(ss);
/*
* set up mux_node structures.
*/
ss->ss_devcnt = devcnt; /* In case it should change before free */
ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
ss->ss_devcnt), KM_SLEEP);
for (i = 0; i < ss->ss_devcnt; i++)
ss->ss_mux_nodes[i].mn_imaj = i;
return (ss);
}
/*
* Note: run at zone shutdown and not destroy so that the PLINKs are
* gone by the time other cleanup happens from the destroy callbacks.
*/
static void
str_stack_shutdown(netstackid_t stackid, void *arg)
{
str_stack_t *ss = (str_stack_t *)arg;
int i;
cred_t *cr;
cr = zone_get_kcred(netstackid_to_zoneid(stackid));
ASSERT(cr != NULL);
/* Undo all the I_PLINKs for this zone */
for (i = 0; i < ss->ss_devcnt; i++) {
struct mux_edge *ep;
ldi_handle_t lh;
ldi_ident_t li;
int ret;
int rval;
dev_t rdev;
ep = ss->ss_mux_nodes[i].mn_outp;
if (ep == NULL)
continue;
ret = ldi_ident_from_major((major_t)i, &li);
if (ret != 0) {
continue;
}
rdev = ep->me_dev;
ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
cr, &lh, li);
if (ret != 0) {
ldi_ident_release(li);
continue;
}
ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
cr, &rval);
if (ret) {
(void) ldi_close(lh, FREAD|FWRITE, cr);
ldi_ident_release(li);
continue;
}
(void) ldi_close(lh, FREAD|FWRITE, cr);
/* Close layered handles */
ldi_ident_release(li);
}
crfree(cr);
sad_freespace(ss);
kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
ss->ss_mux_nodes = NULL;
}
/*
* Free the structure; str_stack_shutdown did the other cleanup work.
*/
/* ARGSUSED */
static void
str_stack_fini(netstackid_t stackid, void *arg)
{
str_stack_t *ss = (str_stack_t *)arg;
kmem_free(ss, sizeof (*ss));
}