/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/signal.h>
#include <sys/stat.h>
#include <sys/proc.h>
#include <sys/cred.h>
#include <sys/user.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/stropts.h>
#include <sys/tihdr.h>
#include <sys/var.h>
#include <sys/poll.h>
#include <sys/termio.h>
#include <sys/ttold.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/cmn_err.h>
#include <sys/sad.h>
#include <sys/netstack.h>
#include <sys/priocntl.h>
#include <sys/jioctl.h>
#include <sys/procset.h>
#include <sys/session.h>
#include <sys/kmem.h>
#include <sys/filio.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <sys/strredir.h>
#include <sys/fs/fifonode.h>
#include <sys/fs/snode.h>
#include <sys/strlog.h>
#include <sys/strsun.h>
#include <sys/project.h>
#include <sys/kbio.h>
#include <sys/msio.h>
#include <sys/tty.h>
#include <sys/ptyvar.h>
#include <sys/vuid_event.h>
#include <sys/modctl.h>
#include <sys/sunddi.h>
#include <sys/sunldi_impl.h>
#include <sys/autoconf.h>
#include <sys/policy.h>
#include <sys/dld.h>
#include <sys/zone.h>
#include <c2/audit.h>
/*
* This define helps improve the readability of streams code while
* still maintaining a very old streams performance enhancement. The
* performance enhancement basically involved having all callers
* of straccess() perform the first check that straccess() will do
* locally before actually calling straccess(). (There by reducing
* the number of unnecessary calls to straccess().)
*/
#define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \
(stp->sd_vnode->v_type == VFIFO) ? 0 : \
straccess((x), (y)))
/*
* what is mblk_pull_len?
*
* If a streams message consists of many short messages,
* a performance degradation occurs from copyout overhead.
* To decrease the per mblk overhead, messages that are
* likely to consist of many small mblks are pulled up into
* one continuous chunk of memory.
*
* To avoid the processing overhead of examining every
* mblk, a quick heuristic is used. If the first mblk in
* the message is shorter than mblk_pull_len, it is likely
* that the rest of the mblk will be short.
*
* This heuristic was decided upon after performance tests
* indicated that anything more complex slowed down the main
* code path.
*/
#define MBLK_PULL_LEN 64
uint32_t mblk_pull_len = MBLK_PULL_LEN;
/*
* The sgttyb_handling flag controls the handling of the old BSD
* TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
*
* 0 - Emit no warnings at all and retain old, broken behavior.
* 1 - Emit no warnings and silently handle new semantics.
* 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
* (once per system invocation). Handle with new semantics.
* 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
* made (so that offenders drop core and are easy to debug).
*
* The "new semantics" are that TIOCGETP returns B38400 for
* sg_[io]speed if the corresponding value is over B38400, and that
* TIOCSET[PN] accept B38400 in these cases to mean "retain current
* bit rate."
*/
int sgttyb_handling = 1;
static boolean_t sgttyb_complaint;
/* don't push drcompat module by default on Style-2 streams */
static int push_drcompat = 0;
/*
* id value used to distinguish between different ioctl messages
*/
static uint32_t ioc_id;
static void putback(struct stdata *, queue_t *, mblk_t *, int);
static void strcleanall(struct vnode *);
static int strwsrv(queue_t *);
static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
/*
* qinit and module_info structures for stream head read and write queues
*/
struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
FIFOLOWAT };
struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
extern kmutex_t strresources; /* protects global resources */
extern kmutex_t muxifier; /* single-threads multiplexor creation */
static boolean_t msghasdata(mblk_t *bp);
#define msgnodata(bp) (!msghasdata(bp))
/*
* Stream head locking notes:
* There are four monitors associated with the stream head:
* 1. v_stream monitor: in stropen() and strclose() v_lock
* is held while the association of vnode and stream
* head is established or tested for.
* 2. open/close/push/pop monitor: sd_lock is held while each
* thread bids for exclusive access to this monitor
* for opening or closing a stream. In addition, this
* monitor is entered during pushes and pops. This
* guarantees that during plumbing operations there
* is only one thread trying to change the plumbing.
* Any other threads present in the stream are only
* using the plumbing.
* 3. read/write monitor: in the case of read, a thread holds
* sd_lock while trying to get data from the stream
* head queue. if there is none to fulfill a read
* request, it sets RSLEEP and calls cv_wait_sig() down
* in strwaitq() to await the arrival of new data.
* when new data arrives in strrput(), sd_lock is acquired
* before testing for RSLEEP and calling cv_broadcast().
* the behavior of strwrite(), strwsrv(), and WSLEEP
* mirror this.
* 4. ioctl monitor: sd_lock is gotten to ensure that only one
* thread is doing an ioctl at a time.
*/
static int
push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
int anchor, cred_t *crp, uint_t anchor_zoneid)
{
int error;
fmodsw_impl_t *fp;
if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
return (error);
}
if (stp->sd_pushcnt >= nstrpush) {
return (EINVAL);
}
if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
stp->sd_flag |= STREOPENFAIL;
return (EINVAL);
}
/*
* push new module and call its open routine via qattach
*/
if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
return (error);
/*
* Check to see if caller wants a STREAMS anchor
* put at this place in the stream, and add if so.
*/
mutex_enter(&stp->sd_lock);
if (anchor == stp->sd_pushcnt) {
stp->sd_anchor = stp->sd_pushcnt;
stp->sd_anchorzone = anchor_zoneid;
}
mutex_exit(&stp->sd_lock);
return (0);
}
/*
* Open a stream device.
*/
int
stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
{
struct stdata *stp;
queue_t *qp;
int s;
dev_t dummydev, savedev;
struct autopush *ap;
struct dlautopush dlap;
int error = 0;
ssize_t rmin, rmax;
int cloneopen;
queue_t *brq;
major_t major;
str_stack_t *ss;
zoneid_t zoneid;
uint_t anchor;
/*
* If the stream already exists, wait for any open in progress
* to complete, then call the open function of each module and
* driver in the stream. Otherwise create the stream.
*/
TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
retry:
mutex_enter(&vp->v_lock);
if ((stp = vp->v_stream) != NULL) {
/*
* Waiting for stream to be created to device
* due to another open.
*/
mutex_exit(&vp->v_lock);
if (STRMATED(stp)) {
struct stdata *strmatep = stp->sd_mate;
STRLOCKMATES(stp);
if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
if (flag & (FNDELAY|FNONBLOCK)) {
error = EAGAIN;
mutex_exit(&strmatep->sd_lock);
goto ckreturn;
}
mutex_exit(&stp->sd_lock);
if (!cv_wait_sig(&strmatep->sd_monitor,
&strmatep->sd_lock)) {
error = EINTR;
mutex_exit(&strmatep->sd_lock);
mutex_enter(&stp->sd_lock);
goto ckreturn;
}
mutex_exit(&strmatep->sd_lock);
goto retry;
}
if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
if (flag & (FNDELAY|FNONBLOCK)) {
error = EAGAIN;
mutex_exit(&strmatep->sd_lock);
goto ckreturn;
}
mutex_exit(&strmatep->sd_lock);
if (!cv_wait_sig(&stp->sd_monitor,
&stp->sd_lock)) {
error = EINTR;
goto ckreturn;
}
mutex_exit(&stp->sd_lock);
goto retry;
}
if (stp->sd_flag & (STRDERR|STWRERR)) {
error = EIO;
mutex_exit(&strmatep->sd_lock);
goto ckreturn;
}
stp->sd_flag |= STWOPEN;
STRUNLOCKMATES(stp);
} else {
mutex_enter(&stp->sd_lock);
if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
if (flag & (FNDELAY|FNONBLOCK)) {
error = EAGAIN;
goto ckreturn;
}
if (!cv_wait_sig(&stp->sd_monitor,
&stp->sd_lock)) {
error = EINTR;
goto ckreturn;
}
mutex_exit(&stp->sd_lock);
goto retry; /* could be clone! */
}
if (stp->sd_flag & (STRDERR|STWRERR)) {
error = EIO;
goto ckreturn;
}
stp->sd_flag |= STWOPEN;
mutex_exit(&stp->sd_lock);
}
/*
* Open all modules and devices down stream to notify
* that another user is streaming. For modules, set the
* last argument to MODOPEN and do not pass any open flags.
* Ignore dummydev since this is not the first open.
*/
claimstr(stp->sd_wrq);
qp = stp->sd_wrq;
while (_SAMESTR(qp)) {
qp = qp->q_next;
if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
break;
}
releasestr(stp->sd_wrq);
mutex_enter(&stp->sd_lock);
stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
stp->sd_rerror = 0;
stp->sd_werror = 0;
ckreturn:
cv_broadcast(&stp->sd_monitor);
mutex_exit(&stp->sd_lock);
return (error);
}
/*
* This vnode isn't streaming. SPECFS already
* checked for multiple vnodes pointing to the
* same stream, so create a stream to the driver.
*/
qp = allocq();
stp = shalloc(qp);
/*
* Initialize stream head. shalloc() has given us
* exclusive access, and we have the vnode locked;
* we can do whatever we want with stp.
*/
stp->sd_flag = STWOPEN;
stp->sd_siglist = NULL;
stp->sd_pollist.ph_list = NULL;
stp->sd_sigflags = 0;
stp->sd_mark = NULL;
stp->sd_closetime = STRTIMOUT;
stp->sd_sidp = NULL;
stp->sd_pgidp = NULL;
stp->sd_vnode = vp;
stp->sd_rerror = 0;
stp->sd_werror = 0;
stp->sd_wroff = 0;
stp->sd_tail = 0;
stp->sd_iocblk = NULL;
stp->sd_cmdblk = NULL;
stp->sd_pushcnt = 0;
stp->sd_qn_minpsz = 0;
stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */
stp->sd_maxblk = INFPSZ;
qp->q_ptr = _WR(qp)->q_ptr = stp;
STREAM(qp) = STREAM(_WR(qp)) = stp;
vp->v_stream = stp;
mutex_exit(&vp->v_lock);
if (vp->v_type == VFIFO) {
stp->sd_flag |= OLDNDELAY;
/*
* This means, both for pipes and fifos
* strwrite will send SIGPIPE if the other
* end is closed. For putmsg it depends
* on whether it is a XPG4_2 application
* or not
*/
stp->sd_wput_opt = SW_SIGPIPE;
/* setq might sleep in kmem_alloc - avoid holding locks. */
setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
SQ_CI|SQ_CO, B_FALSE);
set_qend(qp);
stp->sd_strtab = fifo_getinfo();
_WR(qp)->q_nfsrv = _WR(qp);
qp->q_nfsrv = qp;
/*
* Wake up others that are waiting for stream to be created.
*/
mutex_enter(&stp->sd_lock);
/*
* nothing is be pushed on stream yet, so
* optimized stream head packetsizes are just that
* of the read queue
*/
stp->sd_qn_minpsz = qp->q_minpsz;
stp->sd_qn_maxpsz = qp->q_maxpsz;
stp->sd_flag &= ~STWOPEN;
goto fifo_opendone;
}
/* setq might sleep in kmem_alloc - avoid holding locks. */
setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
set_qend(qp);
/*
* Open driver and create stream to it (via qattach).
*/
savedev = *devp;
cloneopen = (getmajor(*devp) == clone_major);
if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
mutex_enter(&vp->v_lock);
vp->v_stream = NULL;
mutex_exit(&vp->v_lock);
mutex_enter(&stp->sd_lock);
cv_broadcast(&stp->sd_monitor);
mutex_exit(&stp->sd_lock);
freeq(_RD(qp));
shfree(stp);
return (error);
}
/*
* Set sd_strtab after open in order to handle clonable drivers
*/
stp->sd_strtab = STREAMSTAB(getmajor(*devp));
/*
* Historical note: dummydev used to be be prior to the initial
* open (via qattach above), which made the value seen
* inconsistent between an I_PUSH and an autopush of a module.
*/
dummydev = *devp;
/*
* For clone open of old style (Q not associated) network driver,
* push DRMODNAME module to handle DL_ATTACH/DL_DETACH
*/
brq = _RD(_WR(qp)->q_next);
major = getmajor(*devp);
if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
((brq->q_flag & _QASSOCIATED) == 0)) {
if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
cmn_err(CE_WARN, "cannot push " DRMODNAME
" streams module");
}
if (!NETWORK_DRV(major)) {
savedev = *devp;
} else {
/*
* For network devices, process differently based on the
* return value from dld_autopush():
*
* 0: the passed-in device points to a GLDv3 datalink with
* per-link autopush configuration; use that configuration
* and ignore any per-driver autopush configuration.
*
* 1: the passed-in device points to a physical GLDv3
* datalink without per-link autopush configuration. The
* passed in device was changed to refer to the actual
* physical device (if it's not already); we use that new
* device to look up any per-driver autopush configuration.
*
* -1: neither of the above cases applied; use the initial
* device to look up any per-driver autopush configuration.
*/
switch (dld_autopush(&savedev, &dlap)) {
case 0:
zoneid = crgetzoneid(crp);
for (s = 0; s < dlap.dap_npush; s++) {
error = push_mod(qp, &dummydev, stp,
dlap.dap_aplist[s], dlap.dap_anchor, crp,
zoneid);
if (error != 0)
break;
}
goto opendone;
case 1:
break;
case -1:
savedev = *devp;
break;
}
}
/*
* Find the autopush configuration based on "savedev". Start with the
* global zone. If not found check in the local zone.
*/
zoneid = GLOBAL_ZONEID;
retryap:
ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
netstack_str;
if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
netstack_rele(ss->ss_netstack);
if (zoneid == GLOBAL_ZONEID) {
/*
* None found. Also look in the zone's autopush table.
*/
zoneid = crgetzoneid(crp);
if (zoneid != GLOBAL_ZONEID)
goto retryap;
}
goto opendone;
}
anchor = ap->ap_anchor;
zoneid = crgetzoneid(crp);
for (s = 0; s < ap->ap_npush; s++) {
error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
anchor, crp, zoneid);
if (error != 0)
break;
}
sad_ap_rele(ap, ss);
netstack_rele(ss->ss_netstack);
opendone:
/*
* let specfs know that open failed part way through
*/
if (error) {
mutex_enter(&stp->sd_lock);
stp->sd_flag |= STREOPENFAIL;
mutex_exit(&stp->sd_lock);
}
/*
* Wake up others that are waiting for stream to be created.
*/
mutex_enter(&stp->sd_lock);
stp->sd_flag &= ~STWOPEN;
/*
* As a performance concern we are caching the values of
* q_minpsz and q_maxpsz of the module below the stream
* head in the stream head.
*/
mutex_enter(QLOCK(stp->sd_wrq->q_next));
rmin = stp->sd_wrq->q_next->q_minpsz;
rmax = stp->sd_wrq->q_next->q_maxpsz;
mutex_exit(QLOCK(stp->sd_wrq->q_next));
/* do this processing here as a performance concern */
if (strmsgsz != 0) {
if (rmax == INFPSZ)
rmax = strmsgsz;
else
rmax = MIN(strmsgsz, rmax);
}
mutex_enter(QLOCK(stp->sd_wrq));
stp->sd_qn_minpsz = rmin;
stp->sd_qn_maxpsz = rmax;
mutex_exit(QLOCK(stp->sd_wrq));
fifo_opendone:
cv_broadcast(&stp->sd_monitor);
mutex_exit(&stp->sd_lock);
return (error);
}
static int strsink(queue_t *, mblk_t *);
static struct qinit deadrend = {
strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
};
static struct qinit deadwend = {
NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
};
/*
* Close a stream.
* This is called from closef() on the last close of an open stream.
* Strclean() will already have removed the siglist and pollist
* information, so all that remains is to remove all multiplexor links
* for the stream, pop all the modules (and the driver), and free the
* stream structure.
*/
int
strclose(struct vnode *vp, int flag, cred_t *crp)
{
struct stdata *stp;
queue_t *qp;
int rval;
int freestp = 1;
queue_t *rmq;
TRACE_1(TR_FAC_STREAMS_FR,
TR_STRCLOSE, "strclose:%p", vp);
ASSERT(vp->v_stream);
stp = vp->v_stream;
ASSERT(!(stp->sd_flag & STPLEX));
qp = stp->sd_wrq;
/*
* Needed so that strpoll will return non-zero for this fd.
* Note that with POLLNOERR STRHUP does still cause POLLHUP.
*/
mutex_enter(&stp->sd_lock);
stp->sd_flag |= STRHUP;
mutex_exit(&stp->sd_lock);
/*
* If the registered process or process group did not have an
* open instance of this stream then strclean would not be
* called. Thus at the time of closing all remaining siglist entries
* are removed.
*/
if (stp->sd_siglist != NULL)
strcleanall(vp);
ASSERT(stp->sd_siglist == NULL);
ASSERT(stp->sd_sigflags == 0);
if (STRMATED(stp)) {
struct stdata *strmatep = stp->sd_mate;
int waited = 1;
STRLOCKMATES(stp);
while (waited) {
waited = 0;
while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
mutex_exit(&strmatep->sd_lock);
cv_wait(&stp->sd_monitor, &stp->sd_lock);
mutex_exit(&stp->sd_lock);
STRLOCKMATES(stp);
waited = 1;
}
while (strmatep->sd_flag &
(STWOPEN|STRCLOSE|STRPLUMB)) {
mutex_exit(&stp->sd_lock);
cv_wait(&strmatep->sd_monitor,
&strmatep->sd_lock);
mutex_exit(&strmatep->sd_lock);
STRLOCKMATES(stp);
waited = 1;
}
}
stp->sd_flag |= STRCLOSE;
STRUNLOCKMATES(stp);
} else {
mutex_enter(&stp->sd_lock);
stp->sd_flag |= STRCLOSE;
mutex_exit(&stp->sd_lock);
}
ASSERT(qp->q_first == NULL); /* No more delayed write */
/* Check if an I_LINK was ever done on this stream */
if (stp->sd_flag & STRHASLINKS) {
netstack_t *ns;
str_stack_t *ss;
ns = netstack_find_by_cred(crp);
ASSERT(ns != NULL);
ss = ns->netstack_str;
ASSERT(ss != NULL);
(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
netstack_rele(ss->ss_netstack);
}
while (_SAMESTR(qp)) {
/*
* Holding sd_lock prevents q_next from changing in
* this stream.
*/
mutex_enter(&stp->sd_lock);
if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
/*
* sleep until awakened by strwsrv() or timeout
*/
for (;;) {
mutex_enter(QLOCK(qp->q_next));
if (!(qp->q_next->q_mblkcnt)) {
mutex_exit(QLOCK(qp->q_next));
break;
}
stp->sd_flag |= WSLEEP;
/* ensure strwsrv gets enabled */
qp->q_next->q_flag |= QWANTW;
mutex_exit(QLOCK(qp->q_next));
/* get out if we timed out or recv'd a signal */
if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
stp->sd_closetime, 0) <= 0) {
break;
}
}
stp->sd_flag &= ~WSLEEP;
}
mutex_exit(&stp->sd_lock);
rmq = qp->q_next;
if (rmq->q_flag & QISDRV) {
ASSERT(!_SAMESTR(rmq));
wait_sq_svc(_RD(qp)->q_syncq);
}
qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
}
/*
* Since we call pollwakeup in close() now, the poll list should
* be empty in most cases. The only exception is the layered devices
* (e.g. the console drivers with redirection modules pushed on top
* of it). We have to do this after calling qdetach() because
* the redirection module won't have torn down the console
* redirection until after qdetach() has been invoked.
*/
if (stp->sd_pollist.ph_list != NULL) {
pollwakeup(&stp->sd_pollist, POLLERR);
pollhead_clean(&stp->sd_pollist);
}
ASSERT(stp->sd_pollist.ph_list == NULL);
ASSERT(stp->sd_sidp == NULL);
ASSERT(stp->sd_pgidp == NULL);
/* Prevent qenable from re-enabling the stream head queue */
disable_svc(_RD(qp));
/*
* Wait until service procedure of each queue is
* run, if QINSERVICE is set.
*/
wait_svc(_RD(qp));
/*
* Now, flush both queues.
*/
flushq(_RD(qp), FLUSHALL);
flushq(qp, FLUSHALL);
/*
* If the write queue of the stream head is pointing to a
* read queue, we have a twisted stream. If the read queue
* is alive, convert the stream head queues into a dead end.
* If the read queue is dead, free the dead pair.
*/
if (qp->q_next && !_SAMESTR(qp)) {
if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */
flushq(qp->q_next, FLUSHALL); /* ensure no message */
shfree(qp->q_next->q_stream);
freeq(qp->q_next);
freeq(_RD(qp));
} else if (qp->q_next == _RD(qp)) { /* fifo */
freeq(_RD(qp));
} else { /* pipe */
freestp = 0;
/*
* The q_info pointers are never accessed when
* SQLOCK is held.
*/
ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
mutex_enter(SQLOCK(qp->q_syncq));
qp->q_qinfo = &deadwend;
_RD(qp)->q_qinfo = &deadrend;
mutex_exit(SQLOCK(qp->q_syncq));
}
} else {
freeq(_RD(qp)); /* free stream head queue pair */
}
mutex_enter(&vp->v_lock);
if (stp->sd_iocblk) {
if (stp->sd_iocblk != (mblk_t *)-1) {
freemsg(stp->sd_iocblk);
}
stp->sd_iocblk = NULL;
}
stp->sd_vnode = NULL;
vp->v_stream = NULL;
mutex_exit(&vp->v_lock);
mutex_enter(&stp->sd_lock);
freemsg(stp->sd_cmdblk);
stp->sd_cmdblk = NULL;
stp->sd_flag &= ~STRCLOSE;
cv_broadcast(&stp->sd_monitor);
mutex_exit(&stp->sd_lock);
if (freestp)
shfree(stp);
return (0);
}
static int
strsink(queue_t *q, mblk_t *bp)
{
struct copyresp *resp;
switch (bp->b_datap->db_type) {
case M_FLUSH:
if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
*bp->b_rptr &= ~FLUSHR;
bp->b_flag |= MSGNOLOOP;
/*
* Protect against the driver passing up
* messages after it has done a qprocsoff.
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else
qreply(q, bp);
} else {
freemsg(bp);
}
break;
case M_COPYIN:
case M_COPYOUT:
if (bp->b_cont) {
freemsg(bp->b_cont);
bp->b_cont = NULL;
}
bp->b_datap->db_type = M_IOCDATA;
bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
resp = (struct copyresp *)bp->b_rptr;
resp->cp_rval = (caddr_t)1; /* failure */
/*
* Protect against the driver passing up
* messages after it has done a qprocsoff.
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else
qreply(q, bp);
break;
case M_IOCTL:
if (bp->b_cont) {
freemsg(bp->b_cont);
bp->b_cont = NULL;
}
bp->b_datap->db_type = M_IOCNAK;
/*
* Protect against the driver passing up
* messages after it has done a qprocsoff.
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else
qreply(q, bp);
break;
default:
freemsg(bp);
break;
}
return (0);
}
/*
* Clean up after a process when it closes a stream. This is called
* from closef for all closes, whereas strclose is called only for the
* last close on a stream. The siglist is scanned for entries for the
* current process, and these are removed.
*/
void
strclean(struct vnode *vp)
{
strsig_t *ssp, *pssp, *tssp;
stdata_t *stp;
int update = 0;
TRACE_1(TR_FAC_STREAMS_FR,
TR_STRCLEAN, "strclean:%p", vp);
stp = vp->v_stream;
pssp = NULL;
mutex_enter(&stp->sd_lock);
ssp = stp->sd_siglist;
while (ssp) {
if (ssp->ss_pidp == curproc->p_pidp) {
tssp = ssp->ss_next;
if (pssp)
pssp->ss_next = tssp;
else
stp->sd_siglist = tssp;
mutex_enter(&pidlock);
PID_RELE(ssp->ss_pidp);
mutex_exit(&pidlock);
kmem_free(ssp, sizeof (strsig_t));
update = 1;
ssp = tssp;
} else {
pssp = ssp;
ssp = ssp->ss_next;
}
}
if (update) {
stp->sd_sigflags = 0;
for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
stp->sd_sigflags |= ssp->ss_events;
}
mutex_exit(&stp->sd_lock);
}
/*
* Used on the last close to remove any remaining items on the siglist.
* These could be present on the siglist due to I_ESETSIG calls that
* use process groups or processed that do not have an open file descriptor
* for this stream (Such entries would not be removed by strclean).
*/
static void
strcleanall(struct vnode *vp)
{
strsig_t *ssp, *nssp;
stdata_t *stp;
stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
ssp = stp->sd_siglist;
stp->sd_siglist = NULL;
while (ssp) {
nssp = ssp->ss_next;
mutex_enter(&pidlock);
PID_RELE(ssp->ss_pidp);
mutex_exit(&pidlock);
kmem_free(ssp, sizeof (strsig_t));
ssp = nssp;
}
stp->sd_sigflags = 0;
mutex_exit(&stp->sd_lock);
}
/*
* Retrieve the next message from the logical stream head read queue
* using either rwnext (if sync stream) or getq_noenab.
* It is the callers responsibility to call qbackenable after
* it is finished with the message. The caller should not call
* qbackenable until after any putback calls to avoid spurious backenabling.
*/
mblk_t *
strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
int *errorp)
{
mblk_t *bp;
int error;
ssize_t rbytes = 0;
/* Holding sd_lock prevents the read queue from changing */
ASSERT(MUTEX_HELD(&stp->sd_lock));
if (uiop != NULL && stp->sd_struiordq != NULL &&
q->q_first == NULL &&
(!first || (stp->sd_wakeq & RSLEEP))) {
/*
* Stream supports rwnext() for the read side.
* If this is the first time we're called by e.g. strread
* only do the downcall if there is a deferred wakeup
* (registered in sd_wakeq).
*/
struiod_t uiod;
if (first)
stp->sd_wakeq &= ~RSLEEP;
(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
uiod.d_mp = 0;
/*
* Mark that a thread is in rwnext on the read side
* to prevent strrput from nacking ioctls immediately.
* When the last concurrent rwnext returns
* the ioctls are nack'ed.
*/
ASSERT(MUTEX_HELD(&stp->sd_lock));
stp->sd_struiodnak++;
/*
* Note: rwnext will drop sd_lock.
*/
error = rwnext(q, &uiod);
ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
mutex_enter(&stp->sd_lock);
stp->sd_struiodnak--;
while (stp->sd_struiodnak == 0 &&
((bp = stp->sd_struionak) != NULL)) {
stp->sd_struionak = bp->b_next;
bp->b_next = NULL;
bp->b_datap->db_type = M_IOCNAK;
/*
* Protect against the driver passing up
* messages after it has done a qprocsoff.
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else {
mutex_exit(&stp->sd_lock);
qreply(q, bp);
mutex_enter(&stp->sd_lock);
}
}
ASSERT(MUTEX_HELD(&stp->sd_lock));
if (error == 0 || error == EWOULDBLOCK) {
if ((bp = uiod.d_mp) != NULL) {
*errorp = 0;
ASSERT(MUTEX_HELD(&stp->sd_lock));
return (bp);
}
error = 0;
} else if (error == EINVAL) {
/*
* The stream plumbing must have
* changed while we were away, so
* just turn off rwnext()s.
*/
error = 0;
} else if (error == EBUSY) {
/*
* The module might have data in transit using putnext
* Fall back on waiting + getq.
*/
error = 0;
} else {
*errorp = error;
ASSERT(MUTEX_HELD(&stp->sd_lock));
return (NULL);
}
/*
* Try a getq in case a rwnext() generated mblk
* has bubbled up via strrput().
*/
}
*errorp = 0;
ASSERT(MUTEX_HELD(&stp->sd_lock));
/*
* If we have a valid uio, try and use this as a guide for how
* many bytes to retrieve from the queue via getq_noenab().
* Doing this can avoid unneccesary counting of overlong
* messages in putback(). We currently only do this for sockets
* and only if there is no sd_rputdatafunc hook.
*
* The sd_rputdatafunc hook transforms the entire message
* before any bytes in it can be given to a client. So, rbytes
* must be 0 if there is a hook.
*/
if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
(stp->sd_rputdatafunc == NULL))
rbytes = uiop->uio_resid;
return (getq_noenab(q, rbytes));
}
/*
* Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
* If the message does not fit in the uio the remainder of it is returned;
* otherwise NULL is returned. Any embedded zero-length mblk_t's are
* consumed, even if uio_resid reaches zero. On error, `*errorp' is set to
* the error code, the message is consumed, and NULL is returned.
*/
static mblk_t *
struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
{
int error;
ptrdiff_t n;
mblk_t *nbp;
ASSERT(bp->b_wptr >= bp->b_rptr);
do {
if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
ASSERT(n > 0);
error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
if (error != 0) {
freemsg(bp);
*errorp = error;
return (NULL);
}
}
bp->b_rptr += n;
while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
nbp = bp;
bp = bp->b_cont;
freeb(nbp);
}
} while (bp != NULL && uiop->uio_resid > 0);
*errorp = 0;
return (bp);
}
/*
* Read a stream according to the mode flags in sd_flag:
*
* (default mode) - Byte stream, msg boundaries are ignored
* RD_MSGDIS (msg discard) - Read on msg boundaries and throw away
* any data remaining in msg
* RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
* any remaining data on head of read queue
*
* Consume readable messages on the front of the queue until
* ttolwp(curthread)->lwp_count
* is satisfied, the readable messages are exhausted, or a message
* boundary is reached in a message mode. If no data was read and
* the stream was not opened with the NDELAY flag, block until data arrives.
* Otherwise return the data read and update the count.
*
* In default mode a 0 length message signifies end-of-file and terminates
* a read in progress. The 0 length message is removed from the queue
* only if it is the only message read (no data is read).
*
* An attempt to read an M_PROTO or M_PCPROTO message results in an
* EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
* If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
* If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
* are unlinked from and M_DATA blocks in the message, the protos are
* thrown away, and the data is read.
*/
/* ARGSUSED */
int
strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
{
struct stdata *stp;
mblk_t *bp, *nbp;
queue_t *q;
int error = 0;
uint_t old_sd_flag;
int first;
char rflg;
uint_t mark; /* Contains MSG*MARK and _LASTMARK */
#define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
short delim;
unsigned char pri = 0;
char waitflag;
unsigned char type;
TRACE_1(TR_FAC_STREAMS_FR,
TR_STRREAD_ENTER, "strread:%p", vp);
ASSERT(vp->v_stream);
stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
if ((error = i_straccess(stp, JCREAD)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
if (stp->sd_flag & (STRDERR|STPLEX)) {
error = strgeterr(stp, STRDERR|STPLEX, 0);
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
/*
* Loop terminates when uiop->uio_resid == 0.
*/
rflg = 0;
waitflag = READWAIT;
q = _RD(stp->sd_wrq);
for (;;) {
ASSERT(MUTEX_HELD(&stp->sd_lock));
old_sd_flag = stp->sd_flag;
mark = 0;
delim = 0;
first = 1;
while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
int done = 0;
ASSERT(MUTEX_HELD(&stp->sd_lock));
if (error != 0)
goto oops;
if (stp->sd_flag & (STRHUP|STREOF)) {
goto oops;
}
if (rflg && !(stp->sd_flag & STRDELIM)) {
goto oops;
}
/*
* If a read(fd,buf,0) has been done, there is no
* need to sleep. We always have zero bytes to
* return.
*/
if (uiop->uio_resid == 0) {
goto oops;
}
qbackenable(q, 0);
TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
"strread calls strwaitq:%p, %p, %p",
vp, uiop, crp);
if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
uiop->uio_fmode, -1, &done)) != 0 || done) {
TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
"strread error or done:%p, %p, %p",
vp, uiop, crp);
if ((uiop->uio_fmode & FNDELAY) &&
(stp->sd_flag & OLDNDELAY) &&
(error == EAGAIN))
error = 0;
goto oops;
}
TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
"strread awakes:%p, %p, %p", vp, uiop, crp);
if ((error = i_straccess(stp, JCREAD)) != 0) {
goto oops;
}
first = 0;
}
ASSERT(MUTEX_HELD(&stp->sd_lock));
ASSERT(bp);
pri = bp->b_band;
/*
* Extract any mark information. If the message is not
* completely consumed this information will be put in the mblk
* that is putback.
* If MSGMARKNEXT is set and the message is completely consumed
* the STRATMARK flag will be set below. Likewise, if
* MSGNOTMARKNEXT is set and the message is
* completely consumed STRNOTATMARK will be set.
*
* For some unknown reason strread only breaks the read at the
* last mark.
*/
mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
(MSGMARKNEXT|MSGNOTMARKNEXT));
if (mark != 0 && bp == stp->sd_mark) {
if (rflg) {
putback(stp, q, bp, pri);
goto oops;
}
mark |= _LASTMARK;
stp->sd_mark = NULL;
}
if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
delim = 1;
mutex_exit(&stp->sd_lock);
if (STREAM_NEEDSERVICE(stp))
stream_runservice(stp);
type = bp->b_datap->db_type;
switch (type) {
case M_DATA:
ismdata:
if (msgnodata(bp)) {
if (mark || delim) {
freemsg(bp);
} else if (rflg) {
/*
* If already read data put zero
* length message back on queue else
* free msg and return 0.
*/
bp->b_band = pri;
mutex_enter(&stp->sd_lock);
putback(stp, q, bp, pri);
mutex_exit(&stp->sd_lock);
} else {
freemsg(bp);
}
error = 0;
goto oops1;
}
rflg = 1;
waitflag |= NOINTR;
bp = struiocopyout(bp, uiop, &error);
if (error != 0)
goto oops1;
mutex_enter(&stp->sd_lock);
if (bp) {
/*
* Have remaining data in message.
* Free msg if in discard mode.
*/
if (stp->sd_read_opt & RD_MSGDIS) {
freemsg(bp);
} else {
bp->b_band = pri;
if ((mark & _LASTMARK) &&
(stp->sd_mark == NULL))
stp->sd_mark = bp;
bp->b_flag |= mark & ~_LASTMARK;
if (delim)
bp->b_flag |= MSGDELIM;
if (msgnodata(bp))
freemsg(bp);
else
putback(stp, q, bp, pri);
}
} else {
/*
* Consumed the complete message.
* Move the MSG*MARKNEXT information
* to the stream head just in case
* the read queue becomes empty.
*
* If the stream head was at the mark
* (STRATMARK) before we dropped sd_lock above
* and some data was consumed then we have
* moved past the mark thus STRATMARK is
* cleared. However, if a message arrived in
* strrput during the copyout above causing
* STRATMARK to be set we can not clear that
* flag.
*/
if (mark &
(MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
if (mark & MSGMARKNEXT) {
stp->sd_flag &= ~STRNOTATMARK;
stp->sd_flag |= STRATMARK;
} else if (mark & MSGNOTMARKNEXT) {
stp->sd_flag &= ~STRATMARK;
stp->sd_flag |= STRNOTATMARK;
} else {
stp->sd_flag &=
~(STRATMARK|STRNOTATMARK);
}
} else if (rflg && (old_sd_flag & STRATMARK)) {
stp->sd_flag &= ~STRATMARK;
}
}
/*
* Check for signal messages at the front of the read
* queue and generate the signal(s) if appropriate.
* The only signal that can be on queue is M_SIG at
* this point.
*/
while ((((bp = q->q_first)) != NULL) &&
(bp->b_datap->db_type == M_SIG)) {
bp = getq_noenab(q, 0);
/*
* sd_lock is held so the content of the
* read queue can not change.
*/
ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG);
strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
mutex_exit(&stp->sd_lock);
freemsg(bp);
if (STREAM_NEEDSERVICE(stp))
stream_runservice(stp);
mutex_enter(&stp->sd_lock);
}
if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
delim ||
(stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
goto oops;
}
continue;
case M_SIG:
strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
freemsg(bp);
mutex_enter(&stp->sd_lock);
continue;
case M_PROTO:
case M_PCPROTO:
/*
* Only data messages are readable.
* Any others generate an error, unless
* RD_PROTDIS or RD_PROTDAT is set.
*/
if (stp->sd_read_opt & RD_PROTDAT) {
for (nbp = bp; nbp; nbp = nbp->b_next) {
if ((nbp->b_datap->db_type ==
M_PROTO) ||
(nbp->b_datap->db_type ==
M_PCPROTO)) {
nbp->b_datap->db_type = M_DATA;
} else {
break;
}
}
/*
* clear stream head hi pri flag based on
* first message
*/
if (type == M_PCPROTO) {
mutex_enter(&stp->sd_lock);
stp->sd_flag &= ~STRPRI;
mutex_exit(&stp->sd_lock);
}
goto ismdata;
} else if (stp->sd_read_opt & RD_PROTDIS) {
/*
* discard non-data messages
*/
while (bp &&
((bp->b_datap->db_type == M_PROTO) ||
(bp->b_datap->db_type == M_PCPROTO))) {
nbp = unlinkb(bp);
freeb(bp);
bp = nbp;
}
/*
* clear stream head hi pri flag based on
* first message
*/
if (type == M_PCPROTO) {
mutex_enter(&stp->sd_lock);
stp->sd_flag &= ~STRPRI;
mutex_exit(&stp->sd_lock);
}
if (bp) {
bp->b_band = pri;
goto ismdata;
} else {
break;
}
}
/* FALLTHRU */
case M_PASSFP:
if ((bp->b_datap->db_type == M_PASSFP) &&
(stp->sd_read_opt & RD_PROTDIS)) {
freemsg(bp);
break;
}
mutex_enter(&stp->sd_lock);
putback(stp, q, bp, pri);
mutex_exit(&stp->sd_lock);
if (rflg == 0)
error = EBADMSG;
goto oops1;
default:
/*
* Garbage on stream head read queue.
*/
cmn_err(CE_WARN, "bad %x found at stream head\n",
bp->b_datap->db_type);
freemsg(bp);
goto oops1;
}
mutex_enter(&stp->sd_lock);
}
oops:
mutex_exit(&stp->sd_lock);
oops1:
qbackenable(q, pri);
return (error);
#undef _LASTMARK
}
/*
* Default processing of M_PROTO/M_PCPROTO messages.
* Determine which wakeups and signals are needed.
* This can be replaced by a user-specified procedure for kernel users
* of STREAMS.
*/
/* ARGSUSED */
mblk_t *
strrput_proto(vnode_t *vp, mblk_t *mp,
strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
{
*wakeups = RSLEEP;
*allmsgsigs = 0;
switch (mp->b_datap->db_type) {
case M_PROTO:
if (mp->b_band == 0) {
*firstmsgsigs = S_INPUT | S_RDNORM;
*pollwakeups = POLLIN | POLLRDNORM;
} else {
*firstmsgsigs = S_INPUT | S_RDBAND;
*pollwakeups = POLLIN | POLLRDBAND;
}
break;
case M_PCPROTO:
*firstmsgsigs = S_HIPRI;
*pollwakeups = POLLPRI;
break;
}
return (mp);
}
/*
* Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
* M_PASSFP messages.
* Determine which wakeups and signals are needed.
* This can be replaced by a user-specified procedure for kernel users
* of STREAMS.
*/
/* ARGSUSED */
mblk_t *
strrput_misc(vnode_t *vp, mblk_t *mp,
strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
{
*wakeups = 0;
*firstmsgsigs = 0;
*allmsgsigs = 0;
*pollwakeups = 0;
return (mp);
}
/*
* Stream read put procedure. Called from downstream driver/module
* with messages for the stream head. Data, protocol, and in-stream
* signal messages are placed on the queue, others are handled directly.
*/
int
strrput(queue_t *q, mblk_t *bp)
{
struct stdata *stp;
ulong_t rput_opt;
strwakeup_t wakeups;
strsigset_t firstmsgsigs; /* Signals if first message on queue */
strsigset_t allmsgsigs; /* Signals for all messages */
strsigset_t signals; /* Signals events to generate */
strpollset_t pollwakeups;
mblk_t *nextbp;
uchar_t band = 0;
int hipri_sig;
stp = (struct stdata *)q->q_ptr;
/*
* Use rput_opt for optimized access to the SR_ flags except
* SR_POLLIN. That flag has to be checked under sd_lock since it
* is modified by strpoll().
*/
rput_opt = stp->sd_rput_opt;
ASSERT(qclaimed(q));
TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
"strrput called with message type:q %p bp %p", q, bp);
/*
* Perform initial processing and pass to the parameterized functions.
*/
ASSERT(bp->b_next == NULL);
switch (bp->b_datap->db_type) {
case M_DATA:
/*
* sockfs is the only consumer of STREOF and when it is set,
* it implies that the receiver is not interested in receiving
* any more data, hence the mblk is freed to prevent unnecessary
* message queueing at the stream head.
*/
if (stp->sd_flag == STREOF) {
freemsg(bp);
return (0);
}
if ((rput_opt & SR_IGN_ZEROLEN) &&
bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
/*
* Ignore zero-length M_DATA messages. These might be
* generated by some transports.
* The zero-length M_DATA messages, even if they
* are ignored, should effect the atmark tracking and
* should wake up a thread sleeping in strwaitmark.
*/
mutex_enter(&stp->sd_lock);
if (bp->b_flag & MSGMARKNEXT) {
/*
* Record the position of the mark either
* in q_last or in STRATMARK.
*/
if (q->q_last != NULL) {
q->q_last->b_flag &= ~MSGNOTMARKNEXT;
q->q_last->b_flag |= MSGMARKNEXT;
} else {
stp->sd_flag &= ~STRNOTATMARK;
stp->sd_flag |= STRATMARK;
}
} else if (bp->b_flag & MSGNOTMARKNEXT) {
/*
* Record that this is not the position of
* the mark either in q_last or in
* STRNOTATMARK.
*/
if (q->q_last != NULL) {
q->q_last->b_flag &= ~MSGMARKNEXT;
q->q_last->b_flag |= MSGNOTMARKNEXT;
} else {
stp->sd_flag &= ~STRATMARK;
stp->sd_flag |= STRNOTATMARK;
}
}
if (stp->sd_flag & RSLEEP) {
stp->sd_flag &= ~RSLEEP;
cv_broadcast(&q->q_wait);
}
mutex_exit(&stp->sd_lock);
freemsg(bp);
return (0);
}
wakeups = RSLEEP;
if (bp->b_band == 0) {
firstmsgsigs = S_INPUT | S_RDNORM;
pollwakeups = POLLIN | POLLRDNORM;
} else {
firstmsgsigs = S_INPUT | S_RDBAND;
pollwakeups = POLLIN | POLLRDBAND;
}
if (rput_opt & SR_SIGALLDATA)
allmsgsigs = firstmsgsigs;
else
allmsgsigs = 0;
mutex_enter(&stp->sd_lock);
if ((rput_opt & SR_CONSOL_DATA) &&
(q->q_last != NULL) &&
(bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
/*
* Consolidate an M_DATA message onto an M_DATA,
* M_PROTO, or M_PCPROTO by merging it with q_last.
* The consolidation does not take place if
* the old message is marked with either of the
* marks or the delim flag or if the new
* message is marked with MSGMARK. The MSGMARK
* check is needed to handle the odd semantics of
* MSGMARK where essentially the whole message
* is to be treated as marked.
* Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the
* new message to the front of the b_cont chain.
*/
mblk_t *lbp = q->q_last;
unsigned char db_type = lbp->b_datap->db_type;
if ((db_type == M_DATA || db_type == M_PROTO ||
db_type == M_PCPROTO) &&
!(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
rmvq_noenab(q, lbp);
/*
* The first message in the b_cont list
* tracks MSGMARKNEXT and MSGNOTMARKNEXT.
* We need to handle the case where we
* are appending:
*
* 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
* 2) a MSGMARKNEXT to a plain message.
* 3) a MSGNOTMARKNEXT to a plain message
* 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
* message.
*
* Thus we never append a MSGMARKNEXT or
* MSGNOTMARKNEXT to a MSGMARKNEXT message.
*/
if (bp->b_flag & MSGMARKNEXT) {
lbp->b_flag |= MSGMARKNEXT;
lbp->b_flag &= ~MSGNOTMARKNEXT;
bp->b_flag &= ~MSGMARKNEXT;
} else if (bp->b_flag & MSGNOTMARKNEXT) {
lbp->b_flag |= MSGNOTMARKNEXT;
bp->b_flag &= ~MSGNOTMARKNEXT;
}
linkb(lbp, bp);
bp = lbp;
/*
* The new message logically isn't the first
* even though the q_first check below thinks
* it is. Clear the firstmsgsigs to make it
* not appear to be first.
*/
firstmsgsigs = 0;
}
}
break;
case M_PASSFP:
wakeups = RSLEEP;
allmsgsigs = 0;
if (bp->b_band == 0) {
firstmsgsigs = S_INPUT | S_RDNORM;
pollwakeups = POLLIN | POLLRDNORM;
} else {
firstmsgsigs = S_INPUT | S_RDBAND;
pollwakeups = POLLIN | POLLRDBAND;
}
mutex_enter(&stp->sd_lock);
break;
case M_PROTO:
case M_PCPROTO:
ASSERT(stp->sd_rprotofunc != NULL);
bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
&wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
#define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
#define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
POLLWRBAND)
ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
ASSERT((firstmsgsigs & ~ALLSIG) == 0);
ASSERT((allmsgsigs & ~ALLSIG) == 0);
ASSERT((pollwakeups & ~ALLPOLL) == 0);
mutex_enter(&stp->sd_lock);
break;
default:
ASSERT(stp->sd_rmiscfunc != NULL);
bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
&wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
ASSERT((firstmsgsigs & ~ALLSIG) == 0);
ASSERT((allmsgsigs & ~ALLSIG) == 0);
ASSERT((pollwakeups & ~ALLPOLL) == 0);
#undef ALLSIG
#undef ALLPOLL
mutex_enter(&stp->sd_lock);
break;
}
ASSERT(MUTEX_HELD(&stp->sd_lock));
/* By default generate superset of signals */
signals = (firstmsgsigs | allmsgsigs);
/*
* The proto and misc functions can return multiple messages
* as a b_next chain. Such messages are processed separately.
*/
one_more:
hipri_sig = 0;
if (bp == NULL) {
nextbp = NULL;
} else {
nextbp = bp->b_next;
bp->b_next = NULL;
switch (bp->b_datap->db_type) {
case M_PCPROTO:
/*
* Only one priority protocol message is allowed at the
* stream head at a time.
*/
if (stp->sd_flag & STRPRI) {
TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
"M_PCPROTO already at head");
freemsg(bp);
mutex_exit(&stp->sd_lock);
goto done;
}
stp->sd_flag |= STRPRI;
hipri_sig = 1;
/* FALLTHRU */
case M_DATA:
case M_PROTO:
case M_PASSFP:
band = bp->b_band;
/*
* Marking doesn't work well when messages
* are marked in more than one band. We only
* remember the last message received, even if
* it is placed on the queue ahead of other
* marked messages.
*/
if (bp->b_flag & MSGMARK)
stp->sd_mark = bp;
(void) putq(q, bp);
/*
* If message is a PCPROTO message, always use
* firstmsgsigs to determine if a signal should be
* sent as strrput is the only place to send
* signals for PCPROTO. Other messages are based on
* the STRGETINPROG flag. The flag determines if
* strrput or (k)strgetmsg will be responsible for
* sending the signals, in the firstmsgsigs case.
*/
if ((hipri_sig == 1) ||
(((stp->sd_flag & STRGETINPROG) == 0) &&
(q->q_first == bp)))
signals = (firstmsgsigs | allmsgsigs);
else
signals = allmsgsigs;
break;
default:
mutex_exit(&stp->sd_lock);
(void) strrput_nondata(q, bp);
mutex_enter(&stp->sd_lock);
break;
}
}
ASSERT(MUTEX_HELD(&stp->sd_lock));
/*
* Wake sleeping read/getmsg and cancel deferred wakeup
*/
if (wakeups & RSLEEP)
stp->sd_wakeq &= ~RSLEEP;
wakeups &= stp->sd_flag;
if (wakeups & RSLEEP) {
stp->sd_flag &= ~RSLEEP;
cv_broadcast(&q->q_wait);
}
if (wakeups & WSLEEP) {
stp->sd_flag &= ~WSLEEP;
cv_broadcast(&_WR(q)->q_wait);
}
if (pollwakeups != 0) {
if (pollwakeups == (POLLIN | POLLRDNORM)) {
/*
* Can't use rput_opt since it was not
* read when sd_lock was held and SR_POLLIN is changed
* by strpoll() under sd_lock.
*/
if (!(stp->sd_rput_opt & SR_POLLIN))
goto no_pollwake;
stp->sd_rput_opt &= ~SR_POLLIN;
}
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, pollwakeups);
mutex_enter(&stp->sd_lock);
}
no_pollwake:
/*
* strsendsig can handle multiple signals with a
* single call.
*/
if (stp->sd_sigflags & signals)
strsendsig(stp->sd_siglist, signals, band, 0);
mutex_exit(&stp->sd_lock);
done:
if (nextbp == NULL)
return (0);
/*
* Any signals were handled the first time.
* Wakeups and pollwakeups are redone to avoid any race
* conditions - all the messages are not queued until the
* last message has been processed by strrput.
*/
bp = nextbp;
signals = firstmsgsigs = allmsgsigs = 0;
mutex_enter(&stp->sd_lock);
goto one_more;
}
static void
log_dupioc(queue_t *rq, mblk_t *bp)
{
queue_t *wq, *qp;
char *modnames, *mnp, *dname;
size_t maxmodstr;
boolean_t islast;
/*
* Allocate a buffer large enough to hold the names of nstrpush modules
* and one driver, with spaces between and NUL terminator. If we can't
* get memory, then we'll just log the driver name.
*/
maxmodstr = nstrpush * (FMNAMESZ + 1);
mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
/* march down write side to print log message down to the driver */
wq = WR(rq);
/* make sure q_next doesn't shift around while we're grabbing data */
claimstr(wq);
qp = wq->q_next;
do {
dname = Q2NAME(qp);
islast = !SAMESTR(qp) || qp->q_next == NULL;
if (modnames == NULL) {
/*
* If we don't have memory, then get the driver name in
* the log where we can see it. Note that memory
* pressure is a possible cause of these sorts of bugs.
*/
if (islast) {
modnames = dname;
maxmodstr = 0;
}
} else {
mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
if (!islast)
*mnp++ = ' ';
}
qp = qp->q_next;
} while (!islast);
releasestr(wq);
/* Cannot happen unless stream head is corrupt. */
ASSERT(modnames != NULL);
(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
SL_CONSOLE|SL_TRACE|SL_ERROR,
"Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
(DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
if (maxmodstr != 0)
kmem_free(modnames, maxmodstr);
}
int
strrput_nondata(queue_t *q, mblk_t *bp)
{
struct stdata *stp;
struct iocblk *iocbp;
struct stroptions *sop;
struct copyreq *reqp;
struct copyresp *resp;
unsigned char bpri;
unsigned char flushed_already = 0;
stp = (struct stdata *)q->q_ptr;
ASSERT(!(stp->sd_flag & STPLEX));
ASSERT(qclaimed(q));
switch (bp->b_datap->db_type) {
case M_ERROR:
/*
* An error has occurred downstream, the errno is in the first
* bytes of the message.
*/
if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */
unsigned char rw = 0;
mutex_enter(&stp->sd_lock);
if (*bp->b_rptr != NOERROR) { /* read error */
if (*bp->b_rptr != 0) {
if (stp->sd_flag & STRDERR)
flushed_already |= FLUSHR;
stp->sd_flag |= STRDERR;
rw |= FLUSHR;
} else {
stp->sd_flag &= ~STRDERR;
}
stp->sd_rerror = *bp->b_rptr;
}
bp->b_rptr++;
if (*bp->b_rptr != NOERROR) { /* write error */
if (*bp->b_rptr != 0) {
if (stp->sd_flag & STWRERR)
flushed_already |= FLUSHW;
stp->sd_flag |= STWRERR;
rw |= FLUSHW;
} else {
stp->sd_flag &= ~STWRERR;
}
stp->sd_werror = *bp->b_rptr;
}
if (rw) {
TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
"strrput cv_broadcast:q %p, bp %p",
q, bp);
cv_broadcast(&q->q_wait); /* readers */
cv_broadcast(&_WR(q)->q_wait); /* writers */
cv_broadcast(&stp->sd_monitor); /* ioctllers */
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, POLLERR);
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & S_ERROR)
strsendsig(stp->sd_siglist, S_ERROR, 0,
((rw & FLUSHR) ? stp->sd_rerror :
stp->sd_werror));
mutex_exit(&stp->sd_lock);
/*
* Send the M_FLUSH only
* for the first M_ERROR
* message on the stream
*/
if (flushed_already == rw) {
freemsg(bp);
return (0);
}
bp->b_datap->db_type = M_FLUSH;
*bp->b_rptr = rw;
bp->b_wptr = bp->b_rptr + 1;
/*
* Protect against the driver
* passing up messages after
* it has done a qprocsoff
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else
qreply(q, bp);
return (0);
} else
mutex_exit(&stp->sd_lock);
} else if (*bp->b_rptr != 0) { /* Old flavor */
if (stp->sd_flag & (STRDERR|STWRERR))
flushed_already = FLUSHRW;
mutex_enter(&stp->sd_lock);
stp->sd_flag |= (STRDERR|STWRERR);
stp->sd_rerror = *bp->b_rptr;
stp->sd_werror = *bp->b_rptr;
TRACE_2(TR_FAC_STREAMS_FR,
TR_STRRPUT_WAKE2,
"strrput wakeup #2:q %p, bp %p", q, bp);
cv_broadcast(&q->q_wait); /* the readers */
cv_broadcast(&_WR(q)->q_wait); /* the writers */
cv_broadcast(&stp->sd_monitor); /* ioctllers */
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, POLLERR);
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & S_ERROR)
strsendsig(stp->sd_siglist, S_ERROR, 0,
(stp->sd_werror ? stp->sd_werror :
stp->sd_rerror));
mutex_exit(&stp->sd_lock);
/*
* Send the M_FLUSH only
* for the first M_ERROR
* message on the stream
*/
if (flushed_already != FLUSHRW) {
bp->b_datap->db_type = M_FLUSH;
*bp->b_rptr = FLUSHRW;
/*
* Protect against the driver passing up
* messages after it has done a
* qprocsoff.
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else
qreply(q, bp);
return (0);
}
}
freemsg(bp);
return (0);
case M_HANGUP:
freemsg(bp);
mutex_enter(&stp->sd_lock);
stp->sd_werror = ENXIO;
stp->sd_flag |= STRHUP;
stp->sd_flag &= ~(WSLEEP|RSLEEP);
/*
* send signal if controlling tty
*/
if (stp->sd_sidp) {
prsignal(stp->sd_sidp, SIGHUP);
if (stp->sd_sidp != stp->sd_pgidp)
pgsignal(stp->sd_pgidp, SIGTSTP);
}
/*
* wake up read, write, and exception pollers and
* reset wakeup mechanism.
*/
cv_broadcast(&q->q_wait); /* the readers */
cv_broadcast(&_WR(q)->q_wait); /* the writers */
cv_broadcast(&stp->sd_monitor); /* the ioctllers */
strhup(stp);
mutex_exit(&stp->sd_lock);
return (0);
case M_UNHANGUP:
freemsg(bp);
mutex_enter(&stp->sd_lock);
stp->sd_werror = 0;
stp->sd_flag &= ~STRHUP;
mutex_exit(&stp->sd_lock);
return (0);
case M_SIG:
/*
* Someone downstream wants to post a signal. The
* signal to post is contained in the first byte of the
* message. If the message would go on the front of
* the queue, send a signal to the process group
* (if not SIGPOLL) or to the siglist processes
* (SIGPOLL). If something is already on the queue,
* OR if we are delivering a delayed suspend (*sigh*
* another "tty" hack) and there's no one sleeping already,
* just enqueue the message.
*/
mutex_enter(&stp->sd_lock);
if (q->q_first || (*bp->b_rptr == SIGTSTP &&
!(stp->sd_flag & RSLEEP))) {
(void) putq(q, bp);
mutex_exit(&stp->sd_lock);
return (0);
}
mutex_exit(&stp->sd_lock);
/* FALLTHRU */
case M_PCSIG:
/*
* Don't enqueue, just post the signal.
*/
strsignal(stp, *bp->b_rptr, 0L);
freemsg(bp);
return (0);
case M_CMD:
if (MBLKL(bp) != sizeof (cmdblk_t)) {
freemsg(bp);
return (0);
}
mutex_enter(&stp->sd_lock);
if (stp->sd_flag & STRCMDWAIT) {
ASSERT(stp->sd_cmdblk == NULL);
stp->sd_cmdblk = bp;
cv_broadcast(&stp->sd_monitor);
mutex_exit(&stp->sd_lock);
} else {
mutex_exit(&stp->sd_lock);
freemsg(bp);
}
return (0);
case M_FLUSH:
/*
* Flush queues. The indication of which queues to flush
* is in the first byte of the message. If the read queue
* is specified, then flush it. If FLUSHBAND is set, just
* flush the band specified by the second byte of the message.
*
* If a module has issued a M_SETOPT to not flush hi
* priority messages off of the stream head, then pass this
* flag into the flushq code to preserve such messages.
*/
if (*bp->b_rptr & FLUSHR) {
mutex_enter(&stp->sd_lock);
if (*bp->b_rptr & FLUSHBAND) {
ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
flushband(q, *(bp->b_rptr + 1), FLUSHALL);
} else
flushq_common(q, FLUSHALL,
stp->sd_read_opt & RFLUSHPCPROT);
if ((q->q_first == NULL) ||
(q->q_first->b_datap->db_type < QPCTL))
stp->sd_flag &= ~STRPRI;
else {
ASSERT(stp->sd_flag & STRPRI);
}
mutex_exit(&stp->sd_lock);
}
if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
*bp->b_rptr &= ~FLUSHR;
bp->b_flag |= MSGNOLOOP;
/*
* Protect against the driver passing up
* messages after it has done a qprocsoff.
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else
qreply(q, bp);
return (0);
}
freemsg(bp);
return (0);
case M_IOCACK:
case M_IOCNAK:
iocbp = (struct iocblk *)bp->b_rptr;
/*
* If not waiting for ACK or NAK then just free msg.
* If incorrect id sequence number then just free msg.
* If already have ACK or NAK for user then this is a
* duplicate, display a warning and free the msg.
*/
mutex_enter(&stp->sd_lock);
if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
(stp->sd_iocid != iocbp->ioc_id)) {
/*
* If the ACK/NAK is a dup, display a message
* Dup is when sd_iocid == ioc_id, and
* sd_iocblk == <valid ptr> or -1 (the former
* is when an ioctl has been put on the stream
* head, but has not yet been consumed, the
* later is when it has been consumed).
*/
if ((stp->sd_iocid == iocbp->ioc_id) &&
(stp->sd_iocblk != NULL)) {
log_dupioc(q, bp);
}
freemsg(bp);
mutex_exit(&stp->sd_lock);
return (0);
}
/*
* Assign ACK or NAK to user and wake up.
*/
stp->sd_iocblk = bp;
cv_broadcast(&stp->sd_monitor);
mutex_exit(&stp->sd_lock);
return (0);
case M_COPYIN:
case M_COPYOUT:
reqp = (struct copyreq *)bp->b_rptr;
/*
* If not waiting for ACK or NAK then just fail request.
* If already have ACK, NAK, or copy request, then just
* fail request.
* If incorrect id sequence number then just fail request.
*/
mutex_enter(&stp->sd_lock);
if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
(stp->sd_iocid != reqp->cq_id)) {
if (bp->b_cont) {
freemsg(bp->b_cont);
bp->b_cont = NULL;
}
bp->b_datap->db_type = M_IOCDATA;
bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
resp = (struct copyresp *)bp->b_rptr;
resp->cp_rval = (caddr_t)1; /* failure */
mutex_exit(&stp->sd_lock);
putnext(stp->sd_wrq, bp);
return (0);
}
/*
* Assign copy request to user and wake up.
*/
stp->sd_iocblk = bp;
cv_broadcast(&stp->sd_monitor);
mutex_exit(&stp->sd_lock);
return (0);
case M_SETOPTS:
/*
* Set stream head options (read option, write offset,
* min/max packet size, and/or high/low water marks for
* the read side only).
*/
bpri = 0;
sop = (struct stroptions *)bp->b_rptr;
mutex_enter(&stp->sd_lock);
if (sop->so_flags & SO_READOPT) {
switch (sop->so_readopt & RMODEMASK) {
case RNORM:
stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
break;
case RMSGD:
stp->sd_read_opt =
((stp->sd_read_opt & ~RD_MSGNODIS) |
RD_MSGDIS);
break;
case RMSGN:
stp->sd_read_opt =
((stp->sd_read_opt & ~RD_MSGDIS) |
RD_MSGNODIS);
break;
}
switch (sop->so_readopt & RPROTMASK) {
case RPROTNORM:
stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
break;
case RPROTDAT:
stp->sd_read_opt =
((stp->sd_read_opt & ~RD_PROTDIS) |
RD_PROTDAT);
break;
case RPROTDIS:
stp->sd_read_opt =
((stp->sd_read_opt & ~RD_PROTDAT) |
RD_PROTDIS);
break;
}
switch (sop->so_readopt & RFLUSHMASK) {
case RFLUSHPCPROT:
/*
* This sets the stream head to NOT flush
* M_PCPROTO messages.
*/
stp->sd_read_opt |= RFLUSHPCPROT;
break;
}
}
if (sop->so_flags & SO_ERROPT) {
switch (sop->so_erropt & RERRMASK) {
case RERRNORM:
stp->sd_flag &= ~STRDERRNONPERSIST;
break;
case RERRNONPERSIST:
stp->sd_flag |= STRDERRNONPERSIST;
break;
}
switch (sop->so_erropt & WERRMASK) {
case WERRNORM:
stp->sd_flag &= ~STWRERRNONPERSIST;
break;
case WERRNONPERSIST:
stp->sd_flag |= STWRERRNONPERSIST;
break;
}
}
if (sop->so_flags & SO_COPYOPT) {
if (sop->so_copyopt & ZCVMSAFE) {
stp->sd_copyflag |= STZCVMSAFE;
stp->sd_copyflag &= ~STZCVMUNSAFE;
} else if (sop->so_copyopt & ZCVMUNSAFE) {
stp->sd_copyflag |= STZCVMUNSAFE;
stp->sd_copyflag &= ~STZCVMSAFE;
}
if (sop->so_copyopt & COPYCACHED) {
stp->sd_copyflag |= STRCOPYCACHED;
}
}
if (sop->so_flags & SO_WROFF)
stp->sd_wroff = sop->so_wroff;
if (sop->so_flags & SO_TAIL)
stp->sd_tail = sop->so_tail;
if (sop->so_flags & SO_MINPSZ)
q->q_minpsz = sop->so_minpsz;
if (sop->so_flags & SO_MAXPSZ)
q->q_maxpsz = sop->so_maxpsz;
if (sop->so_flags & SO_MAXBLK)
stp->sd_maxblk = sop->so_maxblk;
if (sop->so_flags & SO_HIWAT) {
if (sop->so_flags & SO_BAND) {
if (strqset(q, QHIWAT,
sop->so_band, sop->so_hiwat)) {
cmn_err(CE_WARN, "strrput: could not "
"allocate qband\n");
} else {
bpri = sop->so_band;
}
} else {
q->q_hiwat = sop->so_hiwat;
}
}
if (sop->so_flags & SO_LOWAT) {
if (sop->so_flags & SO_BAND) {
if (strqset(q, QLOWAT,
sop->so_band, sop->so_lowat)) {
cmn_err(CE_WARN, "strrput: could not "
"allocate qband\n");
} else {
bpri = sop->so_band;
}
} else {
q->q_lowat = sop->so_lowat;
}
}
if (sop->so_flags & SO_MREADON)
stp->sd_flag |= SNDMREAD;
if (sop->so_flags & SO_MREADOFF)
stp->sd_flag &= ~SNDMREAD;
if (sop->so_flags & SO_NDELON)
stp->sd_flag |= OLDNDELAY;
if (sop->so_flags & SO_NDELOFF)
stp->sd_flag &= ~OLDNDELAY;
if (sop->so_flags & SO_ISTTY)
stp->sd_flag |= STRISTTY;
if (sop->so_flags & SO_ISNTTY)
stp->sd_flag &= ~STRISTTY;
if (sop->so_flags & SO_TOSTOP)
stp->sd_flag |= STRTOSTOP;
if (sop->so_flags & SO_TONSTOP)
stp->sd_flag &= ~STRTOSTOP;
if (sop->so_flags & SO_DELIM)
stp->sd_flag |= STRDELIM;
if (sop->so_flags & SO_NODELIM)
stp->sd_flag &= ~STRDELIM;
mutex_exit(&stp->sd_lock);
freemsg(bp);
/* Check backenable in case the water marks changed */
qbackenable(q, bpri);
return (0);
/*
* The following set of cases deal with situations where two stream
* heads are connected to each other (twisted streams). These messages
* have no meaning at the stream head.
*/
case M_BREAK:
case M_CTL:
case M_DELAY:
case M_START:
case M_STOP:
case M_IOCDATA:
case M_STARTI:
case M_STOPI:
freemsg(bp);
return (0);
case M_IOCTL:
/*
* Always NAK this condition
* (makes no sense)
* If there is one or more threads in the read side
* rwnext we have to defer the nacking until that thread
* returns (in strget).
*/
mutex_enter(&stp->sd_lock);
if (stp->sd_struiodnak != 0) {
/*
* Defer NAK to the streamhead. Queue at the end
* the list.
*/
mblk_t *mp = stp->sd_struionak;
while (mp && mp->b_next)
mp = mp->b_next;
if (mp)
mp->b_next = bp;
else
stp->sd_struionak = bp;
bp->b_next = NULL;
mutex_exit(&stp->sd_lock);
return (0);
}
mutex_exit(&stp->sd_lock);
bp->b_datap->db_type = M_IOCNAK;
/*
* Protect against the driver passing up
* messages after it has done a qprocsoff.
*/
if (_OTHERQ(q)->q_next == NULL)
freemsg(bp);
else
qreply(q, bp);
return (0);
default:
#ifdef DEBUG
cmn_err(CE_WARN,
"bad message type %x received at stream head\n",
bp->b_datap->db_type);
#endif
freemsg(bp);
return (0);
}
/* NOTREACHED */
}
/*
* Check if the stream pointed to by `stp' can be written to, and return an
* error code if not. If `eiohup' is set, then return EIO if STRHUP is set.
* If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
* then always return EPIPE and send a SIGPIPE to the invoking thread.
*/
static int
strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
{
int error;
ASSERT(MUTEX_HELD(&stp->sd_lock));
/*
* For modem support, POSIX states that on writes, EIO should
* be returned if the stream has been hung up.
*/
if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
error = EIO;
else
error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
if (error != 0) {
if (!(stp->sd_flag & STPLEX) &&
(stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
tsignal(curthread, SIGPIPE);
error = EPIPE;
}
}
return (error);
}
/*
* Copyin and send data down a stream.
* The caller will allocate and copyin any control part that precedes the
* message and pass that in as mctl.
*
* Caller should *not* hold sd_lock.
* When EWOULDBLOCK is returned the caller has to redo the canputnext
* under sd_lock in order to avoid missing a backenabling wakeup.
*
* Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
*
* Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
* For sync streams we can only ignore flow control by reverting to using
* putnext.
*
* If sd_maxblk is less than *iosize this routine might return without
* transferring all of *iosize. In all cases, on return *iosize will contain
* the amount of data that was transferred.
*/
static int
strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
int b_flag, int pri, int flags)
{
struiod_t uiod;
mblk_t *mp;
queue_t *wqp = stp->sd_wrq;
int error = 0;
ssize_t count = *iosize;
ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
if (uiop != NULL && count >= 0)
flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
if (!(flags & STRUIO_POSTPONE)) {
/*
* Use regular canputnext, strmakedata, putnext sequence.
*/
if (pri == 0) {
if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
freemsg(mctl);
return (EWOULDBLOCK);
}
} else {
if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
freemsg(mctl);
return (EWOULDBLOCK);
}
}
if ((error = strmakedata(iosize, uiop, stp, flags,
&mp)) != 0) {
freemsg(mctl);
/*
* need to change return code to ENOMEM
* so that this is not confused with
* flow control, EAGAIN.
*/
if (error == EAGAIN)
return (ENOMEM);
else
return (error);
}
if (mctl != NULL) {
if (mctl->b_cont == NULL)
mctl->b_cont = mp;
else if (mp != NULL)
linkb(mctl, mp);
mp = mctl;
} else if (mp == NULL)
return (0);
mp->b_flag |= b_flag;
mp->b_band = (uchar_t)pri;
if (flags & MSG_IGNFLOW) {
/*
* XXX Hack: Don't get stuck running service
* procedures. This is needed for sockfs when
* sending the unbind message out of the rput
* procedure - we don't want a put procedure
* to run service procedures.
*/
putnext(wqp, mp);
} else {
stream_willservice(stp);
putnext(wqp, mp);
stream_runservice(stp);
}
return (0);
}
/*
* Stream supports rwnext() for the write side.
*/
if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
freemsg(mctl);
/*
* map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
*/
return (error == EAGAIN ? ENOMEM : error);
}
if (mctl != NULL) {
if (mctl->b_cont == NULL)
mctl->b_cont = mp;
else if (mp != NULL)
linkb(mctl, mp);
mp = mctl;
} else if (mp == NULL) {
return (0);
}
mp->b_flag |= b_flag;
mp->b_band = (uchar_t)pri;
(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
uiod.d_uio.uio_offset = 0;
uiod.d_mp = mp;
error = rwnext(wqp, &uiod);
if (! uiod.d_mp) {
uioskip(uiop, *iosize);
return (error);
}
ASSERT(mp == uiod.d_mp);
if (error == EINVAL) {
/*
* The stream plumbing must have changed while
* we were away, so just turn off rwnext()s.
*/
error = 0;
} else if (error == EBUSY || error == EWOULDBLOCK) {
/*
* Couldn't enter a perimeter or took a page fault,
* so fall-back to putnext().
*/
error = 0;
} else {
freemsg(mp);
return (error);
}
/* Have to check canput before consuming data from the uio */
if (pri == 0) {
if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
freemsg(mp);
return (EWOULDBLOCK);
}
} else {
if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
freemsg(mp);
return (EWOULDBLOCK);
}
}
ASSERT(mp == uiod.d_mp);
/* Copyin data from the uio */
if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
freemsg(mp);
return (error);
}
uioskip(uiop, *iosize);
if (flags & MSG_IGNFLOW) {
/*
* XXX Hack: Don't get stuck running service procedures.
* This is needed for sockfs when sending the unbind message
* out of the rput procedure - we don't want a put procedure
* to run service procedures.
*/
putnext(wqp, mp);
} else {
stream_willservice(stp);
putnext(wqp, mp);
stream_runservice(stp);
}
return (0);
}
/*
* Write attempts to break the write request into messages conforming
* with the minimum and maximum packet sizes set downstream.
*
* Write will not block if downstream queue is full and
* O_NDELAY is set, otherwise it will block waiting for the queue to get room.
*
* A write of zero bytes gets packaged into a zero length message and sent
* downstream like any other message.
*
* If buffers of the requested sizes are not available, the write will
* sleep until the buffers become available.
*
* Write (if specified) will supply a write offset in a message if it
* makes sense. This can be specified by downstream modules as part of
* a M_SETOPTS message. Write will not supply the write offset if it
* cannot supply any data in a buffer. In other words, write will never
* send down an empty packet due to a write offset.
*/
/* ARGSUSED2 */
int
strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
{
return (strwrite_common(vp, uiop, crp, 0));
}
/* ARGSUSED2 */
int
strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
{
struct stdata *stp;
struct queue *wqp;
ssize_t rmin, rmax;
ssize_t iosize;
int waitflag;
int tempmode;
int error = 0;
int b_flag;
ASSERT(vp->v_stream);
stp = vp->v_stream;
mutex_enter(&stp->sd_lock);
if ((error = i_straccess(stp, JCWRITE)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
error = strwriteable(stp, B_TRUE, B_TRUE);
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
mutex_exit(&stp->sd_lock);
wqp = stp->sd_wrq;
/* get these values from them cached in the stream head */
rmin = stp->sd_qn_minpsz;
rmax = stp->sd_qn_maxpsz;
/*
* Check the min/max packet size constraints. If min packet size
* is non-zero, the write cannot be split into multiple messages
* and still guarantee the size constraints.
*/
TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
ASSERT((rmax >= 0) || (rmax == INFPSZ));
if (rmax == 0) {
return (0);
}
if (rmin > 0) {
if (uiop->uio_resid < rmin) {
TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
"strwrite out:q %p out %d error %d",
wqp, 0, ERANGE);
return (ERANGE);
}
if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
"strwrite out:q %p out %d error %d",
wqp, 1, ERANGE);
return (ERANGE);
}
}
/*
* Do until count satisfied or error.
*/
waitflag = WRITEWAIT | wflag;
if (stp->sd_flag & OLDNDELAY)
tempmode = uiop->uio_fmode & ~FNDELAY;
else
tempmode = uiop->uio_fmode;
if (rmax == INFPSZ)
rmax = uiop->uio_resid;
/*
* Note that tempmode does not get used in strput/strmakedata
* but only in strwaitq. The other routines use uio_fmode
* unmodified.
*/
/* LINTED: constant in conditional context */
while (1) { /* breaks when uio_resid reaches zero */
/*
* Determine the size of the next message to be
* packaged. May have to break write into several
* messages based on max packet size.
*/
iosize = MIN(uiop->uio_resid, rmax);
/*
* Put block downstream when flow control allows it.
*/
if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
b_flag = MSGDELIM;
else
b_flag = 0;
for (;;) {
int done = 0;
error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
if (error == 0)
break;
if (error != EWOULDBLOCK)
goto out;
mutex_enter(&stp->sd_lock);
/*
* Check for a missed wakeup.
* Needed since strput did not hold sd_lock across
* the canputnext.
*/
if (canputnext(wqp)) {
/* Try again */
mutex_exit(&stp->sd_lock);
continue;
}
TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
"strwrite wait:q %p wait", wqp);
if ((error = strwaitq(stp, waitflag, (ssize_t)0,
tempmode, -1, &done)) != 0 || done) {
mutex_exit(&stp->sd_lock);
if ((vp->v_type == VFIFO) &&
(uiop->uio_fmode & FNDELAY) &&
(error == EAGAIN))
error = 0;
goto out;
}
TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
"strwrite wake:q %p awakes", wqp);
if ((error = i_straccess(stp, JCWRITE)) != 0) {
mutex_exit(&stp->sd_lock);
goto out;
}
mutex_exit(&stp->sd_lock);
}
waitflag |= NOINTR;
TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
"strwrite resid:q %p uiop %p", wqp, uiop);
if (uiop->uio_resid) {
/* Recheck for errors - needed for sockets */
if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
(stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
mutex_enter(&stp->sd_lock);
error = strwriteable(stp, B_FALSE, B_TRUE);
mutex_exit(&stp->sd_lock);
if (error != 0)
return (error);
}
continue;
}
break;
}
out:
/*
* For historical reasons, applications expect EAGAIN when a data
* mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
*/
if (error == ENOMEM)
error = EAGAIN;
TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
"strwrite out:q %p out %d error %d", wqp, 2, error);
return (error);
}
/*
* Stream head write service routine.
* Its job is to wake up any sleeping writers when a queue
* downstream needs data (part of the flow control in putq and getq).
* It also must wake anyone sleeping on a poll().
* For stream head right below mux module, it must also invoke put procedure
* of next downstream module.
*/
int
strwsrv(queue_t *q)
{
struct stdata *stp;
queue_t *tq;
qband_t *qbp;
int i;
qband_t *myqbp;
int isevent;
unsigned char qbf[NBAND]; /* band flushing backenable flags */
TRACE_1(TR_FAC_STREAMS_FR,
TR_STRWSRV, "strwsrv:q %p", q);
stp = (struct stdata *)q->q_ptr;
ASSERT(qclaimed(q));
mutex_enter(&stp->sd_lock);
ASSERT(!(stp->sd_flag & STPLEX));
if (stp->sd_flag & WSLEEP) {
stp->sd_flag &= ~WSLEEP;
cv_broadcast(&q->q_wait);
}
mutex_exit(&stp->sd_lock);
/* The other end of a stream pipe went away. */
if ((tq = q->q_next) == NULL) {
return (0);
}
/* Find the next module forward that has a service procedure */
claimstr(q);
tq = q->q_nfsrv;
ASSERT(tq != NULL);
if ((q->q_flag & QBACK)) {
if ((tq->q_flag & QFULL)) {
mutex_enter(QLOCK(tq));
if (!(tq->q_flag & QFULL)) {
mutex_exit(QLOCK(tq));
goto wakeup;
}
/*
* The queue must have become full again. Set QWANTW
* again so strwsrv will be back enabled when
* the queue becomes non-full next time.
*/
tq->q_flag |= QWANTW;
mutex_exit(QLOCK(tq));
} else {
wakeup:
pollwakeup(&stp->sd_pollist, POLLWRNORM);
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & S_WRNORM)
strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
mutex_exit(&stp->sd_lock);
}
}
isevent = 0;
i = 1;
bzero((caddr_t)qbf, NBAND);
mutex_enter(QLOCK(tq));
if ((myqbp = q->q_bandp) != NULL)
for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
ASSERT(myqbp);
if ((myqbp->qb_flag & QB_BACK)) {
if (qbp->qb_flag & QB_FULL) {
/*
* The band must have become full again.
* Set QB_WANTW again so strwsrv will
* be back enabled when the band becomes
* non-full next time.
*/
qbp->qb_flag |= QB_WANTW;
} else {
isevent = 1;
qbf[i] = 1;
}
}
myqbp = myqbp->qb_next;
i++;
}
mutex_exit(QLOCK(tq));
if (isevent) {
for (i = tq->q_nband; i; i--) {
if (qbf[i]) {
pollwakeup(&stp->sd_pollist, POLLWRBAND);
mutex_enter(&stp->sd_lock);
if (stp->sd_sigflags & S_WRBAND)
strsendsig(stp->sd_siglist, S_WRBAND,
(uchar_t)i, 0);
mutex_exit(&stp->sd_lock);
}
}
}
releasestr(q);
return (0);
}
/*
* Special case of strcopyin/strcopyout for copying
* struct strioctl that can deal with both data
* models.
*/
#ifdef _LP64
static int
strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
{
struct strioctl32 strioc32;
struct strioctl *striocp;
if (copyflag & U_TO_K) {
ASSERT((copyflag & K_TO_K) == 0);
if ((flag & FMODELS) == DATAMODEL_ILP32) {
if (copyin(from, &strioc32, sizeof (strioc32)))
return (EFAULT);
striocp = (struct strioctl *)to;
striocp->ic_cmd = strioc32.ic_cmd;
striocp->ic_timout = strioc32.ic_timout;
striocp->ic_len = strioc32.ic_len;
striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp;
} else { /* NATIVE data model */
if (copyin(from, to, sizeof (struct strioctl))) {
return (EFAULT);
} else {
return (0);
}
}
} else {
ASSERT(copyflag & K_TO_K);
bcopy(from, to, sizeof (struct strioctl));
}
return (0);
}
static int
strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
{
struct strioctl32 strioc32;
struct strioctl *striocp;
if (copyflag & U_TO_K) {
ASSERT((copyflag & K_TO_K) == 0);
if ((flag & FMODELS) == DATAMODEL_ILP32) {
striocp = (struct strioctl *)from;
strioc32.ic_cmd = striocp->ic_cmd;
strioc32.ic_timout = striocp->ic_timout;
strioc32.ic_len = striocp->ic_len;
strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp;
ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
striocp->ic_dp);
if (copyout(&strioc32, to, sizeof (strioc32)))
return (EFAULT);
} else { /* NATIVE data model */
if (copyout(from, to, sizeof (struct strioctl))) {
return (EFAULT);
} else {
return (0);
}
}
} else {
ASSERT(copyflag & K_TO_K);
bcopy(from, to, sizeof (struct strioctl));
}
return (0);
}
#else /* ! _LP64 */
/* ARGSUSED2 */
static int
strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
{
return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
}
/* ARGSUSED2 */
static int
strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
{
return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
}
#endif /* _LP64 */
/*
* Determine type of job control semantics expected by user. The
* possibilities are:
* JCREAD - Behaves like read() on fd; send SIGTTIN
* JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set
* JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP
* JCGETP - Gets a value in the stream; no signals.
* See straccess in strsubr.c for usage of these values.
*
* This routine also returns -1 for I_STR as a special case; the
* caller must call again with the real ioctl number for
* classification.
*/
static int
job_control_type(int cmd)
{
switch (cmd) {
case I_STR:
return (-1);
case I_RECVFD:
case I_E_RECVFD:
return (JCREAD);
case I_FDINSERT:
case I_SENDFD:
return (JCWRITE);
case TCSETA:
case TCSETAW:
case TCSETAF:
case TCSBRK:
case TCXONC:
case TCFLSH:
case TCDSET: /* Obsolete */
case TIOCSWINSZ:
case TCSETS:
case TCSETSW:
case TCSETSF:
case TIOCSETD:
case TIOCHPCL:
case TIOCSETP:
case TIOCSETN:
case TIOCEXCL:
case TIOCNXCL:
case TIOCFLUSH:
case TIOCSETC:
case TIOCLBIS:
case TIOCLBIC:
case TIOCLSET:
case TIOCSBRK:
case TIOCCBRK:
case TIOCSDTR:
case TIOCCDTR:
case TIOCSLTC:
case TIOCSTOP:
case TIOCSTART:
case TIOCSTI:
case TIOCSPGRP:
case TIOCMSET:
case TIOCMBIS:
case TIOCMBIC:
case TIOCREMOTE:
case TIOCSIGNAL:
case LDSETT:
case LDSMAP: /* Obsolete */
case DIOCSETP:
case I_FLUSH:
case I_SRDOPT:
case I_SETSIG:
case I_SWROPT:
case I_FLUSHBAND:
case I_SETCLTIME:
case I_SERROPT:
case I_ESETSIG:
case FIONBIO:
case FIOASYNC:
case FIOSETOWN:
case JBOOT: /* Obsolete */
case JTERM: /* Obsolete */
case JTIMOM: /* Obsolete */
case JZOMBOOT: /* Obsolete */
case JAGENT: /* Obsolete */
case JTRUN: /* Obsolete */
case JXTPROTO: /* Obsolete */
return (JCSETP);
}
return (JCGETP);
}
/*
* ioctl for streams
*/
int
strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
cred_t *crp, int *rvalp)
{
struct stdata *stp;
struct strcmd *scp;
struct strioctl strioc;
struct uio uio;
struct iovec iov;
int access;
mblk_t *mp;
int error = 0;
int done = 0;
ssize_t rmin, rmax;
queue_t *wrq;
queue_t *rdq;
boolean_t kioctl = B_FALSE;
uint32_t auditing = AU_AUDITING();
if (flag & FKIOCTL) {
copyflag = K_TO_K;
kioctl = B_TRUE;
}
ASSERT(vp->v_stream);
ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
stp = vp->v_stream;
TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
"strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
/*
* If the copy is kernel to kernel, make sure that the FNATIVE
* flag is set. After this it would be a serious error to have
* no model flag.
*/
if (copyflag == K_TO_K)
flag = (flag & ~FMODELS) | FNATIVE;
ASSERT((flag & FMODELS) != 0);
wrq = stp->sd_wrq;
rdq = _RD(wrq);
access = job_control_type(cmd);
/* We should never see these here, should be handled by iwscn */
if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
return (EINVAL);
mutex_enter(&stp->sd_lock);
if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
mutex_exit(&stp->sd_lock);
return (error);
}
mutex_exit(&stp->sd_lock);
/*
* Check for sgttyb-related ioctls first, and complain as
* necessary.
*/
switch (cmd) {
case TIOCGETP:
case TIOCSETP:
case TIOCSETN:
if (sgttyb_handling >= 2 && !sgttyb_complaint) {
sgttyb_complaint = B_TRUE;
cmn_err(CE_NOTE,
"application used obsolete TIOC[GS]ET");
}
if (sgttyb_handling >= 3) {
tsignal(curthread, SIGSYS);
return (EIO);
}
break;
}
mutex_enter(&stp->sd_lock);
switch (cmd) {
case I_RECVFD:
case I_E_RECVFD:
case I_PEEK:
case I_NREAD:
case FIONREAD:
case FIORDCHK:
case I_ATMARK:
case FIONBIO:
case FIOASYNC:
if (stp->sd_flag & (STRDERR|STPLEX)) {
error = strgeterr(stp, STRDERR|STPLEX, 0);
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
break;
default:
if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
}
mutex_exit(&stp->sd_lock);
switch (cmd) {
default:
/*
* The stream head has hardcoded knowledge of a
* miscellaneous collection of terminal-, keyboard- and
* mouse-related ioctls, enumerated below. This hardcoded
* knowledge allows the stream head to automatically
* convert transparent ioctl requests made by userland
* programs into I_STR ioctls which many old STREAMS
* modules and drivers require.
*
* No new ioctls should ever be added to this list.
* Instead, the STREAMS module or driver should be written
* to either handle transparent ioctls or require any
* userland programs to use I_STR ioctls (by returning
* EINVAL to any transparent ioctl requests).
*
* More importantly, removing ioctls from this list should
* be done with the utmost care, since our STREAMS modules
* and drivers *count* on the stream head performing this
* conversion, and thus may panic while processing
* transparent ioctl request for one of these ioctls (keep
* in mind that third party modules and drivers may have
* similar problems).
*/
if (((cmd & IOCTYPE) == LDIOC) ||
((cmd & IOCTYPE) == tIOC) ||
((cmd & IOCTYPE) == TIOC) ||
((cmd & IOCTYPE) == KIOC) ||
((cmd & IOCTYPE) == MSIOC) ||
((cmd & IOCTYPE) == VUIOC)) {
/*
* The ioctl is a tty ioctl - set up strioc buffer
* and call strdoioctl() to do the work.
*/
if (stp->sd_flag & STRHUP)
return (ENXIO);
strioc.ic_cmd = cmd;
strioc.ic_timout = INFTIM;
switch (cmd) {
case TCXONC:
case TCSBRK:
case TCFLSH:
case TCDSET:
{
int native_arg = (int)arg;
strioc.ic_len = sizeof (int);
strioc.ic_dp = (char *)&native_arg;
return (strdoioctl(stp, &strioc, flag,
K_TO_K, crp, rvalp));
}
case TCSETA:
case TCSETAW:
case TCSETAF:
strioc.ic_len = sizeof (struct termio);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case TCSETS:
case TCSETSW:
case TCSETSF:
strioc.ic_len = sizeof (struct termios);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case LDSETT:
strioc.ic_len = sizeof (struct termcb);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case TIOCSETP:
strioc.ic_len = sizeof (struct sgttyb);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case TIOCSTI:
if ((flag & FREAD) == 0 &&
secpolicy_sti(crp) != 0) {
return (EPERM);
}
mutex_enter(&stp->sd_lock);
mutex_enter(&curproc->p_splock);
if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
secpolicy_sti(crp) != 0) {
mutex_exit(&curproc->p_splock);
mutex_exit(&stp->sd_lock);
return (EACCES);
}
mutex_exit(&curproc->p_splock);
mutex_exit(&stp->sd_lock);
strioc.ic_len = sizeof (char);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case TIOCSWINSZ:
strioc.ic_len = sizeof (struct winsize);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case TIOCSSIZE:
strioc.ic_len = sizeof (struct ttysize);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case TIOCSSOFTCAR:
case KIOCTRANS:
case KIOCTRANSABLE:
case KIOCCMD:
case KIOCSDIRECT:
case KIOCSCOMPAT:
case KIOCSKABORTEN:
case KIOCSRPTDELAY:
case KIOCSRPTRATE:
case VUIDSFORMAT:
case TIOCSPPS:
strioc.ic_len = sizeof (int);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case KIOCSETKEY:
case KIOCGETKEY:
strioc.ic_len = sizeof (struct kiockey);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case KIOCSKEY:
case KIOCGKEY:
strioc.ic_len = sizeof (struct kiockeymap);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case KIOCSLED:
/* arg is a pointer to char */
strioc.ic_len = sizeof (char);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case MSIOSETPARMS:
strioc.ic_len = sizeof (Ms_parms);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
case VUIDSADDR:
case VUIDGADDR:
strioc.ic_len = sizeof (struct vuid_addr_probe);
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
/*
* These M_IOCTL's don't require any data to be sent
* downstream, and the driver will allocate and link
* on its own mblk_t upon M_IOCACK -- thus we set
* ic_len to zero and set ic_dp to arg so we know
* where to copyout to later.
*/
case TIOCGSOFTCAR:
case TIOCGWINSZ:
case TIOCGSIZE:
case KIOCGTRANS:
case KIOCGTRANSABLE:
case KIOCTYPE:
case KIOCGDIRECT:
case KIOCGCOMPAT:
case KIOCLAYOUT:
case KIOCGLED:
case MSIOGETPARMS:
case MSIOBUTTONS:
case VUIDGFORMAT:
case TIOCGPPS:
case TIOCGPPSEV:
case TCGETA:
case TCGETS:
case LDGETT:
case TIOCGETP:
case KIOCGRPTDELAY:
case KIOCGRPTRATE:
strioc.ic_len = 0;
strioc.ic_dp = (char *)arg;
return (strdoioctl(stp, &strioc, flag,
copyflag, crp, rvalp));
}
}
/*
* Unknown cmd - send it down as a transparent ioctl.
*/
strioc.ic_cmd = cmd;
strioc.ic_timout = INFTIM;
strioc.ic_len = TRANSPARENT;
strioc.ic_dp = (char *)&arg;
return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
case I_STR:
/*
* Stream ioctl. Read in an strioctl buffer from the user
* along with any data specified and send it downstream.
* Strdoioctl will wait allow only one ioctl message at
* a time, and waits for the acknowledgement.
*/
if (stp->sd_flag & STRHUP)
return (ENXIO);
error = strcopyin_strioctl((void *)arg, &strioc, flag,
copyflag);
if (error != 0)
return (error);
if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
return (EINVAL);
access = job_control_type(strioc.ic_cmd);
mutex_enter(&stp->sd_lock);
if ((access != -1) &&
((error = i_straccess(stp, access)) != 0)) {
mutex_exit(&stp->sd_lock);
return (error);
}
mutex_exit(&stp->sd_lock);
/*
* The I_STR facility provides a trap door for malicious
* code to send down bogus streamio(7I) ioctl commands to
* unsuspecting STREAMS modules and drivers which expect to
* only get these messages from the stream head.
* Explicitly prohibit any streamio ioctls which can be
* passed downstream by the stream head. Note that we do
* not block all streamio ioctls because the ioctl
* numberspace is not well managed and thus it's possible
* that a module or driver's ioctl numbers may accidentally
* collide with them.
*/
switch (strioc.ic_cmd) {
case I_LINK:
case I_PLINK:
case I_UNLINK:
case I_PUNLINK:
case _I_GETPEERCRED:
case _I_PLINK_LH:
return (EINVAL);
}
error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
if (error == 0) {
error = strcopyout_strioctl(&strioc, (void *)arg,
flag, copyflag);
}
return (error);
case _I_CMD:
/*
* Like I_STR, but without using M_IOC* messages and without
* copyins/copyouts beyond the passed-in argument.
*/
if (stp->sd_flag & STRHUP)
return (ENXIO);
if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
return (ENOMEM);
if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
kmem_free(scp, sizeof (strcmd_t));
return (EFAULT);
}
access = job_control_type(scp->sc_cmd);
mutex_enter(&stp->sd_lock);
if (access != -1 && (error = i_straccess(stp, access)) != 0) {
mutex_exit(&stp->sd_lock);
kmem_free(scp, sizeof (strcmd_t));
return (error);
}
mutex_exit(&stp->sd_lock);
*rvalp = 0;
if ((error = strdocmd(stp, scp, crp)) == 0) {
if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
error = EFAULT;
}
kmem_free(scp, sizeof (strcmd_t));
return (error);
case I_NREAD:
/*
* Return number of bytes of data in first message
* in queue in "arg" and return the number of messages
* in queue in return value.
*/
{
size_t size;
int retval;
int count = 0;
mutex_enter(QLOCK(rdq));
size = msgdsize(rdq->q_first);
for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
count++;
mutex_exit(QLOCK(rdq));
if (stp->sd_struiordq) {
infod_t infod;
infod.d_cmd = INFOD_COUNT;
infod.d_count = 0;
if (count == 0) {
infod.d_cmd |= INFOD_FIRSTBYTES;
infod.d_bytes = 0;
}
infod.d_res = 0;
(void) infonext(rdq, &infod);
count += infod.d_count;
if (infod.d_res & INFOD_FIRSTBYTES)
size = infod.d_bytes;
}
/*
* Drop down from size_t to the "int" required by the
* interface. Cap at INT_MAX.
*/
retval = MIN(size, INT_MAX);
error = strcopyout(&retval, (void *)arg, sizeof (retval),
copyflag);
if (!error)
*rvalp = count;
return (error);
}
case FIONREAD:
/*
* Return number of bytes of data in all data messages
* in queue in "arg".
*/
{
size_t size = 0;
int retval;
mutex_enter(QLOCK(rdq));
for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
size += msgdsize(mp);
mutex_exit(QLOCK(rdq));
if (stp->sd_struiordq) {
infod_t infod;
infod.d_cmd = INFOD_BYTES;
infod.d_res = 0;
infod.d_bytes = 0;
(void) infonext(rdq, &infod);
size += infod.d_bytes;
}
/*
* Drop down from size_t to the "int" required by the
* interface. Cap at INT_MAX.
*/
retval = MIN(size, INT_MAX);
error = strcopyout(&retval, (void *)arg, sizeof (retval),
copyflag);
*rvalp = 0;
return (error);
}
case FIORDCHK:
/*
* FIORDCHK does not use arg value (like FIONREAD),
* instead a count is returned. I_NREAD value may
* not be accurate but safe. The real thing to do is
* to add the msgdsizes of all data messages until
* a non-data message.
*/
{
size_t size = 0;
mutex_enter(QLOCK(rdq));
for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
size += msgdsize(mp);
mutex_exit(QLOCK(rdq));
if (stp->sd_struiordq) {
infod_t infod;
infod.d_cmd = INFOD_BYTES;
infod.d_res = 0;
infod.d_bytes = 0;
(void) infonext(rdq, &infod);
size += infod.d_bytes;
}
/*
* Since ioctl returns an int, and memory sizes under
* LP64 may not fit, we return INT_MAX if the count was
* actually greater.
*/
*rvalp = MIN(size, INT_MAX);
return (0);
}
case I_FIND:
/*
* Get module name.
*/
{
char mname[FMNAMESZ + 1];
queue_t *q;
error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
mname, FMNAMESZ + 1, NULL);
if (error)
return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
/*
* Return EINVAL if we're handed a bogus module name.
*/
if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
TRACE_0(TR_FAC_STREAMS_FR,
TR_I_CANT_FIND, "couldn't I_FIND");
return (EINVAL);
}
*rvalp = 0;
/* Look downstream to see if module is there. */
claimstr(stp->sd_wrq);
for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
if (q->q_flag & QREADR) {
q = NULL;
break;
}
if (strcmp(mname, Q2NAME(q)) == 0)
break;
}
releasestr(stp->sd_wrq);
*rvalp = (q ? 1 : 0);
return (error);
}
case I_PUSH:
case __I_PUSH_NOCTTY:
/*
* Push a module.
* For the case __I_PUSH_NOCTTY push a module but
* do not allocate controlling tty. See bugid 4025044
*/
{
char mname[FMNAMESZ + 1];
fmodsw_impl_t *fp;
dev_t dummydev;
if (stp->sd_flag & STRHUP)
return (ENXIO);
/*
* Get module name and look up in fmodsw.
*/
error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
mname, FMNAMESZ + 1, NULL);
if (error)
return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
NULL)
return (EINVAL);
TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
"I_PUSH:fp %p stp %p", fp, stp);
if (error = strstartplumb(stp, flag, cmd)) {
fmodsw_rele(fp);
return (error);
}
/*
* See if any more modules can be pushed on this stream.
* Note that this check must be done after strstartplumb()
* since otherwise multiple threads issuing I_PUSHes on
* the same stream will be able to exceed nstrpush.
*/
mutex_enter(&stp->sd_lock);
if (stp->sd_pushcnt >= nstrpush) {
fmodsw_rele(fp);
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
mutex_exit(&stp->sd_lock);
/*
* Push new module and call its open routine
* via qattach(). Modules don't change device
* numbers, so just ignore dummydev here.
*/
dummydev = vp->v_rdev;
if ((error = qattach(rdq, &dummydev, 0, crp, fp,
B_FALSE)) == 0) {
if (vp->v_type == VCHR && /* sorry, no pipes allowed */
(cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
/*
* try to allocate it as a controlling terminal
*/
(void) strctty(stp);
}
}
mutex_enter(&stp->sd_lock);
/*
* As a performance concern we are caching the values of
* q_minpsz and q_maxpsz of the module below the stream
* head in the stream head.
*/
mutex_enter(QLOCK(stp->sd_wrq->q_next));
rmin = stp->sd_wrq->q_next->q_minpsz;
rmax = stp->sd_wrq->q_next->q_maxpsz;
mutex_exit(QLOCK(stp->sd_wrq->q_next));
/* Do this processing here as a performance concern */
if (strmsgsz != 0) {
if (rmax == INFPSZ)
rmax = strmsgsz;
else {
if (vp->v_type == VFIFO)
rmax = MIN(PIPE_BUF, rmax);
else rmax = MIN(strmsgsz, rmax);
}
}
mutex_enter(QLOCK(wrq));
stp->sd_qn_minpsz = rmin;
stp->sd_qn_maxpsz = rmax;
mutex_exit(QLOCK(wrq));
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (error);
}
case I_POP:
{
queue_t *q;
if (stp->sd_flag & STRHUP)
return (ENXIO);
if (!wrq->q_next) /* for broken pipes */
return (EINVAL);
if (error = strstartplumb(stp, flag, cmd))
return (error);
/*
* If there is an anchor on this stream and popping
* the current module would attempt to pop through the
* anchor, then disallow the pop unless we have sufficient
* privileges; take the cheapest (non-locking) check
* first.
*/
if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
(stp->sd_anchorzone != crgetzoneid(crp))) {
mutex_enter(&stp->sd_lock);
/*
* Anchors only apply if there's at least one
* module on the stream (sd_pushcnt > 0).
*/
if (stp->sd_pushcnt > 0 &&
stp->sd_pushcnt == stp->sd_anchor &&
stp->sd_vnode->v_type != VFIFO) {
strendplumb(stp);
mutex_exit(&stp->sd_lock);
if (stp->sd_anchorzone != crgetzoneid(crp))
return (EINVAL);
/* Audit and report error */
return (secpolicy_ip_config(crp, B_FALSE));
}
mutex_exit(&stp->sd_lock);
}
q = wrq->q_next;
TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
"I_POP:%p from %p", q, stp);
if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
error = EINVAL;
} else {
qdetach(_RD(q), 1, flag, crp, B_FALSE);
error = 0;
}
mutex_enter(&stp->sd_lock);
/*
* As a performance concern we are caching the values of
* q_minpsz and q_maxpsz of the module below the stream
* head in the stream head.
*/
mutex_enter(QLOCK(wrq->q_next));
rmin = wrq->q_next->q_minpsz;
rmax = wrq->q_next->q_maxpsz;
mutex_exit(QLOCK(wrq->q_next));
/* Do this processing here as a performance concern */
if (strmsgsz != 0) {
if (rmax == INFPSZ)
rmax = strmsgsz;
else {
if (vp->v_type == VFIFO)
rmax = MIN(PIPE_BUF, rmax);
else rmax = MIN(strmsgsz, rmax);
}
}
mutex_enter(QLOCK(wrq));
stp->sd_qn_minpsz = rmin;
stp->sd_qn_maxpsz = rmax;
mutex_exit(QLOCK(wrq));
/* If we popped through the anchor, then reset the anchor. */
if (stp->sd_pushcnt < stp->sd_anchor) {
stp->sd_anchor = 0;
stp->sd_anchorzone = 0;
}
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (error);
}
case _I_MUXID2FD:
{
/*
* Create a fd for a I_PLINK'ed lower stream with a given
* muxid. With the fd, application can send down ioctls,
* like I_LIST, to the previously I_PLINK'ed stream. Note
* that after getting the fd, the application has to do an
* I_PUNLINK on the muxid before it can do any operation
* on the lower stream. This is required by spec1170.
*
* The fd used to do this ioctl should point to the same
* controlling device used to do the I_PLINK. If it uses
* a different stream or an invalid muxid, I_MUXID2FD will
* fail. The error code is set to EINVAL.
*
* The intended use of this interface is the following.
* An application I_PLINK'ed a stream and exits. The fd
* to the lower stream is gone. Another application
* wants to get a fd to the lower stream, it uses I_MUXID2FD.
*/
int muxid = (int)arg;
int fd;
linkinfo_t *linkp;
struct file *fp;
netstack_t *ns;
str_stack_t *ss;
/*
* Do not allow the wildcard muxid. This ioctl is not
* intended to find arbitrary link.
*/
if (muxid == 0) {
return (EINVAL);
}
ns = netstack_find_by_cred(crp);
ASSERT(ns != NULL);
ss = ns->netstack_str;
ASSERT(ss != NULL);
mutex_enter(&muxifier);
linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
if (linkp == NULL) {
mutex_exit(&muxifier);
netstack_rele(ss->ss_netstack);
return (EINVAL);
}
if ((fd = ufalloc(0)) == -1) {
mutex_exit(&muxifier);
netstack_rele(ss->ss_netstack);
return (EMFILE);
}
fp = linkp->li_fpdown;
mutex_enter(&fp->f_tlock);
fp->f_count++;
mutex_exit(&fp->f_tlock);
mutex_exit(&muxifier);
setf(fd, fp);
*rvalp = fd;
netstack_rele(ss->ss_netstack);
return (0);
}
case _I_INSERT:
{
/*
* To insert a module to a given position in a stream.
* In the first release, only allow privileged user
* to use this ioctl. Furthermore, the insert is only allowed
* below an anchor if the zoneid is the same as the zoneid
* which created the anchor.
*
* Note that we do not plan to support this ioctl
* on pipes in the first release. We want to learn more
* about the implications of these ioctls before extending
* their support. And we do not think these features are
* valuable for pipes.
*/
STRUCT_DECL(strmodconf, strmodinsert);
char mod_name[FMNAMESZ + 1];
fmodsw_impl_t *fp;
dev_t dummydev;
queue_t *tmp_wrq;
int pos;
boolean_t is_insert;
STRUCT_INIT(strmodinsert, flag);
if (stp->sd_flag & STRHUP)
return (ENXIO);
if (STRMATED(stp))
return (EINVAL);
if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
return (error);
if (stp->sd_anchor != 0 &&
stp->sd_anchorzone != crgetzoneid(crp))
return (EINVAL);
error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
STRUCT_SIZE(strmodinsert), copyflag);
if (error)
return (error);
/*
* Get module name and look up in fmodsw.
*/
error = (copyflag & U_TO_K ? copyinstr :
copystr)(STRUCT_FGETP(strmodinsert, mod_name),
mod_name, FMNAMESZ + 1, NULL);
if (error)
return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
NULL)
return (EINVAL);
if (error = strstartplumb(stp, flag, cmd)) {
fmodsw_rele(fp);
return (error);
}
/*
* Is this _I_INSERT just like an I_PUSH? We need to know
* this because we do some optimizations if this is a
* module being pushed.
*/
pos = STRUCT_FGET(strmodinsert, pos);
is_insert = (pos != 0);
/*
* Make sure pos is valid. Even though it is not an I_PUSH,
* we impose the same limit on the number of modules in a
* stream.
*/
mutex_enter(&stp->sd_lock);
if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
pos > stp->sd_pushcnt) {
fmodsw_rele(fp);
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
if (stp->sd_anchor != 0) {
/*
* Is this insert below the anchor?
* Pushcnt hasn't been increased yet hence
* we test for greater than here, and greater or
* equal after qattach.
*/
if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
stp->sd_anchorzone != crgetzoneid(crp)) {
fmodsw_rele(fp);
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (EPERM);
}
}
mutex_exit(&stp->sd_lock);
/*
* First find the correct position this module to
* be inserted. We don't need to call claimstr()
* as the stream should not be changing at this point.
*
* Insert new module and call its open routine
* via qattach(). Modules don't change device
* numbers, so just ignore dummydev here.
*/
for (tmp_wrq = stp->sd_wrq; pos > 0;
tmp_wrq = tmp_wrq->q_next, pos--) {
ASSERT(SAMESTR(tmp_wrq));
}
dummydev = vp->v_rdev;
if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
fp, is_insert)) != 0) {
mutex_enter(&stp->sd_lock);
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (error);
}
mutex_enter(&stp->sd_lock);
/*
* As a performance concern we are caching the values of
* q_minpsz and q_maxpsz of the module below the stream
* head in the stream head.
*/
if (!is_insert) {
mutex_enter(QLOCK(stp->sd_wrq->q_next));
rmin = stp->sd_wrq->q_next->q_minpsz;
rmax = stp->sd_wrq->q_next->q_maxpsz;
mutex_exit(QLOCK(stp->sd_wrq->q_next));
/* Do this processing here as a performance concern */
if (strmsgsz != 0) {
if (rmax == INFPSZ) {
rmax = strmsgsz;
} else {
rmax = MIN(strmsgsz, rmax);
}
}
mutex_enter(QLOCK(wrq));
stp->sd_qn_minpsz = rmin;
stp->sd_qn_maxpsz = rmax;
mutex_exit(QLOCK(wrq));
}
/*
* Need to update the anchor value if this module is
* inserted below the anchor point.
*/
if (stp->sd_anchor != 0) {
pos = STRUCT_FGET(strmodinsert, pos);
if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
stp->sd_anchor++;
}
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (0);
}
case _I_REMOVE:
{
/*
* To remove a module with a given name in a stream. The
* caller of this ioctl needs to provide both the name and
* the position of the module to be removed. This eliminates
* the ambiguity of removal if a module is inserted/pushed
* multiple times in a stream. In the first release, only
* allow privileged user to use this ioctl.
* Furthermore, the remove is only allowed
* below an anchor if the zoneid is the same as the zoneid
* which created the anchor.
*
* Note that we do not plan to support this ioctl
* on pipes in the first release. We want to learn more
* about the implications of these ioctls before extending
* their support. And we do not think these features are
* valuable for pipes.
*
* Also note that _I_REMOVE cannot be used to remove a
* driver or the stream head.
*/
STRUCT_DECL(strmodconf, strmodremove);
queue_t *q;
int pos;
char mod_name[FMNAMESZ + 1];
boolean_t is_remove;
STRUCT_INIT(strmodremove, flag);
if (stp->sd_flag & STRHUP)
return (ENXIO);
if (STRMATED(stp))
return (EINVAL);
if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
return (error);
if (stp->sd_anchor != 0 &&
stp->sd_anchorzone != crgetzoneid(crp))
return (EINVAL);
error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
STRUCT_SIZE(strmodremove), copyflag);
if (error)
return (error);
error = (copyflag & U_TO_K ? copyinstr :
copystr)(STRUCT_FGETP(strmodremove, mod_name),
mod_name, FMNAMESZ + 1, NULL);
if (error)
return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
if ((error = strstartplumb(stp, flag, cmd)) != 0)
return (error);
/*
* Match the name of given module to the name of module at
* the given position.
*/
pos = STRUCT_FGET(strmodremove, pos);
is_remove = (pos != 0);
for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
q = q->q_next, pos--)
;
if (pos > 0 || !SAMESTR(q) ||
strcmp(Q2NAME(q), mod_name) != 0) {
mutex_enter(&stp->sd_lock);
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
/*
* If the position is at or below an anchor, then the zoneid
* must match the zoneid that created the anchor.
*/
if (stp->sd_anchor != 0) {
pos = STRUCT_FGET(strmodremove, pos);
if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
stp->sd_anchorzone != crgetzoneid(crp)) {
mutex_enter(&stp->sd_lock);
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (EPERM);
}
}
ASSERT(!(q->q_flag & QREADR));
qdetach(_RD(q), 1, flag, crp, is_remove);
mutex_enter(&stp->sd_lock);
/*
* As a performance concern we are caching the values of
* q_minpsz and q_maxpsz of the module below the stream
* head in the stream head.
*/
if (!is_remove) {
mutex_enter(QLOCK(wrq->q_next));
rmin = wrq->q_next->q_minpsz;
rmax = wrq->q_next->q_maxpsz;
mutex_exit(QLOCK(wrq->q_next));
/* Do this processing here as a performance concern */
if (strmsgsz != 0) {
if (rmax == INFPSZ)
rmax = strmsgsz;
else {
if (vp->v_type == VFIFO)
rmax = MIN(PIPE_BUF, rmax);
else rmax = MIN(strmsgsz, rmax);
}
}
mutex_enter(QLOCK(wrq));
stp->sd_qn_minpsz = rmin;
stp->sd_qn_maxpsz = rmax;
mutex_exit(QLOCK(wrq));
}
/*
* Need to update the anchor value if this module is removed
* at or below the anchor point. If the removed module is at
* the anchor point, remove the anchor for this stream if
* there is no module above the anchor point. Otherwise, if
* the removed module is below the anchor point, decrement the
* anchor point by 1.
*/
if (stp->sd_anchor != 0) {
pos = STRUCT_FGET(strmodremove, pos);
if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
stp->sd_anchor = 0;
else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
stp->sd_anchor--;
}
strendplumb(stp);
mutex_exit(&stp->sd_lock);
return (0);
}
case I_ANCHOR:
/*
* Set the anchor position on the stream to reside at
* the top module (in other words, the top module
* cannot be popped). Anchors with a FIFO make no
* obvious sense, so they're not allowed.
*/
mutex_enter(&stp->sd_lock);
if (stp->sd_vnode->v_type == VFIFO) {
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
/* Only allow the same zoneid to update the anchor */
if (stp->sd_anchor != 0 &&
stp->sd_anchorzone != crgetzoneid(crp)) {
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
stp->sd_anchor = stp->sd_pushcnt;
stp->sd_anchorzone = crgetzoneid(crp);
mutex_exit(&stp->sd_lock);
return (0);
case I_LOOK:
/*
* Get name of first module downstream.
* If no module, return an error.
*/
claimstr(wrq);
if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {
char *name = Q2NAME(wrq->q_next);
error = strcopyout(name, (void *)arg, strlen(name) + 1,
copyflag);
releasestr(wrq);
return (error);
}
releasestr(wrq);
return (EINVAL);
case I_LINK:
case I_PLINK:
/*
* Link a multiplexor.
*/
return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
case _I_PLINK_LH:
/*
* Link a multiplexor: Call must originate from kernel.
*/
if (kioctl)
return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
return (EINVAL);
case I_UNLINK:
case I_PUNLINK:
/*
* Unlink a multiplexor.
* If arg is -1, unlink all links for which this is the
* controlling stream. Otherwise, arg is an index number
* for a link to be removed.
*/
{
struct linkinfo *linkp;
int native_arg = (int)arg;
int type;
netstack_t *ns;
str_stack_t *ss;
TRACE_1(TR_FAC_STREAMS_FR,
TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
if (vp->v_type == VFIFO) {
return (EINVAL);
}
if (cmd == I_UNLINK)
type = LINKNORMAL;
else /* I_PUNLINK */
type = LINKPERSIST;
if (native_arg == 0) {
return (EINVAL);
}
ns = netstack_find_by_cred(crp);
ASSERT(ns != NULL);
ss = ns->netstack_str;
ASSERT(ss != NULL);
if (native_arg == MUXID_ALL)
error = munlinkall(stp, type, crp, rvalp, ss);
else {
mutex_enter(&muxifier);
if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
/* invalid user supplied index number */
mutex_exit(&muxifier);
netstack_rele(ss->ss_netstack);
return (EINVAL);
}
/* munlink drops the muxifier lock */
error = munlink(stp, linkp, type, crp, rvalp, ss);
}
netstack_rele(ss->ss_netstack);
return (error);
}
case I_FLUSH:
/*
* send a flush message downstream
* flush message can indicate
* FLUSHR - flush read queue
* FLUSHW - flush write queue
* FLUSHRW - flush read/write queue
*/
if (stp->sd_flag & STRHUP)
return (ENXIO);
if (arg & ~FLUSHRW)
return (EINVAL);
for (;;) {
if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
break;
}
if (error = strwaitbuf(1, BPRI_HI)) {
return (error);
}
}
/*
* Send down an unsupported ioctl and wait for the nack
* in order to allow the M_FLUSH to propagate back
* up to the stream head.
* Replaces if (qready()) runqueues();
*/
strioc.ic_cmd = -1; /* The unsupported ioctl */
strioc.ic_timout = 0;
strioc.ic_len = 0;
strioc.ic_dp = NULL;
(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
*rvalp = 0;
return (0);
case I_FLUSHBAND:
{
struct bandinfo binfo;
error = strcopyin((void *)arg, &binfo, sizeof (binfo),
copyflag);
if (error)
return (error);
if (stp->sd_flag & STRHUP)
return (ENXIO);
if (binfo.bi_flag & ~FLUSHRW)
return (EINVAL);
while (!(mp = allocb(2, BPRI_HI))) {
if (error = strwaitbuf(2, BPRI_HI))
return (error);
}
mp->b_datap->db_type = M_FLUSH;
*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
*mp->b_wptr++ = binfo.bi_pri;
putnext(stp->sd_wrq, mp);
/*
* Send down an unsupported ioctl and wait for the nack
* in order to allow the M_FLUSH to propagate back
* up to the stream head.
* Replaces if (qready()) runqueues();
*/
strioc.ic_cmd = -1; /* The unsupported ioctl */
strioc.ic_timout = 0;
strioc.ic_len = 0;
strioc.ic_dp = NULL;
(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
*rvalp = 0;
return (0);
}
case I_SRDOPT:
/*
* Set read options
*
* RNORM - default stream mode
* RMSGN - message no discard
* RMSGD - message discard
* RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
* RPROTDAT - convert M_[PC]PROTOs to M_DATAs
* RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
*/
if (arg & ~(RMODEMASK | RPROTMASK))
return (EINVAL);
if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
return (EINVAL);
mutex_enter(&stp->sd_lock);
switch (arg & RMODEMASK) {
case RNORM:
stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
break;
case RMSGD:
stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
RD_MSGDIS;
break;
case RMSGN:
stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
RD_MSGNODIS;
break;
}
switch (arg & RPROTMASK) {
case RPROTNORM:
stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
break;
case RPROTDAT:
stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
RD_PROTDAT);
break;
case RPROTDIS:
stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
RD_PROTDIS);
break;
}
mutex_exit(&stp->sd_lock);
return (0);
case I_GRDOPT:
/*
* Get read option and return the value
* to spot pointed to by arg
*/
{
int rdopt;
rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
return (strcopyout(&rdopt, (void *)arg, sizeof (int),
copyflag));
}
case I_SERROPT:
/*
* Set error options
*
* RERRNORM - persistent read errors
* RERRNONPERSIST - non-persistent read errors
* WERRNORM - persistent write errors
* WERRNONPERSIST - non-persistent write errors
*/
if (arg & ~(RERRMASK | WERRMASK))
return (EINVAL);
mutex_enter(&stp->sd_lock);
switch (arg & RERRMASK) {
case RERRNORM:
stp->sd_flag &= ~STRDERRNONPERSIST;
break;
case RERRNONPERSIST:
stp->sd_flag |= STRDERRNONPERSIST;
break;
}
switch (arg & WERRMASK) {
case WERRNORM:
stp->sd_flag &= ~STWRERRNONPERSIST;
break;
case WERRNONPERSIST:
stp->sd_flag |= STWRERRNONPERSIST;
break;
}
mutex_exit(&stp->sd_lock);
return (0);
case I_GERROPT:
/*
* Get error option and return the value
* to spot pointed to by arg
*/
{
int erropt = 0;
erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
RERRNORM;
erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
WERRNORM;
return (strcopyout(&erropt, (void *)arg, sizeof (int),
copyflag));
}
case I_SETSIG:
/*
* Register the calling proc to receive the SIGPOLL
* signal based on the events given in arg. If
* arg is zero, remove the proc from register list.
*/
{
strsig_t *ssp, *pssp;
struct pid *pidp;
pssp = NULL;
pidp = curproc->p_pidp;
/*
* Hold sd_lock to prevent traversal of sd_siglist while
* it is modified.
*/
mutex_enter(&stp->sd_lock);
for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
pssp = ssp, ssp = ssp->ss_next)
;
if (arg) {
if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
/*
* If proc not already registered, add it
* to list.
*/
if (!ssp) {
ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
ssp->ss_pidp = pidp;
ssp->ss_pid = pidp->pid_id;
ssp->ss_next = NULL;
if (pssp)
pssp->ss_next = ssp;
else
stp->sd_siglist = ssp;
mutex_enter(&pidlock);
PID_HOLD(pidp);
mutex_exit(&pidlock);
}
/*
* Set events.
*/
ssp->ss_events = (int)arg;
} else {
/*
* Remove proc from register list.
*/
if (ssp) {
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
if (pssp)
pssp->ss_next = ssp->ss_next;
else
stp->sd_siglist = ssp->ss_next;
kmem_free(ssp, sizeof (strsig_t));
} else {
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
}
/*
* Recalculate OR of sig events.
*/
stp->sd_sigflags = 0;
for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
stp->sd_sigflags |= ssp->ss_events;
mutex_exit(&stp->sd_lock);
return (0);
}
case I_GETSIG:
/*
* Return (in arg) the current registration of events
* for which the calling proc is to be signaled.
*/
{
struct strsig *ssp;
struct pid *pidp;
pidp = curproc->p_pidp;
mutex_enter(&stp->sd_lock);
for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
if (ssp->ss_pidp == pidp) {
error = strcopyout(&ssp->ss_events, (void *)arg,
sizeof (int), copyflag);
mutex_exit(&stp->sd_lock);
return (error);
}
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
case I_ESETSIG:
/*
* Register the ss_pid to receive the SIGPOLL
* signal based on the events is ss_events arg. If
* ss_events is zero, remove the proc from register list.
*/
{
struct strsig *ssp, *pssp;
struct proc *proc;
struct pid *pidp;
pid_t pid;
struct strsigset ss;
error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
if (error)
return (error);
pid = ss.ss_pid;
if (ss.ss_events != 0) {
/*
* Permissions check by sending signal 0.
* Note that when kill fails it does a set_errno
* causing the system call to fail.
*/
error = kill(pid, 0);
if (error) {
return (error);
}
}
mutex_enter(&pidlock);
if (pid == 0)
proc = curproc;
else if (pid < 0)
proc = pgfind(-pid);
else
proc = prfind(pid);
if (proc == NULL) {
mutex_exit(&pidlock);
return (ESRCH);
}
if (pid < 0)
pidp = proc->p_pgidp;
else
pidp = proc->p_pidp;
ASSERT(pidp);
/*
* Get a hold on the pid structure while referencing it.
* There is a separate PID_HOLD should it be inserted
* in the list below.
*/
PID_HOLD(pidp);
mutex_exit(&pidlock);
pssp = NULL;
/*
* Hold sd_lock to prevent traversal of sd_siglist while
* it is modified.
*/
mutex_enter(&stp->sd_lock);
for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
pssp = ssp, ssp = ssp->ss_next)
;
if (ss.ss_events) {
if (ss.ss_events &
~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
mutex_exit(&stp->sd_lock);
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
return (EINVAL);
}
if ((ss.ss_events & S_BANDURG) &&
!(ss.ss_events & S_RDBAND)) {
mutex_exit(&stp->sd_lock);
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
return (EINVAL);
}
/*
* If proc not already registered, add it
* to list.
*/
if (!ssp) {
ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
ssp->ss_pidp = pidp;
ssp->ss_pid = pid;
ssp->ss_next = NULL;
if (pssp)
pssp->ss_next = ssp;
else
stp->sd_siglist = ssp;
mutex_enter(&pidlock);
PID_HOLD(pidp);
mutex_exit(&pidlock);
}
/*
* Set events.
*/
ssp->ss_events = ss.ss_events;
} else {
/*
* Remove proc from register list.
*/
if (ssp) {
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
if (pssp)
pssp->ss_next = ssp->ss_next;
else
stp->sd_siglist = ssp->ss_next;
kmem_free(ssp, sizeof (strsig_t));
} else {
mutex_exit(&stp->sd_lock);
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
return (EINVAL);
}
}
/*
* Recalculate OR of sig events.
*/
stp->sd_sigflags = 0;
for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
stp->sd_sigflags |= ssp->ss_events;
mutex_exit(&stp->sd_lock);
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
return (0);
}
case I_EGETSIG:
/*
* Return (in arg) the current registration of events
* for which the calling proc is to be signaled.
*/
{
struct strsig *ssp;
struct proc *proc;
pid_t pid;
struct pid *pidp;
struct strsigset ss;
error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
if (error)
return (error);
pid = ss.ss_pid;
mutex_enter(&pidlock);
if (pid == 0)
proc = curproc;
else if (pid < 0)
proc = pgfind(-pid);
else
proc = prfind(pid);
if (proc == NULL) {
mutex_exit(&pidlock);
return (ESRCH);
}
if (pid < 0)
pidp = proc->p_pgidp;
else
pidp = proc->p_pidp;
/* Prevent the pidp from being reassigned */
PID_HOLD(pidp);
mutex_exit(&pidlock);
mutex_enter(&stp->sd_lock);
for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
if (ssp->ss_pid == pid) {
ss.ss_pid = ssp->ss_pid;
ss.ss_events = ssp->ss_events;
error = strcopyout(&ss, (void *)arg,
sizeof (struct strsigset), copyflag);
mutex_exit(&stp->sd_lock);
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
return (error);
}
mutex_exit(&stp->sd_lock);
mutex_enter(&pidlock);
PID_RELE(pidp);
mutex_exit(&pidlock);
return (EINVAL);
}
case I_PEEK:
{
STRUCT_DECL(strpeek, strpeek);
size_t n;
mblk_t *fmp, *tmp_mp = NULL;
STRUCT_INIT(strpeek, flag);
error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
STRUCT_SIZE(strpeek), copyflag);
if (error)
return (error);
mutex_enter(QLOCK(rdq));
/*
* Skip the invalid messages
*/
for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
if (mp->b_datap->db_type != M_SIG)
break;
/*
* If user has requested to peek at a high priority message
* and first message is not, return 0
*/
if (mp != NULL) {
if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
queclass(mp) == QNORM) {
*rvalp = 0;
mutex_exit(QLOCK(rdq));
return (0);
}
} else if (stp->sd_struiordq == NULL ||
(STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
/*
* No mblks to look at at the streamhead and
* 1). This isn't a synch stream or
* 2). This is a synch stream but caller wants high
* priority messages which is not supported by
* the synch stream. (it only supports QNORM)
*/
*rvalp = 0;
mutex_exit(QLOCK(rdq));
return (0);
}
fmp = mp;
if (mp && mp->b_datap->db_type == M_PASSFP) {
mutex_exit(QLOCK(rdq));
return (EBADMSG);
}
ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
mp->b_datap->db_type == M_PROTO ||
mp->b_datap->db_type == M_DATA);
if (mp && mp->b_datap->db_type == M_PCPROTO) {
STRUCT_FSET(strpeek, flags, RS_HIPRI);
} else {
STRUCT_FSET(strpeek, flags, 0);
}
if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
mutex_exit(QLOCK(rdq));
return (ENOSR);
}
mutex_exit(QLOCK(rdq));
/*
* set mp = tmp_mp, so that I_PEEK processing can continue.
* tmp_mp is used to free the dup'd message.
*/
mp = tmp_mp;
uio.uio_fmode = 0;
uio.uio_extflg = UIO_COPY_CACHED;
uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
UIO_SYSSPACE;
uio.uio_limit = 0;
/*
* First process PROTO blocks, if any.
* If user doesn't want to get ctl info by setting maxlen <= 0,
* then set len to -1/0 and skip control blocks part.
*/
if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
STRUCT_FSET(strpeek, ctlbuf.len, -1);
else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
STRUCT_FSET(strpeek, ctlbuf.len, 0);
else {
int ctl_part = 0;
iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
uio.uio_iov = &iov;
uio.uio_resid = iov.iov_len;
uio.uio_loffset = 0;
uio.uio_iovcnt = 1;
while (mp && mp->b_datap->db_type != M_DATA &&
uio.uio_resid >= 0) {
ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
mp->b_datap->db_type == M_PROTO :
mp->b_datap->db_type == M_PCPROTO);
if ((n = MIN(uio.uio_resid,
mp->b_wptr - mp->b_rptr)) != 0 &&
(error = uiomove((char *)mp->b_rptr, n,
UIO_READ, &uio)) != 0) {
freemsg(tmp_mp);
return (error);
}
ctl_part = 1;
mp = mp->b_cont;
}
/* No ctl message */
if (ctl_part == 0)
STRUCT_FSET(strpeek, ctlbuf.len, -1);
else
STRUCT_FSET(strpeek, ctlbuf.len,
STRUCT_FGET(strpeek, ctlbuf.maxlen) -
uio.uio_resid);
}
/*
* Now process DATA blocks, if any.
* If user doesn't want to get data info by setting maxlen <= 0,
* then set len to -1/0 and skip data blocks part.
*/
if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
STRUCT_FSET(strpeek, databuf.len, -1);
else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
STRUCT_FSET(strpeek, databuf.len, 0);
else {
int data_part = 0;
iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
uio.uio_iov = &iov;
uio.uio_resid = iov.iov_len;
uio.uio_loffset = 0;
uio.uio_iovcnt = 1;
while (mp && uio.uio_resid) {
if (mp->b_datap->db_type == M_DATA) {
if ((n = MIN(uio.uio_resid,
mp->b_wptr - mp->b_rptr)) != 0 &&
(error = uiomove((char *)mp->b_rptr,
n, UIO_READ, &uio)) != 0) {
freemsg(tmp_mp);
return (error);
}
data_part = 1;
}
ASSERT(data_part == 0 ||
mp->b_datap->db_type == M_DATA);
mp = mp->b_cont;
}
/* No data message */
if (data_part == 0)
STRUCT_FSET(strpeek, databuf.len, -1);
else
STRUCT_FSET(strpeek, databuf.len,
STRUCT_FGET(strpeek, databuf.maxlen) -
uio.uio_resid);
}
freemsg(tmp_mp);
/*
* It is a synch stream and user wants to get
* data (maxlen > 0).
* uio setup is done by the codes that process DATA
* blocks above.
*/
if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
infod_t infod;
infod.d_cmd = INFOD_COPYOUT;
infod.d_res = 0;
infod.d_uiop = &uio;
error = infonext(rdq, &infod);
if (error == EINVAL || error == EBUSY)
error = 0;
if (error)
return (error);
STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
databuf.maxlen) - uio.uio_resid);
if (STRUCT_FGET(strpeek, databuf.len) == 0) {
/*
* No data found by the infonext().
*/
STRUCT_FSET(strpeek, databuf.len, -1);
}
}
error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
STRUCT_SIZE(strpeek), copyflag);
if (error) {
return (error);
}
/*
* If there is no message retrieved, set return code to 0
* otherwise, set it to 1.
*/
if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
STRUCT_FGET(strpeek, databuf.len) == -1)
*rvalp = 0;
else
*rvalp = 1;
return (0);
}
case I_FDINSERT:
{
STRUCT_DECL(strfdinsert, strfdinsert);
struct file *resftp;
struct stdata *resstp;
t_uscalar_t ival;
ssize_t msgsize;
struct strbuf mctl;
STRUCT_INIT(strfdinsert, flag);
if (stp->sd_flag & STRHUP)
return (ENXIO);
/*
* STRDERR, STWRERR and STPLEX tested above.
*/
error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
STRUCT_SIZE(strfdinsert), copyflag);
if (error)
return (error);
if (STRUCT_FGET(strfdinsert, offset) < 0 ||
(STRUCT_FGET(strfdinsert, offset) %
sizeof (t_uscalar_t)) != 0)
return (EINVAL);
if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
if ((resstp = resftp->f_vnode->v_stream) == NULL) {
releasef(STRUCT_FGET(strfdinsert, fildes));
return (EINVAL);
}
} else
return (EINVAL);
mutex_enter(&resstp->sd_lock);
if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
error = strgeterr(resstp,
STRDERR|STWRERR|STRHUP|STPLEX, 0);
if (error != 0) {
mutex_exit(&resstp->sd_lock);
releasef(STRUCT_FGET(strfdinsert, fildes));
return (error);
}
}
mutex_exit(&resstp->sd_lock);
#ifdef _ILP32
{
queue_t *q;
queue_t *mate = NULL;
/* get read queue of stream terminus */
claimstr(resstp->sd_wrq);
for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
q = q->q_next)
if (!STRMATED(resstp) && STREAM(q) != resstp &&
mate == NULL) {
ASSERT(q->q_qinfo->qi_srvp);
ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
claimstr(q);
mate = q;
}
q = _RD(q);
if (mate)
releasestr(mate);
releasestr(resstp->sd_wrq);
ival = (t_uscalar_t)q;
}
#else
ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
#endif /* _ILP32 */
if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
releasef(STRUCT_FGET(strfdinsert, fildes));
return (EINVAL);
}
/*
* Check for legal flag value.
*/
if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
releasef(STRUCT_FGET(strfdinsert, fildes));
return (EINVAL);
}
/* get these values from those cached in the stream head */
mutex_enter(QLOCK(stp->sd_wrq));
rmin = stp->sd_qn_minpsz;
rmax = stp->sd_qn_maxpsz;
mutex_exit(QLOCK(stp->sd_wrq));
/*
* Make sure ctl and data sizes together fall within
* the limits of the max and min receive packet sizes
* and do not exceed system limit. A negative data
* length means that no data part is to be sent.
*/
ASSERT((rmax >= 0) || (rmax == INFPSZ));
if (rmax == 0) {
releasef(STRUCT_FGET(strfdinsert, fildes));
return (ERANGE);
}
if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
msgsize = 0;
if ((msgsize < rmin) ||
((msgsize > rmax) && (rmax != INFPSZ)) ||
(STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
releasef(STRUCT_FGET(strfdinsert, fildes));
return (ERANGE);
}
mutex_enter(&stp->sd_lock);
while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
!canputnext(stp->sd_wrq)) {
if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
flag, -1, &done)) != 0 || done) {
mutex_exit(&stp->sd_lock);
releasef(STRUCT_FGET(strfdinsert, fildes));
return (error);
}
if ((error = i_straccess(stp, access)) != 0) {
mutex_exit(&stp->sd_lock);
releasef(
STRUCT_FGET(strfdinsert, fildes));
return (error);
}
}
mutex_exit(&stp->sd_lock);
/*
* Copy strfdinsert.ctlbuf into native form of
* ctlbuf to pass down into strmakemsg().
*/
mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_loffset = 0;
uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
UIO_SYSSPACE;
uio.uio_fmode = 0;
uio.uio_extflg = UIO_COPY_CACHED;
uio.uio_resid = iov.iov_len;
if ((error = strmakemsg(&mctl,
&msgsize, &uio, stp,
STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
STRUCT_FSET(strfdinsert, databuf.len, msgsize);
releasef(STRUCT_FGET(strfdinsert, fildes));
return (error);
}
STRUCT_FSET(strfdinsert, databuf.len, msgsize);
/*
* Place the possibly reencoded queue pointer 'offset' bytes
* from the start of the control portion of the message.
*/
*((t_uscalar_t *)(mp->b_rptr +
STRUCT_FGET(strfdinsert, offset))) = ival;
/*
* Put message downstream.
*/
stream_willservice(stp);
putnext(stp->sd_wrq, mp);
stream_runservice(stp);
releasef(STRUCT_FGET(strfdinsert, fildes));
return (error);
}
case I_SENDFD:
{
struct file *fp;
if ((fp = getf((int)arg)) == NULL)
return (EBADF);
error = do_sendfp(stp, fp, crp);
if (auditing) {
audit_fdsend((int)arg, fp, error);
}
releasef((int)arg);
return (error);
}
case I_RECVFD:
case I_E_RECVFD:
{
struct k_strrecvfd *srf;
int i, fd;
mutex_enter(&stp->sd_lock);
while (!(mp = getq(rdq))) {
if (stp->sd_flag & (STRHUP|STREOF)) {
mutex_exit(&stp->sd_lock);
return (ENXIO);
}
if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
flag, -1, &done)) != 0 || done) {
mutex_exit(&stp->sd_lock);
return (error);
}
if ((error = i_straccess(stp, access)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
if (mp->b_datap->db_type != M_PASSFP) {
putback(stp, rdq, mp, mp->b_band);
mutex_exit(&stp->sd_lock);
return (EBADMSG);
}
mutex_exit(&stp->sd_lock);
srf = (struct k_strrecvfd *)mp->b_rptr;
if ((fd = ufalloc(0)) == -1) {
mutex_enter(&stp->sd_lock);
putback(stp, rdq, mp, mp->b_band);
mutex_exit(&stp->sd_lock);
return (EMFILE);
}
if (cmd == I_RECVFD) {
struct o_strrecvfd ostrfd;
/* check to see if uid/gid values are too large. */
if (srf->uid > (o_uid_t)USHRT_MAX ||
srf->gid > (o_gid_t)USHRT_MAX) {
mutex_enter(&stp->sd_lock);
putback(stp, rdq, mp, mp->b_band);
mutex_exit(&stp->sd_lock);
setf(fd, NULL); /* release fd entry */
return (EOVERFLOW);
}
ostrfd.fd = fd;
ostrfd.uid = (o_uid_t)srf->uid;
ostrfd.gid = (o_gid_t)srf->gid;
/* Null the filler bits */
for (i = 0; i < 8; i++)
ostrfd.fill[i] = 0;
error = strcopyout(&ostrfd, (void *)arg,
sizeof (struct o_strrecvfd), copyflag);
} else { /* I_E_RECVFD */
struct strrecvfd strfd;
strfd.fd = fd;
strfd.uid = srf->uid;
strfd.gid = srf->gid;
/* null the filler bits */
for (i = 0; i < 8; i++)
strfd.fill[i] = 0;
error = strcopyout(&strfd, (void *)arg,
sizeof (struct strrecvfd), copyflag);
}
if (error) {
setf(fd, NULL); /* release fd entry */
mutex_enter(&stp->sd_lock);
putback(stp, rdq, mp, mp->b_band);
mutex_exit(&stp->sd_lock);
return (error);
}
if (auditing) {
audit_fdrecv(fd, srf->fp);
}
/*
* Always increment f_count since the freemsg() below will
* always call free_passfp() which performs a closef().
*/
mutex_enter(&srf->fp->f_tlock);
srf->fp->f_count++;
mutex_exit(&srf->fp->f_tlock);
setf(fd, srf->fp);
freemsg(mp);
return (0);
}
case I_SWROPT:
/*
* Set/clear the write options. arg is a bit
* mask with any of the following bits set...
* SNDZERO - send zero length message
* SNDPIPE - send sigpipe to process if
* sd_werror is set and process is
* doing a write or putmsg.
* The new stream head write options should reflect
* what is in arg.
*/
if (arg & ~(SNDZERO|SNDPIPE))
return (EINVAL);
mutex_enter(&stp->sd_lock);
stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
if (arg & SNDZERO)
stp->sd_wput_opt |= SW_SNDZERO;
if (arg & SNDPIPE)
stp->sd_wput_opt |= SW_SIGPIPE;
mutex_exit(&stp->sd_lock);
return (0);
case I_GWROPT:
{
int wropt = 0;
if (stp->sd_wput_opt & SW_SNDZERO)
wropt |= SNDZERO;
if (stp->sd_wput_opt & SW_SIGPIPE)
wropt |= SNDPIPE;
return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
copyflag));
}
case I_LIST:
/*
* Returns all the modules found on this stream,
* upto the driver. If argument is NULL, return the
* number of modules (including driver). If argument
* is not NULL, copy the names into the structure
* provided.
*/
{
queue_t *q;
char *qname;
int i, nmods;
struct str_mlist *mlist;
STRUCT_DECL(str_list, strlist);
if (arg == NULL) { /* Return number of modules plus driver */
if (stp->sd_vnode->v_type == VFIFO)
*rvalp = stp->sd_pushcnt;
else
*rvalp = stp->sd_pushcnt + 1;
return (0);
}
STRUCT_INIT(strlist, flag);
error = strcopyin((void *)arg, STRUCT_BUF(strlist),
STRUCT_SIZE(strlist), copyflag);
if (error != 0)
return (error);
mlist = STRUCT_FGETP(strlist, sl_modlist);
nmods = STRUCT_FGET(strlist, sl_nmods);
if (nmods <= 0)
return (EINVAL);
claimstr(stp->sd_wrq);
q = stp->sd_wrq;
for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
qname = Q2NAME(q->q_next);
error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
copyflag);
if (error != 0) {
releasestr(stp->sd_wrq);
return (error);
}
}
releasestr(stp->sd_wrq);
return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
}
case I_CKBAND:
{
queue_t *q;
qband_t *qbp;
if ((arg < 0) || (arg >= NBAND))
return (EINVAL);
q = _RD(stp->sd_wrq);
mutex_enter(QLOCK(q));
if (arg > (int)q->q_nband) {
*rvalp = 0;
} else {
if (arg == 0) {
if (q->q_first)
*rvalp = 1;
else
*rvalp = 0;
} else {
qbp = q->q_bandp;
while (--arg > 0)
qbp = qbp->qb_next;
if (qbp->qb_first)
*rvalp = 1;
else
*rvalp = 0;
}
}
mutex_exit(QLOCK(q));
return (0);
}
case I_GETBAND:
{
int intpri;
queue_t *q;
q = _RD(stp->sd_wrq);
mutex_enter(QLOCK(q));
mp = q->q_first;
if (!mp) {
mutex_exit(QLOCK(q));
return (ENODATA);
}
intpri = (int)mp->b_band;
error = strcopyout(&intpri, (void *)arg, sizeof (int),
copyflag);
mutex_exit(QLOCK(q));
return (error);
}
case I_ATMARK:
{
queue_t *q;
if (arg & ~(ANYMARK|LASTMARK))
return (EINVAL);
q = _RD(stp->sd_wrq);
mutex_enter(&stp->sd_lock);
if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
*rvalp = 1;
} else {
mutex_enter(QLOCK(q));
mp = q->q_first;
if (mp == NULL)
*rvalp = 0;
else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
*rvalp = 1;
else if ((arg == LASTMARK) && (mp == stp->sd_mark))
*rvalp = 1;
else
*rvalp = 0;
mutex_exit(QLOCK(q));
}
mutex_exit(&stp->sd_lock);
return (0);
}
case I_CANPUT:
{
char band;
if ((arg < 0) || (arg >= NBAND))
return (EINVAL);
band = (char)arg;
*rvalp = bcanputnext(stp->sd_wrq, band);
return (0);
}
case I_SETCLTIME:
{
int closetime;
error = strcopyin((void *)arg, &closetime, sizeof (int),
copyflag);
if (error)
return (error);
if (closetime < 0)
return (EINVAL);
stp->sd_closetime = closetime;
return (0);
}
case I_GETCLTIME:
{
int closetime;
closetime = stp->sd_closetime;
return (strcopyout(&closetime, (void *)arg, sizeof (int),
copyflag));
}
case TIOCGSID:
{
pid_t sid;
mutex_enter(&stp->sd_lock);
if (stp->sd_sidp == NULL) {
mutex_exit(&stp->sd_lock);
return (ENOTTY);
}
sid = stp->sd_sidp->pid_id;
mutex_exit(&stp->sd_lock);
return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
copyflag));
}
case TIOCSPGRP:
{
pid_t pgrp;
proc_t *q;
pid_t sid, fg_pgid, bg_pgid;
if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
copyflag))
return (error);
mutex_enter(&stp->sd_lock);
mutex_enter(&pidlock);
if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
mutex_exit(&pidlock);
mutex_exit(&stp->sd_lock);
return (ENOTTY);
}
if (pgrp == stp->sd_pgidp->pid_id) {
mutex_exit(&pidlock);
mutex_exit(&stp->sd_lock);
return (0);
}
if (pgrp <= 0 || pgrp >= maxpid) {
mutex_exit(&pidlock);
mutex_exit(&stp->sd_lock);
return (EINVAL);
}
if ((q = pgfind(pgrp)) == NULL ||
q->p_sessp != ttoproc(curthread)->p_sessp) {
mutex_exit(&pidlock);
mutex_exit(&stp->sd_lock);
return (EPERM);
}
sid = stp->sd_sidp->pid_id;
fg_pgid = q->p_pgrp;
bg_pgid = stp->sd_pgidp->pid_id;
CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
PID_RELE(stp->sd_pgidp);
ctty_clear_sighuped();
stp->sd_pgidp = q->p_pgidp;
PID_HOLD(stp->sd_pgidp);
mutex_exit(&pidlock);
mutex_exit(&stp->sd_lock);
return (0);
}
case TIOCGPGRP:
{
pid_t pgrp;
mutex_enter(&stp->sd_lock);
if (stp->sd_sidp == NULL) {
mutex_exit(&stp->sd_lock);
return (ENOTTY);
}
pgrp = stp->sd_pgidp->pid_id;
mutex_exit(&stp->sd_lock);
return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
copyflag));
}
case TIOCSCTTY:
{
return (strctty(stp));
}
case TIOCNOTTY:
{
/* freectty() always assumes curproc. */
if (freectty(B_FALSE) != 0)
return (0);
return (ENOTTY);
}
case FIONBIO:
case FIOASYNC:
return (0); /* handled by the upper layer */
}
}
/*
* Custom free routine used for M_PASSFP messages.
*/
static void
free_passfp(struct k_strrecvfd *srf)
{
(void) closef(srf->fp);
kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
}
/* ARGSUSED */
int
do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
{
queue_t *qp, *nextqp;
struct k_strrecvfd *srf;
mblk_t *mp;
frtn_t *frtnp;
size_t bufsize;
queue_t *mate = NULL;
syncq_t *sq = NULL;
int retval = 0;
if (stp->sd_flag & STRHUP)
return (ENXIO);
claimstr(stp->sd_wrq);
/* Fastpath, we have a pipe, and we are already mated, use it. */
if (STRMATED(stp)) {
qp = _RD(stp->sd_mate->sd_wrq);
claimstr(qp);
mate = qp;
} else { /* Not already mated. */
/*
* Walk the stream to the end of this one.
* assumes that the claimstr() will prevent
* plumbing between the stream head and the
* driver from changing
*/
qp = stp->sd_wrq;
/*
* Loop until we reach the end of this stream.
* On completion, qp points to the write queue
* at the end of the stream, or the read queue
* at the stream head if this is a fifo.
*/
while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
;
/*
* Just in case we get a q_next which is NULL, but
* not at the end of the stream. This is actually
* broken, so we set an assert to catch it in
* debug, and set an error and return if not debug.
*/
ASSERT(qp);
if (qp == NULL) {
releasestr(stp->sd_wrq);
return (EINVAL);
}
/*
* Enter the syncq for the driver, so (hopefully)
* the queue values will not change on us.
* XXXX - This will only prevent the race IFF only
* the write side modifies the q_next member, and
* the put procedure is protected by at least
* MT_PERQ.
*/
if ((sq = qp->q_syncq) != NULL)
entersq(sq, SQ_PUT);
/* Now get the q_next value from this qp. */
nextqp = qp->q_next;
/*
* If nextqp exists and the other stream is different
* from this one claim the stream, set the mate, and
* get the read queue at the stream head of the other
* stream. Assumes that nextqp was at least valid when
* we got it. Hopefully the entersq of the driver
* will prevent it from changing on us.
*/
if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
ASSERT(qp->q_qinfo->qi_srvp);
ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
claimstr(nextqp);
/* Make sure we still have a q_next */
if (nextqp != qp->q_next) {
releasestr(stp->sd_wrq);
releasestr(nextqp);
return (EINVAL);
}
qp = _RD(STREAM(nextqp)->sd_wrq);
mate = qp;
}
/* If we entered the synq above, leave it. */
if (sq != NULL)
leavesq(sq, SQ_PUT);
} /* STRMATED(STP) */
/* XXX prevents substitution of the ops vector */
if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
retval = EINVAL;
goto out;
}
if (qp->q_flag & QFULL) {
retval = EAGAIN;
goto out;
}
/*
* Since M_PASSFP messages include a file descriptor, we use
* esballoc() and specify a custom free routine (free_passfp()) that
* will close the descriptor as part of freeing the message. For
* convenience, we stash the frtn_t right after the data block.
*/
bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
srf = kmem_alloc(bufsize, KM_NOSLEEP);
if (srf == NULL) {
retval = EAGAIN;
goto out;
}
frtnp = (frtn_t *)(srf + 1);
frtnp->free_arg = (caddr_t)srf;
frtnp->free_func = free_passfp;
mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
if (mp == NULL) {
kmem_free(srf, bufsize);
retval = EAGAIN;
goto out;
}
mp->b_wptr += sizeof (struct k_strrecvfd);
mp->b_datap->db_type = M_PASSFP;
srf->fp = fp;
srf->uid = crgetuid(curthread->t_cred);
srf->gid = crgetgid(curthread->t_cred);
mutex_enter(&fp->f_tlock);
fp->f_count++;
mutex_exit(&fp->f_tlock);
put(qp, mp);
out:
releasestr(stp->sd_wrq);
if (mate)
releasestr(mate);
return (retval);
}
/*
* Send an ioctl message downstream and wait for acknowledgement.
* flags may be set to either U_TO_K or K_TO_K and a combination
* of STR_NOERROR or STR_NOSIG
* STR_NOSIG: Signals are essentially ignored or held and have
* no effect for the duration of the call.
* STR_NOERROR: Ignores stream head read, write and hup errors.
* Additionally, if an existing ioctl times out, it is assumed
* lost and and this ioctl will continue as if the previous ioctl had
* finished. ETIME may be returned if this ioctl times out (i.e.
* ic_timout is not INFTIM). Non-stream head errors may be returned if
* the ioc_error indicates that the driver/module had problems,
* an EFAULT was found when accessing user data, a lack of
* resources, etc.
*/
int
strdoioctl(
struct stdata *stp,
struct strioctl *strioc,
int fflags, /* file flags with model info */
int flag,
cred_t *crp,
int *rvalp)
{
mblk_t *bp;
struct iocblk *iocbp;
struct copyreq *reqp;
struct copyresp *resp;
int id;
int transparent = 0;
int error = 0;
int len = 0;
caddr_t taddr;
int copyflag = (flag & (U_TO_K | K_TO_K));
int sigflag = (flag & STR_NOSIG);
int errs;
uint_t waitflags;
boolean_t set_iocwaitne = B_FALSE;
ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
ASSERT((fflags & FMODELS) != 0);
TRACE_2(TR_FAC_STREAMS_FR,
TR_STRDOIOCTL,
"strdoioctl:stp %p strioc %p", stp, strioc);
if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */
transparent = 1;
strioc->ic_len = sizeof (intptr_t);
}
if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
return (EINVAL);
if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
crp, curproc->p_pid)) == NULL)
return (error);
bzero(bp->b_wptr, sizeof (union ioctypes));
iocbp = (struct iocblk *)bp->b_wptr;
iocbp->ioc_count = strioc->ic_len;
iocbp->ioc_cmd = strioc->ic_cmd;
iocbp->ioc_flag = (fflags & FMODELS);
crhold(crp);
iocbp->ioc_cr = crp;
DB_TYPE(bp) = M_IOCTL;
bp->b_wptr += sizeof (struct iocblk);
if (flag & STR_NOERROR)
errs = STPLEX;
else
errs = STRHUP|STRDERR|STWRERR|STPLEX;
/*
* If there is data to copy into ioctl block, do so.
*/
if (iocbp->ioc_count > 0) {
if (transparent)
/*
* Note: STR_NOERROR does not have an effect
* in putiocd()
*/
id = K_TO_K | sigflag;
else
id = flag;
if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
freemsg(bp);
crfree(crp);
return (error);
}
/*
* We could have slept copying in user pages.
* Recheck the stream head state (the other end
* of a pipe could have gone away).
*/
if (stp->sd_flag & errs) {
mutex_enter(&stp->sd_lock);
error = strgeterr(stp, errs, 0);
mutex_exit(&stp->sd_lock);
if (error != 0) {
freemsg(bp);
crfree(crp);
return (error);
}
}
}
if (transparent)
iocbp->ioc_count = TRANSPARENT;
/*
* Block for up to STRTIMOUT milliseconds if there is an outstanding
* ioctl for this stream already running. All processes
* sleeping here will be awakened as a result of an ACK
* or NAK being received for the outstanding ioctl, or
* as a result of the timer expiring on the outstanding
* ioctl (a failure), or as a result of any waiting
* process's timer expiring (also a failure).
*/
error = 0;
mutex_enter(&stp->sd_lock);
while ((stp->sd_flag & IOCWAIT) ||
(!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) {
clock_t cv_rval;
TRACE_0(TR_FAC_STREAMS_FR,
TR_STRDOIOCTL_WAIT,
"strdoioctl sleeps - IOCWAIT");
cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
STRTIMOUT, sigflag);
if (cv_rval <= 0) {
if (cv_rval == 0) {
error = EINTR;
} else {
if (flag & STR_NOERROR) {
/*
* Terminating current ioctl in
* progress -- assume it got lost and
* wake up the other thread so that the
* operation completes.
*/
if (!(stp->sd_flag & IOCWAITNE)) {
set_iocwaitne = B_TRUE;
stp->sd_flag |= IOCWAITNE;
cv_broadcast(&stp->sd_monitor);
}
/*
* Otherwise, there's a running
* STR_NOERROR -- we have no choice
* here but to wait forever (or until
* interrupted).
*/
} else {
/*
* pending ioctl has caused
* us to time out
*/
error = ETIME;
}
}
} else if ((stp->sd_flag & errs)) {
error = strgeterr(stp, errs, 0);
}
if (error) {
mutex_exit(&stp->sd_lock);
freemsg(bp);
crfree(crp);
return (error);
}
}
/*
* Have control of ioctl mechanism.
* Send down ioctl packet and wait for response.
*/
if (stp->sd_iocblk != (mblk_t *)-1) {
freemsg(stp->sd_iocblk);
}
stp->sd_iocblk = NULL;
/*
* If this is marked with 'noerror' (internal; mostly
* I_{P,}{UN,}LINK), then make sure nobody else is able to get
* in here by setting IOCWAITNE.
*/
waitflags = IOCWAIT;
if (flag & STR_NOERROR)
waitflags |= IOCWAITNE;
stp->sd_flag |= waitflags;
/*
* Assign sequence number.
*/
iocbp->ioc_id = stp->sd_iocid = getiocseqno();
mutex_exit(&stp->sd_lock);
TRACE_1(TR_FAC_STREAMS_FR,
TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
stream_willservice(stp);
putnext(stp->sd_wrq, bp);
stream_runservice(stp);
/*
* Timed wait for acknowledgment. The wait time is limited by the
* timeout value, which must be a positive integer (number of
* milliseconds) to wait, or 0 (use default value of STRTIMOUT
* milliseconds), or -1 (wait forever). This will be awakened
* either by an ACK/NAK message arriving, the timer expiring, or
* the timer expiring on another ioctl waiting for control of the
* mechanism.
*/
waitioc:
mutex_enter(&stp->sd_lock);
/*
* If the reply has already arrived, don't sleep. If awakened from
* the sleep, fail only if the reply has not arrived by then.
* Otherwise, process the reply.
*/
while (!stp->sd_iocblk) {
clock_t cv_rval;
if (stp->sd_flag & errs) {
error = strgeterr(stp, errs, 0);
if (error != 0) {
stp->sd_flag &= ~waitflags;
cv_broadcast(&stp->sd_iocmonitor);
mutex_exit(&stp->sd_lock);
crfree(crp);
return (error);
}
}
TRACE_0(TR_FAC_STREAMS_FR,
TR_STRDOIOCTL_WAIT2,
"strdoioctl sleeps awaiting reply");
ASSERT(error == 0);
cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
(strioc->ic_timout ?
strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
/*
* There are four possible cases here: interrupt, timeout,
* wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
* valid M_IOCTL reply).
*
* If we've been awakened by a STR_NOERROR ioctl on some other
* thread, then sd_iocblk will still be NULL, and IOCWAITNE
* will be set. Pretend as if we just timed out. Note that
* this other thread waited at least STRTIMOUT before trying to
* awaken our thread, so this is indistinguishable (even for
* INFTIM) from the case where we failed with ETIME waiting on
* IOCWAIT in the prior loop.
*/
if (cv_rval > 0 && !(flag & STR_NOERROR) &&
stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
cv_rval = -1;
}
/*
* note: STR_NOERROR does not protect
* us here.. use ic_timout < 0
*/
if (cv_rval <= 0) {
if (cv_rval == 0) {
error = EINTR;
} else {
error = ETIME;
}
/*
* A message could have come in after we were scheduled
* but before we were actually run.
*/
bp = stp->sd_iocblk;
stp->sd_iocblk = NULL;
if (bp != NULL) {
if ((bp->b_datap->db_type == M_COPYIN) ||
(bp->b_datap->db_type == M_COPYOUT)) {
mutex_exit(&stp->sd_lock);
if (bp->b_cont) {
freemsg(bp->b_cont);
bp->b_cont = NULL;
}
bp->b_datap->db_type = M_IOCDATA;
bp->b_wptr = bp->b_rptr +
sizeof (struct copyresp);
resp = (struct copyresp *)bp->b_rptr;
resp->cp_rval =
(caddr_t)1; /* failure */
stream_willservice(stp);
putnext(stp->sd_wrq, bp);
stream_runservice(stp);
mutex_enter(&stp->sd_lock);
} else {
freemsg(bp);
}
}
stp->sd_flag &= ~waitflags;
cv_broadcast(&stp->sd_iocmonitor);
mutex_exit(&stp->sd_lock);
crfree(crp);
return (error);
}
}
bp = stp->sd_iocblk;
/*
* Note: it is strictly impossible to get here with sd_iocblk set to
* -1. This is because the initial loop above doesn't allow any new
* ioctls into the fray until all others have passed this point.
*/
ASSERT(bp != NULL && bp != (mblk_t *)-1);
TRACE_1(TR_FAC_STREAMS_FR,
TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
if ((bp->b_datap->db_type == M_IOCACK) ||
(bp->b_datap->db_type == M_IOCNAK)) {
/* for detection of duplicate ioctl replies */
stp->sd_iocblk = (mblk_t *)-1;
stp->sd_flag &= ~waitflags;
cv_broadcast(&stp->sd_iocmonitor);
mutex_exit(&stp->sd_lock);
} else {
/*
* flags not cleared here because we're still doing
* copy in/out for ioctl.
*/
stp->sd_iocblk = NULL;
mutex_exit(&stp->sd_lock);
}
/*
* Have received acknowledgment.
*/
switch (bp->b_datap->db_type) {
case M_IOCACK:
/*
* Positive ack.
*/
iocbp = (struct iocblk *)bp->b_rptr;
/*
* Set error if indicated.
*/
if (iocbp->ioc_error) {
error = iocbp->ioc_error;
break;
}
/*
* Set return value.
*/
*rvalp = iocbp->ioc_rval;
/*
* Data may have been returned in ACK message (ioc_count > 0).
* If so, copy it out to the user's buffer.
*/
if (iocbp->ioc_count && !transparent) {
if (error = getiocd(bp, strioc->ic_dp, copyflag))
break;
}
if (!transparent) {
if (len) /* an M_COPYOUT was used with I_STR */
strioc->ic_len = len;
else
strioc->ic_len = (int)iocbp->ioc_count;
}
break;
case M_IOCNAK:
/*
* Negative ack.
*
* The only thing to do is set error as specified
* in neg ack packet.
*/
iocbp = (struct iocblk *)bp->b_rptr;
error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
break;
case M_COPYIN:
/*
* Driver or module has requested user ioctl data.
*/
reqp = (struct copyreq *)bp->b_rptr;
/*
* M_COPYIN should *never* have a message attached, though
* it's harmless if it does -- thus, panic on a DEBUG
* kernel and just free it on a non-DEBUG build.
*/
ASSERT(bp->b_cont == NULL);
if (bp->b_cont != NULL) {
freemsg(bp->b_cont);
bp->b_cont = NULL;
}
error = putiocd(bp, reqp->cq_addr, flag, crp);
if (error && bp->b_cont) {
freemsg(bp->b_cont);
bp->b_cont = NULL;
}
bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
bp->b_datap->db_type = M_IOCDATA;
mblk_setcred(bp, crp, curproc->p_pid);
resp = (struct copyresp *)bp->b_rptr;
resp->cp_rval = (caddr_t)(uintptr_t)error;
resp->cp_flag = (fflags & FMODELS);
stream_willservice(stp);
putnext(stp->sd_wrq, bp);
stream_runservice(stp);
if (error) {
mutex_enter(&stp->sd_lock);
stp->sd_flag &= ~waitflags;
cv_broadcast(&stp->sd_iocmonitor);
mutex_exit(&stp->sd_lock);
crfree(crp);
return (error);
}
goto waitioc;
case M_COPYOUT:
/*
* Driver or module has ioctl data for a user.
*/
reqp = (struct copyreq *)bp->b_rptr;
ASSERT(bp->b_cont != NULL);
/*
* Always (transparent or non-transparent )
* use the address specified in the request
*/
taddr = reqp->cq_addr;
if (!transparent)
len = (int)reqp->cq_size;
/* copyout data to the provided address */
error = getiocd(bp, taddr, copyflag);
freemsg(bp->b_cont);
bp->b_cont = NULL;
bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
bp->b_datap->db_type = M_IOCDATA;
mblk_setcred(bp, crp, curproc->p_pid);
resp = (struct copyresp *)bp->b_rptr;
resp->cp_rval = (caddr_t)(uintptr_t)error;
resp->cp_flag = (fflags & FMODELS);
stream_willservice(stp);
putnext(stp->sd_wrq, bp);
stream_runservice(stp);
if (error) {
mutex_enter(&stp->sd_lock);
stp->sd_flag &= ~waitflags;
cv_broadcast(&stp->sd_iocmonitor);
mutex_exit(&stp->sd_lock);
crfree(crp);
return (error);
}
goto waitioc;
default:
ASSERT(0);
mutex_enter(&stp->sd_lock);
stp->sd_flag &= ~waitflags;
cv_broadcast(&stp->sd_iocmonitor);
mutex_exit(&stp->sd_lock);
break;
}
freemsg(bp);
crfree(crp);
return (error);
}
/*
* Send an M_CMD message downstream and wait for a reply. This is a ptools
* special used to retrieve information from modules/drivers a stream without
* being subjected to flow control or interfering with pending messages on the
* stream (e.g. an ioctl in flight).
*/
int
strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
{
mblk_t *mp;
struct cmdblk *cmdp;
int error = 0;
int errs = STRHUP|STRDERR|STWRERR|STPLEX;
clock_t rval, timeout = STRTIMOUT;
if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
scp->sc_timeout < -1)
return (EINVAL);
if (scp->sc_timeout > 0)
timeout = scp->sc_timeout * MILLISEC;
if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
curproc->p_pid)) == NULL)
return (ENOMEM);
crhold(crp);
cmdp = (struct cmdblk *)mp->b_wptr;
cmdp->cb_cr = crp;
cmdp->cb_cmd = scp->sc_cmd;
cmdp->cb_len = scp->sc_len;
cmdp->cb_error = 0;
mp->b_wptr += sizeof (struct cmdblk);
DB_TYPE(mp) = M_CMD;
DB_CPID(mp) = curproc->p_pid;
/*
* Copy in the payload.
*/
if (cmdp->cb_len > 0) {
mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
curproc->p_pid);
if (mp->b_cont == NULL) {
error = ENOMEM;
goto out;
}
/* cb_len comes from sc_len, which has already been checked */
ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
(void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
mp->b_cont->b_wptr += cmdp->cb_len;
DB_CPID(mp->b_cont) = curproc->p_pid;
}
/*
* Since this mechanism is strictly for ptools, and since only one
* process can be grabbed at a time, we simply fail if there's
* currently an operation pending.
*/
mutex_enter(&stp->sd_lock);
if (stp->sd_flag & STRCMDWAIT) {
mutex_exit(&stp->sd_lock);
error = EBUSY;
goto out;
}
stp->sd_flag |= STRCMDWAIT;
ASSERT(stp->sd_cmdblk == NULL);
mutex_exit(&stp->sd_lock);
putnext(stp->sd_wrq, mp);
mp = NULL;
/*
* Timed wait for acknowledgment. If the reply has already arrived,
* don't sleep. If awakened from the sleep, fail only if the reply
* has not arrived by then. Otherwise, process the reply.
*/
mutex_enter(&stp->sd_lock);
while (stp->sd_cmdblk == NULL) {
if (stp->sd_flag & errs) {
if ((error = strgeterr(stp, errs, 0)) != 0)
goto waitout;
}
rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
if (stp->sd_cmdblk != NULL)
break;
if (rval <= 0) {
error = (rval == 0) ? EINTR : ETIME;
goto waitout;
}
}
/*
* We received a reply.
*/
mp = stp->sd_cmdblk;
stp->sd_cmdblk = NULL;
ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
ASSERT(stp->sd_flag & STRCMDWAIT);
stp->sd_flag &= ~STRCMDWAIT;
mutex_exit(&stp->sd_lock);
cmdp = (struct cmdblk *)mp->b_rptr;
if ((error = cmdp->cb_error) != 0)
goto out;
/*
* Data may have been returned in the reply (cb_len > 0).
* If so, copy it out to the user's buffer.
*/
if (cmdp->cb_len > 0) {
if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
error = EPROTO;
goto out;
}
cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
(void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
}
scp->sc_len = cmdp->cb_len;
out:
freemsg(mp);
crfree(crp);
return (error);
waitout:
ASSERT(stp->sd_cmdblk == NULL);
stp->sd_flag &= ~STRCMDWAIT;
mutex_exit(&stp->sd_lock);
crfree(crp);
return (error);
}
/*
* For the SunOS keyboard driver.
* Return the next available "ioctl" sequence number.
* Exported, so that streams modules can send "ioctl" messages
* downstream from their open routine.
*/
int
getiocseqno(void)
{
int i;
mutex_enter(&strresources);
i = ++ioc_id;
mutex_exit(&strresources);
return (i);
}
/*
* Get the next message from the read queue. If the message is
* priority, STRPRI will have been set by strrput(). This flag
* should be reset only when the entire message at the front of the
* queue as been consumed.
*
* NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
*/
int
strgetmsg(
struct vnode *vp,
struct strbuf *mctl,
struct strbuf *mdata,
unsigned char *prip,
int *flagsp,
int fmode,
rval_t *rvp)
{
struct stdata *stp;
mblk_t *bp, *nbp;
mblk_t *savemp = NULL;
mblk_t *savemptail = NULL;
uint_t old_sd_flag;
int flg;
int more = 0;
int error = 0;
char first = 1;
uint_t mark; /* Contains MSG*MARK and _LASTMARK */
#define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
unsigned char pri = 0;
queue_t *q;
int pr = 0; /* Partial read successful */
struct uio uios;
struct uio *uiop = &uios;
struct iovec iovs;
unsigned char type;
TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
"strgetmsg:%p", vp);
ASSERT(vp->v_stream);
stp = vp->v_stream;
rvp->r_val1 = 0;
mutex_enter(&stp->sd_lock);
if ((error = i_straccess(stp, JCREAD)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
if (stp->sd_flag & (STRDERR|STPLEX)) {
error = strgeterr(stp, STRDERR|STPLEX, 0);
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
mutex_exit(&stp->sd_lock);
switch (*flagsp) {
case MSG_HIPRI:
if (*prip != 0)
return (EINVAL);
break;
case MSG_ANY:
case MSG_BAND:
break;
default:
return (EINVAL);
}
/*
* Setup uio and iov for data part
*/
iovs.iov_base = mdata->buf;
iovs.iov_len = mdata->maxlen;
uios.uio_iov = &iovs;
uios.uio_iovcnt = 1;
uios.uio_loffset = 0;
uios.uio_segflg = UIO_USERSPACE;
uios.uio_fmode = 0;
uios.uio_extflg = UIO_COPY_CACHED;
uios.uio_resid = mdata->maxlen;
uios.uio_offset = 0;
q = _RD(stp->sd_wrq);
mutex_enter(&stp->sd_lock);
old_sd_flag = stp->sd_flag;
mark = 0;
for (;;) {
int done = 0;
mblk_t *q_first = q->q_first;
/*
* Get the next message of appropriate priority
* from the stream head. If the caller is interested
* in band or hipri messages, then they should already
* be enqueued at the stream head. On the other hand
* if the caller wants normal (band 0) messages, they
* might be deferred in a synchronous stream and they
* will need to be pulled up.
*
* After we have dequeued a message, we might find that
* it was a deferred M_SIG that was enqueued at the
* stream head. It must now be posted as part of the
* read by calling strsignal_nolock().
*
* Also note that strrput does not enqueue an M_PCSIG,
* and there cannot be more than one hipri message,
* so there was no need to have the M_PCSIG case.
*
* At some time it might be nice to try and wrap the
* functionality of kstrgetmsg() and strgetmsg() into
* a common routine so to reduce the amount of replicated
* code (since they are extremely similar).
*/
if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
/* Asking for normal, band0 data */
bp = strget(stp, q, uiop, first, &error);
ASSERT(MUTEX_HELD(&stp->sd_lock));
if (bp != NULL) {
if (DB_TYPE(bp) == M_SIG) {
strsignal_nolock(stp, *bp->b_rptr,
bp->b_band);
freemsg(bp);
continue;
} else {
break;
}
}
if (error != 0)
goto getmout;
/*
* We can't depend on the value of STRPRI here because
* the stream head may be in transit. Therefore, we
* must look at the type of the first message to
* determine if a high priority messages is waiting
*/
} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
DB_TYPE(q_first) >= QPCTL &&
(bp = getq_noenab(q, 0)) != NULL) {
/* Asked for HIPRI and got one */
ASSERT(DB_TYPE(bp) >= QPCTL);
break;
} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
(bp = getq_noenab(q, 0)) != NULL) {
/*
* Asked for at least band "prip" and got either at
* least that band or a hipri message.
*/
ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
if (DB_TYPE(bp) == M_SIG) {
strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
freemsg(bp);
continue;
} else {
break;
}
}
/* No data. Time to sleep? */
qbackenable(q, 0);
/*
* If STRHUP or STREOF, return 0 length control and data.
* If resid is 0, then a read(fd,buf,0) was done. Do not
* sleep to satisfy this request because by default we have
* zero bytes to return.
*/
if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
mdata->maxlen == 0)) {
mctl->len = mdata->len = 0;
*flagsp = 0;
mutex_exit(&stp->sd_lock);
return (0);
}
TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
"strgetmsg calls strwaitq:%p, %p",
vp, uiop);
if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
&done)) != 0) || done) {
TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
"strgetmsg error or done:%p, %p",
vp, uiop);
mutex_exit(&stp->sd_lock);
return (error);
}
TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
"strgetmsg awakes:%p, %p", vp, uiop);
if ((error = i_straccess(stp, JCREAD)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
first = 0;
}
ASSERT(bp != NULL);
/*
* Extract any mark information. If the message is not completely
* consumed this information will be put in the mblk
* that is putback.
* If MSGMARKNEXT is set and the message is completely consumed
* the STRATMARK flag will be set below. Likewise, if
* MSGNOTMARKNEXT is set and the message is
* completely consumed STRNOTATMARK will be set.
*/
mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
(MSGMARKNEXT|MSGNOTMARKNEXT));
if (mark != 0 && bp == stp->sd_mark) {
mark |= _LASTMARK;
stp->sd_mark = NULL;
}
/*
* keep track of the original message type and priority
*/
pri = bp->b_band;
type = bp->b_datap->db_type;
if (type == M_PASSFP) {
if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
stp->sd_mark = bp;
bp->b_flag |= mark & ~_LASTMARK;
putback(stp, q, bp, pri);
qbackenable(q, pri);
mutex_exit(&stp->sd_lock);
return (EBADMSG);
}
ASSERT(type != M_SIG);
/*
* Set this flag so strrput will not generate signals. Need to
* make sure this flag is cleared before leaving this routine
* else signals will stop being sent.
*/
stp->sd_flag |= STRGETINPROG;
mutex_exit(&stp->sd_lock);
if (STREAM_NEEDSERVICE(stp))
stream_runservice(stp);
/*
* Set HIPRI flag if message is priority.
*/
if (type >= QPCTL)
flg = MSG_HIPRI;
else
flg = MSG_BAND;
/*
* First process PROTO or PCPROTO blocks, if any.
*/
if (mctl->maxlen >= 0 && type != M_DATA) {
size_t n, bcnt;
char *ubuf;
bcnt = mctl->maxlen;
ubuf = mctl->buf;
while (bp != NULL && bp->b_datap->db_type != M_DATA) {
if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
copyout(bp->b_rptr, ubuf, n)) {
error = EFAULT;
mutex_enter(&stp->sd_lock);
/*
* clear stream head pri flag based on
* first message type
*/
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
more = 0;
freemsg(bp);
goto getmout;
}
ubuf += n;
bp->b_rptr += n;
if (bp->b_rptr >= bp->b_wptr) {
nbp = bp;
bp = bp->b_cont;
freeb(nbp);
}
ASSERT(n <= bcnt);
bcnt -= n;
if (bcnt == 0)
break;
}
mctl->len = mctl->maxlen - bcnt;
} else
mctl->len = -1;
if (bp && bp->b_datap->db_type != M_DATA) {
/*
* More PROTO blocks in msg.
*/
more |= MORECTL;
savemp = bp;
while (bp && bp->b_datap->db_type != M_DATA) {
savemptail = bp;
bp = bp->b_cont;
}
savemptail->b_cont = NULL;
}
/*
* Now process DATA blocks, if any.
*/
if (mdata->maxlen >= 0 && bp) {
/*
* struiocopyout will consume a potential zero-length
* M_DATA even if uio_resid is zero.
*/
size_t oldresid = uiop->uio_resid;
bp = struiocopyout(bp, uiop, &error);
if (error != 0) {
mutex_enter(&stp->sd_lock);
/*
* clear stream head hi pri flag based on
* first message
*/
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
more = 0;
freemsg(savemp);
goto getmout;
}
/*
* (pr == 1) indicates a partial read.
*/
if (oldresid > uiop->uio_resid)
pr = 1;
mdata->len = mdata->maxlen - uiop->uio_resid;
} else
mdata->len = -1;
if (bp) { /* more data blocks in msg */
more |= MOREDATA;
if (savemp)
savemptail->b_cont = bp;
else
savemp = bp;
}
mutex_enter(&stp->sd_lock);
if (savemp) {
if (pr && (savemp->b_datap->db_type == M_DATA) &&
msgnodata(savemp)) {
/*
* Avoid queuing a zero-length tail part of
* a message. pr=1 indicates that we read some of
* the message.
*/
freemsg(savemp);
more &= ~MOREDATA;
/*
* clear stream head hi pri flag based on
* first message
*/
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
} else {
savemp->b_band = pri;
/*
* If the first message was HIPRI and the one we're
* putting back isn't, then clear STRPRI, otherwise
* set STRPRI again. Note that we must set STRPRI
* again since the flush logic in strrput_nondata()
* may have cleared it while we had sd_lock dropped.
*/
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
if (queclass(savemp) < QPCTL)
stp->sd_flag &= ~STRPRI;
else
stp->sd_flag |= STRPRI;
} else if (queclass(savemp) >= QPCTL) {
/*
* The first message was not a HIPRI message,
* but the one we are about to putback is.
* For simplicitly, we do not allow for HIPRI
* messages to be embedded in the message
* body, so just force it to same type as
* first message.
*/
ASSERT(type == M_DATA || type == M_PROTO);
ASSERT(savemp->b_datap->db_type == M_PCPROTO);
savemp->b_datap->db_type = type;
}
if (mark != 0) {
savemp->b_flag |= mark & ~_LASTMARK;
if ((mark & _LASTMARK) &&
(stp->sd_mark == NULL)) {
/*
* If another marked message arrived
* while sd_lock was not held sd_mark
* would be non-NULL.
*/
stp->sd_mark = savemp;
}
}
putback(stp, q, savemp, pri);
}
} else {
/*
* The complete message was consumed.
*
* If another M_PCPROTO arrived while sd_lock was not held
* it would have been discarded since STRPRI was still set.
*
* Move the MSG*MARKNEXT information
* to the stream head just in case
* the read queue becomes empty.
* clear stream head hi pri flag based on
* first message
*
* If the stream head was at the mark
* (STRATMARK) before we dropped sd_lock above
* and some data was consumed then we have
* moved past the mark thus STRATMARK is
* cleared. However, if a message arrived in
* strrput during the copyout above causing
* STRATMARK to be set we can not clear that
* flag.
*/
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
if (mark & MSGMARKNEXT) {
stp->sd_flag &= ~STRNOTATMARK;
stp->sd_flag |= STRATMARK;
} else if (mark & MSGNOTMARKNEXT) {
stp->sd_flag &= ~STRATMARK;
stp->sd_flag |= STRNOTATMARK;
} else {
stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
}
} else if (pr && (old_sd_flag & STRATMARK)) {
stp->sd_flag &= ~STRATMARK;
}
}
*flagsp = flg;
*prip = pri;
/*
* Getmsg cleanup processing - if the state of the queue has changed
* some signals may need to be sent and/or poll awakened.
*/
getmout:
qbackenable(q, pri);
/*
* We dropped the stream head lock above. Send all M_SIG messages
* before processing stream head for SIGPOLL messages.
*/
ASSERT(MUTEX_HELD(&stp->sd_lock));
while ((bp = q->q_first) != NULL &&
(bp->b_datap->db_type == M_SIG)) {
/*
* sd_lock is held so the content of the read queue can not
* change.
*/
bp = getq(q);
ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
mutex_exit(&stp->sd_lock);
freemsg(bp);
if (STREAM_NEEDSERVICE(stp))
stream_runservice(stp);
mutex_enter(&stp->sd_lock);
}
/*
* stream head cannot change while we make the determination
* whether or not to send a signal. Drop the flag to allow strrput
* to send firstmsgsigs again.
*/
stp->sd_flag &= ~STRGETINPROG;
/*
* If the type of message at the front of the queue changed
* due to the receive the appropriate signals and pollwakeup events
* are generated. The type of changes are:
* Processed a hipri message, q_first is not hipri.
* Processed a band X message, and q_first is band Y.
* The generated signals and pollwakeups are identical to what
* strrput() generates should the message that is now on q_first
* arrive to an empty read queue.
*
* Note: only strrput will send a signal for a hipri message.
*/
if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
strsigset_t signals = 0;
strpollset_t pollwakeups = 0;
if (flg & MSG_HIPRI) {
/*
* Removed a hipri message. Regular data at
* the front of the queue.
*/
if (bp->b_band == 0) {
signals = S_INPUT | S_RDNORM;
pollwakeups = POLLIN | POLLRDNORM;
} else {
signals = S_INPUT | S_RDBAND;
pollwakeups = POLLIN | POLLRDBAND;
}
} else if (pri != bp->b_band) {
/*
* The band is different for the new q_first.
*/
if (bp->b_band == 0) {
signals = S_RDNORM;
pollwakeups = POLLIN | POLLRDNORM;
} else {
signals = S_RDBAND;
pollwakeups = POLLIN | POLLRDBAND;
}
}
if (pollwakeups != 0) {
if (pollwakeups == (POLLIN | POLLRDNORM)) {
if (!(stp->sd_rput_opt & SR_POLLIN))
goto no_pollwake;
stp->sd_rput_opt &= ~SR_POLLIN;
}
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, pollwakeups);
mutex_enter(&stp->sd_lock);
}
no_pollwake:
if (stp->sd_sigflags & signals)
strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
}
mutex_exit(&stp->sd_lock);
rvp->r_val1 = more;
return (error);
#undef _LASTMARK
}
/*
* Get the next message from the read queue. If the message is
* priority, STRPRI will have been set by strrput(). This flag
* should be reset only when the entire message at the front of the
* queue as been consumed.
*
* If uiop is NULL all data is returned in mctlp.
* Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
* not enabled.
* The timeout parameter is in milliseconds; -1 for infinity.
* This routine handles the consolidation private flags:
* MSG_IGNERROR Ignore any stream head error except STPLEX.
* MSG_DELAYERROR Defer the error check until the queue is empty.
* MSG_HOLDSIG Hold signals while waiting for data.
* MSG_IPEEK Only peek at messages.
* MSG_DISCARDTAIL Discard the tail M_DATA part of the message
* that doesn't fit.
* MSG_NOMARK If the message is marked leave it on the queue.
*
* NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
*/
int
kstrgetmsg(
struct vnode *vp,
mblk_t **mctlp,
struct uio *uiop,
unsigned char *prip,
int *flagsp,
clock_t timout,
rval_t *rvp)
{
struct stdata *stp;
mblk_t *bp, *nbp;
mblk_t *savemp = NULL;
mblk_t *savemptail = NULL;
int flags;
uint_t old_sd_flag;
int flg;
int more = 0;
int error = 0;
char first = 1;
uint_t mark; /* Contains MSG*MARK and _LASTMARK */
#define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
unsigned char pri = 0;
queue_t *q;
int pr = 0; /* Partial read successful */
unsigned char type;
TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
"kstrgetmsg:%p", vp);
ASSERT(vp->v_stream);
stp = vp->v_stream;
rvp->r_val1 = 0;
mutex_enter(&stp->sd_lock);
if ((error = i_straccess(stp, JCREAD)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
flags = *flagsp;
if (stp->sd_flag & (STRDERR|STPLEX)) {
if ((stp->sd_flag & STPLEX) ||
(flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
error = strgeterr(stp, STRDERR|STPLEX,
(flags & MSG_IPEEK));
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
}
mutex_exit(&stp->sd_lock);
switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
case MSG_HIPRI:
if (*prip != 0)
return (EINVAL);
break;
case MSG_ANY:
case MSG_BAND:
break;
default:
return (EINVAL);
}
retry:
q = _RD(stp->sd_wrq);
mutex_enter(&stp->sd_lock);
old_sd_flag = stp->sd_flag;
mark = 0;
for (;;) {
int done = 0;
int waitflag;
int fmode;
mblk_t *q_first = q->q_first;
/*
* This section of the code operates just like the code
* in strgetmsg(). There is a comment there about what
* is going on here.
*/
if (!(flags & (MSG_HIPRI|MSG_BAND))) {
/* Asking for normal, band0 data */
bp = strget(stp, q, uiop, first, &error);
ASSERT(MUTEX_HELD(&stp->sd_lock));
if (bp != NULL) {
if (DB_TYPE(bp) == M_SIG) {
strsignal_nolock(stp, *bp->b_rptr,
bp->b_band);
freemsg(bp);
continue;
} else {
break;
}
}
if (error != 0) {
goto getmout;
}
/*
* We can't depend on the value of STRPRI here because
* the stream head may be in transit. Therefore, we
* must look at the type of the first message to
* determine if a high priority messages is waiting
*/
} else if ((flags & MSG_HIPRI) && q_first != NULL &&
DB_TYPE(q_first) >= QPCTL &&
(bp = getq_noenab(q, 0)) != NULL) {
ASSERT(DB_TYPE(bp) >= QPCTL);
break;
} else if ((flags & MSG_BAND) && q_first != NULL &&
((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
(bp = getq_noenab(q, 0)) != NULL) {
/*
* Asked for at least band "prip" and got either at
* least that band or a hipri message.
*/
ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
if (DB_TYPE(bp) == M_SIG) {
strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
freemsg(bp);
continue;
} else {
break;
}
}
/* No data. Time to sleep? */
qbackenable(q, 0);
/*
* Delayed error notification?
*/
if ((stp->sd_flag & (STRDERR|STPLEX)) &&
(flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
error = strgeterr(stp, STRDERR|STPLEX,
(flags & MSG_IPEEK));
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
/*
* If STRHUP or STREOF, return 0 length control and data.
* If a read(fd,buf,0) has been done, do not sleep, just
* return.
*
* If mctlp == NULL and uiop == NULL, then the code will
* do the strwaitq. This is an understood way of saying
* sleep "polling" until a message is received.
*/
if ((stp->sd_flag & (STRHUP|STREOF)) ||
(uiop != NULL && uiop->uio_resid == 0)) {
if (mctlp != NULL)
*mctlp = NULL;
*flagsp = 0;
mutex_exit(&stp->sd_lock);
return (0);
}
waitflag = GETWAIT;
if (flags &
(MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
if (flags & MSG_HOLDSIG)
waitflag |= STR_NOSIG;
if (flags & MSG_IGNERROR)
waitflag |= STR_NOERROR;
if (flags & MSG_IPEEK)
waitflag |= STR_PEEK;
if (flags & MSG_DELAYERROR)
waitflag |= STR_DELAYERR;
}
if (uiop != NULL)
fmode = uiop->uio_fmode;
else
fmode = 0;
TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
"kstrgetmsg calls strwaitq:%p, %p",
vp, uiop);
if (((error = strwaitq(stp, waitflag, (ssize_t)0,
fmode, timout, &done))) != 0 || done) {
TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
"kstrgetmsg error or done:%p, %p",
vp, uiop);
mutex_exit(&stp->sd_lock);
return (error);
}
TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
"kstrgetmsg awakes:%p, %p", vp, uiop);
if ((error = i_straccess(stp, JCREAD)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
first = 0;
}
ASSERT(bp != NULL);
/*
* Extract any mark information. If the message is not completely
* consumed this information will be put in the mblk
* that is putback.
* If MSGMARKNEXT is set and the message is completely consumed
* the STRATMARK flag will be set below. Likewise, if
* MSGNOTMARKNEXT is set and the message is
* completely consumed STRNOTATMARK will be set.
*/
mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
(MSGMARKNEXT|MSGNOTMARKNEXT));
pri = bp->b_band;
if (mark != 0) {
/*
* If the caller doesn't want the mark return.
* Used to implement MSG_WAITALL in sockets.
*/
if (flags & MSG_NOMARK) {
putback(stp, q, bp, pri);
qbackenable(q, pri);
mutex_exit(&stp->sd_lock);
return (EWOULDBLOCK);
}
if (bp == stp->sd_mark) {
mark |= _LASTMARK;
stp->sd_mark = NULL;
}
}
/*
* keep track of the first message type
*/
type = bp->b_datap->db_type;
if (bp->b_datap->db_type == M_PASSFP) {
if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
stp->sd_mark = bp;
bp->b_flag |= mark & ~_LASTMARK;
putback(stp, q, bp, pri);
qbackenable(q, pri);
mutex_exit(&stp->sd_lock);
return (EBADMSG);
}
ASSERT(type != M_SIG);
if (flags & MSG_IPEEK) {
/*
* Clear any struioflag - we do the uiomove over again
* when peeking since it simplifies the code.
*
* Dup the message and put the original back on the queue.
* If dupmsg() fails, try again with copymsg() to see if
* there is indeed a shortage of memory. dupmsg() may fail
* if db_ref in any of the messages reaches its limit.
*/
if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
/*
* Restore the state of the stream head since we
* need to drop sd_lock (strwaitbuf is sleeping).
*/
size_t size = msgdsize(bp);
if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
stp->sd_mark = bp;
bp->b_flag |= mark & ~_LASTMARK;
putback(stp, q, bp, pri);
mutex_exit(&stp->sd_lock);
error = strwaitbuf(size, BPRI_HI);
if (error) {
/*
* There is no net change to the queue thus
* no need to qbackenable.
*/
return (error);
}
goto retry;
}
if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
stp->sd_mark = bp;
bp->b_flag |= mark & ~_LASTMARK;
putback(stp, q, bp, pri);
bp = nbp;
}
/*
* Set this flag so strrput will not generate signals. Need to
* make sure this flag is cleared before leaving this routine
* else signals will stop being sent.
*/
stp->sd_flag |= STRGETINPROG;
mutex_exit(&stp->sd_lock);
if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
mblk_t *tmp, *prevmp;
/*
* Put first non-data mblk back to stream head and
* cut the mblk chain so sd_rputdatafunc only sees
* M_DATA mblks. We can skip the first mblk since it
* is M_DATA according to the condition above.
*/
for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
prevmp = tmp, tmp = tmp->b_cont) {
if (DB_TYPE(tmp) != M_DATA) {
prevmp->b_cont = NULL;
mutex_enter(&stp->sd_lock);
putback(stp, q, tmp, tmp->b_band);
mutex_exit(&stp->sd_lock);
break;
}
}
bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
NULL, NULL, NULL, NULL);
if (bp == NULL)
goto retry;
}
if (STREAM_NEEDSERVICE(stp))
stream_runservice(stp);
/*
* Set HIPRI flag if message is priority.
*/
if (type >= QPCTL)
flg = MSG_HIPRI;
else
flg = MSG_BAND;
/*
* First process PROTO or PCPROTO blocks, if any.
*/
if (mctlp != NULL && type != M_DATA) {
mblk_t *nbp;
*mctlp = bp;
while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
bp = bp->b_cont;
nbp = bp->b_cont;
bp->b_cont = NULL;
bp = nbp;
}
if (bp && bp->b_datap->db_type != M_DATA) {
/*
* More PROTO blocks in msg. Will only happen if mctlp is NULL.
*/
more |= MORECTL;
savemp = bp;
while (bp && bp->b_datap->db_type != M_DATA) {
savemptail = bp;
bp = bp->b_cont;
}
savemptail->b_cont = NULL;
}
/*
* Now process DATA blocks, if any.
*/
if (uiop == NULL) {
/* Append data to tail of mctlp */
if (mctlp != NULL) {
mblk_t **mpp = mctlp;
while (*mpp != NULL)
mpp = &((*mpp)->b_cont);
*mpp = bp;
bp = NULL;
}
} else if (uiop->uio_resid >= 0 && bp) {
size_t oldresid = uiop->uio_resid;
/*
* If a streams message is likely to consist
* of many small mblks, it is pulled up into
* one continuous chunk of memory.
* The size of the first mblk may be bogus because
* successive read() calls on the socket reduce
* the size of this mblk until it is exhausted
* and then the code walks on to the next. Thus
* the size of the mblk may not be the original size
* that was passed up, it's simply a remainder
* and hence can be very small without any
* implication that the packet is badly fragmented.
* So the size of the possible second mblk is
* used to spot a badly fragmented packet.
* see longer comment at top of page
* by mblk_pull_len declaration.
*/
if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
(void) pullupmsg(bp, -1);
}
bp = struiocopyout(bp, uiop, &error);
if (error != 0) {
if (mctlp != NULL) {
freemsg(*mctlp);
*mctlp = NULL;
} else
freemsg(savemp);
mutex_enter(&stp->sd_lock);
/*
* clear stream head hi pri flag based on
* first message
*/
if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
more = 0;
goto getmout;
}
/*
* (pr == 1) indicates a partial read.
*/
if (oldresid > uiop->uio_resid)
pr = 1;
}
if (bp) { /* more data blocks in msg */
more |= MOREDATA;
if (savemp)
savemptail->b_cont = bp;
else
savemp = bp;
}
mutex_enter(&stp->sd_lock);
if (savemp) {
if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
/*
* When MSG_DISCARDTAIL is set or
* when peeking discard any tail. When peeking this
* is the tail of the dup that was copied out - the
* message has already been putback on the queue.
* Return MOREDATA to the caller even though the data
* is discarded. This is used by sockets (to
* set MSG_TRUNC).
*/
freemsg(savemp);
if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
msgnodata(savemp)) {
/*
* Avoid queuing a zero-length tail part of
* a message. pr=1 indicates that we read some of
* the message.
*/
freemsg(savemp);
more &= ~MOREDATA;
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
} else {
savemp->b_band = pri;
/*
* If the first message was HIPRI and the one we're
* putting back isn't, then clear STRPRI, otherwise
* set STRPRI again. Note that we must set STRPRI
* again since the flush logic in strrput_nondata()
* may have cleared it while we had sd_lock dropped.
*/
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
if (queclass(savemp) < QPCTL)
stp->sd_flag &= ~STRPRI;
else
stp->sd_flag |= STRPRI;
} else if (queclass(savemp) >= QPCTL) {
/*
* The first message was not a HIPRI message,
* but the one we are about to putback is.
* For simplicitly, we do not allow for HIPRI
* messages to be embedded in the message
* body, so just force it to same type as
* first message.
*/
ASSERT(type == M_DATA || type == M_PROTO);
ASSERT(savemp->b_datap->db_type == M_PCPROTO);
savemp->b_datap->db_type = type;
}
if (mark != 0) {
if ((mark & _LASTMARK) &&
(stp->sd_mark == NULL)) {
/*
* If another marked message arrived
* while sd_lock was not held sd_mark
* would be non-NULL.
*/
stp->sd_mark = savemp;
}
savemp->b_flag |= mark & ~_LASTMARK;
}
putback(stp, q, savemp, pri);
}
} else if (!(flags & MSG_IPEEK)) {
/*
* The complete message was consumed.
*
* If another M_PCPROTO arrived while sd_lock was not held
* it would have been discarded since STRPRI was still set.
*
* Move the MSG*MARKNEXT information
* to the stream head just in case
* the read queue becomes empty.
* clear stream head hi pri flag based on
* first message
*
* If the stream head was at the mark
* (STRATMARK) before we dropped sd_lock above
* and some data was consumed then we have
* moved past the mark thus STRATMARK is
* cleared. However, if a message arrived in
* strrput during the copyout above causing
* STRATMARK to be set we can not clear that
* flag.
* XXX A "perimeter" would help by single-threading strrput,
* strread, strgetmsg and kstrgetmsg.
*/
if (type >= QPCTL) {
ASSERT(type == M_PCPROTO);
stp->sd_flag &= ~STRPRI;
}
if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
if (mark & MSGMARKNEXT) {
stp->sd_flag &= ~STRNOTATMARK;
stp->sd_flag |= STRATMARK;
} else if (mark & MSGNOTMARKNEXT) {
stp->sd_flag &= ~STRATMARK;
stp->sd_flag |= STRNOTATMARK;
} else {
stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
}
} else if (pr && (old_sd_flag & STRATMARK)) {
stp->sd_flag &= ~STRATMARK;
}
}
*flagsp = flg;
*prip = pri;
/*
* Getmsg cleanup processing - if the state of the queue has changed
* some signals may need to be sent and/or poll awakened.
*/
getmout:
qbackenable(q, pri);
/*
* We dropped the stream head lock above. Send all M_SIG messages
* before processing stream head for SIGPOLL messages.
*/
ASSERT(MUTEX_HELD(&stp->sd_lock));
while ((bp = q->q_first) != NULL &&
(bp->b_datap->db_type == M_SIG)) {
/*
* sd_lock is held so the content of the read queue can not
* change.
*/
bp = getq(q);
ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
mutex_exit(&stp->sd_lock);
freemsg(bp);
if (STREAM_NEEDSERVICE(stp))
stream_runservice(stp);
mutex_enter(&stp->sd_lock);
}
/*
* stream head cannot change while we make the determination
* whether or not to send a signal. Drop the flag to allow strrput
* to send firstmsgsigs again.
*/
stp->sd_flag &= ~STRGETINPROG;
/*
* If the type of message at the front of the queue changed
* due to the receive the appropriate signals and pollwakeup events
* are generated. The type of changes are:
* Processed a hipri message, q_first is not hipri.
* Processed a band X message, and q_first is band Y.
* The generated signals and pollwakeups are identical to what
* strrput() generates should the message that is now on q_first
* arrive to an empty read queue.
*
* Note: only strrput will send a signal for a hipri message.
*/
if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
strsigset_t signals = 0;
strpollset_t pollwakeups = 0;
if (flg & MSG_HIPRI) {
/*
* Removed a hipri message. Regular data at
* the front of the queue.
*/
if (bp->b_band == 0) {
signals = S_INPUT | S_RDNORM;
pollwakeups = POLLIN | POLLRDNORM;
} else {
signals = S_INPUT | S_RDBAND;
pollwakeups = POLLIN | POLLRDBAND;
}
} else if (pri != bp->b_band) {
/*
* The band is different for the new q_first.
*/
if (bp->b_band == 0) {
signals = S_RDNORM;
pollwakeups = POLLIN | POLLRDNORM;
} else {
signals = S_RDBAND;
pollwakeups = POLLIN | POLLRDBAND;
}
}
if (pollwakeups != 0) {
if (pollwakeups == (POLLIN | POLLRDNORM)) {
if (!(stp->sd_rput_opt & SR_POLLIN))
goto no_pollwake;
stp->sd_rput_opt &= ~SR_POLLIN;
}
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, pollwakeups);
mutex_enter(&stp->sd_lock);
}
no_pollwake:
if (stp->sd_sigflags & signals)
strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
}
mutex_exit(&stp->sd_lock);
rvp->r_val1 = more;
return (error);
#undef _LASTMARK
}
/*
* Put a message downstream.
*
* NOTE: strputmsg and kstrputmsg have much of the logic in common.
*/
int
strputmsg(
struct vnode *vp,
struct strbuf *mctl,
struct strbuf *mdata,
unsigned char pri,
int flag,
int fmode)
{
struct stdata *stp;
queue_t *wqp;
mblk_t *mp;
ssize_t msgsize;
ssize_t rmin, rmax;
int error;
struct uio uios;
struct uio *uiop = &uios;
struct iovec iovs;
int xpg4 = 0;
ASSERT(vp->v_stream);
stp = vp->v_stream;
wqp = stp->sd_wrq;
/*
* If it is an XPG4 application, we need to send
* SIGPIPE below
*/
xpg4 = (flag & MSG_XPG4) ? 1 : 0;
flag &= ~MSG_XPG4;
if (AU_AUDITING())
audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
mutex_enter(&stp->sd_lock);
if ((error = i_straccess(stp, JCWRITE)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
error = strwriteable(stp, B_FALSE, xpg4);
if (error != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
}
mutex_exit(&stp->sd_lock);
/*
* Check for legal flag value.
*/
switch (flag) {
case MSG_HIPRI:
if ((mctl->len < 0) || (pri != 0))
return (EINVAL);
break;
case MSG_BAND:
break;
default:
return (EINVAL);
}
TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
"strputmsg in:stp %p", stp);
/* get these values from those cached in the stream head */
rmin = stp->sd_qn_minpsz;
rmax = stp->sd_qn_maxpsz;
/*
* Make sure ctl and data sizes together fall within the
* limits of the max and min receive packet sizes and do
* not exceed system limit.
*/
ASSERT((rmax >= 0) || (rmax == INFPSZ));
if (rmax == 0) {
return (ERANGE);
}
/*
* Use the MAXIMUM of sd_maxblk and q_maxpsz.
* Needed to prevent partial failures in the strmakedata loop.
*/
if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
rmax = stp->sd_maxblk;
if ((msgsize = mdata->len) < 0) {
msgsize = 0;
rmin = 0; /* no range check for NULL data part */
}
if ((msgsize < rmin) ||
((msgsize > rmax) && (rmax != INFPSZ)) ||
(mctl->len > strctlsz)) {
return (ERANGE);
}
/*
* Setup uio and iov for data part
*/
iovs.iov_base = mdata->buf;
iovs.iov_len = msgsize;
uios.uio_iov = &iovs;
uios.uio_iovcnt = 1;
uios.uio_loffset = 0;
uios.uio_segflg = UIO_USERSPACE;
uios.uio_fmode = fmode;
uios.uio_extflg = UIO_COPY_DEFAULT;
uios.uio_resid = msgsize;
uios.uio_offset = 0;
/* Ignore flow control in strput for HIPRI */
if (flag & MSG_HIPRI)
flag |= MSG_IGNFLOW;
for (;;) {
int done = 0;
/*
* strput will always free the ctl mblk - even when strput
* fails.
*/
if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
"strputmsg out:stp %p out %d error %d",
stp, 1, error);
return (error);
}
/*
* Verify that the whole message can be transferred by
* strput.
*/
ASSERT(stp->sd_maxblk == INFPSZ ||
stp->sd_maxblk >= mdata->len);
msgsize = mdata->len;
error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
mdata->len = msgsize;
if (error == 0)
break;
if (error != EWOULDBLOCK)
goto out;
mutex_enter(&stp->sd_lock);
/*
* Check for a missed wakeup.
* Needed since strput did not hold sd_lock across
* the canputnext.
*/
if (bcanputnext(wqp, pri)) {
/* Try again */
mutex_exit(&stp->sd_lock);
continue;
}
TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
"strputmsg wait:stp %p waits pri %d", stp, pri);
if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
&done)) != 0) || done) {
mutex_exit(&stp->sd_lock);
TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
"strputmsg out:q %p out %d error %d",
stp, 0, error);
return (error);
}
TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
"strputmsg wake:stp %p wakes", stp);
if ((error = i_straccess(stp, JCWRITE)) != 0) {
mutex_exit(&stp->sd_lock);
return (error);
}
mutex_exit(&stp->sd_lock);
}
out:
/*
* For historic reasons, applications expect EAGAIN
* when data mblk could not be allocated. so change
* ENOMEM back to EAGAIN
*/
if (error == ENOMEM)
error = EAGAIN;
TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
"strputmsg out:stp %p out %d error %d", stp, 2, error);
return (error);
}
/*
* Put a message downstream.
* Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
* The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
* and the fmode parameter.
*
* This routine handles the consolidation private flags:
* MSG_IGNERROR Ignore any stream head error except STPLEX.
* MSG_HOLDSIG Hold signals while waiting for data.
* MSG_IGNFLOW Don't check streams flow control.
*
* NOTE: strputmsg and kstrputmsg have much of the logic in common.
*/
int
kstrputmsg(
struct vnode *vp,
mblk_t *mctl,
struct uio *uiop,
ssize_t msgsize,
unsigned char pri,
int flag,
int fmode)
{
struct stdata *stp;
queue_t *wqp;
ssize_t rmin, rmax;
int error;
ASSERT(vp->v_stream);
stp = vp->v_stream;
wqp = stp->sd_wrq;
if (AU_AUDITING())
audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
if (mctl == NULL)
return (EINVAL);
mutex_enter(&stp->sd_lock);
if ((error = i_straccess(stp, JCWRITE)) != 0) {
mutex_exit(&stp->sd_lock);
freemsg(mctl);
return (error);
}
if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
error = strwriteable(stp, B_FALSE, B_TRUE);
if (error != 0) {
mutex_exit(&stp->sd_lock);
freemsg(mctl);
return (error);
}
}
}
mutex_exit(&stp->sd_lock);
/*
* Check for legal flag value.
*/
switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
case MSG_HIPRI:
if (pri != 0) {
freemsg(mctl);
return (EINVAL);
}
break;
case MSG_BAND:
break;
default:
freemsg(mctl);
return (EINVAL);
}
TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
"kstrputmsg in:stp %p", stp);
/* get these values from those cached in the stream head */
rmin = stp->sd_qn_minpsz;
rmax = stp->sd_qn_maxpsz;
/*
* Make sure ctl and data sizes together fall within the
* limits of the max and min receive packet sizes and do
* not exceed system limit.
*/
ASSERT((rmax >= 0) || (rmax == INFPSZ));
if (rmax == 0) {
freemsg(mctl);
return (ERANGE);
}
/*
* Use the MAXIMUM of sd_maxblk and q_maxpsz.
* Needed to prevent partial failures in the strmakedata loop.
*/
if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
rmax = stp->sd_maxblk;
if (uiop == NULL) {
msgsize = -1;
rmin = -1; /* no range check for NULL data part */
} else {
/* Use uio flags as well as the fmode parameter flags */
fmode |= uiop->uio_fmode;
if ((msgsize < rmin) ||
((msgsize > rmax) && (rmax != INFPSZ))) {
freemsg(mctl);
return (ERANGE);
}
}
/* Ignore flow control in strput for HIPRI */
if (flag & MSG_HIPRI)
flag |= MSG_IGNFLOW;
for (;;) {
int done = 0;
int waitflag;
mblk_t *mp;
/*
* strput will always free the ctl mblk - even when strput
* fails. If MSG_IGNFLOW is set then any error returned
* will cause us to break the loop, so we don't need a copy
* of the message. If MSG_IGNFLOW is not set, then we can
* get hit by flow control and be forced to try again. In
* this case we need to have a copy of the message. We
* do this using copymsg since the message may get modified
* by something below us.
*
* We've observed that many TPI providers do not check db_ref
* on the control messages but blindly reuse them for the
* T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
* friendly to such providers than using dupmsg. Also, note
* that sockfs uses MSG_IGNFLOW for all TPI control messages.
* Only data messages are subject to flow control, hence
* subject to this copymsg.
*/
if (flag & MSG_IGNFLOW) {
mp = mctl;
mctl = NULL;
} else {
do {
/*
* If a message has a free pointer, the message
* must be dupmsg to maintain this pointer.
* Code using this facility must be sure
* that modules below will not change the
* contents of the dblk without checking db_ref
* first. If db_ref is > 1, then the module
* needs to do a copymsg first. Otherwise,
* the contents of the dblk may become
* inconsistent because the freesmg/freeb below
* may end up calling atomic_add_32_nv.
* The atomic_add_32_nv in freeb (accessing
* all of db_ref, db_type, db_flags, and
* db_struioflag) does not prevent other threads
* from concurrently trying to modify e.g.
* db_type.
*/
if (mctl->b_datap->db_frtnp != NULL)
mp = dupmsg(mctl);
else
mp = copymsg(mctl);
if (mp != NULL)
break;
error = strwaitbuf(msgdsize(mctl), BPRI_MED);
if (error) {
freemsg(mctl);
return (error);
}
} while (mp == NULL);
}
/*
* Verify that all of msgsize can be transferred by
* strput.
*/
ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
if (error == 0)
break;
if (error != EWOULDBLOCK)
goto out;
/*
* IF MSG_IGNFLOW is set we should have broken out of loop
* above.
*/
ASSERT(!(flag & MSG_IGNFLOW));
mutex_enter(&stp->sd_lock);
/*
* Check for a missed wakeup.
* Needed since strput did not hold sd_lock across
* the canputnext.
*/
if (bcanputnext(wqp, pri)) {
/* Try again */
mutex_exit(&stp->sd_lock);
continue;
}
TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
"kstrputmsg wait:stp %p waits pri %d", stp, pri);
waitflag = WRITEWAIT;
if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
if (flag & MSG_HOLDSIG)
waitflag |= STR_NOSIG;
if (flag & MSG_IGNERROR)
waitflag |= STR_NOERROR;
}
if (((error = strwaitq(stp, waitflag,
(ssize_t)0, fmode, -1, &done)) != 0) || done) {
mutex_exit(&stp->sd_lock);
TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
"kstrputmsg out:stp %p out %d error %d",
stp, 0, error);
freemsg(mctl);
return (error);
}
TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
"kstrputmsg wake:stp %p wakes", stp);
if ((error = i_straccess(stp, JCWRITE)) != 0) {
mutex_exit(&stp->sd_lock);
freemsg(mctl);
return (error);
}
mutex_exit(&stp->sd_lock);
}
out:
freemsg(mctl);
/*
* For historic reasons, applications expect EAGAIN
* when data mblk could not be allocated. so change
* ENOMEM back to EAGAIN
*/
if (error == ENOMEM)
error = EAGAIN;
TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
"kstrputmsg out:stp %p out %d error %d", stp, 2, error);
return (error);
}
/*
* Determines whether the necessary conditions are set on a stream
* for it to be readable, writeable, or have exceptions.
*
* strpoll handles the consolidation private events:
* POLLNOERR Do not return POLLERR even if there are stream
* head errors.
* Used by sockfs.
* POLLRDDATA Do not return POLLIN unless at least one message on
* the queue contains one or more M_DATA mblks. Thus
* when this flag is set a queue with only
* M_PROTO/M_PCPROTO mblks does not return POLLIN.
* Used by sockfs to ignore T_EXDATA_IND messages.
*
* Note: POLLRDDATA assumes that synch streams only return messages with
* an M_DATA attached (i.e. not messages consisting of only
* an M_PROTO/M_PCPROTO part).
*/
int
strpoll(
struct stdata *stp,
short events_arg,
int anyyet,
short *reventsp,
struct pollhead **phpp)
{
int events = (ushort_t)events_arg;
int retevents = 0;
mblk_t *mp;
qband_t *qbp;
long sd_flags = stp->sd_flag;
int headlocked = 0;
/*
* For performance, a single 'if' tests for most possible edge
* conditions in one shot
*/
if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
if (sd_flags & STPLEX) {
*reventsp = POLLNVAL;
return (EINVAL);
}
if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
(sd_flags & STRDERR)) ||
((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
(sd_flags & STWRERR))) {
if (!(events & POLLNOERR)) {
*reventsp = POLLERR;
return (0);
}
}
}
if (sd_flags & STRHUP) {
retevents |= POLLHUP;
} else if (events & (POLLWRNORM | POLLWRBAND)) {
queue_t *tq;
queue_t *qp = stp->sd_wrq;
claimstr(qp);
/* Find next module forward that has a service procedure */
tq = qp->q_next->q_nfsrv;
ASSERT(tq != NULL);
if (polllock(&stp->sd_pollist, QLOCK(tq)) != 0) {
releasestr(qp);
*reventsp = POLLNVAL;
return (0);
}
if (events & POLLWRNORM) {
queue_t *sqp;
if (tq->q_flag & QFULL)
/* ensure backq svc procedure runs */
tq->q_flag |= QWANTW;
else if ((sqp = stp->sd_struiowrq) != NULL) {
/* Check sync stream barrier write q */
mutex_exit(QLOCK(tq));
if (polllock(&stp->sd_pollist,
QLOCK(sqp)) != 0) {
releasestr(qp);
*reventsp = POLLNVAL;
return (0);
}
if (sqp->q_flag & QFULL)
/* ensure pollwakeup() is done */
sqp->q_flag |= QWANTWSYNC;
else
retevents |= POLLOUT;
/* More write events to process ??? */
if (! (events & POLLWRBAND)) {
mutex_exit(QLOCK(sqp));
releasestr(qp);
goto chkrd;
}
mutex_exit(QLOCK(sqp));
if (polllock(&stp->sd_pollist,
QLOCK(tq)) != 0) {
releasestr(qp);
*reventsp = POLLNVAL;
return (0);
}
} else
retevents |= POLLOUT;
}
if (events & POLLWRBAND) {
qbp = tq->q_bandp;
if (qbp) {
while (qbp) {
if (qbp->qb_flag & QB_FULL)
qbp->qb_flag |= QB_WANTW;
else
retevents |= POLLWRBAND;
qbp = qbp->qb_next;
}
} else {
retevents |= POLLWRBAND;
}
}
mutex_exit(QLOCK(tq));
releasestr(qp);
}
chkrd:
if (sd_flags & STRPRI) {
retevents |= (events & POLLPRI);
} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
queue_t *qp = _RD(stp->sd_wrq);
int normevents = (events & (POLLIN | POLLRDNORM));
/*
* Note: Need to do polllock() here since ps_lock may be
* held. See bug 4191544.
*/
if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
*reventsp = POLLNVAL;
return (0);
}
headlocked = 1;
mp = qp->q_first;
while (mp) {
/*
* For POLLRDDATA we scan b_cont and b_next until we
* find an M_DATA.
*/
if ((events & POLLRDDATA) &&
mp->b_datap->db_type != M_DATA) {
mblk_t *nmp = mp->b_cont;
while (nmp != NULL &&
nmp->b_datap->db_type != M_DATA)
nmp = nmp->b_cont;
if (nmp == NULL) {
mp = mp->b_next;
continue;
}
}
if (mp->b_band == 0)
retevents |= normevents;
else
retevents |= (events & (POLLIN | POLLRDBAND));
break;
}
if (! (retevents & normevents) &&
(stp->sd_wakeq & RSLEEP)) {
/*
* Sync stream barrier read queue has data.
*/
retevents |= normevents;
}
/* Treat eof as normal data */
if (sd_flags & STREOF)
retevents |= normevents;
}
*reventsp = (short)retevents;
if (retevents && !(events & POLLET)) {
if (headlocked)
mutex_exit(&stp->sd_lock);
return (0);
}
/*
* If poll() has not found any events yet, set up event cell
* to wake up the poll if a requested event occurs on this
* stream. Check for collisions with outstanding poll requests.
*/
if (!anyyet) {
*phpp = &stp->sd_pollist;
if (headlocked == 0) {
if (polllock(&stp->sd_pollist, &stp->sd_lock) != 0) {
*reventsp = POLLNVAL;
return (0);
}
headlocked = 1;
}
stp->sd_rput_opt |= SR_POLLIN;
}
if (headlocked)
mutex_exit(&stp->sd_lock);
return (0);
}
/*
* The purpose of putback() is to assure sleeping polls/reads
* are awakened when there are no new messages arriving at the,
* stream head, and a message is placed back on the read queue.
*
* sd_lock must be held when messages are placed back on stream
* head. (getq() holds sd_lock when it removes messages from
* the queue)
*/
static void
putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
{
mblk_t *qfirst;
ASSERT(MUTEX_HELD(&stp->sd_lock));
/*
* As a result of lock-step ordering around q_lock and sd_lock,
* it's possible for function calls like putnext() and
* canputnext() to get an inaccurate picture of how much
* data is really being processed at the stream head.
* We only consolidate with existing messages on the queue
* if the length of the message we want to put back is smaller
* than the queue hiwater mark.
*/
if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
(DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
(DB_TYPE(qfirst) == M_DATA) &&
((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
(mp_cont_len(bp, NULL) < q->q_hiwat)) {
/*
* We use the same logic as defined in strrput()
* but in reverse as we are putting back onto the
* queue and want to retain byte ordering.
* Consolidate M_DATA messages with M_DATA ONLY.
* strrput() allows the consolidation of M_DATA onto
* M_PROTO | M_PCPROTO but not the other way round.
*
* The consolidation does not take place if the message
* we are returning to the queue is marked with either
* of the marks or the delim flag or if q_first
* is marked with MSGMARK. The MSGMARK check is needed to
* handle the odd semantics of MSGMARK where essentially
* the whole message is to be treated as marked.
* Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
* to the front of the b_cont chain.
*/
rmvq_noenab(q, qfirst);
/*
* The first message in the b_cont list
* tracks MSGMARKNEXT and MSGNOTMARKNEXT.
* We need to handle the case where we
* are appending:
*
* 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
* 2) a MSGMARKNEXT to a plain message.
* 3) a MSGNOTMARKNEXT to a plain message
* 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
* message.
*
* Thus we never append a MSGMARKNEXT or
* MSGNOTMARKNEXT to a MSGMARKNEXT message.
*/
if (qfirst->b_flag & MSGMARKNEXT) {
bp->b_flag |= MSGMARKNEXT;
bp->b_flag &= ~MSGNOTMARKNEXT;
qfirst->b_flag &= ~MSGMARKNEXT;
} else if (qfirst->b_flag & MSGNOTMARKNEXT) {
bp->b_flag |= MSGNOTMARKNEXT;
qfirst->b_flag &= ~MSGNOTMARKNEXT;
}
linkb(bp, qfirst);
}
(void) putbq(q, bp);
/*
* A message may have come in when the sd_lock was dropped in the
* calling routine. If this is the case and STR*ATMARK info was
* received, need to move that from the stream head to the q_last
* so that SIOCATMARK can return the proper value.
*/
if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
unsigned short *flagp = &q->q_last->b_flag;
uint_t b_flag = (uint_t)*flagp;
if (stp->sd_flag & STRATMARK) {
b_flag &= ~MSGNOTMARKNEXT;
b_flag |= MSGMARKNEXT;
stp->sd_flag &= ~STRATMARK;
} else {
b_flag &= ~MSGMARKNEXT;
b_flag |= MSGNOTMARKNEXT;
stp->sd_flag &= ~STRNOTATMARK;
}
*flagp = (unsigned short) b_flag;
}
#ifdef DEBUG
/*
* Make sure that the flags are not messed up.
*/
{
mblk_t *mp;
mp = q->q_last;
while (mp != NULL) {
ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
(MSGMARKNEXT|MSGNOTMARKNEXT));
mp = mp->b_cont;
}
}
#endif
if (q->q_first == bp) {
short pollevents;
if (stp->sd_flag & RSLEEP) {
stp->sd_flag &= ~RSLEEP;
cv_broadcast(&q->q_wait);
}
if (stp->sd_flag & STRPRI) {
pollevents = POLLPRI;
} else {
if (band == 0) {
if (!(stp->sd_rput_opt & SR_POLLIN))
return;
stp->sd_rput_opt &= ~SR_POLLIN;
pollevents = POLLIN | POLLRDNORM;
} else {
pollevents = POLLIN | POLLRDBAND;
}
}
mutex_exit(&stp->sd_lock);
pollwakeup(&stp->sd_pollist, pollevents);
mutex_enter(&stp->sd_lock);
}
}
/*
* Return the held vnode attached to the stream head of a
* given queue
* It is the responsibility of the calling routine to ensure
* that the queue does not go away (e.g. pop).
*/
vnode_t *
strq2vp(queue_t *qp)
{
vnode_t *vp;
vp = STREAM(qp)->sd_vnode;
ASSERT(vp != NULL);
VN_HOLD(vp);
return (vp);
}
/*
* return the stream head write queue for the given vp
* It is the responsibility of the calling routine to ensure
* that the stream or vnode do not close.
*/
queue_t *
strvp2wq(vnode_t *vp)
{
ASSERT(vp->v_stream != NULL);
return (vp->v_stream->sd_wrq);
}
/*
* pollwakeup stream head
* It is the responsibility of the calling routine to ensure
* that the stream or vnode do not close.
*/
void
strpollwakeup(vnode_t *vp, short event)
{
ASSERT(vp->v_stream);
pollwakeup(&vp->v_stream->sd_pollist, event);
}
/*
* Mate the stream heads of two vnodes together. If the two vnodes are the
* same, we just make the write-side point at the read-side -- otherwise,
* we do a full mate. Only works on vnodes associated with streams that are
* still being built and thus have only a stream head.
*/
void
strmate(vnode_t *vp1, vnode_t *vp2)
{
queue_t *wrq1 = strvp2wq(vp1);
queue_t *wrq2 = strvp2wq(vp2);
/*
* Verify that there are no modules on the stream yet. We also
* rely on the stream head always having a service procedure to
* avoid tweaking q_nfsrv.
*/
ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
/*
* If the queues are the same, just twist; otherwise do a full mate.
*/
if (wrq1 == wrq2) {
wrq1->q_next = _RD(wrq1);
} else {
wrq1->q_next = _RD(wrq2);
wrq2->q_next = _RD(wrq1);
STREAM(wrq1)->sd_mate = STREAM(wrq2);
STREAM(wrq1)->sd_flag |= STRMATE;
STREAM(wrq2)->sd_mate = STREAM(wrq1);
STREAM(wrq2)->sd_flag |= STRMATE;
}
}
/*
* XXX will go away when console is correctly fixed.
* Clean up the console PIDS, from previous I_SETSIG,
* called only for cnopen which never calls strclean().
*/
void
str_cn_clean(struct vnode *vp)
{
strsig_t *ssp, *pssp, *tssp;
struct stdata *stp;
struct pid *pidp;
int update = 0;
ASSERT(vp->v_stream);
stp = vp->v_stream;
pssp = NULL;
mutex_enter(&stp->sd_lock);
ssp = stp->sd_siglist;
while (ssp) {
mutex_enter(&pidlock);
pidp = ssp->ss_pidp;
/*
* Get rid of PID if the proc is gone.
*/
if (pidp->pid_prinactive) {
tssp = ssp->ss_next;
if (pssp)
pssp->ss_next = tssp;
else
stp->sd_siglist = tssp;
ASSERT(pidp->pid_ref <= 1);
PID_RELE(ssp->ss_pidp);
mutex_exit(&pidlock);
kmem_free(ssp, sizeof (strsig_t));
update = 1;
ssp = tssp;
continue;
} else
mutex_exit(&pidlock);
pssp = ssp;
ssp = ssp->ss_next;
}
if (update) {
stp->sd_sigflags = 0;
for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
stp->sd_sigflags |= ssp->ss_events;
}
mutex_exit(&stp->sd_lock);
}
/*
* Return B_TRUE if there is data in the message, B_FALSE otherwise.
*/
static boolean_t
msghasdata(mblk_t *bp)
{
for (; bp; bp = bp->b_cont)
if (bp->b_datap->db_type == M_DATA) {
ASSERT(bp->b_wptr >= bp->b_rptr);
if (bp->b_wptr > bp->b_rptr)
return (B_TRUE);
}
return (B_FALSE);
}