/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/atomic.h>
#include <sys/cmn_err.h>
#include <sys/id_space.h>
#include <sys/kmem.h>
#include <sys/kstat.h>
#include <sys/log.h>
#include <sys/modctl.h>
#include <sys/modhash.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/procset.h>
#include <sys/project.h>
#include <sys/resource.h>
#include <sys/rctl.h>
#include <sys/siginfo.h>
#include <sys/strlog.h>
#include <sys/systm.h>
#include <sys/task.h>
#include <sys/types.h>
#include <sys/policy.h>
#include <sys/zone.h>
/*
* Resource controls (rctls)
*
* The rctl subsystem provides a mechanism for kernel components to
* register their individual resource controls with the system as a whole,
* such that those controls can subscribe to specific actions while being
* associated with the various process-model entities provided by the kernel:
* the process, the task, the project, and the zone. (In principle, only
* minor modifications would be required to connect the resource control
* functionality to non-process-model entities associated with the system.)
*
* Subsystems register their rctls via rctl_register(). Subsystems
* also wishing to provide additional limits on a given rctl can modify
* them once they have the rctl handle. Each subsystem should store the
* handle to their rctl for direct access.
*
* A primary dictionary, rctl_dict, contains a hash of id to the default
* control definition for each controlled resource-entity pair on the system.
* A secondary dictionary, rctl_dict_by_name, contains a hash of name to
* resource control handles. The resource control handles are distributed by
* the rctl_ids ID space. The handles are private and not to be
* advertised to userland; all userland interactions are via the rctl
* names.
*
* Entities inherit their rctls from their predecessor. Since projects have
* no ancestor, they inherit their rctls from the rctl dict for project
* rctls. It is expected that project controls will be set to their
* appropriate values shortly after project creation, presumably from a
* policy source such as the project database.
*
* Data structures
* The rctl_set_t attached to each of the process model entities is a simple
* hash table keyed on the rctl handle assigned at registration. The entries
* in the hash table are rctl_t's, whose relationship with the active control
* values on that resource and with the global state of the resource we
* illustrate below:
*
* rctl_dict[key] --> rctl_dict_entry
* ^
* |
* +--+---+
* rctl_set[key] ---> | rctl | --> value <-> value <-> system value --> NULL
* +--+---+ ^
* | |
* +------- cursor ------+
*
* That is, the rctl contains a back pointer to the global resource control
* state for this resource, which is also available in the rctl_dict hash
* table mentioned earlier. The rctl contains two pointers to resource
* control values: one, values, indicates the entire sequence of control
* values; the other, cursor, indicates the currently active control
* value--the next value to be enforced. The value list itself is an open,
* doubly-linked list, the last non-NULL member of which is the system value
* for that resource (being the theoretical/conventional maximum allowable
* value for the resource on this OS instance).
*
* Ops Vector
* Subsystems publishing rctls need not provide instances of all of the
* functions specified by the ops vector. In particular, if general
* rctl_*() entry points are not being called, certain functions can be
* omitted. These align as follows:
*
* rctl_set()
* You may wish to provide a set callback if locking circumstances prevent
* it or if the performance cost of requesting the enforced value from the
* resource control is prohibitively expensive. For instance, the currently
* enforced file size limit is stored on the process in the p_fsz_ctl to
* maintain read()/write() performance.
*
* rctl_test()
* You must provide a test callback if you are using the rctl_test()
* interface. An action callback is optional.
*
* rctl_action()
* You may wish to provide an action callback.
*
* Registration
* New resource controls can be added to a running instance by loaded modules
* via registration. (The current implementation does not support unloadable
* modules; this functionality can be added if needed, via an
* activation/deactivation interface involving the manipulation of the
* ops vector for the resource control(s) needing to support unloading.)
*
* Control value ordering
* Because the rctl_val chain on each rctl must be navigable in a
* deterministic way, we have to define an ordering on the rctl_val_t's. The
* defined order is (flags & [maximal], value, flags & [deny-action],
* privilege).
*
* Locking
* rctl_dict_lock must be acquired prior to rctl_lists_lock. Since
* rctl_dict_lock or rctl_lists_lock can be called at the enforcement point
* of any subsystem, holding subsystem locks, it is at all times inappropriate
* to call kmem_alloc(., KM_SLEEP) while holding either of these locks.
* Traversing any of the various resource control entity lists requires
* holding rctl_lists_lock.
*
* Each individual resource control set associated with an entity must have
* its rcs_lock held for the duration of any operations that would add
* resource controls or control values to the set.
*
* The locking subsequence of interest is: p_lock, rctl_dict_lock,
* rctl_lists_lock, entity->rcs_lock.
*
* The projects(4) database and project entity resource controls
* A special case is made for RCENTITY_PROJECT values set through the
* setproject(3PROJECT) interface. setproject() makes use of a private
* interface, setprojrctl(), which passes through an array of resource control
* blocks that need to be set while holding the entity->rcs_lock. This
* ensures that the act of modifying a project's resource controls is
* "atomic" within the kernel.
*
* Within the rctl sub-system, we provide two interfaces that are only used by
* the setprojrctl() code path - rctl_local_insert_all() and
* rctl_local_replace_all(). rctl_local_insert_all() will ensure that the
* resource values specified in *new_values are applied.
* rctl_local_replace_all() will purge the current rctl->rc_projdb and
* rctl->rc_values entries, and apply the *new_values.
*
* These functions modify not only the linked list of active resource controls
* (rctl->rc_values), but also a "cached" linked list (rctl->rc_projdb) of
* values set through these interfaces. To clarify:
*
* rctl->rc_values - a linked list of rctl_val_t. These are the active
* resource values associated with this rctl, and may have been set by
* setrctl() - via prctl(1M), or by setprojrctl() - via
* setproject(3PROJECT).
*
* rctl->rc_projdb - a linked list of rctl_val_t. These reflect the
* resource values set by the setprojrctl() code path. rc_projdb is not
* referenced by any other component of the rctl sub-system.
*
* As various locks are held when calling these functions, we ensure that all
* the possible memory allocations are performed prior to calling the
* function. *alloc_values is a linked list of uninitialized rctl_val_t,
* which may be used to duplicate a new resource control value (passed in as
* one of the members of the *new_values linked list), in order to populate
* rctl->rc_values.
*/
id_t max_rctl_hndl = 32768;
int rctl_dict_size = 64;
int rctl_set_size = 8;
kmutex_t rctl_dict_lock;
mod_hash_t *rctl_dict;
mod_hash_t *rctl_dict_by_name;
id_space_t *rctl_ids;
kmem_cache_t *rctl_cache; /* kmem cache for rctl structures */
kmem_cache_t *rctl_val_cache; /* kmem cache for rctl values */
kmutex_t rctl_lists_lock;
rctl_dict_entry_t *rctl_lists[RC_MAX_ENTITY + 1];
/*
* Default resource control operations and ops vector
* To be used if the particular rcontrol has no specific actions defined, or
* if the subsystem providing the control is quiescing (in preparation for
* unloading, presumably.)
*
* Resource controls with callbacks should fill the unused operations with the
* appropriate default impotent callback.
*/
/*ARGSUSED*/
void
rcop_no_action(struct rctl *r, struct proc *p, rctl_entity_p_t *e)
{
}
/*ARGSUSED*/
rctl_qty_t
rcop_no_usage(struct rctl *r, struct proc *p)
{
return (0);
}
/*ARGSUSED*/
int
rcop_no_set(struct rctl *r, struct proc *p, rctl_entity_p_t *e, rctl_qty_t l)
{
return (0);
}
/*ARGSUSED*/
int
rcop_no_test(struct rctl *r, struct proc *p, rctl_entity_p_t *e,
struct rctl_val *rv, rctl_qty_t i, uint_t f)
{
return (0);
}
rctl_ops_t rctl_default_ops = {
rcop_no_action,
rcop_no_usage,
rcop_no_set,
rcop_no_test
};
/*
* Default "absolute" resource control operation and ops vector
* Useful if there is no usage associated with the
* resource control.
*/
/*ARGSUSED*/
int
rcop_absolute_test(struct rctl *r, struct proc *p, rctl_entity_p_t *e,
struct rctl_val *rv, rctl_qty_t i, uint_t f)
{
return (i > rv->rcv_value);
}
rctl_ops_t rctl_absolute_ops = {
rcop_no_action,
rcop_no_usage,
rcop_no_set,
rcop_absolute_test
};
/*ARGSUSED*/
static uint_t
rctl_dict_hash_by_id(void *hash_data, mod_hash_key_t key)
{
return ((uint_t)(uintptr_t)key % rctl_dict_size);
}
static int
rctl_dict_id_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
{
uint_t u1 = (uint_t)(uintptr_t)key1;
uint_t u2 = (uint_t)(uintptr_t)key2;
if (u1 > u2)
return (1);
if (u1 == u2)
return (0);
return (-1);
}
static void
rctl_dict_val_dtor(mod_hash_val_t val)
{
rctl_dict_entry_t *kr = (rctl_dict_entry_t *)val;
kmem_free(kr, sizeof (rctl_dict_entry_t));
}
/*
* size_t rctl_build_name_buf()
*
* Overview
* rctl_build_name_buf() walks all active resource controls in the dictionary,
* building a buffer of continguous NUL-terminated strings.
*
* Return values
* The size of the buffer is returned, the passed pointer's contents are
* modified to that of the location of the buffer.
*
* Caller's context
* Caller must be in a context suitable for KM_SLEEP allocations.
*/
size_t
rctl_build_name_buf(char **rbufp)
{
size_t req_size, cpy_size;
char *rbufloc;
int i;
rctl_rebuild_name_buf:
req_size = cpy_size = 0;
/*
* Calculate needed buffer length.
*/
mutex_enter(&rctl_lists_lock);
for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
rctl_dict_entry_t *rde;
for (rde = rctl_lists[i];
rde != NULL;
rde = rde->rcd_next)
req_size += strlen(rde->rcd_name) + 1;
}
mutex_exit(&rctl_lists_lock);
rbufloc = *rbufp = kmem_alloc(req_size, KM_SLEEP);
/*
* Copy rctl names into our buffer. If the copy length exceeds the
* allocate length (due to registration changes), stop copying, free the
* buffer, and start again.
*/
mutex_enter(&rctl_lists_lock);
for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
rctl_dict_entry_t *rde;
for (rde = rctl_lists[i];
rde != NULL;
rde = rde->rcd_next) {
size_t length = strlen(rde->rcd_name) + 1;
cpy_size += length;
if (cpy_size > req_size) {
kmem_free(*rbufp, req_size);
mutex_exit(&rctl_lists_lock);
goto rctl_rebuild_name_buf;
}
bcopy(rde->rcd_name, rbufloc, length);
rbufloc += length;
}
}
mutex_exit(&rctl_lists_lock);
return (req_size);
}
/*
* rctl_dict_entry_t *rctl_dict_lookup(const char *)
*
* Overview
* rctl_dict_lookup() returns the resource control dictionary entry for the
* named resource control.
*
* Return values
* A pointer to the appropriate resource control dictionary entry, or NULL if
* no such named entry exists.
*
* Caller's context
* Caller must not be holding rctl_dict_lock.
*/
rctl_dict_entry_t *
rctl_dict_lookup(const char *name)
{
rctl_dict_entry_t *rde;
mutex_enter(&rctl_dict_lock);
if (mod_hash_find(rctl_dict_by_name, (mod_hash_key_t)name,
(mod_hash_val_t *)&rde) == MH_ERR_NOTFOUND) {
mutex_exit(&rctl_dict_lock);
return (NULL);
}
mutex_exit(&rctl_dict_lock);
return (rde);
}
/*
* rctl_hndl_t rctl_hndl_lookup(const char *)
*
* Overview
* rctl_hndl_lookup() returns the resource control id (the "handle") for the
* named resource control.
*
* Return values
* The appropriate id, or -1 if no such named entry exists.
*
* Caller's context
* Caller must not be holding rctl_dict_lock.
*/
rctl_hndl_t
rctl_hndl_lookup(const char *name)
{
rctl_dict_entry_t *rde;
if ((rde = rctl_dict_lookup(name)) == NULL)
return (-1);
return (rde->rcd_id);
}
/*
* rctl_dict_entry_t * rctl_dict_lookup_hndl(rctl_hndl_t)
*
* Overview
* rctl_dict_lookup_hndl() completes the public lookup functions, by returning
* the resource control dictionary entry matching a given resource control id.
*
* Return values
* A pointer to the matching resource control dictionary entry, or NULL if the
* id does not match any existing entries.
*
* Caller's context
* Caller must not be holding rctl_lists_lock.
*/
rctl_dict_entry_t *
rctl_dict_lookup_hndl(rctl_hndl_t hndl)
{
uint_t i;
mutex_enter(&rctl_lists_lock);
for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
rctl_dict_entry_t *rde;
for (rde = rctl_lists[i];
rde != NULL;
rde = rde->rcd_next)
if (rde->rcd_id == hndl) {
mutex_exit(&rctl_lists_lock);
return (rde);
}
}
mutex_exit(&rctl_lists_lock);
return (NULL);
}
/*
* void rctl_add_default_limit(const char *name, rctl_qty_t value,
* rctl_priv_t privilege, uint_t action)
*
* Overview
* Create a default limit with specified value, privilege, and action.
*
* Return value
* No value returned.
*/
void
rctl_add_default_limit(const char *name, rctl_qty_t value,
rctl_priv_t privilege, uint_t action)
{
rctl_val_t *dval;
rctl_dict_entry_t *rde;
dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
bzero(dval, sizeof (rctl_val_t));
dval->rcv_value = value;
dval->rcv_privilege = privilege;
dval->rcv_flagaction = action;
dval->rcv_action_recip_pid = -1;
rde = rctl_dict_lookup(name);
(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
}
/*
* void rctl_add_legacy_limit(const char *name, const char *mname,
* const char *lname, rctl_qty_t dflt)
*
* Overview
* Create a default privileged limit, using the value obtained from
* /etc/system if it exists and is greater than the specified default
* value. Exists primarily for System V IPC.
*
* Return value
* No value returned.
*/
void
rctl_add_legacy_limit(const char *name, const char *mname, const char *lname,
rctl_qty_t dflt, rctl_qty_t max)
{
rctl_qty_t qty;
if (!mod_sysvar(mname, lname, &qty) || (qty < dflt))
qty = dflt;
if (qty > max)
qty = max;
rctl_add_default_limit(name, qty, RCPRIV_PRIVILEGED, RCTL_LOCAL_DENY);
}
rctl_set_t *
rctl_entity_obtain_rset(rctl_dict_entry_t *rcd, struct proc *p)
{
rctl_set_t *rset = NULL;
if (rcd == NULL)
return (NULL);
switch (rcd->rcd_entity) {
case RCENTITY_PROCESS:
rset = p->p_rctls;
break;
case RCENTITY_TASK:
ASSERT(MUTEX_HELD(&p->p_lock));
if (p->p_task != NULL)
rset = p->p_task->tk_rctls;
break;
case RCENTITY_PROJECT:
ASSERT(MUTEX_HELD(&p->p_lock));
if (p->p_task != NULL &&
p->p_task->tk_proj != NULL)
rset = p->p_task->tk_proj->kpj_rctls;
break;
case RCENTITY_ZONE:
ASSERT(MUTEX_HELD(&p->p_lock));
if (p->p_zone != NULL)
rset = p->p_zone->zone_rctls;
break;
default:
panic("unknown rctl entity type %d seen", rcd->rcd_entity);
break;
}
return (rset);
}
static void
rctl_entity_obtain_entity_p(rctl_entity_t entity, struct proc *p,
rctl_entity_p_t *e)
{
e->rcep_p.proc = NULL;
e->rcep_t = entity;
switch (entity) {
case RCENTITY_PROCESS:
e->rcep_p.proc = p;
break;
case RCENTITY_TASK:
ASSERT(MUTEX_HELD(&p->p_lock));
if (p->p_task != NULL)
e->rcep_p.task = p->p_task;
break;
case RCENTITY_PROJECT:
ASSERT(MUTEX_HELD(&p->p_lock));
if (p->p_task != NULL &&
p->p_task->tk_proj != NULL)
e->rcep_p.proj = p->p_task->tk_proj;
break;
case RCENTITY_ZONE:
ASSERT(MUTEX_HELD(&p->p_lock));
if (p->p_zone != NULL)
e->rcep_p.zone = p->p_zone;
break;
default:
panic("unknown rctl entity type %d seen", entity);
break;
}
}
static void
rctl_gp_alloc(rctl_alloc_gp_t *rcgp)
{
uint_t i;
if (rcgp->rcag_nctls > 0) {
rctl_t *prev = kmem_cache_alloc(rctl_cache, KM_SLEEP);
rctl_t *rctl = prev;
rcgp->rcag_ctls = prev;
for (i = 1; i < rcgp->rcag_nctls; i++) {
rctl = kmem_cache_alloc(rctl_cache, KM_SLEEP);
prev->rc_next = rctl;
prev = rctl;
}
rctl->rc_next = NULL;
}
if (rcgp->rcag_nvals > 0) {
rctl_val_t *prev = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
rctl_val_t *rval = prev;
rcgp->rcag_vals = prev;
for (i = 1; i < rcgp->rcag_nvals; i++) {
rval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
prev->rcv_next = rval;
prev = rval;
}
rval->rcv_next = NULL;
}
}
static rctl_val_t *
rctl_gp_detach_val(rctl_alloc_gp_t *rcgp)
{
rctl_val_t *rval = rcgp->rcag_vals;
ASSERT(rcgp->rcag_nvals > 0);
rcgp->rcag_nvals--;
rcgp->rcag_vals = rval->rcv_next;
rval->rcv_next = NULL;
return (rval);
}
static rctl_t *
rctl_gp_detach_ctl(rctl_alloc_gp_t *rcgp)
{
rctl_t *rctl = rcgp->rcag_ctls;
ASSERT(rcgp->rcag_nctls > 0);
rcgp->rcag_nctls--;
rcgp->rcag_ctls = rctl->rc_next;
rctl->rc_next = NULL;
return (rctl);
}
static void
rctl_gp_free(rctl_alloc_gp_t *rcgp)
{
rctl_val_t *rval = rcgp->rcag_vals;
rctl_t *rctl = rcgp->rcag_ctls;
while (rval != NULL) {
rctl_val_t *next = rval->rcv_next;
kmem_cache_free(rctl_val_cache, rval);
rval = next;
}
while (rctl != NULL) {
rctl_t *next = rctl->rc_next;
kmem_cache_free(rctl_cache, rctl);
rctl = next;
}
}
/*
* void rctl_prealloc_destroy(rctl_alloc_gp_t *)
*
* Overview
* Release all unused memory allocated via one of the "prealloc" functions:
* rctl_set_init_prealloc, rctl_set_dup_prealloc, or rctl_rlimit_set_prealloc.
*
* Return values
* None.
*
* Caller's context
* No restrictions on context.
*/
void
rctl_prealloc_destroy(rctl_alloc_gp_t *gp)
{
rctl_gp_free(gp);
kmem_free(gp, sizeof (rctl_alloc_gp_t));
}
/*
* int rctl_val_cmp(rctl_val_t *, rctl_val_t *, int)
*
* Overview
* This function defines an ordering to rctl_val_t's in order to allow
* for correct placement in value lists. When the imprecise flag is set,
* the action recipient is ignored. This is to facilitate insert,
* delete, and replace operations by rctlsys.
*
* Return values
* 0 if the val_t's are are considered identical
* -1 if a is ordered lower than b
* 1 if a is lowered higher than b
*
* Caller's context
* No restrictions on context.
*/
int
rctl_val_cmp(rctl_val_t *a, rctl_val_t *b, int imprecise)
{
if ((a->rcv_flagaction & RCTL_LOCAL_MAXIMAL) <
(b->rcv_flagaction & RCTL_LOCAL_MAXIMAL))
return (-1);
if ((a->rcv_flagaction & RCTL_LOCAL_MAXIMAL) >
(b->rcv_flagaction & RCTL_LOCAL_MAXIMAL))
return (1);
if (a->rcv_value < b->rcv_value)
return (-1);
if (a->rcv_value > b->rcv_value)
return (1);
if ((a->rcv_flagaction & RCTL_LOCAL_DENY) <
(b->rcv_flagaction & RCTL_LOCAL_DENY))
return (-1);
if ((a->rcv_flagaction & RCTL_LOCAL_DENY) >
(b->rcv_flagaction & RCTL_LOCAL_DENY))
return (1);
if (a->rcv_privilege < b->rcv_privilege)
return (-1);
if (a->rcv_privilege > b->rcv_privilege)
return (1);
if (imprecise)
return (0);
if (a->rcv_action_recip_pid < b->rcv_action_recip_pid)
return (-1);
if (a->rcv_action_recip_pid > b->rcv_action_recip_pid)
return (1);
return (0);
}
static rctl_val_t *
rctl_val_list_find(rctl_val_t **head, rctl_val_t *cval)
{
rctl_val_t *rval = *head;
while (rval != NULL) {
if (rctl_val_cmp(cval, rval, 0) == 0)
return (rval);
rval = rval->rcv_next;
}
return (NULL);
}
/*
* int rctl_val_list_insert(rctl_val_t **, rctl_val_t *)
*
* Overview
* This function inserts the rctl_val_t into the value list provided.
* The insert is always successful unless if the value is a duplicate
* of one already in the list.
*
* Return values
* 1 if the value was a duplicate of an existing value in the list.
* 0 if the insert was successful.
*/
int
rctl_val_list_insert(rctl_val_t **root, rctl_val_t *rval)
{
rctl_val_t *prev;
int equiv;
rval->rcv_next = NULL;
rval->rcv_prev = NULL;
if (*root == NULL) {
*root = rval;
return (0);
}
equiv = rctl_val_cmp(rval, *root, 0);
if (equiv == 0)
return (1);
if (equiv < 0) {
rval->rcv_next = *root;
rval->rcv_next->rcv_prev = rval;
*root = rval;
return (0);
}
prev = *root;
while (prev->rcv_next != NULL &&
(equiv = rctl_val_cmp(rval, prev->rcv_next, 0)) > 0) {
prev = prev->rcv_next;
}
if (equiv == 0)
return (1);
rval->rcv_next = prev->rcv_next;
if (rval->rcv_next != NULL)
rval->rcv_next->rcv_prev = rval;
prev->rcv_next = rval;
rval->rcv_prev = prev;
return (0);
}
static int
rctl_val_list_delete(rctl_val_t **root, rctl_val_t *rval)
{
rctl_val_t *prev;
if (*root == NULL)
return (-1);
prev = *root;
if (rctl_val_cmp(rval, prev, 0) == 0) {
*root = prev->rcv_next;
if (*root != NULL)
(*root)->rcv_prev = NULL;
kmem_cache_free(rctl_val_cache, prev);
return (0);
}
while (prev->rcv_next != NULL &&
rctl_val_cmp(rval, prev->rcv_next, 0) != 0) {
prev = prev->rcv_next;
}
if (prev->rcv_next == NULL) {
/*
* If we navigate the entire list and cannot find a match, then
* return failure.
*/
return (-1);
}
prev = prev->rcv_next;
prev->rcv_prev->rcv_next = prev->rcv_next;
if (prev->rcv_next != NULL)
prev->rcv_next->rcv_prev = prev->rcv_prev;
kmem_cache_free(rctl_val_cache, prev);
return (0);
}
static rctl_val_t *
rctl_val_list_dup(rctl_val_t *rval, rctl_alloc_gp_t *ragp, struct proc *oldp,
struct proc *newp)
{
rctl_val_t *head = NULL;
for (; rval != NULL; rval = rval->rcv_next) {
rctl_val_t *dval = rctl_gp_detach_val(ragp);
bcopy(rval, dval, sizeof (rctl_val_t));
dval->rcv_prev = dval->rcv_next = NULL;
if (oldp == NULL ||
rval->rcv_action_recipient == NULL ||
rval->rcv_action_recipient == oldp) {
if (rval->rcv_privilege == RCPRIV_BASIC) {
dval->rcv_action_recipient = newp;
dval->rcv_action_recip_pid = newp->p_pid;
} else {
dval->rcv_action_recipient = NULL;
dval->rcv_action_recip_pid = -1;
}
(void) rctl_val_list_insert(&head, dval);
} else {
kmem_cache_free(rctl_val_cache, dval);
}
}
return (head);
}
static void
rctl_val_list_reset(rctl_val_t *rval)
{
for (; rval != NULL; rval = rval->rcv_next)
rval->rcv_firing_time = 0;
}
static uint_t
rctl_val_list_count(rctl_val_t *rval)
{
uint_t n = 0;
for (; rval != NULL; rval = rval->rcv_next)
n++;
return (n);
}
static void
rctl_val_list_free(rctl_val_t *rval)
{
while (rval != NULL) {
rctl_val_t *next = rval->rcv_next;
kmem_cache_free(rctl_val_cache, rval);
rval = next;
}
}
/*
* rctl_qty_t rctl_model_maximum(rctl_dict_entry_t *, struct proc *)
*
* Overview
* In cases where the operating system supports more than one process
* addressing model, the operating system capabilities will exceed those of
* one or more of these models. Processes in a less capable model must have
* their resources accurately controlled, without diluting those of their
* descendants reached via exec(). rctl_model_maximum() returns the governing
* value for the specified process with respect to a resource control, such
* that the value can used for the RCTLOP_SET callback or compatability
* support.
*
* Return values
* The maximum value for the given process for the specified resource control.
*
* Caller's context
* No restrictions on context.
*/
rctl_qty_t
rctl_model_maximum(rctl_dict_entry_t *rde, struct proc *p)
{
if (p->p_model == DATAMODEL_NATIVE)
return (rde->rcd_max_native);
return (rde->rcd_max_ilp32);
}
/*
* rctl_qty_t rctl_model_value(rctl_dict_entry_t *, struct proc *, rctl_qty_t)
*
* Overview
* Convenience function wrapping the rctl_model_maximum() functionality.
*
* Return values
* The lesser of the process's maximum value and the given value for the
* specified resource control.
*
* Caller's context
* No restrictions on context.
*/
rctl_qty_t
rctl_model_value(rctl_dict_entry_t *rde, struct proc *p, rctl_qty_t value)
{
rctl_qty_t max = rctl_model_maximum(rde, p);
return (value < max ? value : max);
}
static void
rctl_set_insert(rctl_set_t *set, rctl_hndl_t hndl, rctl_t *rctl)
{
uint_t index = hndl % rctl_set_size;
rctl_t *next_ctl, *prev_ctl;
ASSERT(MUTEX_HELD(&set->rcs_lock));
rctl->rc_next = NULL;
if (set->rcs_ctls[index] == NULL) {
set->rcs_ctls[index] = rctl;
return;
}
if (hndl < set->rcs_ctls[index]->rc_id) {
rctl->rc_next = set->rcs_ctls[index];
set->rcs_ctls[index] = rctl;
return;
}
for (next_ctl = set->rcs_ctls[index]->rc_next,
prev_ctl = set->rcs_ctls[index];
next_ctl != NULL;
prev_ctl = next_ctl,
next_ctl = next_ctl->rc_next) {
if (next_ctl->rc_id > hndl) {
rctl->rc_next = next_ctl;
prev_ctl->rc_next = rctl;
return;
}
}
rctl->rc_next = next_ctl;
prev_ctl->rc_next = rctl;
}
/*
* rctl_set_t *rctl_set_create()
*
* Overview
* Create an empty resource control set, suitable for attaching to a
* controlled entity.
*
* Return values
* A pointer to the newly created set.
*
* Caller's context
* Safe for KM_SLEEP allocations.
*/
rctl_set_t *
rctl_set_create()
{
rctl_set_t *rset = kmem_zalloc(sizeof (rctl_set_t), KM_SLEEP);
mutex_init(&rset->rcs_lock, NULL, MUTEX_DEFAULT, NULL);
rset->rcs_ctls = kmem_zalloc(rctl_set_size * sizeof (rctl_t *),
KM_SLEEP);
rset->rcs_entity = -1;
return (rset);
}
/*
* rctl_gp_alloc_t *rctl_set_init_prealloc(rctl_entity_t)
*
* Overview
* rctl_set_init_prealloc() examines the globally defined resource controls
* and their default values and returns a resource control allocation group
* populated with sufficient controls and values to form a representative
* resource control set for the specified entity.
*
* Return values
* A pointer to the newly created allocation group.
*
* Caller's context
* Caller must be in a context suitable for KM_SLEEP allocations.
*/
rctl_alloc_gp_t *
rctl_set_init_prealloc(rctl_entity_t entity)
{
rctl_dict_entry_t *rde;
rctl_alloc_gp_t *ragp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
if (rctl_lists[entity] == NULL)
return (ragp);
mutex_enter(&rctl_lists_lock);
for (rde = rctl_lists[entity]; rde != NULL; rde = rde->rcd_next) {
ragp->rcag_nctls++;
ragp->rcag_nvals += rctl_val_list_count(rde->rcd_default_value);
}
mutex_exit(&rctl_lists_lock);
rctl_gp_alloc(ragp);
return (ragp);
}
/*
* rctl_set_t *rctl_set_init(rctl_entity_t)
*
* Overview
* rctl_set_create() creates a resource control set, initialized with the
* system infinite values on all registered controls, for attachment to a
* system entity requiring resource controls, such as a process or a task.
*
* Return values
* A pointer to the newly filled set.
*
* Caller's context
* Caller must be holding p_lock on entry so that RCTLOP_SET() functions
* may modify task and project members based on the proc structure
* they are passed.
*/
rctl_set_t *
rctl_set_init(rctl_entity_t entity, struct proc *p, rctl_entity_p_t *e,
rctl_set_t *rset, rctl_alloc_gp_t *ragp)
{
rctl_dict_entry_t *rde;
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT(e);
rset->rcs_entity = entity;
if (rctl_lists[entity] == NULL)
return (rset);
mutex_enter(&rctl_lists_lock);
mutex_enter(&rset->rcs_lock);
for (rde = rctl_lists[entity]; rde != NULL; rde = rde->rcd_next) {
rctl_t *rctl = rctl_gp_detach_ctl(ragp);
rctl->rc_dict_entry = rde;
rctl->rc_id = rde->rcd_id;
rctl->rc_projdb = NULL;
rctl->rc_values = rctl_val_list_dup(rde->rcd_default_value,
ragp, NULL, p);
rctl->rc_cursor = rctl->rc_values;
ASSERT(rctl->rc_cursor != NULL);
rctl_set_insert(rset, rde->rcd_id, rctl);
RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
}
mutex_exit(&rset->rcs_lock);
mutex_exit(&rctl_lists_lock);
return (rset);
}
static rctl_t *
rctl_dup(rctl_t *rctl, rctl_alloc_gp_t *ragp, struct proc *oldp,
struct proc *newp)
{
rctl_t *dup = rctl_gp_detach_ctl(ragp);
rctl_val_t *dval;
dup->rc_id = rctl->rc_id;
dup->rc_dict_entry = rctl->rc_dict_entry;
dup->rc_next = NULL;
dup->rc_cursor = NULL;
dup->rc_values = rctl_val_list_dup(rctl->rc_values, ragp, oldp, newp);
for (dval = dup->rc_values;
dval != NULL; dval = dval->rcv_next) {
if (rctl_val_cmp(rctl->rc_cursor, dval, 0) >= 0) {
dup->rc_cursor = dval;
break;
}
}
if (dup->rc_cursor == NULL)
dup->rc_cursor = dup->rc_values;
return (dup);
}
static void
rctl_set_fill_alloc_gp(rctl_set_t *set, rctl_alloc_gp_t *ragp)
{
uint_t i;
bzero(ragp, sizeof (rctl_alloc_gp_t));
for (i = 0; i < rctl_set_size; i++) {
rctl_t *r = set->rcs_ctls[i];
while (r != NULL) {
ragp->rcag_nctls++;
ragp->rcag_nvals += rctl_val_list_count(r->rc_values);
r = r->rc_next;
}
}
}
/*
* rctl_alloc_gp_t *rctl_set_dup_prealloc(rctl_set_t *)
*
* Overview
* Given a resource control set, allocate a sufficiently large allocation
* group to contain a duplicate of the set.
*
* Return value
* A pointer to the newly created allocation group.
*
* Caller's context
* Safe for KM_SLEEP allocations.
*/
rctl_alloc_gp_t *
rctl_set_dup_prealloc(rctl_set_t *set)
{
rctl_alloc_gp_t *ragp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
mutex_enter(&set->rcs_lock);
rctl_set_fill_alloc_gp(set, ragp);
mutex_exit(&set->rcs_lock);
rctl_gp_alloc(ragp);
return (ragp);
}
/*
* int rctl_set_dup_ready(rctl_set_t *, rctl_alloc_gp_t *)
*
* Overview
* Verify that the allocation group provided is large enough to allow a
* duplicate of the given resource control set to be constructed from its
* contents.
*
* Return values
* 1 if the allocation group is sufficiently large, 0 otherwise.
*
* Caller's context
* rcs_lock must be held prior to entry.
*/
int
rctl_set_dup_ready(rctl_set_t *set, rctl_alloc_gp_t *ragp)
{
rctl_alloc_gp_t curr_gp;
ASSERT(MUTEX_HELD(&set->rcs_lock));
rctl_set_fill_alloc_gp(set, &curr_gp);
if (curr_gp.rcag_nctls <= ragp->rcag_nctls &&
curr_gp.rcag_nvals <= ragp->rcag_nvals)
return (1);
return (0);
}
/*
* rctl_set_t *rctl_set_dup(rctl_set_t *, struct proc *, struct proc *,
* rctl_set_t *, rctl_alloc_gp_t *, int)
*
* Overview
* Make a duplicate of the resource control set. The proc pointers are those
* of the owning process and of the process associated with the entity
* receiving the duplicate.
*
* Duplication is a 3 stage process. Stage 1 is memory allocation for
* the duplicate set, which is taken care of by rctl_set_dup_prealloc().
* Stage 2 consists of copying all rctls and values from the old set into
* the new. Stage 3 completes the duplication by performing the appropriate
* callbacks for each rctl in the new set.
*
* Stages 2 and 3 are handled by calling rctl_set_dup with the RCD_DUP and
* RCD_CALLBACK functions, respectively. The RCD_CALLBACK flag may only
* be supplied if the newp proc structure reflects the new task and
* project linkage.
*
* Return value
* A pointer to the duplicate set.
*
* Caller's context
* The rcs_lock of the set to be duplicated must be held prior to entry.
*/
rctl_set_t *
rctl_set_dup(rctl_set_t *set, struct proc *oldp, struct proc *newp,
rctl_entity_p_t *e, rctl_set_t *dup, rctl_alloc_gp_t *ragp, int flag)
{
uint_t i;
rctl_set_t *iter;
ASSERT((flag & RCD_DUP) || (flag & RCD_CALLBACK));
ASSERT(e);
/*
* When copying the old set, iterate over that. Otherwise, when
* only callbacks have been requested, iterate over the dup set.
*/
if (flag & RCD_DUP) {
ASSERT(MUTEX_HELD(&set->rcs_lock));
iter = set;
dup->rcs_entity = set->rcs_entity;
} else {
iter = dup;
}
mutex_enter(&dup->rcs_lock);
for (i = 0; i < rctl_set_size; i++) {
rctl_t *r = iter->rcs_ctls[i];
rctl_t *d;
while (r != NULL) {
if (flag & RCD_DUP) {
d = rctl_dup(r, ragp, oldp, newp);
rctl_set_insert(dup, r->rc_id, d);
} else {
d = r;
}
if (flag & RCD_CALLBACK)
RCTLOP_SET(d, newp, e,
rctl_model_value(d->rc_dict_entry, newp,
d->rc_cursor->rcv_value));
r = r->rc_next;
}
}
mutex_exit(&dup->rcs_lock);
return (dup);
}
/*
* void rctl_set_free(rctl_set_t *)
*
* Overview
* Delete resource control set and all attached values.
*
* Return values
* No value returned.
*
* Caller's context
* No restrictions on context.
*/
void
rctl_set_free(rctl_set_t *set)
{
uint_t i;
mutex_enter(&set->rcs_lock);
for (i = 0; i < rctl_set_size; i++) {
rctl_t *r = set->rcs_ctls[i];
while (r != NULL) {
rctl_val_t *v = r->rc_values;
rctl_t *n = r->rc_next;
kmem_cache_free(rctl_cache, r);
rctl_val_list_free(v);
r = n;
}
}
mutex_exit(&set->rcs_lock);
kmem_free(set->rcs_ctls, sizeof (rctl_t *) * rctl_set_size);
kmem_free(set, sizeof (rctl_set_t));
}
/*
* void rctl_set_reset(rctl_set_t *)
*
* Overview
* Resets all rctls within the set such that the lowest value becomes active.
*
* Return values
* No value returned.
*
* Caller's context
* No restrictions on context.
*/
void
rctl_set_reset(rctl_set_t *set, struct proc *p, rctl_entity_p_t *e)
{
uint_t i;
ASSERT(e);
mutex_enter(&set->rcs_lock);
for (i = 0; i < rctl_set_size; i++) {
rctl_t *r = set->rcs_ctls[i];
while (r != NULL) {
r->rc_cursor = r->rc_values;
rctl_val_list_reset(r->rc_cursor);
RCTLOP_SET(r, p, e, rctl_model_value(r->rc_dict_entry,
p, r->rc_cursor->rcv_value));
ASSERT(r->rc_cursor != NULL);
r = r->rc_next;
}
}
mutex_exit(&set->rcs_lock);
}
/*
* void rctl_set_tearoff(rctl_set *, struct proc *)
*
* Overview
* Tear off any resource control values on this set with an action recipient
* equal to the specified process (as they are becoming invalid with the
* process's departure from this set as an observer).
*
* Return values
* No value returned.
*
* Caller's context
* No restrictions on context
*/
void
rctl_set_tearoff(rctl_set_t *set, struct proc *p)
{
uint_t i;
mutex_enter(&set->rcs_lock);
for (i = 0; i < rctl_set_size; i++) {
rctl_t *r = set->rcs_ctls[i];
while (r != NULL) {
rctl_val_t *rval;
tearoff_rewalk_list:
rval = r->rc_values;
while (rval != NULL) {
if (rval->rcv_privilege == RCPRIV_BASIC &&
rval->rcv_action_recipient == p) {
if (r->rc_cursor == rval)
r->rc_cursor = rval->rcv_next;
(void) rctl_val_list_delete(
&r->rc_values, rval);
goto tearoff_rewalk_list;
}
rval = rval->rcv_next;
}
ASSERT(r->rc_cursor != NULL);
r = r->rc_next;
}
}
mutex_exit(&set->rcs_lock);
}
int
rctl_set_find(rctl_set_t *set, rctl_hndl_t hndl, rctl_t **rctl)
{
uint_t index = hndl % rctl_set_size;
rctl_t *curr_ctl;
ASSERT(MUTEX_HELD(&set->rcs_lock));
for (curr_ctl = set->rcs_ctls[index]; curr_ctl != NULL;
curr_ctl = curr_ctl->rc_next) {
if (curr_ctl->rc_id == hndl) {
*rctl = curr_ctl;
return (0);
}
}
return (-1);
}
/*
* rlim64_t rctl_enforced_value(rctl_hndl_t, rctl_set_t *, struct proc *)
*
* Overview
* Given a process, get the next enforced value on the rctl of the specified
* handle.
*
* Return value
* The enforced value.
*
* Caller's context
* For controls on process collectives, p->p_lock must be held across the
* operation.
*/
/*ARGSUSED*/
rctl_qty_t
rctl_enforced_value(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p)
{
rctl_t *rctl;
rlim64_t ret;
mutex_enter(&rset->rcs_lock);
if (rctl_set_find(rset, hndl, &rctl) == -1)
panic("unknown resource control handle %d requested", hndl);
else
ret = rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value);
mutex_exit(&rset->rcs_lock);
return (ret);
}
/*
* int rctl_global_get(const char *, rctl_dict_entry_t *)
*
* Overview
* Copy a sanitized version of the global rctl for a given resource control
* name. (By sanitization, we mean that the unsafe data pointers have been
* zeroed.)
*
* Return value
* -1 if name not defined, 0 otherwise.
*
* Caller's context
* No restrictions on context. rctl_dict_lock must not be held.
*/
int
rctl_global_get(const char *name, rctl_dict_entry_t *drde)
{
rctl_dict_entry_t *rde = rctl_dict_lookup(name);
if (rde == NULL)
return (-1);
bcopy(rde, drde, sizeof (rctl_dict_entry_t));
drde->rcd_next = NULL;
drde->rcd_ops = NULL;
return (0);
}
/*
* int rctl_global_set(const char *, rctl_dict_entry_t *)
*
* Overview
* Transfer the settable fields of the named rctl to the global rctl matching
* the given resource control name.
*
* Return value
* -1 if name not defined, 0 otherwise.
*
* Caller's context
* No restrictions on context. rctl_dict_lock must not be held.
*/
int
rctl_global_set(const char *name, rctl_dict_entry_t *drde)
{
rctl_dict_entry_t *rde = rctl_dict_lookup(name);
if (rde == NULL)
return (-1);
rde->rcd_flagaction = drde->rcd_flagaction;
rde->rcd_syslog_level = drde->rcd_syslog_level;
rde->rcd_strlog_flags = drde->rcd_strlog_flags;
return (0);
}
static int
rctl_local_op(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
int (*cbop)(rctl_hndl_t, struct proc *p, rctl_entity_p_t *e, rctl_t *,
rctl_val_t *, rctl_val_t *), struct proc *p)
{
rctl_t *rctl;
rctl_set_t *rset;
rctl_entity_p_t e;
int ret = 0;
rctl_dict_entry_t *rde = rctl_dict_lookup_hndl(hndl);
local_op_retry:
ASSERT(MUTEX_HELD(&p->p_lock));
rset = rctl_entity_obtain_rset(rde, p);
if (rset == NULL) {
return (-1);
}
rctl_entity_obtain_entity_p(rset->rcs_entity, p, &e);
mutex_enter(&rset->rcs_lock);
/* using rctl's hndl, get rctl from local set */
if (rctl_set_find(rset, hndl, &rctl) == -1) {
mutex_exit(&rset->rcs_lock);
return (-1);
}
ret = cbop(hndl, p, &e, rctl, oval, nval);
mutex_exit(&rset->rcs_lock);
return (ret);
}
/*ARGSUSED*/
static int
rctl_local_get_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
{
if (oval == NULL) {
/*
* RCTL_FIRST
*/
bcopy(rctl->rc_values, nval, sizeof (rctl_val_t));
} else {
/*
* RCTL_NEXT
*/
rctl_val_t *tval = rctl_val_list_find(&rctl->rc_values, oval);
if (tval == NULL)
return (ESRCH);
else if (tval->rcv_next == NULL)
return (ENOENT);
else
bcopy(tval->rcv_next, nval, sizeof (rctl_val_t));
}
return (0);
}
/*
* int rctl_local_get(rctl_hndl_t, rctl_val_t *)
*
* Overview
* Get the rctl value for the given flags.
*
* Return values
* 0 for successful get, errno otherwise.
*/
int
rctl_local_get(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
struct proc *p)
{
return (rctl_local_op(hndl, oval, nval, rctl_local_get_cb, p));
}
/*ARGSUSED*/
static int
rctl_local_delete_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
{
if ((oval = rctl_val_list_find(&rctl->rc_values, nval)) == NULL)
return (ESRCH);
if (rctl->rc_cursor == oval) {
rctl->rc_cursor = oval->rcv_next;
rctl_val_list_reset(rctl->rc_cursor);
RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
ASSERT(rctl->rc_cursor != NULL);
}
(void) rctl_val_list_delete(&rctl->rc_values, oval);
return (0);
}
/*
* int rctl_local_delete(rctl_hndl_t, rctl_val_t *)
*
* Overview
* Delete the rctl value for the given flags.
*
* Return values
* 0 for successful delete, errno otherwise.
*/
int
rctl_local_delete(rctl_hndl_t hndl, rctl_val_t *val, struct proc *p)
{
return (rctl_local_op(hndl, NULL, val, rctl_local_delete_cb, p));
}
/*
* rctl_local_insert_cb()
*
* Overview
* Insert a new value into the rctl's val list. If an error occurs,
* the val list must be left in the same state as when the function
* was entered.
*
* Return Values
* 0 for successful insert, EINVAL if the value is duplicated in the
* existing list.
*/
/*ARGSUSED*/
static int
rctl_local_insert_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
{
/*
* Before inserting, confirm there are no duplicates of this value
* and flag level. If there is a duplicate, flag an error and do
* nothing.
*/
if (rctl_val_list_insert(&rctl->rc_values, nval) != 0)
return (EINVAL);
if (rctl_val_cmp(nval, rctl->rc_cursor, 0) < 0) {
rctl->rc_cursor = nval;
rctl_val_list_reset(rctl->rc_cursor);
RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
ASSERT(rctl->rc_cursor != NULL);
}
return (0);
}
/*
* int rctl_local_insert(rctl_hndl_t, rctl_val_t *)
*
* Overview
* Insert the rctl value into the appropriate rctl set for the calling
* process, given the handle.
*/
int
rctl_local_insert(rctl_hndl_t hndl, rctl_val_t *val, struct proc *p)
{
return (rctl_local_op(hndl, NULL, val, rctl_local_insert_cb, p));
}
/*
* rctl_local_insert_all_cb()
*
* Overview
* Called for RCENTITY_PROJECT rctls only, via rctlsys_projset().
*
* Inserts new values from the project database (new_values). alloc_values
* should be a linked list of pre-allocated rctl_val_t, which are used to
* populate (rc_projdb).
*
* Should the *new_values linked list match the contents of the rctl's
* rp_projdb then we do nothing.
*
* Return Values
* 0 is always returned.
*/
/*ARGSUSED*/
static int
rctl_local_insert_all_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
rctl_t *rctl, rctl_val_t *new_values, rctl_val_t *alloc_values)
{
rctl_val_t *val;
rctl_val_t *tmp_val;
rctl_val_t *next;
int modified = 0;
/*
* If this the first time we've set this project rctl, then we delete
* all the privilege values. These privilege values have been set by
* rctl_add_default_limit().
*
* We save some cycles here by not calling rctl_val_list_delete().
*/
if (rctl->rc_projdb == NULL) {
val = rctl->rc_values;
while (val != NULL) {
if (val->rcv_privilege == RCPRIV_PRIVILEGED) {
if (val->rcv_prev != NULL)
val->rcv_prev->rcv_next = val->rcv_next;
else
rctl->rc_values = val->rcv_next;
if (val->rcv_next != NULL)
val->rcv_next->rcv_prev = val->rcv_prev;
tmp_val = val;
val = val->rcv_next;
kmem_cache_free(rctl_val_cache, tmp_val);
} else {
val = val->rcv_next;
}
}
modified = 1;
}
/*
* Delete active values previously set through the project database.
*/
val = rctl->rc_projdb;
while (val != NULL) {
/* Is the old value found in the new values? */
if (rctl_val_list_find(&new_values, val) == NULL) {
/*
* Delete from the active values if it originated from
* the project database.
*/
if (((tmp_val = rctl_val_list_find(&rctl->rc_values,
val)) != NULL) &&
(tmp_val->rcv_flagaction & RCTL_LOCAL_PROJDB)) {
(void) rctl_val_list_delete(&rctl->rc_values,
tmp_val);
}
tmp_val = val->rcv_next;
(void) rctl_val_list_delete(&rctl->rc_projdb, val);
val = tmp_val;
modified = 1;
} else
val = val->rcv_next;
}
/*
* Insert new values from the project database.
*/
while (new_values != NULL) {
next = new_values->rcv_next;
/*
* Insert this new value into the rc_projdb, and duplicate this
* entry to the active list.
*/
if (rctl_val_list_insert(&rctl->rc_projdb, new_values) == 0) {
tmp_val = alloc_values->rcv_next;
bcopy(new_values, alloc_values, sizeof (rctl_val_t));
alloc_values->rcv_next = tmp_val;
if (rctl_val_list_insert(&rctl->rc_values,
alloc_values) == 0) {
/* inserted move alloc_values on */
alloc_values = tmp_val;
modified = 1;
}
} else {
/*
* Unlike setrctl() we don't want to return an error on
* a duplicate entry; we are concerned solely with
* ensuring that all the values specified are set.
*/
kmem_cache_free(rctl_val_cache, new_values);
}
new_values = next;
}
/* Teardown any unused rctl_val_t */
while (alloc_values != NULL) {
tmp_val = alloc_values;
alloc_values = alloc_values->rcv_next;
kmem_cache_free(rctl_val_cache, tmp_val);
}
/* Reset the cursor if rctl values have been modified */
if (modified) {
rctl->rc_cursor = rctl->rc_values;
rctl_val_list_reset(rctl->rc_cursor);
RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
}
return (0);
}
int
rctl_local_insert_all(rctl_hndl_t hndl, rctl_val_t *new_values,
rctl_val_t *alloc_values, struct proc *p)
{
return (rctl_local_op(hndl, new_values, alloc_values,
rctl_local_insert_all_cb, p));
}
/*
* rctl_local_replace_all_cb()
*
* Overview
* Called for RCENTITY_PROJECT rctls only, via rctlsys_projset().
*
* Clears the active rctl values (rc_values), and stored values from the
* previous insertions from the project database (rc_projdb).
*
* Inserts new values from the project database (new_values). alloc_values
* should be a linked list of pre-allocated rctl_val_t, which are used to
* populate (rc_projdb).
*
* Return Values
* 0 is always returned.
*/
/*ARGSUSED*/
static int
rctl_local_replace_all_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
rctl_t *rctl, rctl_val_t *new_values, rctl_val_t *alloc_values)
{
rctl_val_t *val;
rctl_val_t *next;
rctl_val_t *tmp_val;
/* Delete all the privilege vaules */
val = rctl->rc_values;
while (val != NULL) {
if (val->rcv_privilege == RCPRIV_PRIVILEGED) {
if (val->rcv_prev != NULL)
val->rcv_prev->rcv_next = val->rcv_next;
else
rctl->rc_values = val->rcv_next;
if (val->rcv_next != NULL)
val->rcv_next->rcv_prev = val->rcv_prev;
tmp_val = val;
val = val->rcv_next;
kmem_cache_free(rctl_val_cache, tmp_val);
} else {
val = val->rcv_next;
}
}
/* Delete the contents of rc_projdb */
val = rctl->rc_projdb;
while (val != NULL) {
tmp_val = val;
val = val->rcv_next;
kmem_cache_free(rctl_val_cache, tmp_val);
}
rctl->rc_projdb = NULL;
/*
* Insert new values from the project database.
*/
while (new_values != NULL) {
next = new_values->rcv_next;
if (rctl_val_list_insert(&rctl->rc_projdb, new_values) == 0) {
tmp_val = alloc_values->rcv_next;
bcopy(new_values, alloc_values, sizeof (rctl_val_t));
alloc_values->rcv_next = tmp_val;
if (rctl_val_list_insert(&rctl->rc_values,
alloc_values) == 0) {
/* inserted, so move alloc_values on */
alloc_values = tmp_val;
}
} else {
/*
* Unlike setrctl() we don't want to return an error on
* a duplicate entry; we are concerned solely with
* ensuring that all the values specified are set.
*/
kmem_cache_free(rctl_val_cache, new_values);
}
new_values = next;
}
/* Teardown any unused rctl_val_t */
while (alloc_values != NULL) {
tmp_val = alloc_values;
alloc_values = alloc_values->rcv_next;
kmem_cache_free(rctl_val_cache, tmp_val);
}
/* Always reset the cursor */
rctl->rc_cursor = rctl->rc_values;
rctl_val_list_reset(rctl->rc_cursor);
RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
return (0);
}
int
rctl_local_replace_all(rctl_hndl_t hndl, rctl_val_t *new_values,
rctl_val_t *alloc_values, struct proc *p)
{
return (rctl_local_op(hndl, new_values, alloc_values,
rctl_local_replace_all_cb, p));
}
static int
rctl_local_replace_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
{
int ret;
rctl_val_t *tmp;
/* Verify that old will be delete-able */
tmp = rctl_val_list_find(&rctl->rc_values, oval);
if (tmp == NULL)
return (ESRCH);
/*
* Caller should verify that value being deleted is not the
* system value.
*/
ASSERT(tmp->rcv_privilege != RCPRIV_SYSTEM);
/*
* rctl_local_insert_cb() does the job of flagging an error
* for any duplicate values. So, call rctl_local_insert_cb()
* for the new value first, then do deletion of the old value.
* Since this is a callback function to rctl_local_op, we can
* count on rcs_lock being held at this point. This guarantees
* that there is at no point a visible list which contains both
* new and old values.
*/
if (ret = rctl_local_insert_cb(hndl, p, e, rctl, NULL, nval))
return (ret);
ret = rctl_local_delete_cb(hndl, p, e, rctl, NULL, oval);
ASSERT(ret == 0);
return (0);
}
/*
* int rctl_local_replace(rctl_hndl_t, void *, int, uint64_t *)
*
* Overview
* Replace the rctl value with a new one.
*
* Return values
* 0 for successful replace, errno otherwise.
*/
int
rctl_local_replace(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
struct proc *p)
{
return (rctl_local_op(hndl, oval, nval, rctl_local_replace_cb, p));
}
/*
* int rctl_rlimit_get(rctl_hndl_t, struct proc *, struct rlimit64 *)
*
* Overview
* To support rlimit compatibility, we need a function which takes a 64-bit
* rlimit and encodes it as appropriate rcontrol values on the given rcontrol.
* This operation is only intended for legacy rlimits.
*/
int
rctl_rlimit_get(rctl_hndl_t rc, struct proc *p, struct rlimit64 *rlp64)
{
rctl_t *rctl;
rctl_val_t *rval;
rctl_set_t *rset = p->p_rctls;
int soft_limit_seen = 0;
int test_for_deny = 1;
mutex_enter(&rset->rcs_lock);
if (rctl_set_find(rset, rc, &rctl) == -1) {
mutex_exit(&rset->rcs_lock);
return (-1);
}
rval = rctl->rc_values;
if (rctl->rc_dict_entry->rcd_flagaction & (RCTL_GLOBAL_DENY_NEVER |
RCTL_GLOBAL_DENY_ALWAYS))
test_for_deny = 0;
/*
* 1. Find the first control value with the RCTL_LOCAL_DENY bit set.
*/
while (rval != NULL && rval->rcv_privilege != RCPRIV_SYSTEM) {
if (test_for_deny &&
(rval->rcv_flagaction & RCTL_LOCAL_DENY) == 0) {
rval = rval->rcv_next;
continue;
}
/*
* 2. If this is an RCPRIV_BASIC value, then we've found the
* effective soft limit and should set rlim_cur. We should then
* continue looking for another control value with the DENY bit
* set.
*/
if (rval->rcv_privilege == RCPRIV_BASIC) {
if (soft_limit_seen) {
rval = rval->rcv_next;
continue;
}
if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
rval->rcv_value < rctl_model_maximum(
rctl->rc_dict_entry, p))
rlp64->rlim_cur = rval->rcv_value;
else
rlp64->rlim_cur = RLIM64_INFINITY;
soft_limit_seen = 1;
rval = rval->rcv_next;
continue;
}
/*
* 3. This is an RCPRIV_PRIVILEGED value. If we haven't found
* a soft limit candidate, then we've found the effective hard
* and soft limits and should set both If we had found a soft
* limit, then this is only the hard limit and we need only set
* rlim_max.
*/
if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
rval->rcv_value < rctl_model_maximum(rctl->rc_dict_entry,
p))
rlp64->rlim_max = rval->rcv_value;
else
rlp64->rlim_max = RLIM64_INFINITY;
if (!soft_limit_seen)
rlp64->rlim_cur = rlp64->rlim_max;
mutex_exit(&rset->rcs_lock);
return (0);
}
if (rval == NULL) {
/*
* This control sequence is corrupt, as it is not terminated by
* a system privileged control value.
*/
mutex_exit(&rset->rcs_lock);
return (-1);
}
/*
* 4. If we run into a RCPRIV_SYSTEM value, then the hard limit (and
* the soft, if we haven't a soft candidate) should be the value of the
* system control value.
*/
if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
rval->rcv_value < rctl_model_maximum(rctl->rc_dict_entry, p))
rlp64->rlim_max = rval->rcv_value;
else
rlp64->rlim_max = RLIM64_INFINITY;
if (!soft_limit_seen)
rlp64->rlim_cur = rlp64->rlim_max;
mutex_exit(&rset->rcs_lock);
return (0);
}
/*
* rctl_alloc_gp_t *rctl_rlimit_set_prealloc(uint_t)
*
* Overview
* Before making a series of calls to rctl_rlimit_set(), we must have a
* preallocated batch of resource control values, as rctl_rlimit_set() can
* potentially consume two resource control values per call.
*
* Return values
* A populated resource control allocation group with 2n resource control
* values.
*
* Caller's context
* Must be safe for KM_SLEEP allocations.
*/
rctl_alloc_gp_t *
rctl_rlimit_set_prealloc(uint_t n)
{
rctl_alloc_gp_t *gp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
gp->rcag_nvals = 2 * n;
rctl_gp_alloc(gp);
return (gp);
}
/*
* int rctl_rlimit_set(rctl_hndl_t, struct proc *, struct rlimit64 *, int,
* int)
*
* Overview
* To support rlimit compatibility, we need a function which takes a 64-bit
* rlimit and encodes it as appropriate rcontrol values on the given rcontrol.
* This operation is only intended for legacy rlimits.
*
* The implementation of rctl_rlimit_set() is a bit clever, as it tries to
* minimize the number of values placed on the value sequence in various
* cases. Furthermore, we don't allow multiple identical privilege-action
* values on the same sequence. (That is, we don't want a sequence like
* "while (1) { rlim.rlim_cur++; setrlimit(..., rlim); }" to exhaust kernel
* memory.) So we want to delete any values with the same privilege value and
* action.
*
* Return values
* 0 for successful set, errno otherwise. Errno will be either EINVAL
* or EPERM, in keeping with defined errnos for ulimit() and setrlimit()
* system calls.
*/
/*ARGSUSED*/
int
rctl_rlimit_set(rctl_hndl_t rc, struct proc *p, struct rlimit64 *rlp64,
rctl_alloc_gp_t *ragp, int flagaction, int signal, const cred_t *cr)
{
rctl_t *rctl;
rctl_val_t *rval, *rval_priv, *rval_basic;
rctl_set_t *rset = p->p_rctls;
rctl_qty_t max;
rctl_entity_p_t e;
struct rlimit64 cur_rl;
e.rcep_t = RCENTITY_PROCESS;
e.rcep_p.proc = p;
if (rlp64->rlim_cur > rlp64->rlim_max)
return (EINVAL);
if (rctl_rlimit_get(rc, p, &cur_rl) == -1)
return (EINVAL);
/*
* If we are not privileged, we can only lower the hard limit.
*/
if ((rlp64->rlim_max > cur_rl.rlim_max) &&
cur_rl.rlim_max != RLIM64_INFINITY &&
secpolicy_resource(cr) != 0)
return (EPERM);
mutex_enter(&rset->rcs_lock);
if (rctl_set_find(rset, rc, &rctl) == -1) {
mutex_exit(&rset->rcs_lock);
return (EINVAL);
}
rval_priv = rctl_gp_detach_val(ragp);
rval = rctl->rc_values;
while (rval != NULL) {
rctl_val_t *next = rval->rcv_next;
if (rval->rcv_privilege == RCPRIV_SYSTEM)
break;
if ((rval->rcv_privilege == RCPRIV_BASIC) ||
(rval->rcv_flagaction & ~RCTL_LOCAL_ACTION_MASK) ==
(flagaction & ~RCTL_LOCAL_ACTION_MASK)) {
if (rctl->rc_cursor == rval) {
rctl->rc_cursor = rval->rcv_next;
rctl_val_list_reset(rctl->rc_cursor);
RCTLOP_SET(rctl, p, &e, rctl_model_value(
rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
}
(void) rctl_val_list_delete(&rctl->rc_values, rval);
}
rval = next;
}
rval_priv->rcv_privilege = RCPRIV_PRIVILEGED;
rval_priv->rcv_flagaction = flagaction;
if (rlp64->rlim_max == RLIM64_INFINITY) {
rval_priv->rcv_flagaction |= RCTL_LOCAL_MAXIMAL;
max = rctl->rc_dict_entry->rcd_max_native;
} else {
max = rlp64->rlim_max;
}
rval_priv->rcv_value = max;
rval_priv->rcv_action_signal = signal;
rval_priv->rcv_action_recipient = NULL;
rval_priv->rcv_action_recip_pid = -1;
rval_priv->rcv_firing_time = 0;
rval_priv->rcv_prev = rval_priv->rcv_next = NULL;
(void) rctl_val_list_insert(&rctl->rc_values, rval_priv);
rctl->rc_cursor = rval_priv;
rctl_val_list_reset(rctl->rc_cursor);
RCTLOP_SET(rctl, p, &e, rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
if (rlp64->rlim_cur != RLIM64_INFINITY && rlp64->rlim_cur < max) {
rval_basic = rctl_gp_detach_val(ragp);
rval_basic->rcv_privilege = RCPRIV_BASIC;
rval_basic->rcv_value = rlp64->rlim_cur;
rval_basic->rcv_flagaction = flagaction;
rval_basic->rcv_action_signal = signal;
rval_basic->rcv_action_recipient = p;
rval_basic->rcv_action_recip_pid = p->p_pid;
rval_basic->rcv_firing_time = 0;
rval_basic->rcv_prev = rval_basic->rcv_next = NULL;
(void) rctl_val_list_insert(&rctl->rc_values, rval_basic);
rctl->rc_cursor = rval_basic;
rctl_val_list_reset(rctl->rc_cursor);
RCTLOP_SET(rctl, p, &e, rctl_model_value(rctl->rc_dict_entry, p,
rctl->rc_cursor->rcv_value));
}
ASSERT(rctl->rc_cursor != NULL);
mutex_exit(&rset->rcs_lock);
return (0);
}
/*
* rctl_hndl_t rctl_register(const char *, rctl_entity_t, int, rlim64_t,
* rlim64_t, rctl_ops_t *)
*
* Overview
* rctl_register() performs a look-up in the dictionary of rctls
* active on the system; if a rctl of that name is absent, an entry is
* made into the dictionary. The rctl is returned with its reference
* count incremented by one. If the rctl name already exists, we panic.
* (Were the resource control system to support dynamic loading and unloading,
* which it is structured for, duplicate registration should lead to load
* failure instead of panicking.)
*
* Each registered rctl has a requirement that a RCPRIV_SYSTEM limit be
* defined. This limit contains the highest possible value for this quantity
* on the system. Furthermore, the registered control must provide infinite
* values for all applicable address space models supported by the operating
* system. Attempts to set resource control values beyond the system limit
* will fail.
*
* Return values
* The rctl's ID.
*
* Caller's context
* Caller must be in a context suitable for KM_SLEEP allocations.
*/
rctl_hndl_t
rctl_register(
const char *name,
rctl_entity_t entity,
int global_flags,
rlim64_t max_native,
rlim64_t max_ilp32,
rctl_ops_t *ops)
{
rctl_t *rctl = kmem_cache_alloc(rctl_cache, KM_SLEEP);
rctl_val_t *rctl_val = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
rctl_dict_entry_t *rctl_de = kmem_zalloc(sizeof (rctl_dict_entry_t),
KM_SLEEP);
rctl_t *old_rctl;
rctl_hndl_t rhndl;
int localflags;
ASSERT(ops != NULL);
bzero(rctl, sizeof (rctl_t));
bzero(rctl_val, sizeof (rctl_val_t));
if (global_flags & RCTL_GLOBAL_DENY_NEVER)
localflags = RCTL_LOCAL_MAXIMAL;
else
localflags = RCTL_LOCAL_MAXIMAL | RCTL_LOCAL_DENY;
rctl_val->rcv_privilege = RCPRIV_SYSTEM;
rctl_val->rcv_value = max_native;
rctl_val->rcv_flagaction = localflags;
rctl_val->rcv_action_signal = 0;
rctl_val->rcv_action_recipient = NULL;
rctl_val->rcv_action_recip_pid = -1;
rctl_val->rcv_firing_time = 0;
rctl_val->rcv_next = NULL;
rctl_val->rcv_prev = NULL;
rctl_de->rcd_name = (char *)name;
rctl_de->rcd_default_value = rctl_val;
rctl_de->rcd_max_native = max_native;
rctl_de->rcd_max_ilp32 = max_ilp32;
rctl_de->rcd_entity = entity;
rctl_de->rcd_ops = ops;
rctl_de->rcd_flagaction = global_flags;
rctl->rc_dict_entry = rctl_de;
rctl->rc_values = rctl_val;
/*
* 1. Take global lock, validate nonexistence of name, get ID.
*/
mutex_enter(&rctl_dict_lock);
if (mod_hash_find(rctl_dict_by_name, (mod_hash_key_t)name,
(mod_hash_val_t *)&rhndl) != MH_ERR_NOTFOUND)
panic("duplicate registration of rctl %s", name);
rhndl = rctl_de->rcd_id = rctl->rc_id =
(rctl_hndl_t)id_alloc(rctl_ids);
/*
* 2. Insert name-entry pair in rctl_dict_by_name.
*/
if (mod_hash_insert(rctl_dict_by_name, (mod_hash_key_t)name,
(mod_hash_val_t)rctl_de))
panic("unable to insert rctl dict entry for %s (%u)", name,
(uint_t)rctl->rc_id);
/*
* 3. Insert ID-rctl_t * pair in rctl_dict.
*/
if (mod_hash_find(rctl_dict, (mod_hash_key_t)(uintptr_t)rctl->rc_id,
(mod_hash_val_t *)&old_rctl) != MH_ERR_NOTFOUND)
panic("duplicate rctl ID %u registered", rctl->rc_id);
if (mod_hash_insert(rctl_dict, (mod_hash_key_t)(uintptr_t)rctl->rc_id,
(mod_hash_val_t)rctl))
panic("unable to insert rctl %s/%u (%p)", name,
(uint_t)rctl->rc_id, (void *)rctl);
/*
* 3a. Insert rctl_dict_entry_t * in appropriate entity list.
*/
mutex_enter(&rctl_lists_lock);
switch (entity) {
case RCENTITY_ZONE:
case RCENTITY_PROJECT:
case RCENTITY_TASK:
case RCENTITY_PROCESS:
rctl_de->rcd_next = rctl_lists[entity];
rctl_lists[entity] = rctl_de;
break;
default:
panic("registering unknown rctl entity %d (%s)", entity,
name);
break;
}
mutex_exit(&rctl_lists_lock);
/*
* 4. Drop lock.
*/
mutex_exit(&rctl_dict_lock);
return (rhndl);
}
/*
* static int rctl_global_action(rctl_t *r, rctl_set_t *rset, struct proc *p,
* rctl_val_t *v)
*
* Overview
* rctl_global_action() takes, in according with the flags on the rctl_dict
* entry for the given control, the appropriate actions on the exceeded
* control value. Additionally, rctl_global_action() updates the firing time
* on the exceeded value.
*
* Return values
* A bitmask reflecting the actions actually taken.
*
* Caller's context
* No restrictions on context.
*/
/*ARGSUSED*/
static int
rctl_global_action(rctl_t *r, rctl_set_t *rset, struct proc *p, rctl_val_t *v)
{
rctl_dict_entry_t *rde = r->rc_dict_entry;
const char *pr, *en, *idstr;
id_t id;
enum {
SUFFIX_NONE, /* id consumed directly */
SUFFIX_NUMERIC, /* id consumed in suffix */
SUFFIX_STRING /* idstr consumed in suffix */
} suffix = SUFFIX_NONE;
int ret = 0;
v->rcv_firing_time = gethrtime();
switch (v->rcv_privilege) {
case RCPRIV_BASIC:
pr = "basic";
break;
case RCPRIV_PRIVILEGED:
pr = "privileged";
break;
case RCPRIV_SYSTEM:
pr = "system";
break;
default:
pr = "unknown";
break;
}
switch (rde->rcd_entity) {
case RCENTITY_PROCESS:
en = "process";
id = p->p_pid;
suffix = SUFFIX_NONE;
break;
case RCENTITY_TASK:
en = "task";
id = p->p_task->tk_tkid;
suffix = SUFFIX_NUMERIC;
break;
case RCENTITY_PROJECT:
en = "project";
id = p->p_task->tk_proj->kpj_id;
suffix = SUFFIX_NUMERIC;
break;
case RCENTITY_ZONE:
en = "zone";
idstr = p->p_zone->zone_name;
suffix = SUFFIX_STRING;
break;
default:
en = "unknown entity associated with process";
id = p->p_pid;
suffix = SUFFIX_NONE;
break;
}
if (rde->rcd_flagaction & RCTL_GLOBAL_SYSLOG) {
switch (suffix) {
default:
case SUFFIX_NONE:
(void) strlog(0, 0, 0,
rde->rcd_strlog_flags | log_global.lz_active,
"%s rctl %s (value %llu) exceeded by %s %d.",
pr, rde->rcd_name, v->rcv_value, en, id);
break;
case SUFFIX_NUMERIC:
(void) strlog(0, 0, 0,
rde->rcd_strlog_flags | log_global.lz_active,
"%s rctl %s (value %llu) exceeded by process %d"
" in %s %d.",
pr, rde->rcd_name, v->rcv_value, p->p_pid,
en, id);
break;
case SUFFIX_STRING:
(void) strlog(0, 0, 0,
rde->rcd_strlog_flags | log_global.lz_active,
"%s rctl %s (value %llu) exceeded by process %d"
" in %s %s.",
pr, rde->rcd_name, v->rcv_value, p->p_pid,
en, idstr);
break;
}
}
if (rde->rcd_flagaction & RCTL_GLOBAL_DENY_ALWAYS)
ret |= RCT_DENY;
return (ret);
}
static int
rctl_local_action(rctl_t *r, rctl_set_t *rset, struct proc *p, rctl_val_t *v,
uint_t safety)
{
int ret = 0;
sigqueue_t *sqp = NULL;
rctl_dict_entry_t *rde = r->rc_dict_entry;
int unobservable = (rde->rcd_flagaction & RCTL_GLOBAL_UNOBSERVABLE);
proc_t *recipient = v->rcv_action_recipient;
id_t recip_pid = v->rcv_action_recip_pid;
int recip_signal = v->rcv_action_signal;
uint_t flagaction = v->rcv_flagaction;
if (safety == RCA_UNSAFE_ALL) {
if (flagaction & RCTL_LOCAL_DENY) {
ret |= RCT_DENY;
}
return (ret);
}
if (flagaction & RCTL_LOCAL_SIGNAL) {
/*
* We can build a siginfo only in the case that it is
* safe for us to drop p_lock. (For asynchronous
* checks this is currently not true.)
*/
if (safety == RCA_SAFE) {
mutex_exit(&rset->rcs_lock);
mutex_exit(&p->p_lock);
sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
mutex_enter(&p->p_lock);
mutex_enter(&rset->rcs_lock);
sqp->sq_info.si_signo = recip_signal;
sqp->sq_info.si_code = SI_RCTL;
sqp->sq_info.si_errno = 0;
sqp->sq_info.si_entity = (int)rde->rcd_entity;
}
if (recipient == NULL || recipient == p) {
ret |= RCT_SIGNAL;
if (sqp == NULL) {
sigtoproc(p, NULL, recip_signal);
} else if (p == curproc) {
/*
* Then this is a synchronous test and we can
* direct the signal at the violating thread.
*/
sigaddqa(curproc, curthread, sqp);
} else {
sigaddqa(p, NULL, sqp);
}
} else if (!unobservable) {
proc_t *rp;
mutex_exit(&rset->rcs_lock);
mutex_exit(&p->p_lock);
mutex_enter(&pidlock);
if ((rp = prfind(recip_pid)) == recipient) {
/*
* Recipient process is still alive, but may not
* be in this task or project any longer. In
* this case, the recipient's resource control
* set pertinent to this control will have
* changed--and we will not deliver the signal,
* as the recipient process is trying to tear
* itself off of its former set.
*/
mutex_enter(&rp->p_lock);
mutex_exit(&pidlock);
if (rctl_entity_obtain_rset(rde, rp) == rset) {
ret |= RCT_SIGNAL;
if (sqp == NULL)
sigtoproc(rp, NULL,
recip_signal);
else
sigaddqa(rp, NULL, sqp);
} else if (sqp) {
kmem_free(sqp, sizeof (sigqueue_t));
}
mutex_exit(&rp->p_lock);
} else {
mutex_exit(&pidlock);
if (sqp)
kmem_free(sqp, sizeof (sigqueue_t));
}
mutex_enter(&p->p_lock);
/*
* Since we dropped p_lock, we may no longer be in the
* same task or project as we were at entry. It is thus
* unsafe for us to reacquire the set lock at this
* point; callers of rctl_local_action() must handle
* this possibility.
*/
ret |= RCT_LK_ABANDONED;
} else if (sqp) {
kmem_free(sqp, sizeof (sigqueue_t));
}
}
if ((flagaction & RCTL_LOCAL_DENY) &&
(recipient == NULL || recipient == p)) {
ret |= RCT_DENY;
}
return (ret);
}
/*
* int rctl_action(rctl_hndl_t, rctl_set_t *, struct proc *, uint_t)
*
* Overview
* Take the action associated with the enforced value (as defined by
* rctl_get_enforced_value()) being exceeded or encountered. Possibly perform
* a restricted subset of the available actions, if circumstances dictate that
* we cannot safely allocate memory (for a sigqueue_t) or guarantee process
* persistence across the duration of the function (an asynchronous action).
*
* Return values
* Actions taken, according to the rctl_test bitmask.
*
* Caller's context
* Safe to acquire rcs_lock.
*/
int
rctl_action(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p, uint_t safety)
{
return (rctl_action_entity(hndl, rset, p, NULL, safety));
}
int
rctl_action_entity(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p,
rctl_entity_p_t *e, uint_t safety)
{
int ret = RCT_NONE;
rctl_t *lrctl;
rctl_entity_p_t e_tmp;
rctl_action_acquire:
mutex_enter(&rset->rcs_lock);
if (rctl_set_find(rset, hndl, &lrctl) == -1) {
mutex_exit(&rset->rcs_lock);
return (ret);
}
if (e == NULL) {
rctl_entity_obtain_entity_p(lrctl->rc_dict_entry->rcd_entity,
p, &e_tmp);
e = &e_tmp;
}
if ((ret & RCT_LK_ABANDONED) == 0) {
ret |= rctl_global_action(lrctl, rset, p, lrctl->rc_cursor);
RCTLOP_ACTION(lrctl, p, e);
ret |= rctl_local_action(lrctl, rset, p,
lrctl->rc_cursor, safety);
if (ret & RCT_LK_ABANDONED)
goto rctl_action_acquire;
}
ret &= ~RCT_LK_ABANDONED;
if (!(ret & RCT_DENY) &&
lrctl->rc_cursor->rcv_next != NULL) {
lrctl->rc_cursor = lrctl->rc_cursor->rcv_next;
RCTLOP_SET(lrctl, p, e, rctl_model_value(lrctl->rc_dict_entry,
p, lrctl->rc_cursor->rcv_value));
}
mutex_exit(&rset->rcs_lock);
return (ret);
}
/*
* int rctl_test(rctl_hndl_t, rctl_set_t *, struct proc *, rctl_qty_t, uint_t)
*
* Overview
* Increment the resource associated with the given handle, returning zero if
* the incremented value does not exceed the threshold for the current limit
* on the resource.
*
* Return values
* Actions taken, according to the rctl_test bitmask.
*
* Caller's context
* p_lock held by caller.
*/
/*ARGSUSED*/
int
rctl_test(rctl_hndl_t rhndl, rctl_set_t *rset, struct proc *p,
rctl_qty_t incr, uint_t flags)
{
return (rctl_test_entity(rhndl, rset, p, NULL, incr, flags));
}
int
rctl_test_entity(rctl_hndl_t rhndl, rctl_set_t *rset, struct proc *p,
rctl_entity_p_t *e, rctl_qty_t incr, uint_t flags)
{
rctl_t *lrctl;
int ret = RCT_NONE;
rctl_entity_p_t e_tmp;
if (p == &p0) {
/*
* We don't enforce rctls on the kernel itself.
*/
return (ret);
}
rctl_test_acquire:
ASSERT(MUTEX_HELD(&p->p_lock));
mutex_enter(&rset->rcs_lock);
/*
* Dereference from rctl_set. We don't enforce newly loaded controls
* that haven't been set on this entity (since the only valid value is
* the infinite system value).
*/
if (rctl_set_find(rset, rhndl, &lrctl) == -1) {
mutex_exit(&rset->rcs_lock);
return (ret);
}
/*
* This control is currently unenforced: maximal value on control
* supporting infinitely available resource.
*/
if ((lrctl->rc_dict_entry->rcd_flagaction & RCTL_GLOBAL_INFINITE) &&
(lrctl->rc_cursor->rcv_flagaction & RCTL_LOCAL_MAXIMAL)) {
mutex_exit(&rset->rcs_lock);
return (ret);
}
/*
* If we have been called by rctl_test, look up the entity pointer
* from the proc pointer.
*/
if (e == NULL) {
rctl_entity_obtain_entity_p(lrctl->rc_dict_entry->rcd_entity,
p, &e_tmp);
e = &e_tmp;
}
/*
* Get enforced rctl value and current usage. Test the increment
* with the current usage against the enforced value--take action as
* necessary.
*/
while (RCTLOP_TEST(lrctl, p, e, lrctl->rc_cursor, incr, flags)) {
if ((ret & RCT_LK_ABANDONED) == 0) {
ret |= rctl_global_action(lrctl, rset, p,
lrctl->rc_cursor);
RCTLOP_ACTION(lrctl, p, e);
ret |= rctl_local_action(lrctl, rset, p,
lrctl->rc_cursor, flags);
if (ret & RCT_LK_ABANDONED)
goto rctl_test_acquire;
}
ret &= ~RCT_LK_ABANDONED;
if ((ret & RCT_DENY) == RCT_DENY ||
lrctl->rc_cursor->rcv_next == NULL) {
ret |= RCT_DENY;
break;
}
lrctl->rc_cursor = lrctl->rc_cursor->rcv_next;
RCTLOP_SET(lrctl, p, e, rctl_model_value(lrctl->rc_dict_entry,
p, lrctl->rc_cursor->rcv_value));
}
mutex_exit(&rset->rcs_lock);
return (ret);
}
/*
* void rctl_init(void)
*
* Overview
* Initialize the rctl subsystem, including the primoridal rctls
* provided by the system. New subsystem-specific rctls should _not_ be
* initialized here. (Do it in your own file.)
*
* Return values
* None.
*
* Caller's context
* Safe for KM_SLEEP allocations. Must be called prior to any process model
* initialization.
*/
void
rctl_init(void)
{
rctl_cache = kmem_cache_create("rctl_cache", sizeof (rctl_t),
0, NULL, NULL, NULL, NULL, NULL, 0);
rctl_val_cache = kmem_cache_create("rctl_val_cache",
sizeof (rctl_val_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
rctl_dict = mod_hash_create_extended("rctl_dict",
rctl_dict_size, mod_hash_null_keydtor, rctl_dict_val_dtor,
rctl_dict_hash_by_id, NULL, rctl_dict_id_cmp, KM_SLEEP);
rctl_dict_by_name = mod_hash_create_strhash(
"rctl_handles_by_name", rctl_dict_size,
mod_hash_null_valdtor);
rctl_ids = id_space_create("rctl_ids", 1, max_rctl_hndl);
bzero(rctl_lists, (RC_MAX_ENTITY + 1) * sizeof (rctl_dict_entry_t *));
rctlproc_init();
}
/*
* rctl_incr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
* int chargeproc)
*
* Increments the amount of locked memory on a project, and
* zone. If proj is non-NULL the project must be held by the
* caller; if it is NULL the proj and zone of proc_t p are used.
* If chargeproc is non-zero, then the charged amount is cached
* on p->p_locked_mem so that the charge can be migrated when a
* process changes projects.
*
* Return values
* 0 - success
* EAGAIN - attempting to increment locked memory is denied by one
* or more resource entities.
*/
int
rctl_incr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
int chargeproc)
{
kproject_t *projp;
zone_t *zonep;
rctl_entity_p_t e;
int ret = 0;
ASSERT(p != NULL);
ASSERT(MUTEX_HELD(&p->p_lock));
if (proj != NULL) {
projp = proj;
zonep = proj->kpj_zone;
} else {
projp = p->p_task->tk_proj;
zonep = p->p_zone;
}
mutex_enter(&zonep->zone_mem_lock);
e.rcep_p.proj = projp;
e.rcep_t = RCENTITY_PROJECT;
/* check for overflow */
if ((projp->kpj_data.kpd_locked_mem + inc) <
projp->kpj_data.kpd_locked_mem) {
ret = EAGAIN;
goto out;
}
if (projp->kpj_data.kpd_locked_mem + inc >
projp->kpj_data.kpd_locked_mem_ctl) {
if (rctl_test_entity(rc_project_locked_mem, projp->kpj_rctls,
p, &e, inc, 0) & RCT_DENY) {
ret = EAGAIN;
goto out;
}
}
e.rcep_p.zone = zonep;
e.rcep_t = RCENTITY_ZONE;
/* Check for overflow */
if ((zonep->zone_locked_mem + inc) < zonep->zone_locked_mem) {
ret = EAGAIN;
goto out;
}
if (zonep->zone_locked_mem + inc > zonep->zone_locked_mem_ctl) {
if (rctl_test_entity(rc_zone_locked_mem, zonep->zone_rctls,
p, &e, inc, 0) & RCT_DENY) {
ret = EAGAIN;
goto out;
}
}
zonep->zone_locked_mem += inc;
projp->kpj_data.kpd_locked_mem += inc;
if (chargeproc != 0) {
p->p_locked_mem += inc;
}
out:
mutex_exit(&zonep->zone_mem_lock);
return (ret);
}
/*
* rctl_decr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
* int creditproc)
*
* Decrements the amount of locked memory on a project and
* zone. If proj is non-NULL the project must be held by the
* caller; if it is NULL the proj and zone of proc_t p are used.
* If creditproc is non-zero, then the quantity of locked memory
* is subtracted from p->p_locked_mem.
*
* Return values
* none
*/
void
rctl_decr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
int creditproc)
{
kproject_t *projp;
zone_t *zonep;
if (proj != NULL) {
projp = proj;
zonep = proj->kpj_zone;
} else {
ASSERT(p != NULL);
ASSERT(MUTEX_HELD(&p->p_lock));
projp = p->p_task->tk_proj;
zonep = p->p_zone;
}
mutex_enter(&zonep->zone_mem_lock);
zonep->zone_locked_mem -= inc;
projp->kpj_data.kpd_locked_mem -= inc;
if (creditproc != 0) {
ASSERT(p != NULL);
ASSERT(MUTEX_HELD(&p->p_lock));
p->p_locked_mem -= inc;
}
mutex_exit(&zonep->zone_mem_lock);
}
/*
* rctl_incr_swap(proc_t *, zone_t *, size_t)
*
* Overview
* Increments the swap charge on the specified zone.
*
* Return values
* 0 on success. EAGAIN if swap increment fails due an rctl value
* on the zone.
*
* Callers context
* p_lock held on specified proc.
* swap must be even multiple of PAGESIZE
*/
int
rctl_incr_swap(proc_t *proc, zone_t *zone, size_t swap)
{
rctl_entity_p_t e;
ASSERT(MUTEX_HELD(&proc->p_lock));
ASSERT((swap & PAGEOFFSET) == 0);
e.rcep_p.zone = zone;
e.rcep_t = RCENTITY_ZONE;
mutex_enter(&zone->zone_mem_lock);
/* Check for overflow */
if ((zone->zone_max_swap + swap) < zone->zone_max_swap) {
mutex_exit(&zone->zone_mem_lock);
return (EAGAIN);
}
if ((zone->zone_max_swap + swap) >
zone->zone_max_swap_ctl) {
if (rctl_test_entity(rc_zone_max_swap, zone->zone_rctls,
proc, &e, swap, 0) & RCT_DENY) {
mutex_exit(&zone->zone_mem_lock);
return (EAGAIN);
}
}
zone->zone_max_swap += swap;
mutex_exit(&zone->zone_mem_lock);
return (0);
}
/*
* rctl_decr_swap(zone_t *, size_t)
*
* Overview
* Decrements the swap charge on the specified zone.
*
* Return values
* None
*
* Callers context
* swap must be even multiple of PAGESIZE
*/
void
rctl_decr_swap(zone_t *zone, size_t swap)
{
ASSERT((swap & PAGEOFFSET) == 0);
mutex_enter(&zone->zone_mem_lock);
ASSERT(zone->zone_max_swap >= swap);
zone->zone_max_swap -= swap;
mutex_exit(&zone->zone_mem_lock);
}
/*
* rctl_incr_lofi(proc_t *, zone_t *, size_t)
*
* Overview
* Increments the number of lofi devices for the zone.
*
* Return values
* 0 on success. EAGAIN if increment fails due an rctl value
* on the zone.
*
* Callers context
* p_lock held on specified proc.
*/
int
rctl_incr_lofi(proc_t *proc, zone_t *zone, size_t incr)
{
rctl_entity_p_t e;
ASSERT(MUTEX_HELD(&proc->p_lock));
ASSERT(incr > 0);
e.rcep_p.zone = zone;
e.rcep_t = RCENTITY_ZONE;
mutex_enter(&zone->zone_rctl_lock);
/* Check for overflow */
if ((zone->zone_max_lofi + incr) < zone->zone_max_lofi) {
mutex_exit(&zone->zone_rctl_lock);
return (EAGAIN);
}
if ((zone->zone_max_lofi + incr) > zone->zone_max_lofi_ctl) {
if (rctl_test_entity(rc_zone_max_lofi, zone->zone_rctls,
proc, &e, incr, 0) & RCT_DENY) {
mutex_exit(&zone->zone_rctl_lock);
return (EAGAIN);
}
}
zone->zone_max_lofi += incr;
mutex_exit(&zone->zone_rctl_lock);
return (0);
}
/*
* rctl_decr_lofi(zone_t *, size_t)
*
* Overview
* Decrements the number of lofi devices for the zone.
*/
void
rctl_decr_lofi(zone_t *zone, size_t decr)
{
mutex_enter(&zone->zone_rctl_lock);
ASSERT(zone->zone_max_lofi >= decr);
zone->zone_max_lofi -= decr;
mutex_exit(&zone->zone_rctl_lock);
}
/*
* Create resource kstat
*/
static kstat_t *
rctl_kstat_create_common(char *ks_name, int ks_instance, char *ks_class,
uchar_t ks_type, uint_t ks_ndata, uchar_t ks_flags, int ks_zoneid)
{
kstat_t *ksp = NULL;
char name[KSTAT_STRLEN];
(void) snprintf(name, KSTAT_STRLEN, "%s_%d", ks_name, ks_instance);
if ((ksp = kstat_create_zone("caps", ks_zoneid,
name, ks_class, ks_type,
ks_ndata, ks_flags, ks_zoneid)) != NULL) {
if (ks_zoneid != GLOBAL_ZONEID)
kstat_zone_add(ksp, GLOBAL_ZONEID);
}
return (ksp);
}
/*
* Create zone-specific resource kstat
*/
kstat_t *
rctl_kstat_create_zone(zone_t *zone, char *ks_name, uchar_t ks_type,
uint_t ks_ndata, uchar_t ks_flags)
{
char name[KSTAT_STRLEN];
(void) snprintf(name, KSTAT_STRLEN, "%s_zone", ks_name);
return (rctl_kstat_create_common(name, zone->zone_id, "zone_caps",
ks_type, ks_ndata, ks_flags, zone->zone_id));
}
/*
* Create project-specific resource kstat
*/
kstat_t *
rctl_kstat_create_project(kproject_t *kpj, char *ks_name, uchar_t ks_type,
uint_t ks_ndata, uchar_t ks_flags)
{
char name[KSTAT_STRLEN];
(void) snprintf(name, KSTAT_STRLEN, "%s_project", ks_name);
return (rctl_kstat_create_common(name, kpj->kpj_id, "project_caps",
ks_type, ks_ndata, ks_flags, kpj->kpj_zoneid));
}
/*
* Create task-specific resource kstat
*/
kstat_t *
rctl_kstat_create_task(task_t *tk, char *ks_name, uchar_t ks_type,
uint_t ks_ndata, uchar_t ks_flags)
{
char name[KSTAT_STRLEN];
(void) snprintf(name, KSTAT_STRLEN, "%s_task", ks_name);
return (rctl_kstat_create_common(name, tk->tk_tkid, "task_caps",
ks_type, ks_ndata, ks_flags, tk->tk_proj->kpj_zoneid));
}