/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/thread.h>
#include <sys/proc.h>
#include <sys/task.h>
#include <sys/project.h>
#include <sys/signal.h>
#include <sys/errno.h>
#include <sys/vmparam.h>
#include <sys/stack.h>
#include <sys/procfs.h>
#include <sys/prsystm.h>
#include <sys/cpuvar.h>
#include <sys/kmem.h>
#include <sys/vtrace.h>
#include <sys/door.h>
#include <vm/seg_kp.h>
#include <sys/debug.h>
#include <sys/tnf.h>
#include <sys/schedctl.h>
#include <sys/poll.h>
#include <sys/copyops.h>
#include <sys/lwp_upimutex_impl.h>
#include <sys/cpupart.h>
#include <sys/lgrp.h>
#include <sys/rctl.h>
#include <sys/contract_impl.h>
#include <sys/cpc_impl.h>
#include <sys/sdt.h>
#include <sys/cmn_err.h>
#include <sys/brand.h>
#include <sys/cyclic.h>
#include <sys/pool.h>
/* hash function for the lwpid hash table, p->p_tidhash[] */
#define TIDHASH(tid, hash_sz) ((tid) & ((hash_sz) - 1))
void *segkp_lwp; /* cookie for pool of segkp resources */
extern void reapq_move_lq_to_tq(kthread_t *);
extern void freectx_ctx(struct ctxop *);
/*
* Create a kernel thread associated with a particular system process. Give
* it an LWP so that microstate accounting will be available for it.
*/
kthread_t *
lwp_kernel_create(proc_t *p, void (*proc)(), void *arg, int state, pri_t pri)
{
klwp_t *lwp;
VERIFY((p->p_flag & SSYS) != 0);
lwp = lwp_create(proc, arg, 0, p, state, pri, &t0.t_hold, syscid, 0);
VERIFY(lwp != NULL);
return (lwptot(lwp));
}
/*
* Create a thread that appears to be stopped at sys_rtt.
*/
klwp_t *
lwp_create(void (*proc)(), caddr_t arg, size_t len, proc_t *p,
int state, int pri, const k_sigset_t *smask, int cid, id_t lwpid)
{
klwp_t *lwp = NULL;
kthread_t *t;
kthread_t *tx;
cpupart_t *oldpart = NULL;
size_t stksize;
caddr_t lwpdata = NULL;
processorid_t binding;
int err = 0;
kproject_t *oldkpj, *newkpj;
void *bufp = NULL;
klwp_t *curlwp;
lwpent_t *lep;
lwpdir_t *old_dir = NULL;
uint_t old_dirsz = 0;
tidhash_t *old_hash = NULL;
uint_t old_hashsz = 0;
ret_tidhash_t *ret_tidhash = NULL;
int i;
int rctlfail = 0;
boolean_t branded = 0;
struct ctxop *ctx = NULL;
ASSERT(cid != sysdccid); /* system threads must start in SYS */
ASSERT(p != &p0); /* No new LWPs in p0. */
mutex_enter(&p->p_lock);
mutex_enter(&p->p_zone->zone_nlwps_lock);
/*
* don't enforce rctl limits on system processes
*/
if (!CLASS_KERNEL(cid)) {
if (p->p_task->tk_nlwps >= p->p_task->tk_nlwps_ctl)
if (rctl_test(rc_task_lwps, p->p_task->tk_rctls, p,
1, 0) & RCT_DENY)
rctlfail = 1;
if (p->p_task->tk_proj->kpj_nlwps >=
p->p_task->tk_proj->kpj_nlwps_ctl)
if (rctl_test(rc_project_nlwps,
p->p_task->tk_proj->kpj_rctls, p, 1, 0)
& RCT_DENY)
rctlfail = 1;
if (p->p_zone->zone_nlwps >= p->p_zone->zone_nlwps_ctl)
if (rctl_test(rc_zone_nlwps, p->p_zone->zone_rctls, p,
1, 0) & RCT_DENY)
rctlfail = 1;
}
if (rctlfail) {
mutex_exit(&p->p_zone->zone_nlwps_lock);
mutex_exit(&p->p_lock);
atomic_inc_32(&p->p_zone->zone_ffcap);
return (NULL);
}
p->p_task->tk_nlwps++;
p->p_task->tk_proj->kpj_nlwps++;
p->p_zone->zone_nlwps++;
mutex_exit(&p->p_zone->zone_nlwps_lock);
mutex_exit(&p->p_lock);
curlwp = ttolwp(curthread);
if (curlwp == NULL || (stksize = curlwp->lwp_childstksz) == 0)
stksize = lwp_default_stksize;
if (CLASS_KERNEL(cid)) {
/*
* Since we are creating an LWP in an SSYS process, we do not
* inherit anything from the current thread's LWP. We set
* stksize and lwpdata to 0 in order to let thread_create()
* allocate a regular kernel thread stack for this thread.
*/
curlwp = NULL;
stksize = 0;
lwpdata = NULL;
} else if (stksize == lwp_default_stksize) {
/*
* Try to reuse an <lwp,stack> from the LWP deathrow.
*/
if (lwp_reapcnt > 0) {
mutex_enter(&reaplock);
if ((t = lwp_deathrow) != NULL) {
ASSERT(t->t_swap);
lwp_deathrow = t->t_forw;
lwp_reapcnt--;
lwpdata = t->t_swap;
lwp = t->t_lwp;
ctx = t->t_ctx;
t->t_swap = NULL;
t->t_lwp = NULL;
t->t_ctx = NULL;
reapq_move_lq_to_tq(t);
}
mutex_exit(&reaplock);
if (lwp != NULL) {
lwp_stk_fini(lwp);
}
if (ctx != NULL) {
freectx_ctx(ctx);
}
}
if (lwpdata == NULL &&
(lwpdata = (caddr_t)segkp_cache_get(segkp_lwp)) == NULL) {
mutex_enter(&p->p_lock);
mutex_enter(&p->p_zone->zone_nlwps_lock);
p->p_task->tk_nlwps--;
p->p_task->tk_proj->kpj_nlwps--;
p->p_zone->zone_nlwps--;
mutex_exit(&p->p_zone->zone_nlwps_lock);
mutex_exit(&p->p_lock);
atomic_inc_32(&p->p_zone->zone_ffnomem);
return (NULL);
}
} else {
stksize = roundup(stksize, PAGESIZE);
if ((lwpdata = (caddr_t)segkp_get(segkp, stksize,
(KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED))) == NULL) {
mutex_enter(&p->p_lock);
mutex_enter(&p->p_zone->zone_nlwps_lock);
p->p_task->tk_nlwps--;
p->p_task->tk_proj->kpj_nlwps--;
p->p_zone->zone_nlwps--;
mutex_exit(&p->p_zone->zone_nlwps_lock);
mutex_exit(&p->p_lock);
atomic_inc_32(&p->p_zone->zone_ffnomem);
return (NULL);
}
}
/*
* Create a thread, initializing the stack pointer
*/
t = thread_create(lwpdata, stksize, NULL, NULL, 0, p, TS_STOPPED, pri);
/*
* If a non-NULL stack base is passed in, thread_create() assumes
* that the stack might be statically allocated (as opposed to being
* allocated from segkp), and so it does not set t_swap. Since
* the lwpdata was allocated from segkp, we must set t_swap to point
* to it ourselves.
*
* This would be less confusing if t_swap had a better name; it really
* indicates that the stack is allocated from segkp, regardless of
* whether or not it is swappable.
*/
if (lwpdata != NULL) {
ASSERT(!CLASS_KERNEL(cid));
ASSERT(t->t_swap == NULL);
t->t_swap = lwpdata; /* Start of page-able data */
}
/*
* If the stack and lwp can be reused, mark the thread as such.
* When we get to reapq_add() from resume_from_zombie(), these
* threads will go onto lwp_deathrow instead of thread_deathrow.
*/
if (!CLASS_KERNEL(cid) && stksize == lwp_default_stksize)
t->t_flag |= T_LWPREUSE;
if (lwp == NULL)
lwp = kmem_cache_alloc(lwp_cache, KM_SLEEP);
bzero(lwp, sizeof (*lwp));
t->t_lwp = lwp;
t->t_hold = *smask;
lwp->lwp_thread = t;
lwp->lwp_procp = p;
lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
if (curlwp != NULL && curlwp->lwp_childstksz != 0)
lwp->lwp_childstksz = curlwp->lwp_childstksz;
t->t_stk = lwp_stk_init(lwp, t->t_stk);
thread_load(t, proc, arg, len);
/*
* Allocate the SIGPROF buffer if ITIMER_REALPROF is in effect.
*/
if (p->p_rprof_cyclic != CYCLIC_NONE)
t->t_rprof = kmem_zalloc(sizeof (struct rprof), KM_SLEEP);
if (cid != NOCLASS)
(void) CL_ALLOC(&bufp, cid, KM_SLEEP);
/*
* Allocate an lwp directory entry for the new lwp.
*/
lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
mutex_enter(&p->p_lock);
grow:
/*
* Grow the lwp (thread) directory and lwpid hash table if necessary.
* A note on the growth algorithm:
* The new lwp directory size is computed as:
* new = 2 * old + 2
* Starting with an initial size of 2 (see exec_common()),
* this yields numbers that are a power of two minus 2:
* 2, 6, 14, 30, 62, 126, 254, 510, 1022, ...
* The size of the lwpid hash table must be a power of two
* and must be commensurate in size with the lwp directory
* so that hash bucket chains remain short. Therefore,
* the lwpid hash table size is computed as:
* hashsz = (dirsz + 2) / 2
* which leads to these hash table sizes corresponding to
* the above directory sizes:
* 2, 4, 8, 16, 32, 64, 128, 256, 512, ...
* A note on growing the hash table:
* For performance reasons, code in lwp_unpark() does not
* acquire curproc->p_lock when searching the hash table.
* Rather, it calls lwp_hash_lookup_and_lock() which
* acquires only the individual hash bucket lock, taking
* care to deal with reallocation of the hash table
* during the time it takes to acquire the lock.
*
* This is sufficient to protect the integrity of the
* hash table, but it requires us to acquire all of the
* old hash bucket locks before growing the hash table
* and to release them afterwards. It also requires us
* not to free the old hash table because some thread
* in lwp_hash_lookup_and_lock() might still be trying
* to acquire the old bucket lock.
*
* So we adopt the tactic of keeping all of the retired
* hash tables on a linked list, so they can be safely
* freed when the process exits or execs.
*
* Because the hash table grows in powers of two, the
* total size of all of the hash tables will be slightly
* less than twice the size of the largest hash table.
*/
while (p->p_lwpfree == NULL) {
uint_t dirsz = p->p_lwpdir_sz;
lwpdir_t *new_dir;
uint_t new_dirsz;
lwpdir_t *ldp;
tidhash_t *new_hash;
uint_t new_hashsz;
mutex_exit(&p->p_lock);
/*
* Prepare to remember the old p_tidhash for later
* kmem_free()ing when the process exits or execs.
*/
if (ret_tidhash == NULL)
ret_tidhash = kmem_zalloc(sizeof (ret_tidhash_t),
KM_SLEEP);
if (old_dir != NULL)
kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
if (old_hash != NULL)
kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
new_dirsz = 2 * dirsz + 2;
new_dir = kmem_zalloc(new_dirsz * sizeof (lwpdir_t), KM_SLEEP);
for (ldp = new_dir, i = 1; i < new_dirsz; i++, ldp++)
ldp->ld_next = ldp + 1;
new_hashsz = (new_dirsz + 2) / 2;
new_hash = kmem_zalloc(new_hashsz * sizeof (tidhash_t),
KM_SLEEP);
mutex_enter(&p->p_lock);
if (p == curproc)
prbarrier(p);
if (dirsz != p->p_lwpdir_sz || p->p_lwpfree != NULL) {
/*
* Someone else beat us to it or some lwp exited.
* Set up to free our memory and take a lap.
*/
old_dir = new_dir;
old_dirsz = new_dirsz;
old_hash = new_hash;
old_hashsz = new_hashsz;
} else {
/*
* For the benefit of lwp_hash_lookup_and_lock(),
* called from lwp_unpark(), which searches the
* tid hash table without acquiring p->p_lock,
* we must acquire all of the tid hash table
* locks before replacing p->p_tidhash.
*/
old_hash = p->p_tidhash;
old_hashsz = p->p_tidhash_sz;
for (i = 0; i < old_hashsz; i++) {
mutex_enter(&old_hash[i].th_lock);
mutex_enter(&new_hash[i].th_lock);
}
/*
* We simply hash in all of the old directory entries.
* This works because the old directory has no empty
* slots and the new hash table starts out empty.
* This reproduces the original directory ordering
* (required for /proc directory semantics).
*/
old_dir = p->p_lwpdir;
old_dirsz = p->p_lwpdir_sz;
p->p_lwpdir = new_dir;
p->p_lwpfree = new_dir;
p->p_lwpdir_sz = new_dirsz;
for (ldp = old_dir, i = 0; i < old_dirsz; i++, ldp++)
lwp_hash_in(p, ldp->ld_entry,
new_hash, new_hashsz, 0);
/*
* Remember the old hash table along with all
* of the previously-remembered hash tables.
* We will free them at process exit or exec.
*/
ret_tidhash->rth_tidhash = old_hash;
ret_tidhash->rth_tidhash_sz = old_hashsz;
ret_tidhash->rth_next = p->p_ret_tidhash;
p->p_ret_tidhash = ret_tidhash;
/*
* Now establish the new tid hash table.
* As soon as we assign p->p_tidhash,
* code in lwp_unpark() can start using it.
*/
membar_producer();
p->p_tidhash = new_hash;
/*
* It is necessary that p_tidhash reach global
* visibility before p_tidhash_sz. Otherwise,
* code in lwp_hash_lookup_and_lock() could
* index into the old p_tidhash using the new
* p_tidhash_sz and thereby access invalid data.
*/
membar_producer();
p->p_tidhash_sz = new_hashsz;
/*
* Release the locks; allow lwp_unpark() to carry on.
*/
for (i = 0; i < old_hashsz; i++) {
mutex_exit(&old_hash[i].th_lock);
mutex_exit(&new_hash[i].th_lock);
}
/*
* Avoid freeing these objects below.
*/
ret_tidhash = NULL;
old_hash = NULL;
old_hashsz = 0;
}
}
/*
* Block the process against /proc while we manipulate p->p_tlist,
* unless lwp_create() was called by /proc for the PCAGENT operation.
* We want to do this early enough so that we don't drop p->p_lock
* until the thread is put on the p->p_tlist.
*/
if (p == curproc) {
prbarrier(p);
/*
* If the current lwp has been requested to stop, do so now.
* Otherwise we have a race condition between /proc attempting
* to stop the process and this thread creating a new lwp
* that was not seen when the /proc PCSTOP request was issued.
* We rely on stop() to call prbarrier(p) before returning.
*/
while ((curthread->t_proc_flag & TP_PRSTOP) &&
!ttolwp(curthread)->lwp_nostop) {
/*
* We called pool_barrier_enter() before calling
* here to lwp_create(). We have to call
* pool_barrier_exit() before stopping.
*/
pool_barrier_exit();
prbarrier(p);
stop(PR_REQUESTED, 0);
/*
* And we have to repeat the call to
* pool_barrier_enter after stopping.
*/
pool_barrier_enter();
prbarrier(p);
}
/*
* If process is exiting, there could be a race between
* the agent lwp creation and the new lwp currently being
* created. So to prevent this race lwp creation is failed
* if the process is exiting.
*/
if (p->p_flag & (SEXITLWPS|SKILLED)) {
err = 1;
goto error;
}
/*
* Since we might have dropped p->p_lock, the
* lwp directory free list might have changed.
*/
if (p->p_lwpfree == NULL)
goto grow;
}
kpreempt_disable(); /* can't grab cpu_lock here */
/*
* Inherit processor and processor set bindings from curthread.
*
* For kernel LWPs, we do not inherit processor set bindings at
* process creation time (i.e. when p != curproc). After the
* kernel process is created, any subsequent LWPs must be created
* by threads in the kernel process, at which point we *will*
* inherit processor set bindings.
*/
if (CLASS_KERNEL(cid) && p != curproc) {
t->t_bind_cpu = binding = PBIND_NONE;
t->t_cpupart = oldpart = &cp_default;
t->t_bind_pset = PS_NONE;
t->t_bindflag = (uchar_t)default_binding_mode;
} else {
binding = curthread->t_bind_cpu;
t->t_bind_cpu = binding;
oldpart = t->t_cpupart;
t->t_cpupart = curthread->t_cpupart;
t->t_bind_pset = curthread->t_bind_pset;
t->t_bindflag = curthread->t_bindflag |
(uchar_t)default_binding_mode;
}
/*
* thread_create() initializes this thread's home lgroup to the root.
* Choose a more suitable lgroup, since this thread is associated
* with an lwp.
*/
ASSERT(oldpart != NULL);
if (binding != PBIND_NONE && t->t_affinitycnt == 0) {
t->t_bound_cpu = cpu[binding];
if (t->t_lpl != t->t_bound_cpu->cpu_lpl)
lgrp_move_thread(t, t->t_bound_cpu->cpu_lpl, 1);
} else if (CLASS_KERNEL(cid)) {
/*
* Kernel threads are always in the root lgrp.
*/
lgrp_move_thread(t,
&t->t_cpupart->cp_lgrploads[LGRP_ROOTID], 1);
} else {
lgrp_move_thread(t, lgrp_choose(t, t->t_cpupart), 1);
}
kpreempt_enable();
/*
* make sure lpl points to our own partition
*/
ASSERT(t->t_lpl >= t->t_cpupart->cp_lgrploads);
ASSERT(t->t_lpl < t->t_cpupart->cp_lgrploads +
t->t_cpupart->cp_nlgrploads);
/*
* It is safe to point the thread to the new project without holding it
* since we're holding the target process' p_lock here and therefore
* we're guaranteed that it will not move to another project.
*/
newkpj = p->p_task->tk_proj;
oldkpj = ttoproj(t);
if (newkpj != oldkpj) {
t->t_proj = newkpj;
(void) project_hold(newkpj);
project_rele(oldkpj);
}
if (cid != NOCLASS) {
/*
* If the lwp is being created in the current process
* and matches the current thread's scheduling class,
* we should propagate the current thread's scheduling
* parameters by calling CL_FORK. Otherwise just use
* the defaults by calling CL_ENTERCLASS.
*/
if (p != curproc || curthread->t_cid != cid) {
err = CL_ENTERCLASS(t, cid, NULL, NULL, bufp);
t->t_pri = pri; /* CL_ENTERCLASS may have changed it */
/*
* We don't call schedctl_set_cidpri(t) here
* because the schedctl data is not yet set
* up for the newly-created lwp.
*/
} else {
t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
err = CL_FORK(curthread, t, bufp);
t->t_cid = cid;
}
if (err) {
atomic_inc_32(&p->p_zone->zone_ffmisc);
goto error;
} else {
bufp = NULL;
}
}
/*
* If we were given an lwpid then use it, else allocate one.
*/
if (lwpid != 0)
t->t_tid = lwpid;
else {
/*
* lwp/thread id 0 is never valid; reserved for special checks.
* lwp/thread id 1 is reserved for the main thread.
* Start again at 2 when INT_MAX has been reached
* (id_t is a signed 32-bit integer).
*/
id_t prev_id = p->p_lwpid; /* last allocated tid */
do { /* avoid lwpid duplication */
if (p->p_lwpid == INT_MAX) {
p->p_flag |= SLWPWRAP;
p->p_lwpid = 1;
}
if ((t->t_tid = ++p->p_lwpid) == prev_id) {
/*
* All lwpids are allocated; fail the request.
*/
err = 1;
atomic_inc_32(&p->p_zone->zone_ffnoproc);
goto error;
}
/*
* We only need to worry about colliding with an id
* that's already in use if this process has
* cycled through all available lwp ids.
*/
if ((p->p_flag & SLWPWRAP) == 0)
break;
} while (lwp_hash_lookup(p, t->t_tid) != NULL);
}
/*
* If this is a branded process, let the brand do any necessary lwp
* initialization.
*/
if (PROC_IS_BRANDED(p)) {
if (BROP(p)->b_initlwp(lwp)) {
err = 1;
atomic_inc_32(&p->p_zone->zone_ffmisc);
goto error;
}
branded = 1;
}
if (t->t_tid == 1) {
kpreempt_disable();
ASSERT(t->t_lpl != NULL);
p->p_t1_lgrpid = t->t_lpl->lpl_lgrpid;
kpreempt_enable();
if (p->p_tr_lgrpid != LGRP_NONE &&
p->p_tr_lgrpid != p->p_t1_lgrpid) {
lgrp_update_trthr_migrations(1);
}
}
p->p_lwpcnt++;
t->t_waitfor = -1;
/*
* Turn microstate accounting on for thread if on for process.
*/
if (p->p_flag & SMSACCT)
t->t_proc_flag |= TP_MSACCT;
/*
* If the process has watchpoints, mark the new thread as such.
*/
if (pr_watch_active(p))
watch_enable(t);
/*
* The lwp is being created in the stopped state.
* We set all the necessary flags to indicate that fact here.
* We omit the TS_CREATE flag from t_schedflag so that the lwp
* cannot be set running until the caller is finished with it,
* even if lwp_continue() is called on it after we drop p->p_lock.
* When the caller is finished with the newly-created lwp,
* the caller must call lwp_create_done() to allow the lwp
* to be set running. If the TP_HOLDLWP is left set, the
* lwp will suspend itself after reaching system call exit.
*/
init_mstate(t, LMS_STOPPED);
t->t_proc_flag |= TP_HOLDLWP;
t->t_schedflag |= (TS_ALLSTART & ~(TS_CSTART | TS_CREATE));
t->t_whystop = PR_SUSPENDED;
t->t_whatstop = SUSPEND_NORMAL;
t->t_sig_check = 1; /* ensure that TP_HOLDLWP is honored */
/*
* Set system call processing flags in case tracing or profiling
* is set. The first system call will evaluate these and turn
* them off if they aren't needed.
*/
t->t_pre_sys = 1;
t->t_post_sys = 1;
/*
* Insert the new thread into the list of all threads.
*/
if ((tx = p->p_tlist) == NULL) {
t->t_back = t;
t->t_forw = t;
p->p_tlist = t;
} else {
t->t_forw = tx;
t->t_back = tx->t_back;
tx->t_back->t_forw = t;
tx->t_back = t;
}
/*
* Insert the new lwp into an lwp directory slot position
* and into the lwpid hash table.
*/
lep->le_thread = t;
lep->le_lwpid = t->t_tid;
lep->le_start = t->t_start;
lwp_hash_in(p, lep, p->p_tidhash, p->p_tidhash_sz, 1);
if (state == TS_RUN) {
/*
* We set the new lwp running immediately.
*/
t->t_proc_flag &= ~TP_HOLDLWP;
lwp_create_done(t);
}
error:
if (err) {
if (CLASS_KERNEL(cid)) {
/*
* This should only happen if a system process runs
* out of lwpids, which shouldn't occur.
*/
panic("Failed to create a system LWP");
}
/*
* We have failed to create an lwp, so decrement the number
* of lwps in the task and let the lgroup load averages know
* that this thread isn't going to show up.
*/
kpreempt_disable();
lgrp_move_thread(t, NULL, 1);
kpreempt_enable();
ASSERT(MUTEX_HELD(&p->p_lock));
mutex_enter(&p->p_zone->zone_nlwps_lock);
p->p_task->tk_nlwps--;
p->p_task->tk_proj->kpj_nlwps--;
p->p_zone->zone_nlwps--;
mutex_exit(&p->p_zone->zone_nlwps_lock);
if (cid != NOCLASS && bufp != NULL)
CL_FREE(cid, bufp);
if (branded)
BROP(p)->b_freelwp(lwp);
mutex_exit(&p->p_lock);
t->t_state = TS_FREE;
thread_rele(t);
/*
* We need to remove t from the list of all threads
* because thread_exit()/lwp_exit() isn't called on t.
*/
mutex_enter(&pidlock);
ASSERT(t != t->t_next); /* t0 never exits */
t->t_next->t_prev = t->t_prev;
t->t_prev->t_next = t->t_next;
mutex_exit(&pidlock);
thread_free(t);
kmem_free(lep, sizeof (*lep));
lwp = NULL;
} else {
mutex_exit(&p->p_lock);
}
if (old_dir != NULL)
kmem_free(old_dir, old_dirsz * sizeof (*old_dir));
if (old_hash != NULL)
kmem_free(old_hash, old_hashsz * sizeof (*old_hash));
if (ret_tidhash != NULL)
kmem_free(ret_tidhash, sizeof (ret_tidhash_t));
DTRACE_PROC1(lwp__create, kthread_t *, t);
return (lwp);
}
/*
* lwp_create_done() is called by the caller of lwp_create() to set the
* newly-created lwp running after the caller has finished manipulating it.
*/
void
lwp_create_done(kthread_t *t)
{
proc_t *p = ttoproc(t);
ASSERT(MUTEX_HELD(&p->p_lock));
/*
* We set the TS_CREATE and TS_CSTART flags and call setrun_locked().
* (The absence of the TS_CREATE flag prevents the lwp from running
* until we are finished with it, even if lwp_continue() is called on
* it by some other lwp in the process or elsewhere in the kernel.)
*/
thread_lock(t);
ASSERT(t->t_state == TS_STOPPED && !(t->t_schedflag & TS_CREATE));
/*
* If TS_CSTART is set, lwp_continue(t) has been called and
* has already incremented p_lwprcnt; avoid doing this twice.
*/
if (!(t->t_schedflag & TS_CSTART))
p->p_lwprcnt++;
t->t_schedflag |= (TS_CSTART | TS_CREATE);
setrun_locked(t);
thread_unlock(t);
}
/*
* Copy an LWP's active templates, and clear the latest contracts.
*/
void
lwp_ctmpl_copy(klwp_t *dst, klwp_t *src)
{
int i;
for (i = 0; i < ct_ntypes; i++) {
dst->lwp_ct_active[i] = ctmpl_dup(src->lwp_ct_active[i]);
dst->lwp_ct_latest[i] = NULL;
}
}
/*
* Clear an LWP's contract template state.
*/
void
lwp_ctmpl_clear(klwp_t *lwp)
{
ct_template_t *tmpl;
int i;
for (i = 0; i < ct_ntypes; i++) {
if ((tmpl = lwp->lwp_ct_active[i]) != NULL) {
ctmpl_free(tmpl);
lwp->lwp_ct_active[i] = NULL;
}
if (lwp->lwp_ct_latest[i] != NULL) {
contract_rele(lwp->lwp_ct_latest[i]);
lwp->lwp_ct_latest[i] = NULL;
}
}
}
/*
* Individual lwp exit.
* If this is the last lwp, exit the whole process.
*/
void
lwp_exit(void)
{
kthread_t *t = curthread;
klwp_t *lwp = ttolwp(t);
proc_t *p = ttoproc(t);
ASSERT(MUTEX_HELD(&p->p_lock));
mutex_exit(&p->p_lock);
#if defined(__sparc)
/*
* Ensure that the user stack is fully abandoned..
*/
trash_user_windows();
#endif
tsd_exit(); /* free thread specific data */
kcpc_passivate(); /* Clean up performance counter state */
pollcleanup();
if (t->t_door)
door_slam();
if (t->t_schedctl != NULL)
schedctl_lwp_cleanup(t);
if (t->t_upimutex != NULL)
upimutex_cleanup();
/*
* Perform any brand specific exit processing, then release any
* brand data associated with the lwp
*/
if (PROC_IS_BRANDED(p))
BROP(p)->b_lwpexit(lwp);
lwp_pcb_exit();
mutex_enter(&p->p_lock);
lwp_cleanup();
/*
* When this process is dumping core, its lwps are held here
* until the core dump is finished. Then exitlwps() is called
* again to release these lwps so that they can finish exiting.
*/
if (p->p_flag & SCOREDUMP)
stop(PR_SUSPENDED, SUSPEND_NORMAL);
/*
* Block the process against /proc now that we have really acquired
* p->p_lock (to decrement p_lwpcnt and manipulate p_tlist at least).
*/
prbarrier(p);
/*
* Call proc_exit() if this is the last non-daemon lwp in the process.
*/
if (!(t->t_proc_flag & TP_DAEMON) &&
p->p_lwpcnt == p->p_lwpdaemon + 1) {
mutex_exit(&p->p_lock);
if (proc_exit(CLD_EXITED, 0) == 0) {
/* Restarting init. */
return;
}
/*
* proc_exit() returns a non-zero value when some other
* lwp got there first. We just have to continue in
* lwp_exit().
*/
mutex_enter(&p->p_lock);
ASSERT(curproc->p_flag & SEXITLWPS);
prbarrier(p);
}
DTRACE_PROC(lwp__exit);
/*
* If the lwp is a detached lwp or if the process is exiting,
* remove (lwp_hash_out()) the lwp from the lwp directory.
* Otherwise null out the lwp's le_thread pointer in the lwp
* directory so that other threads will see it as a zombie lwp.
*/
prlwpexit(t); /* notify /proc */
if (!(t->t_proc_flag & TP_TWAIT) || (p->p_flag & SEXITLWPS))
lwp_hash_out(p, t->t_tid);
else {
ASSERT(!(t->t_proc_flag & TP_DAEMON));
p->p_lwpdir[t->t_dslot].ld_entry->le_thread = NULL;
p->p_zombcnt++;
cv_broadcast(&p->p_lwpexit);
}
if (t->t_proc_flag & TP_DAEMON) {
p->p_lwpdaemon--;
t->t_proc_flag &= ~TP_DAEMON;
}
t->t_proc_flag &= ~TP_TWAIT;
/*
* Maintain accurate lwp count for task.max-lwps resource control.
*/
mutex_enter(&p->p_zone->zone_nlwps_lock);
p->p_task->tk_nlwps--;
p->p_task->tk_proj->kpj_nlwps--;
p->p_zone->zone_nlwps--;
mutex_exit(&p->p_zone->zone_nlwps_lock);
CL_EXIT(t); /* tell the scheduler that t is exiting */
ASSERT(p->p_lwpcnt != 0);
p->p_lwpcnt--;
/*
* If all remaining non-daemon lwps are waiting in lwp_wait(),
* wake them up so someone can return EDEADLK.
* (See the block comment preceeding lwp_wait().)
*/
if (p->p_lwpcnt == p->p_lwpdaemon + (p->p_lwpwait - p->p_lwpdwait))
cv_broadcast(&p->p_lwpexit);
t->t_proc_flag |= TP_LWPEXIT;
term_mstate(t);
#ifndef NPROBE
/* Kernel probe */
if (t->t_tnf_tpdp)
tnf_thread_exit();
#endif /* NPROBE */
t->t_forw->t_back = t->t_back;
t->t_back->t_forw = t->t_forw;
if (t == p->p_tlist)
p->p_tlist = t->t_forw;
/*
* Clean up the signal state.
*/
if (t->t_sigqueue != NULL)
sigdelq(p, t, 0);
if (lwp->lwp_curinfo != NULL) {
siginfofree(lwp->lwp_curinfo);
lwp->lwp_curinfo = NULL;
}
/*
* If we have spymaster information (that is, if we're an agent LWP),
* free that now.
*/
if (lwp->lwp_spymaster != NULL) {
kmem_free(lwp->lwp_spymaster, sizeof (psinfo_t));
lwp->lwp_spymaster = NULL;
}
thread_rele(t);
/*
* Terminated lwps are associated with process zero and are put onto
* death-row by resume(). Avoid preemption after resetting t->t_procp.
*/
t->t_preempt++;
if (t->t_ctx != NULL)
exitctx(t);
if (p->p_pctx != NULL)
exitpctx(p);
t->t_procp = &p0;
/*
* Notify the HAT about the change of address space
*/
hat_thread_exit(t);
/*
* When this is the last running lwp in this process and some lwp is
* waiting for this condition to become true, or this thread was being
* suspended, then the waiting lwp is awakened.
*
* Also, if the process is exiting, we may have a thread waiting in
* exitlwps() that needs to be notified.
*/
if (--p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP) ||
(p->p_flag & SEXITLWPS))
cv_broadcast(&p->p_holdlwps);
/*
* Need to drop p_lock so we can reacquire pidlock.
*/
mutex_exit(&p->p_lock);
mutex_enter(&pidlock);
ASSERT(t != t->t_next); /* t0 never exits */
t->t_next->t_prev = t->t_prev;
t->t_prev->t_next = t->t_next;
cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */
mutex_exit(&pidlock);
t->t_state = TS_ZOMB;
swtch_from_zombie();
/* never returns */
}
/*
* Cleanup function for an exiting lwp.
* Called both from lwp_exit() and from proc_exit().
* p->p_lock is repeatedly released and grabbed in this function.
*/
void
lwp_cleanup(void)
{
kthread_t *t = curthread;
proc_t *p = ttoproc(t);
ASSERT(MUTEX_HELD(&p->p_lock));
/* untimeout any lwp-bound realtime timers */
if (p->p_itimer != NULL)
timer_lwpexit();
/*
* If this is the /proc agent lwp that is exiting, readjust p_lwpid
* so it appears that the agent never existed, and clear p_agenttp.
*/
if (t == p->p_agenttp) {
ASSERT(t->t_tid == p->p_lwpid);
p->p_lwpid--;
p->p_agenttp = NULL;
}
/*
* Do lgroup bookkeeping to account for thread exiting.
*/
kpreempt_disable();
lgrp_move_thread(t, NULL, 1);
if (t->t_tid == 1) {
p->p_t1_lgrpid = LGRP_NONE;
}
kpreempt_enable();
lwp_ctmpl_clear(ttolwp(t));
}
int
lwp_suspend(kthread_t *t)
{
int tid;
proc_t *p = ttoproc(t);
ASSERT(MUTEX_HELD(&p->p_lock));
/*
* Set the thread's TP_HOLDLWP flag so it will stop in holdlwp().
* If an lwp is stopping itself, there is no need to wait.
*/
top:
t->t_proc_flag |= TP_HOLDLWP;
if (t == curthread) {
t->t_sig_check = 1;
} else {
/*
* Make sure the lwp stops promptly.
*/
thread_lock(t);
t->t_sig_check = 1;
/*
* XXX Should use virtual stop like /proc does instead of
* XXX waking the thread to get it to stop.
*/
if (ISWAKEABLE(t) || ISWAITING(t)) {
setrun_locked(t);
} else if (t->t_state == TS_ONPROC && t->t_cpu != CPU) {
poke_cpu(t->t_cpu->cpu_id);
}
tid = t->t_tid; /* remember thread ID */
/*
* Wait for lwp to stop
*/
while (!SUSPENDED(t)) {
/*
* Drop the thread lock before waiting and reacquire it
* afterwards, so the thread can change its t_state
* field.
*/
thread_unlock(t);
/*
* Check if aborted by exitlwps().
*/
if (p->p_flag & SEXITLWPS)
lwp_exit();
/*
* Cooperate with jobcontrol signals and /proc stopping
* by calling cv_wait_sig() to wait for the target
* lwp to stop. Just using cv_wait() can lead to
* deadlock because, if some other lwp has stopped
* by either of these mechanisms, then p_lwprcnt will
* never become zero if we do a cv_wait().
*/
if (!cv_wait_sig(&p->p_holdlwps, &p->p_lock))
return (EINTR);
/*
* Check to see if thread died while we were
* waiting for it to suspend.
*/
if (idtot(p, tid) == NULL)
return (ESRCH);
thread_lock(t);
/*
* If the TP_HOLDLWP flag went away, lwp_continue()
* or vfork() must have been called while we were
* waiting, so start over again.
*/
if ((t->t_proc_flag & TP_HOLDLWP) == 0) {
thread_unlock(t);
goto top;
}
}
thread_unlock(t);
}
return (0);
}
/*
* continue a lwp that's been stopped by lwp_suspend().
*/
void
lwp_continue(kthread_t *t)
{
proc_t *p = ttoproc(t);
int was_suspended = t->t_proc_flag & TP_HOLDLWP;
ASSERT(MUTEX_HELD(&p->p_lock));
t->t_proc_flag &= ~TP_HOLDLWP;
thread_lock(t);
if (SUSPENDED(t) &&
!(p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH))) {
p->p_lwprcnt++;
t->t_schedflag |= TS_CSTART;
setrun_locked(t);
}
thread_unlock(t);
/*
* Wakeup anyone waiting for this thread to be suspended
*/
if (was_suspended)
cv_broadcast(&p->p_holdlwps);
}
/*
* ********************************
* Miscellaneous lwp routines *
* ********************************
*/
/*
* When a process is undergoing a forkall(), its p_flag is set to SHOLDFORK.
* This will cause the process's lwps to stop at a hold point. A hold
* point is where a kernel thread has a flat stack. This is at the
* return from a system call and at the return from a user level trap.
*
* When a process is undergoing a fork1() or vfork(), its p_flag is set to
* SHOLDFORK1. This will cause the process's lwps to stop at a modified
* hold point. The lwps in the process are not being cloned, so they
* are held at the usual hold points and also within issig_forreal().
* This has the side-effect that their system calls do not return
* showing EINTR.
*
* An lwp can also be held. This is identified by the TP_HOLDLWP flag on
* the thread. The TP_HOLDLWP flag is set in lwp_suspend(), where the active
* lwp is waiting for the target lwp to be stopped.
*/
void
holdlwp(void)
{
proc_t *p = curproc;
kthread_t *t = curthread;
mutex_enter(&p->p_lock);
/*
* Don't terminate immediately if the process is dumping core.
* Once the process has dumped core, all lwps are terminated.
*/
if (!(p->p_flag & SCOREDUMP)) {
if ((p->p_flag & SEXITLWPS) || (t->t_proc_flag & TP_EXITLWP))
lwp_exit();
}
if (!(ISHOLD(p)) && !(p->p_flag & (SHOLDFORK1 | SHOLDWATCH))) {
mutex_exit(&p->p_lock);
return;
}
/*
* stop() decrements p->p_lwprcnt and cv_signal()s &p->p_holdlwps
* when p->p_lwprcnt becomes zero.
*/
stop(PR_SUSPENDED, SUSPEND_NORMAL);
if (p->p_flag & SEXITLWPS)
lwp_exit();
mutex_exit(&p->p_lock);
}
/*
* Have all lwps within the process hold at a point where they are
* cloneable (SHOLDFORK) or just safe w.r.t. fork1 (SHOLDFORK1).
*/
int
holdlwps(int holdflag)
{
proc_t *p = curproc;
ASSERT(holdflag == SHOLDFORK || holdflag == SHOLDFORK1);
mutex_enter(&p->p_lock);
schedctl_finish_sigblock(curthread);
again:
while (p->p_flag & (SEXITLWPS | SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
/*
* If another lwp is doing a forkall() or proc_exit(), bail out.
*/
if (p->p_flag & (SEXITLWPS | SHOLDFORK)) {
mutex_exit(&p->p_lock);
return (0);
}
/*
* Another lwp is doing a fork1() or is undergoing
* watchpoint activity. We hold here for it to complete.
*/
stop(PR_SUSPENDED, SUSPEND_NORMAL);
}
p->p_flag |= holdflag;
pokelwps(p);
--p->p_lwprcnt;
/*
* Wait for the process to become quiescent (p->p_lwprcnt == 0).
*/
while (p->p_lwprcnt > 0) {
/*
* Check if aborted by exitlwps().
* Also check if SHOLDWATCH is set; it takes precedence.
*/
if (p->p_flag & (SEXITLWPS | SHOLDWATCH)) {
p->p_lwprcnt++;
p->p_flag &= ~holdflag;
cv_broadcast(&p->p_holdlwps);
goto again;
}
/*
* Cooperate with jobcontrol signals and /proc stopping.
* If some other lwp has stopped by either of these
* mechanisms, then p_lwprcnt will never become zero
* and the process will appear deadlocked unless we
* stop here in sympathy with the other lwp before
* doing the cv_wait() below.
*
* If the other lwp stops after we do the cv_wait(), it
* will wake us up to loop around and do the sympathy stop.
*
* Since stop() drops p->p_lock, we must start from
* the top again on returning from stop().
*/
if (p->p_stopsig | (curthread->t_proc_flag & TP_PRSTOP)) {
int whystop = p->p_stopsig? PR_JOBCONTROL :
PR_REQUESTED;
p->p_lwprcnt++;
p->p_flag &= ~holdflag;
stop(whystop, p->p_stopsig);
goto again;
}
cv_wait(&p->p_holdlwps, &p->p_lock);
}
p->p_lwprcnt++;
p->p_flag &= ~holdflag;
mutex_exit(&p->p_lock);
return (1);
}
/*
* See comments for holdwatch(), below.
*/
static int
holdcheck(int clearflags)
{
proc_t *p = curproc;
/*
* If we are trying to exit, that takes precedence over anything else.
*/
if (p->p_flag & SEXITLWPS) {
p->p_lwprcnt++;
p->p_flag &= ~clearflags;
lwp_exit();
}
/*
* If another thread is calling fork1(), stop the current thread so the
* other can complete.
*/
if (p->p_flag & SHOLDFORK1) {
p->p_lwprcnt++;
stop(PR_SUSPENDED, SUSPEND_NORMAL);
if (p->p_flag & SEXITLWPS) {
p->p_flag &= ~clearflags;
lwp_exit();
}
return (-1);
}
/*
* If another thread is calling fork(), then indicate we are doing
* watchpoint activity. This will cause holdlwps() above to stop the
* forking thread, at which point we can continue with watchpoint
* activity.
*/
if (p->p_flag & SHOLDFORK) {
p->p_lwprcnt++;
while (p->p_flag & SHOLDFORK) {
p->p_flag |= SHOLDWATCH;
cv_broadcast(&p->p_holdlwps);
cv_wait(&p->p_holdlwps, &p->p_lock);
p->p_flag &= ~SHOLDWATCH;
}
return (-1);
}
return (0);
}
/*
* Stop all lwps within the process, holding themselves in the kernel while the
* active lwp undergoes watchpoint activity. This is more complicated than
* expected because stop() relies on calling holdwatch() in order to copyin data
* from the user's address space. A double barrier is used to prevent an
* infinite loop.
*
* o The first thread into holdwatch() is the 'master' thread and does
* the following:
*
* - Sets SHOLDWATCH on the current process
* - Sets TP_WATCHSTOP on the current thread
* - Waits for all threads to be either stopped or have
* TP_WATCHSTOP set.
* - Sets the SWATCHOK flag on the process
* - Unsets TP_WATCHSTOP
* - Waits for the other threads to completely stop
* - Unsets SWATCHOK
*
* o If SHOLDWATCH is already set when we enter this function, then another
* thread is already trying to stop this thread. This 'slave' thread
* does the following:
*
* - Sets TP_WATCHSTOP on the current thread
* - Waits for SWATCHOK flag to be set
* - Calls stop()
*
* o If SWATCHOK is set on the process, then this function immediately
* returns, as we must have been called via stop().
*
* In addition, there are other flags that take precedence over SHOLDWATCH:
*
* o If SEXITLWPS is set, exit immediately.
*
* o If SHOLDFORK1 is set, wait for fork1() to complete.
*
* o If SHOLDFORK is set, then watchpoint activity takes precedence In this
* case, set SHOLDWATCH, signalling the forking thread to stop first.
*
* o If the process is being stopped via /proc (TP_PRSTOP is set), then we
* stop the current thread.
*
* Returns 0 if all threads have been quiesced. Returns non-zero if not all
* threads were stopped, or the list of watched pages has changed.
*/
int
holdwatch(void)
{
proc_t *p = curproc;
kthread_t *t = curthread;
int ret = 0;
mutex_enter(&p->p_lock);
p->p_lwprcnt--;
/*
* Check for bail-out conditions as outlined above.
*/
if (holdcheck(0) != 0) {
mutex_exit(&p->p_lock);
return (-1);
}
if (!(p->p_flag & SHOLDWATCH)) {
/*
* We are the master watchpoint thread. Set SHOLDWATCH and poke
* the other threads.
*/
p->p_flag |= SHOLDWATCH;
pokelwps(p);
/*
* Wait for all threads to be stopped or have TP_WATCHSTOP set.
*/
while (pr_allstopped(p, 1) > 0) {
if (holdcheck(SHOLDWATCH) != 0) {
p->p_flag &= ~SHOLDWATCH;
mutex_exit(&p->p_lock);
return (-1);
}
cv_wait(&p->p_holdlwps, &p->p_lock);
}
/*
* All threads are now stopped or in the process of stopping.
* Set SWATCHOK and let them stop completely.
*/
p->p_flag |= SWATCHOK;
t->t_proc_flag &= ~TP_WATCHSTOP;
cv_broadcast(&p->p_holdlwps);
while (pr_allstopped(p, 0) > 0) {
/*
* At first glance, it may appear that we don't need a
* call to holdcheck() here. But if the process gets a
* SIGKILL signal, one of our stopped threads may have
* been awakened and is waiting in exitlwps(), which
* takes precedence over watchpoints.
*/
if (holdcheck(SHOLDWATCH | SWATCHOK) != 0) {
p->p_flag &= ~(SHOLDWATCH | SWATCHOK);
mutex_exit(&p->p_lock);
return (-1);
}
cv_wait(&p->p_holdlwps, &p->p_lock);
}
/*
* All threads are now completely stopped.
*/
p->p_flag &= ~SWATCHOK;
p->p_flag &= ~SHOLDWATCH;
p->p_lwprcnt++;
} else if (!(p->p_flag & SWATCHOK)) {
/*
* SHOLDWATCH is set, so another thread is trying to do
* watchpoint activity. Indicate this thread is stopping, and
* wait for the OK from the master thread.
*/
t->t_proc_flag |= TP_WATCHSTOP;
cv_broadcast(&p->p_holdlwps);
while (!(p->p_flag & SWATCHOK)) {
if (holdcheck(0) != 0) {
t->t_proc_flag &= ~TP_WATCHSTOP;
mutex_exit(&p->p_lock);
return (-1);
}
cv_wait(&p->p_holdlwps, &p->p_lock);
}
/*
* Once the master thread has given the OK, this thread can
* actually call stop().
*/
t->t_proc_flag &= ~TP_WATCHSTOP;
p->p_lwprcnt++;
stop(PR_SUSPENDED, SUSPEND_NORMAL);
/*
* It's not OK to do watchpoint activity, notify caller to
* retry.
*/
ret = -1;
} else {
/*
* The only way we can hit the case where SHOLDWATCH is set and
* SWATCHOK is set is if we are triggering this from within a
* stop() call. Assert that this is the case.
*/
ASSERT(t->t_proc_flag & TP_STOPPING);
p->p_lwprcnt++;
}
mutex_exit(&p->p_lock);
return (ret);
}
/*
* force all interruptible lwps to trap into the kernel.
*/
void
pokelwps(proc_t *p)
{
kthread_t *t;
ASSERT(MUTEX_HELD(&p->p_lock));
t = p->p_tlist;
do {
if (t == curthread)
continue;
thread_lock(t);
aston(t); /* make thread trap or do post_syscall */
if (ISWAKEABLE(t) || ISWAITING(t)) {
setrun_locked(t);
} else if (t->t_state == TS_STOPPED) {
/*
* Ensure that proc_exit() is not blocked by lwps
* that were stopped via jobcontrol or /proc.
*/
if (p->p_flag & SEXITLWPS) {
p->p_stopsig = 0;
t->t_schedflag |= (TS_XSTART | TS_PSTART);
setrun_locked(t);
}
/*
* If we are holding lwps for a forkall(),
* force lwps that have been suspended via
* lwp_suspend() and are suspended inside
* of a system call to proceed to their
* holdlwp() points where they are clonable.
*/
if ((p->p_flag & SHOLDFORK) && SUSPENDED(t)) {
if ((t->t_schedflag & TS_CSTART) == 0) {
p->p_lwprcnt++;
t->t_schedflag |= TS_CSTART;
setrun_locked(t);
}
}
} else if (t->t_state == TS_ONPROC) {
if (t->t_cpu != CPU)
poke_cpu(t->t_cpu->cpu_id);
}
thread_unlock(t);
} while ((t = t->t_forw) != p->p_tlist);
}
/*
* undo the effects of holdlwps() or holdwatch().
*/
void
continuelwps(proc_t *p)
{
kthread_t *t;
/*
* If this flag is set, then the original holdwatch() didn't actually
* stop the process. See comments for holdwatch().
*/
if (p->p_flag & SWATCHOK) {
ASSERT(curthread->t_proc_flag & TP_STOPPING);
return;
}
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT((p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) == 0);
t = p->p_tlist;
do {
thread_lock(t); /* SUSPENDED looks at t_schedflag */
if (SUSPENDED(t) && !(t->t_proc_flag & TP_HOLDLWP)) {
p->p_lwprcnt++;
t->t_schedflag |= TS_CSTART;
setrun_locked(t);
}
thread_unlock(t);
} while ((t = t->t_forw) != p->p_tlist);
}
/*
* Force all other LWPs in the current process other than the caller to exit,
* and then cv_wait() on p_holdlwps for them to exit. The exitlwps() function
* is typically used in these situations:
*
* (a) prior to an exec() system call
* (b) prior to dumping a core file
* (c) prior to a uadmin() shutdown
*
* If the 'coredump' flag is set, other LWPs are quiesced but not destroyed.
* Multiple threads in the process can call this function at one time by
* triggering execs or core dumps simultaneously, so the SEXITLWPS bit is used
* to declare one particular thread the winner who gets to kill the others.
* If a thread wins the exitlwps() dance, zero is returned; otherwise an
* appropriate errno value is returned to caller for its system call to return.
*/
int
exitlwps(int coredump)
{
proc_t *p = curproc;
int heldcnt;
if (curthread->t_door)
door_slam();
if (p->p_door_list)
door_revoke_all();
if (curthread->t_schedctl != NULL)
schedctl_lwp_cleanup(curthread);
/*
* Ensure that before starting to wait for other lwps to exit,
* cleanup all upimutexes held by curthread. Otherwise, some other
* lwp could be waiting (uninterruptibly) for a upimutex held by
* curthread, and the call to pokelwps() below would deadlock.
* Even if a blocked upimutex_lock is made interruptible,
* curthread's upimutexes need to be unlocked: do it here.
*/
if (curthread->t_upimutex != NULL)
upimutex_cleanup();
/*
* Grab p_lock in order to check and set SEXITLWPS to declare a winner.
* We must also block any further /proc access from this point forward.
*/
mutex_enter(&p->p_lock);
prbarrier(p);
if (p->p_flag & SEXITLWPS) {
mutex_exit(&p->p_lock);
aston(curthread); /* force a trip through post_syscall */
return (set_errno(EINTR));
}
p->p_flag |= SEXITLWPS;
if (coredump) /* tell other lwps to stop, not exit */
p->p_flag |= SCOREDUMP;
/*
* Give precedence to exitlwps() if a holdlwps() is
* in progress. The lwp doing the holdlwps() operation
* is aborted when it is awakened.
*/
while (p->p_flag & (SHOLDFORK | SHOLDFORK1 | SHOLDWATCH)) {
cv_broadcast(&p->p_holdlwps);
cv_wait(&p->p_holdlwps, &p->p_lock);
prbarrier(p);
}
p->p_flag |= SHOLDFORK;
pokelwps(p);
/*
* Wait for process to become quiescent.
*/
--p->p_lwprcnt;
while (p->p_lwprcnt > 0) {
cv_wait(&p->p_holdlwps, &p->p_lock);
prbarrier(p);
}
p->p_lwprcnt++;
ASSERT(p->p_lwprcnt == 1);
/*
* The SCOREDUMP flag puts the process into a quiescent
* state. The process's lwps remain attached to this
* process until exitlwps() is called again without the
* 'coredump' flag set, then the lwps are terminated
* and the process can exit.
*/
if (coredump) {
p->p_flag &= ~(SCOREDUMP | SHOLDFORK | SEXITLWPS);
goto out;
}
/*
* Determine if there are any lwps left dangling in
* the stopped state. This happens when exitlwps()
* aborts a holdlwps() operation.
*/
p->p_flag &= ~SHOLDFORK;
if ((heldcnt = p->p_lwpcnt) > 1) {
kthread_t *t;
for (t = curthread->t_forw; --heldcnt > 0; t = t->t_forw) {
t->t_proc_flag &= ~TP_TWAIT;
lwp_continue(t);
}
}
/*
* Wait for all other lwps to exit.
*/
--p->p_lwprcnt;
while (p->p_lwpcnt > 1) {
cv_wait(&p->p_holdlwps, &p->p_lock);
prbarrier(p);
}
++p->p_lwprcnt;
ASSERT(p->p_lwpcnt == 1 && p->p_lwprcnt == 1);
p->p_flag &= ~SEXITLWPS;
curthread->t_proc_flag &= ~TP_TWAIT;
out:
if (!coredump && p->p_zombcnt) { /* cleanup the zombie lwps */
lwpdir_t *ldp;
lwpent_t *lep;
int i;
for (ldp = p->p_lwpdir, i = 0; i < p->p_lwpdir_sz; i++, ldp++) {
lep = ldp->ld_entry;
if (lep != NULL && lep->le_thread != curthread) {
ASSERT(lep->le_thread == NULL);
p->p_zombcnt--;
lwp_hash_out(p, lep->le_lwpid);
}
}
ASSERT(p->p_zombcnt == 0);
}
/*
* If some other LWP in the process wanted us to suspend ourself,
* then we will not do it. The other LWP is now terminated and
* no one will ever continue us again if we suspend ourself.
*/
curthread->t_proc_flag &= ~TP_HOLDLWP;
p->p_flag &= ~(SHOLDFORK | SHOLDFORK1 | SHOLDWATCH | SLWPWRAP);
mutex_exit(&p->p_lock);
return (0);
}
/*
* duplicate a lwp.
*/
klwp_t *
forklwp(klwp_t *lwp, proc_t *cp, id_t lwpid)
{
klwp_t *clwp;
void *tregs, *tfpu;
kthread_t *t = lwptot(lwp);
kthread_t *ct;
proc_t *p = lwptoproc(lwp);
int cid;
void *bufp;
void *brand_data;
int val;
ASSERT(p == curproc);
ASSERT(t == curthread || (SUSPENDED(t) && lwp->lwp_asleep == 0));
#if defined(__sparc)
if (t == curthread)
(void) flush_user_windows_to_stack(NULL);
#endif
if (t == curthread)
/* copy args out of registers first */
(void) save_syscall_args();
clwp = lwp_create(cp->p_lwpcnt == 0 ? lwp_rtt_initial : lwp_rtt,
NULL, 0, cp, TS_STOPPED, t->t_pri, &t->t_hold, NOCLASS, lwpid);
if (clwp == NULL)
return (NULL);
/*
* most of the parent's lwp can be copied to its duplicate,
* except for the fields that are unique to each lwp, like
* lwp_thread, lwp_procp, lwp_regs, and lwp_ap.
*/
ct = clwp->lwp_thread;
tregs = clwp->lwp_regs;
tfpu = clwp->lwp_fpu;
brand_data = clwp->lwp_brand;
/*
* Copy parent lwp to child lwp. Hold child's p_lock to prevent
* mstate_aggr_state() from reading stale mstate entries copied
* from lwp to clwp.
*/
mutex_enter(&cp->p_lock);
*clwp = *lwp;
/* clear microstate and resource usage data in new lwp */
init_mstate(ct, LMS_STOPPED);
bzero(&clwp->lwp_ru, sizeof (clwp->lwp_ru));
mutex_exit(&cp->p_lock);
/* fix up child's lwp */
clwp->lwp_pcb.pcb_flags = 0;
#if defined(__sparc)
clwp->lwp_pcb.pcb_step = STEP_NONE;
#endif
clwp->lwp_cursig = 0;
clwp->lwp_extsig = 0;
clwp->lwp_curinfo = (struct sigqueue *)0;
clwp->lwp_thread = ct;
ct->t_sysnum = t->t_sysnum;
clwp->lwp_regs = tregs;
clwp->lwp_fpu = tfpu;
clwp->lwp_brand = brand_data;
clwp->lwp_ap = clwp->lwp_arg;
clwp->lwp_procp = cp;
bzero(clwp->lwp_timer, sizeof (clwp->lwp_timer));
clwp->lwp_lastfault = 0;
clwp->lwp_lastfaddr = 0;
/* copy parent's struct regs to child. */
lwp_forkregs(lwp, clwp);
/*
* Fork thread context ops, if any.
*/
if (t->t_ctx)
forkctx(t, ct);
/* fix door state in the child */
if (t->t_door)
door_fork(t, ct);
/* copy current contract templates, clear latest contracts */
lwp_ctmpl_copy(clwp, lwp);
mutex_enter(&cp->p_lock);
/* lwp_create() set the TP_HOLDLWP flag */
if (!(t->t_proc_flag & TP_HOLDLWP))
ct->t_proc_flag &= ~TP_HOLDLWP;
if (cp->p_flag & SMSACCT)
ct->t_proc_flag |= TP_MSACCT;
mutex_exit(&cp->p_lock);
/* Allow brand to propagate brand-specific state */
if (PROC_IS_BRANDED(p))
BROP(p)->b_forklwp(lwp, clwp);
retry:
cid = t->t_cid;
val = CL_ALLOC(&bufp, cid, KM_SLEEP);
ASSERT(val == 0);
mutex_enter(&p->p_lock);
if (cid != t->t_cid) {
/*
* Someone just changed this thread's scheduling class,
* so try pre-allocating the buffer again. Hopefully we
* don't hit this often.
*/
mutex_exit(&p->p_lock);
CL_FREE(cid, bufp);
goto retry;
}
ct->t_unpark = t->t_unpark;
ct->t_clfuncs = t->t_clfuncs;
CL_FORK(t, ct, bufp);
ct->t_cid = t->t_cid; /* after data allocated so prgetpsinfo works */
mutex_exit(&p->p_lock);
return (clwp);
}
/*
* Add a new lwp entry to the lwp directory and to the lwpid hash table.
*/
void
lwp_hash_in(proc_t *p, lwpent_t *lep, tidhash_t *tidhash, uint_t tidhash_sz,
int do_lock)
{
tidhash_t *thp = &tidhash[TIDHASH(lep->le_lwpid, tidhash_sz)];
lwpdir_t **ldpp;
lwpdir_t *ldp;
kthread_t *t;
/*
* Allocate a directory element from the free list.
* Code elsewhere guarantees a free slot.
*/
ldp = p->p_lwpfree;
p->p_lwpfree = ldp->ld_next;
ASSERT(ldp->ld_entry == NULL);
ldp->ld_entry = lep;
if (do_lock)
mutex_enter(&thp->th_lock);
/*
* Insert it into the lwpid hash table.
*/
ldpp = &thp->th_list;
ldp->ld_next = *ldpp;
*ldpp = ldp;
/*
* Set the active thread's directory slot entry.
*/
if ((t = lep->le_thread) != NULL) {
ASSERT(lep->le_lwpid == t->t_tid);
t->t_dslot = (int)(ldp - p->p_lwpdir);
}
if (do_lock)
mutex_exit(&thp->th_lock);
}
/*
* Remove an lwp from the lwpid hash table and free its directory entry.
* This is done when a detached lwp exits in lwp_exit() or
* when a non-detached lwp is waited for in lwp_wait() or
* when a zombie lwp is detached in lwp_detach().
*/
void
lwp_hash_out(proc_t *p, id_t lwpid)
{
tidhash_t *thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
lwpdir_t **ldpp;
lwpdir_t *ldp;
lwpent_t *lep;
mutex_enter(&thp->th_lock);
for (ldpp = &thp->th_list;
(ldp = *ldpp) != NULL; ldpp = &ldp->ld_next) {
lep = ldp->ld_entry;
if (lep->le_lwpid == lwpid) {
prlwpfree(p, lep); /* /proc deals with le_trace */
*ldpp = ldp->ld_next;
ldp->ld_entry = NULL;
ldp->ld_next = p->p_lwpfree;
p->p_lwpfree = ldp;
kmem_free(lep, sizeof (*lep));
break;
}
}
mutex_exit(&thp->th_lock);
}
/*
* Lookup an lwp in the lwpid hash table by lwpid.
*/
lwpdir_t *
lwp_hash_lookup(proc_t *p, id_t lwpid)
{
tidhash_t *thp;
lwpdir_t *ldp;
/*
* The process may be exiting, after p_tidhash has been set to NULL in
* proc_exit() but before prfee() has been called. Return failure in
* this case.
*/
if (p->p_tidhash == NULL)
return (NULL);
thp = &p->p_tidhash[TIDHASH(lwpid, p->p_tidhash_sz)];
for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
if (ldp->ld_entry->le_lwpid == lwpid)
return (ldp);
}
return (NULL);
}
/*
* Same as lwp_hash_lookup(), but acquire and return
* the tid hash table entry lock on success.
*/
lwpdir_t *
lwp_hash_lookup_and_lock(proc_t *p, id_t lwpid, kmutex_t **mpp)
{
tidhash_t *tidhash;
uint_t tidhash_sz;
tidhash_t *thp;
lwpdir_t *ldp;
top:
tidhash_sz = p->p_tidhash_sz;
membar_consumer();
if ((tidhash = p->p_tidhash) == NULL)
return (NULL);
thp = &tidhash[TIDHASH(lwpid, tidhash_sz)];
mutex_enter(&thp->th_lock);
/*
* Since we are not holding p->p_lock, the tid hash table
* may have changed. If so, start over. If not, then
* it cannot change until after we drop &thp->th_lock;
*/
if (tidhash != p->p_tidhash || tidhash_sz != p->p_tidhash_sz) {
mutex_exit(&thp->th_lock);
goto top;
}
for (ldp = thp->th_list; ldp != NULL; ldp = ldp->ld_next) {
if (ldp->ld_entry->le_lwpid == lwpid) {
*mpp = &thp->th_lock;
return (ldp);
}
}
mutex_exit(&thp->th_lock);
return (NULL);
}
/*
* Update the indicated LWP usage statistic for the current LWP.
*/
void
lwp_stat_update(lwp_stat_id_t lwp_stat_id, long inc)
{
klwp_t *lwp = ttolwp(curthread);
if (lwp == NULL)
return;
switch (lwp_stat_id) {
case LWP_STAT_INBLK:
lwp->lwp_ru.inblock += inc;
break;
case LWP_STAT_OUBLK:
lwp->lwp_ru.oublock += inc;
break;
case LWP_STAT_MSGRCV:
lwp->lwp_ru.msgrcv += inc;
break;
case LWP_STAT_MSGSND:
lwp->lwp_ru.msgsnd += inc;
break;
default:
panic("lwp_stat_update: invalid lwp_stat_id 0x%x", lwp_stat_id);
}
}