/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Fault Management for Device Drivers
*
* Device drivers wishing to participate in fault management may do so by
* first initializing their fault management state and capabilties via
* ddi_fm_init(). If the system supports the requested FM capabilities,
* the IO framework will intialize FM state and return a bit mask of the
* requested capabilities.
*
* If the system does not support the requested FM capabilities,
* the device driver must behave in accordance with the programming semantics
* defined below for the capabilities returned from ddi_fm_init().
* ddi_fm_init() must be called at attach(9E) time and ddi_fm_fini() must be
* called from detach(9E) to perform FM clean-up.
*
* Driver Fault Management Capabilities
*
* DDI_FM_NOT_CAPABLE
*
* This is the default fault management capability for drivers. Drivers
* that implement no fault management capabilites or do not participate
* in fault management activities have their FM capability bitmask set
* to 0.
*
* DDI_FM_EREPORT_CAPABLE
*
* When this capability bit is set, drivers are expected to generate error
* report events via ddi_ereport_post() for the associated faults
* that are diagnosed by the IO fault manager DE. ddi_ereport_post()
* may be called in any context subject to the constraints specified
* by the interrupt iblock cookie returned during initialization.
*
* Error reports resulting from hardware component specific and common IO
* fault and driver defects must be accompanied by an Eversholt fault
* tree (.eft) by the Solaris fault manager (fmd(1M)) for
* diagnosis.
*
* DDI_FM_ERRCB_CAPABLE
*
* Device drivers are expected to implement and register an error
* handler callback function. ddi_fm_handler_register() and
* ddi_fm_handler_unregister() must be
* called in passive kernel context, typically during an attach(9E)
* or detach(9E) operation. When called by the FM IO framework,
* the callback function should check for error conditions for the
* hardware and software under its control. All detected errors
* should have ereport events generated for them.
*
* Upon completion of the error handler callback, the driver should
* return one of the following values:
*
* #define DDI_FM_OK - no error was detected
* #define DDI_FM_FATAL - a fatal error was detected
* #define DDI_FM_NONFATAL - a non-fatal error was detected
* #define DDI_FM_UNKNOWN - the error status is unknown
*
* To insure single threaded access to error handling callbacks,
* the device driver may use i_ddi_fm_handler_enter() and
* i_ddi_fm_handler_exit() when entering and exiting the callback.
*
* DDI_FM_ACCCHK_CAPABLE/DDI_FM_DMACHK_CAPABLE
*
* Device drivers are expected to set-up access and DMA handles
* with FM-specific attributes designed to allow nexus parent
* drivers to flag any errors seen during subsequent IO transactions.
* Drivers must set the devacc_attr_acc_flag member of their
* ddi_device_acc_attr_t structures to DDI_FLAGERR_ACC or DDI_CAUTIOUS_ACC.
* For DMA transactions, driver must set the dma_attr_flags of
* their ddi_dma_attr_t structures to DDI_DMA_FLAGERR.
*
* Upon completion of an IO transaction, device drivers are expected
* to check the status of host-side hardware access and device-side
* dma completions by calling ddi_acc_err_check() or ddi_dma_err_check()
* respectively. If the handle is associated with an error detected by
* the nexus parent or FM IO framework, ddi_fm_error_t data (status, ena
* and error expectation) is returned. If status of DDI_FM_NONFATAL or
* DDI_FM_FATAL is returned, the ena is valid and the expectation flag
* will be set to 1 if the error was unexpected (i.e. not the result
* of a peek or poke type operation).
*
* ddi_acc_err_check() and ddi_dma_err_check() may be called in any
* context subject to the constraints specified by the interrupt
* iblock cookie returned during initialization.
*
* Device drivers should generate an access (DDI_FM_IO_ACC) or dma
* (DDI_FM_IO_DMA) data path error report if DDI_FM_NONFATAL or
* DDI_FM_FATAL is returned.
*
*/
#include <sys/types.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/kmem.h>
#include <sys/nvpair.h>
#include <sys/fm/protocol.h>
#include <sys/ndifm.h>
#include <sys/ddifm.h>
#include <sys/ddi_impldefs.h>
#include <sys/ddi_isa.h>
#include <sys/spl.h>
#include <sys/varargs.h>
#include <sys/systm.h>
#include <sys/disp.h>
#include <sys/atomic.h>
#include <sys/errorq_impl.h>
#include <sys/kobj.h>
#include <sys/fm/util.h>
#include <sys/fm/io/ddi.h>
#define ERPT_CLASS_SZ sizeof (DDI_IO_CLASS) + sizeof (FM_EREPORT_CLASS) + \
DDI_MAX_ERPT_CLASS + 2
/* Globals */
int default_dmacache_sz = DEFAULT_DMACACHE_SZ;
int default_acccache_sz = DEFAULT_ACCCACHE_SZ;
int ddi_system_fmcap = 0;
static struct i_ddi_fmkstat ddifm_kstat_template = {
{"erpt_dropped", KSTAT_DATA_UINT64 },
{"fm_cache_miss", KSTAT_DATA_UINT64 },
{"fm_cache_full", KSTAT_DATA_UINT64 },
{"acc_err", KSTAT_DATA_UINT64 },
{"dma_err", KSTAT_DATA_UINT64 }
};
/*
* Update the service state following the detection of an
* error.
*/
void
ddi_fm_service_impact(dev_info_t *dip, int svc_impact)
{
uint64_t ena;
char buf[FM_MAX_CLASS];
ena = fm_ena_generate(0, FM_ENA_FMT1);
mutex_enter(&(DEVI(dip)->devi_lock));
if (!DEVI_IS_DEVICE_OFFLINE(dip)) {
switch (svc_impact) {
case DDI_SERVICE_LOST:
DEVI_SET_DEVICE_DOWN(dip);
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_LOST);
ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
NULL);
break;
case DDI_SERVICE_DEGRADED:
DEVI_SET_DEVICE_DEGRADED(dip);
if (DEVI_IS_DEVICE_DEGRADED(dip)) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
DDI_FM_SERVICE_IMPACT,
DDI_FM_SERVICE_DEGRADED);
ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8,
FM_EREPORT_VERS0, NULL);
} else if (DEVI_IS_DEVICE_DOWN(dip)) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
DDI_FM_SERVICE_IMPACT,
DDI_FM_SERVICE_LOST);
ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8,
FM_EREPORT_VERS0, NULL);
}
break;
case DDI_SERVICE_RESTORED:
DEVI_SET_DEVICE_UP(dip);
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_RESTORED);
ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
NULL);
break;
case DDI_SERVICE_UNAFFECTED:
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
DDI_FM_SERVICE_IMPACT, DDI_FM_SERVICE_UNAFFECTED);
ddi_fm_ereport_post(dip, buf, ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
NULL);
break;
default:
break;
}
}
mutex_exit(&(DEVI(dip)->devi_lock));
}
void
i_ddi_drv_ereport_post(dev_info_t *dip, const char *error_class,
nvlist_t *errp, int sflag)
{
int i;
int depth;
char classp[DDI_DVR_MAX_CLASS];
caddr_t stkp;
char *buf;
char **stkpp;
char *sym;
pc_t stack[DDI_FM_STKDEPTH];
ulong_t off;
dev_info_t *root_dip = ddi_root_node();
if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(root_dip)))
return;
(void) snprintf(classp, DDI_DVR_MAX_CLASS, "%s%s", DVR_ERPT,
error_class);
if (sflag == DDI_SLEEP) {
depth = getpcstack(stack, DDI_FM_STKDEPTH);
/* Allocate array of char * for nvlist payload */
stkpp = (char **)kmem_alloc(depth * sizeof (char *), KM_SLEEP);
/*
* Allocate temporary 64-bit aligned buffer for stack
* symbol strings
*/
buf = kmem_alloc(depth * DDI_FM_SYM_SZ, KM_SLEEP);
stkp = buf;
for (i = 0; i < depth; ++i) {
sym = kobj_getsymname(stack[i], &off);
(void) snprintf(stkp, DDI_FM_SYM_SZ,
"\t%s+%lx\n", sym ? sym : "?", off);
stkpp[i] = stkp;
stkp += DDI_FM_SYM_SZ;
}
if (errp)
ddi_fm_ereport_post(root_dip,
classp, fm_ena_generate(0, FM_ENA_FMT1), sflag,
FM_VERSION, DATA_TYPE_UINT8, 0,
DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip),
DVR_STACK_DEPTH, DATA_TYPE_UINT32, depth,
DVR_STACK, DATA_TYPE_STRING_ARRAY, depth, stkpp,
DVR_ERR_SPECIFIC, DATA_TYPE_NVLIST, errp, NULL);
else
ddi_fm_ereport_post(root_dip,
classp, fm_ena_generate(0, FM_ENA_FMT1), sflag,
FM_VERSION, DATA_TYPE_UINT8, 0,
DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip),
DVR_STACK_DEPTH, DATA_TYPE_UINT32, depth,
DVR_STACK, DATA_TYPE_STRING_ARRAY, depth, stkpp,
NULL);
kmem_free(stkpp, depth * sizeof (char *));
kmem_free(buf, depth * DDI_FM_SYM_SZ);
} else {
if (errp)
ddi_fm_ereport_post(root_dip,
classp, fm_ena_generate(0, FM_ENA_FMT1), sflag,
FM_VERSION, DATA_TYPE_UINT8, 0,
DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip),
DVR_ERR_SPECIFIC, DATA_TYPE_NVLIST, errp, NULL);
else
ddi_fm_ereport_post(root_dip,
classp, fm_ena_generate(0, FM_ENA_FMT1), sflag,
FM_VERSION, DATA_TYPE_UINT8, 0,
DVR_NAME, DATA_TYPE_STRING, ddi_driver_name(dip),
NULL);
}
}
/*
* fm_dev_ereport_postv: Common consolidation private interface to
* post a device tree oriented dev_scheme ereport. The device tree is
* composed of the following entities: devinfo nodes, minor nodes, and
* pathinfo nodes. All entities are associated with some devinfo node,
* either directly or indirectly. The intended devinfo node association
* for the ereport is communicated by the 'dip' argument. A minor node,
* an entity below 'dip', is represented by a non-null 'minor_name'
* argument. An application specific caller, like scsi_fm_ereport_post,
* can override the devinfo path with a pathinfo path via a non-null
* 'devpath' argument - in this case 'dip' is the MPXIO client node and
* devpath should be the path through the pHCI devinfo node to the
* pathinfo node.
*
* This interface also allows the caller to decide if the error being
* reported is know to be associated with a specific device identity
* via the 'devid' argument. The caller needs to control wether the
* devid appears as an authority in the FMRI because for some types of
* errors, like transport errors, the identity of the device on the
* other end of the transport is not guaranteed to be the current
* identity of the dip. For transport errors the caller should specify
* a NULL devid, even when there is a valid devid associated with the dip.
*
* The ddi_fm_ereport_post() implementation calls this interface with
* just a dip: devpath, minor_name, and devid are all NULL. The
* scsi_fm_ereport_post() implementation may call this interface with
* non-null devpath, minor_name, and devid arguments depending on
* wether MPXIO is enabled, and wether a transport or non-transport
* error is being posted.
*
* Additional event payload is specified via the varargs plist and, if
* not NULL, the nvlist passed in (such an nvlist will be merged into
* the payload; the caller is responsible for freeing this nvlist).
* Do not specify any high-level protocol event member names as part of the
* payload - eg no payload to be named "class", "version", "detector" etc
* or they will replace the members we construct here.
*
* The 'target-port-l0id' argument is SCSI specific. It is used
* by SCSI enumeration code when a devid is unavailable. If non-NULL
* the property-value becomes part of the ereport detector. The value
* specified might match one of the target-port-l0ids values of a
* libtopo disk chassis node. When libtopo finds a disk with a guaranteed
* unique wWWN target-port of a single-lun 'real' disk, it can add
* the target-port value to the libtopo disk chassis node target-port-l0ids
* string array property. Kernel code has no idea if this type of
* libtopo chassis node exists, or if matching will in fact occur.
*/
void
fm_dev_ereport_postv(dev_info_t *dip, dev_info_t *eqdip,
const char *devpath, const char *minor_name, const char *devid,
const char *tpl0, const char *error_class, uint64_t ena, int sflag,
nvlist_t *pl, va_list ap)
{
nv_alloc_t *nva = NULL;
struct i_ddi_fmhdl *fmhdl = NULL;
errorq_elem_t *eqep;
nvlist_t *ereport = NULL;
nvlist_t *detector = NULL;
char *name;
data_type_t type;
uint8_t version;
char class[ERPT_CLASS_SZ];
char path[MAXPATHLEN];
ASSERT(ap != NULL); /* must supply at least ereport version */
ASSERT(dip && eqdip && error_class);
/*
* This interface should be called with a fm_capable eqdip. The
* ddi_fm_ereport_post* interfaces call with eqdip == dip,
* ndi_fm_ereport_post* interfaces call with eqdip == ddi_parent(dip).
*/
if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(eqdip)))
goto err;
/* get ereport nvlist handle */
if ((sflag == DDI_SLEEP) && !panicstr) {
/*
* Driver defect - should not call with DDI_SLEEP while in
* interrupt context.
*/
if (servicing_interrupt()) {
i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, sflag);
goto err;
}
/* Use normal interfaces to allocate memory. */
if ((ereport = fm_nvlist_create(NULL)) == NULL)
goto err;
ASSERT(nva == NULL);
} else {
/* Use errorq interfaces to avoid memory allocation. */
fmhdl = DEVI(eqdip)->devi_fmhdl;
ASSERT(fmhdl);
eqep = errorq_reserve(fmhdl->fh_errorq);
if (eqep == NULL)
goto err;
ereport = errorq_elem_nvl(fmhdl->fh_errorq, eqep);
nva = errorq_elem_nva(fmhdl->fh_errorq, eqep);
ASSERT(nva);
}
ASSERT(ereport);
/*
* Form parts of an ereport:
* A: version
* B: error_class
* C: ena
* D: detector (path and optional devid authority)
* E: payload
*
* A: ereport version: first payload tuple must be the version.
*/
name = va_arg(ap, char *);
type = va_arg(ap, data_type_t);
version = va_arg(ap, uint_t);
if ((strcmp(name, FM_VERSION) != 0) || (type != DATA_TYPE_UINT8)) {
i_ddi_drv_ereport_post(dip, DVR_EVER, NULL, sflag);
goto err;
}
/* B: ereport error_class: add "io." prefix to class. */
(void) snprintf(class, ERPT_CLASS_SZ, "%s.%s",
DDI_IO_CLASS, error_class);
/* C: ereport ena: if not passed in, generate new ena. */
if (ena == 0)
ena = fm_ena_generate(0, FM_ENA_FMT1);
/* D: detector: form dev scheme fmri with path and devid. */
if (devpath) {
(void) strlcpy(path, devpath, sizeof (path));
} else {
/* derive devpath from dip */
if (dip == ddi_root_node())
(void) strcpy(path, "/");
else
(void) ddi_pathname(dip, path);
}
if (minor_name) {
(void) strlcat(path, ":", sizeof (path));
(void) strlcat(path, minor_name, sizeof (path));
}
detector = fm_nvlist_create(nva);
fm_fmri_dev_set(detector, FM_DEV_SCHEME_VERSION, NULL, path,
devid, tpl0);
/* Pull parts of ereport together into ereport. */
fm_ereport_set(ereport, version, class, ena, detector, NULL);
/* Merge any preconstructed payload into the event. */
if (pl)
(void) nvlist_merge(ereport, pl, 0);
/* Add any remaining (after version) varargs payload to ereport. */
name = va_arg(ap, char *);
(void) i_fm_payload_set(ereport, name, ap);
/* Post the ereport. */
if (nva)
errorq_commit(fmhdl->fh_errorq, eqep, ERRORQ_ASYNC);
else
fm_ereport_post(ereport, EVCH_SLEEP);
goto out;
/* Count errors as drops. */
err: if (fmhdl)
atomic_inc_64(&fmhdl->fh_kstat.fek_erpt_dropped.value.ui64);
/* Free up nvlists if normal interfaces were used to allocate memory */
out: if (ereport && (nva == NULL))
fm_nvlist_destroy(ereport, FM_NVA_FREE);
if (detector && (nva == NULL))
fm_nvlist_destroy(detector, FM_NVA_FREE);
}
/*
* Generate an error report for consumption by the Solaris Fault Manager,
* fmd(1M). Valid ereport classes are defined in /usr/include/sys/fm/io.
*
* The ENA should be set if this error is a result of an error status
* returned from ddi_dma_err_check() or ddi_acc_err_check(). Otherwise,
* an ENA value of 0 is appropriate.
*
* If sflag == DDI_NOSLEEP, ddi_fm_ereport_post () may be called
* from user, kernel, interrupt or high-interrupt context. Otherwise,
* ddi_fm_ereport_post() must be called from user or kernel context.
*
* The ndi_interfaces are provided for use by nexus drivers to post
* ereports about children who may not themselves be fm_capable.
*
* All interfaces end up in the common fm_dev_ereport_postv code above.
*/
void
ddi_fm_ereport_post(dev_info_t *dip,
const char *error_class, uint64_t ena, int sflag, ...)
{
va_list ap;
ASSERT(dip && error_class);
va_start(ap, sflag);
fm_dev_ereport_postv(dip, dip, NULL, NULL, NULL, NULL,
error_class, ena, sflag, NULL, ap);
va_end(ap);
}
void
ndi_fm_ereport_post(dev_info_t *dip,
const char *error_class, uint64_t ena, int sflag, ...)
{
va_list ap;
ASSERT(dip && error_class && (sflag == DDI_SLEEP));
va_start(ap, sflag);
fm_dev_ereport_postv(dip, ddi_get_parent(dip), NULL, NULL, NULL, NULL,
error_class, ena, sflag, NULL, ap);
va_end(ap);
}
/*
* Driver error handling entry. Prevents multiple simultaneous calls into
* driver error handling callback.
*
* May be called from a context consistent with the iblock_cookie returned
* in ddi_fm_init().
*/
void
i_ddi_fm_handler_enter(dev_info_t *dip)
{
struct i_ddi_fmhdl *hdl = DEVI(dip)->devi_fmhdl;
mutex_enter(&hdl->fh_lock);
hdl->fh_lock_owner = curthread;
}
/*
* Driver error handling exit.
*
* May be called from a context consistent with the iblock_cookie returned
* in ddi_fm_init().
*/
void
i_ddi_fm_handler_exit(dev_info_t *dip)
{
struct i_ddi_fmhdl *hdl = DEVI(dip)->devi_fmhdl;
hdl->fh_lock_owner = NULL;
mutex_exit(&hdl->fh_lock);
}
boolean_t
i_ddi_fm_handler_owned(dev_info_t *dip)
{
struct i_ddi_fmhdl *hdl = DEVI(dip)->devi_fmhdl;
return (hdl->fh_lock_owner == curthread);
}
/*
* Register a fault manager error handler for this device instance
*
* This function must be called from a driver's attach(9E) routine.
*/
void
ddi_fm_handler_register(dev_info_t *dip, ddi_err_func_t handler,
void *impl_data)
{
dev_info_t *pdip;
struct i_ddi_fmhdl *pfmhdl;
struct i_ddi_errhdl *new_eh;
struct i_ddi_fmtgt *tgt;
/*
* Check for proper calling context.
* The DDI configuration framework does not support
* DR states to allow checking for proper invocation
* from a DDI_ATTACH or DDI_RESUME. This limits context checking
* to interrupt only.
*/
if (servicing_interrupt()) {
i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP);
return;
}
if (dip == ddi_root_node())
pdip = dip;
else
pdip = (dev_info_t *)DEVI(dip)->devi_parent;
ASSERT(pdip);
if (!(DDI_FM_ERRCB_CAP(ddi_fm_capable(dip)) &&
DDI_FM_ERRCB_CAP(ddi_fm_capable(pdip)))) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP);
return;
}
new_eh = kmem_zalloc(sizeof (struct i_ddi_errhdl), KM_SLEEP);
new_eh->eh_func = handler;
new_eh->eh_impl = impl_data;
/* Add dip to parent's target list of registered error handlers */
tgt = kmem_alloc(sizeof (struct i_ddi_fmtgt), KM_SLEEP);
tgt->ft_dip = dip;
tgt->ft_errhdl = new_eh;
i_ddi_fm_handler_enter(pdip);
pfmhdl = DEVI(pdip)->devi_fmhdl;
ASSERT(pfmhdl);
tgt->ft_next = pfmhdl->fh_tgts;
pfmhdl->fh_tgts = tgt;
i_ddi_fm_handler_exit(pdip);
}
/*
* Unregister a fault manager error handler for this device instance
*
* This function must be called from a drivers attach(9E) or detach(9E)
* routine.
*/
void
ddi_fm_handler_unregister(dev_info_t *dip)
{
dev_info_t *pdip;
struct i_ddi_fmhdl *pfmhdl;
struct i_ddi_fmtgt *tgt, **ptgt;
/*
* Check for proper calling context.
* The DDI configuration framework does not support
* DR states to allow checking for proper invocation
* from a DDI_DETACH or DDI_SUSPEND. This limits context checking
* to interrupt only.
*/
if (servicing_interrupt()) {
i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP);
return;
}
if (dip == ddi_root_node())
pdip = dip;
else
pdip = (dev_info_t *)DEVI(dip)->devi_parent;
ASSERT(pdip);
if (!(DDI_FM_ERRCB_CAP(ddi_fm_capable(dip)) &&
DDI_FM_ERRCB_CAP(ddi_fm_capable(pdip)))) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP);
return;
}
i_ddi_fm_handler_enter(pdip);
pfmhdl = DEVI(pdip)->devi_fmhdl;
ASSERT(pfmhdl);
ptgt = &pfmhdl->fh_tgts;
for (tgt = pfmhdl->fh_tgts; tgt != NULL; tgt = tgt->ft_next) {
if (dip == tgt->ft_dip) {
*ptgt = tgt->ft_next;
kmem_free(tgt->ft_errhdl, sizeof (struct i_ddi_errhdl));
kmem_free(tgt, sizeof (struct i_ddi_fmtgt));
break;
}
ptgt = &tgt->ft_next;
}
i_ddi_fm_handler_exit(pdip);
}
/*
* Initialize Fault Management capabilities for this device instance (dip).
* When called with the following capabilities, data structures neccessary
* for fault management activities are allocated and initialized.
*
* DDI_FM_EREPORT_CAPABLE - initialize ereport errorq and ereport
* capable driver property.
*
* DDI_FM_ERRCB_CAPABLE - check with parent for ability to register
* an error handler.
*
* DDI_FM_ACCCHK_CAPABLE - initialize access handle cache and acc-chk
* driver property
*
* DDI_FM_DMACHK_CAPABLE - initialize dma handle cache and dma-chk
* driver property
*
* A driver's FM capability level may not exceed that of its parent or
* system-wide FM capability. The available capability level for this
* device instance is returned in *fmcap.
*
* This function must be called from a driver's attach(9E) entry point.
*/
void
ddi_fm_init(dev_info_t *dip, int *fmcap, ddi_iblock_cookie_t *ibcp)
{
struct dev_info *devi = DEVI(dip);
struct i_ddi_fmhdl *fmhdl;
ddi_iblock_cookie_t ibc;
int pcap, newcap = DDI_FM_NOT_CAPABLE;
if (!DEVI_IS_ATTACHING(dip)) {
i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP);
*fmcap = DDI_FM_NOT_CAPABLE;
return;
}
if (DDI_FM_DEFAULT_CAP(*fmcap))
return;
/*
* Check parent for supported FM level
* and correct error handling PIL
*/
if (dip != ddi_root_node()) {
/*
* Initialize the default ibc. The parent may change it
* depending upon its capabilities.
*/
ibc = (ddi_iblock_cookie_t)ipltospl(FM_ERR_PIL);
pcap = i_ndi_busop_fm_init(dip, *fmcap, &ibc);
} else {
pcap = *fmcap;
ibc = *ibcp;
}
/* Initialize the per-device instance FM handle */
fmhdl = kmem_zalloc(sizeof (struct i_ddi_fmhdl), KM_SLEEP);
if ((fmhdl->fh_ksp = kstat_create((char *)ddi_driver_name(dip),
ddi_get_instance(dip), "fm", "misc",
KSTAT_TYPE_NAMED, sizeof (struct i_ddi_fmkstat) /
sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) == NULL) {
mutex_destroy(&fmhdl->fh_lock);
kmem_free(fmhdl, sizeof (struct i_ddi_fmhdl));
*fmcap = DDI_FM_NOT_CAPABLE;
return;
}
bcopy(&ddifm_kstat_template, &fmhdl->fh_kstat,
sizeof (struct i_ddi_fmkstat));
fmhdl->fh_ksp->ks_data = &fmhdl->fh_kstat;
fmhdl->fh_ksp->ks_private = fmhdl;
kstat_install(fmhdl->fh_ksp);
fmhdl->fh_dma_cache = NULL;
fmhdl->fh_acc_cache = NULL;
fmhdl->fh_tgts = NULL;
fmhdl->fh_dip = dip;
fmhdl->fh_ibc = ibc;
mutex_init(&fmhdl->fh_lock, NULL, MUTEX_DRIVER, fmhdl->fh_ibc);
devi->devi_fmhdl = fmhdl;
/*
* Initialize support for ereport generation
*/
if (DDI_FM_EREPORT_CAP(*fmcap) && DDI_FM_EREPORT_CAP(pcap)) {
fmhdl->fh_errorq = ereport_errorq;
if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
"fm-ereport-capable", 0) == 0)
(void) ddi_prop_create(DDI_DEV_T_NONE, dip,
DDI_PROP_CANSLEEP, "fm-ereport-capable", NULL, 0);
newcap |= DDI_FM_EREPORT_CAPABLE;
}
/*
* Need cooperation of the parent for error handling
*/
if (DDI_FM_ERRCB_CAP(*fmcap) && DDI_FM_ERRCB_CAP(pcap)) {
if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
"fm-errcb-capable", 0) == 0)
(void) ddi_prop_create(DDI_DEV_T_NONE, dip,
DDI_PROP_CANSLEEP, "fm-errcb-capable", NULL, 0);
newcap |= DDI_FM_ERRCB_CAPABLE;
}
/*
* Support for DMA and Access error handling
*/
if (DDI_FM_DMA_ERR_CAP(*fmcap) && DDI_FM_DMA_ERR_CAP(pcap)) {
i_ndi_fmc_create(&fmhdl->fh_dma_cache, 2, ibc);
/* Set-up dma chk capability prop */
if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
"fm-dmachk-capable", 0) == 0)
(void) ddi_prop_create(DDI_DEV_T_NONE, dip,
DDI_PROP_CANSLEEP, "fm-dmachk-capable", NULL, 0);
newcap |= DDI_FM_DMACHK_CAPABLE;
}
if (DDI_FM_ACC_ERR_CAP(*fmcap) && DDI_FM_ACC_ERR_CAP(pcap)) {
i_ndi_fmc_create(&fmhdl->fh_acc_cache, 2, ibc);
/* Set-up dma chk capability prop */
if (ddi_getprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
"fm-accchk-capable", 0) == 0)
(void) ddi_prop_create(DDI_DEV_T_NONE, dip,
DDI_PROP_CANSLEEP, "fm-accchk-capable", NULL, 0);
newcap |= DDI_FM_ACCCHK_CAPABLE;
}
/*
* Return the capability support available
* to this driver instance
*/
fmhdl->fh_cap = newcap;
*fmcap = newcap;
if (ibcp != NULL)
*ibcp = ibc;
}
/*
* Finalize Fault Management activities for this device instance.
* Outstanding IO transaction must be completed prior to calling
* this routine. All previously allocated resources and error handler
* registration are cleared and deallocated.
*
* This function must be called from a driver's detach(9E) entry point.
*/
void
ddi_fm_fini(dev_info_t *dip)
{
struct i_ddi_fmhdl *fmhdl = DEVI(dip)->devi_fmhdl;
ASSERT(fmhdl);
if (!(DEVI_IS_DETACHING(dip) || DEVI_IS_ATTACHING(dip))) {
i_ddi_drv_ereport_post(dip, DVR_ECONTEXT, NULL, DDI_NOSLEEP);
return;
}
kstat_delete(fmhdl->fh_ksp);
if (DDI_FM_EREPORT_CAP(fmhdl->fh_cap)) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
"fm-ereport-capable");
}
if (dip != ddi_root_node()) {
if (DDI_FM_ERRCB_CAP(fmhdl->fh_cap)) {
ddi_fm_handler_unregister(dip);
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
"fm-errcb-capable");
}
if (DDI_FM_DMA_ERR_CAP(fmhdl->fh_cap) ||
DDI_FM_ACC_ERR_CAP(fmhdl->fh_cap)) {
if (fmhdl->fh_dma_cache != NULL) {
i_ndi_fmc_destroy(fmhdl->fh_dma_cache);
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
"fm-dmachk-capable");
}
if (fmhdl->fh_acc_cache != NULL) {
i_ndi_fmc_destroy(fmhdl->fh_acc_cache);
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
"fm-accachk-capable");
}
}
i_ndi_busop_fm_fini(dip);
}
kmem_free(fmhdl, sizeof (struct i_ddi_fmhdl));
DEVI(dip)->devi_fmhdl = NULL;
}
/*
* Return the fault management capability level for this device instance.
*
* This function may be called from user, kernel, or interrupt context.
*/
int
ddi_fm_capable(dev_info_t *dip)
{
struct i_ddi_fmhdl *fmhdl = DEVI(dip)->devi_fmhdl;
if (fmhdl == NULL)
return (DDI_FM_NOT_CAPABLE);
return (fmhdl->fh_cap);
}
/*
* Routines to set and get error information for/from an access or dma handle
*
* These routines may be called from user, kernel, and interrupt contexts.
*/
static void
ddi_fm_acc_err_get_fail(ddi_acc_handle_t handle)
{
ddi_acc_hdl_t *hp = impl_acc_hdl_get(handle);
i_ddi_drv_ereport_post(hp->ah_dip, DVR_EVER, NULL, DDI_NOSLEEP);
cmn_err(CE_PANIC, "ddi_fm_acc_err_get: Invalid driver version\n");
}
void
ddi_fm_acc_err_get(ddi_acc_handle_t handle, ddi_fm_error_t *de, int version)
{
ndi_err_t *errp;
if (handle == NULL)
return;
if (version != DDI_FME_VER0 && version != DDI_FME_VER1) {
ddi_fm_acc_err_get_fail(handle);
return;
}
errp = ((ddi_acc_impl_t *)handle)->ahi_err;
if (errp->err_status == DDI_FM_OK) {
if (de->fme_status != DDI_FM_OK)
de->fme_status = DDI_FM_OK;
return;
}
de->fme_status = errp->err_status;
de->fme_ena = errp->err_ena;
de->fme_flag = errp->err_expected;
de->fme_acc_handle = handle;
}
void
ddi_fm_dma_err_get_fail(ddi_dma_handle_t handle)
{
i_ddi_drv_ereport_post(((ddi_dma_impl_t *)handle)->dmai_rdip,
DVR_EVER, NULL, DDI_NOSLEEP);
cmn_err(CE_PANIC, "ddi_fm_dma_err_get: Invalid driver version\n");
}
void
ddi_fm_dma_err_get(ddi_dma_handle_t handle, ddi_fm_error_t *de, int version)
{
ndi_err_t *errp;
if (handle == NULL)
return;
if (version != DDI_FME_VER0 && version != DDI_FME_VER1) {
ddi_fm_dma_err_get_fail(handle);
return;
}
errp = &((ddi_dma_impl_t *)handle)->dmai_error;
if (errp->err_status == DDI_FM_OK) {
if (de->fme_status != DDI_FM_OK)
de->fme_status = DDI_FM_OK;
return;
}
de->fme_status = errp->err_status;
de->fme_ena = errp->err_ena;
de->fme_flag = errp->err_expected;
de->fme_dma_handle = handle;
}
void
ddi_fm_acc_err_clear_fail(ddi_acc_handle_t handle)
{
ddi_acc_hdl_t *hp = impl_acc_hdl_get(handle);
i_ddi_drv_ereport_post(hp->ah_dip, DVR_EVER, NULL, DDI_NOSLEEP);
cmn_err(CE_PANIC, "ddi_fm_acc_err_clear: Invalid driver version\n");
}
void
ddi_fm_acc_err_clear(ddi_acc_handle_t handle, int version)
{
ndi_err_t *errp;
if (handle == NULL)
return;
if (version != DDI_FME_VER0 && version != DDI_FME_VER1) {
ddi_fm_acc_err_clear_fail(handle);
return;
}
errp = ((ddi_acc_impl_t *)handle)->ahi_err;
errp->err_status = DDI_FM_OK;
errp->err_ena = 0;
errp->err_expected = DDI_FM_ERR_UNEXPECTED;
}
void
ddi_fm_dma_err_clear_fail(ddi_dma_handle_t handle)
{
i_ddi_drv_ereport_post(((ddi_dma_impl_t *)handle)->dmai_rdip,
DVR_EVER, NULL, DDI_NOSLEEP);
cmn_err(CE_PANIC, "ddi_fm_dma_err_clear: Invalid driver version\n");
}
void
ddi_fm_dma_err_clear(ddi_dma_handle_t handle, int version)
{
ndi_err_t *errp;
if (handle == NULL)
return;
if (version != DDI_FME_VER0 && version != DDI_FME_VER1) {
ddi_fm_dma_err_clear_fail(handle);
return;
}
errp = &((ddi_dma_impl_t *)handle)->dmai_error;
errp->err_status = DDI_FM_OK;
errp->err_ena = 0;
errp->err_expected = DDI_FM_ERR_UNEXPECTED;
}
void
i_ddi_fm_acc_err_set(ddi_acc_handle_t handle, uint64_t ena, int status,
int flag)
{
ddi_acc_hdl_t *hdlp = impl_acc_hdl_get(handle);
ddi_acc_impl_t *i_hdlp = (ddi_acc_impl_t *)handle;
struct i_ddi_fmhdl *fmhdl = DEVI(hdlp->ah_dip)->devi_fmhdl;
i_hdlp->ahi_err->err_ena = ena;
i_hdlp->ahi_err->err_status = status;
i_hdlp->ahi_err->err_expected = flag;
atomic_inc_64(&fmhdl->fh_kstat.fek_acc_err.value.ui64);
}
void
i_ddi_fm_dma_err_set(ddi_dma_handle_t handle, uint64_t ena, int status,
int flag)
{
ddi_dma_impl_t *hdlp = (ddi_dma_impl_t *)handle;
struct i_ddi_fmhdl *fmhdl = DEVI(hdlp->dmai_rdip)->devi_fmhdl;
hdlp->dmai_error.err_ena = ena;
hdlp->dmai_error.err_status = status;
hdlp->dmai_error.err_expected = flag;
atomic_inc_64(&fmhdl->fh_kstat.fek_dma_err.value.ui64);
}
ddi_fmcompare_t
i_ddi_fm_acc_err_cf_get(ddi_acc_handle_t handle)
{
ddi_acc_impl_t *i_hdlp = (ddi_acc_impl_t *)handle;
return (i_hdlp->ahi_err->err_cf);
}
ddi_fmcompare_t
i_ddi_fm_dma_err_cf_get(ddi_dma_handle_t handle)
{
ddi_dma_impl_t *hdlp = (ddi_dma_impl_t *)handle;
return (hdlp->dmai_error.err_cf);
}