/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009-2010, Intel Corporation.
* All rights reserved.
*/
/*
* Introduction
* This file implements a CPU event notification mechanism to signal clients
* which are interested in CPU related events.
* Currently it only supports CPU idle state change events which will be
* triggered just before CPU entering hardware idle state and just after CPU
* wakes up from hardware idle state.
* Please refer to PSARC/2009/115 for detail information.
*
* Lock Strategy
* 1) cpu_idle_prop_busy/free are protected by cpu_idle_prop_lock.
* 2) No protection for cpu_idle_cb_state because it's per-CPU data.
* 3) cpu_idle_cb_busy is protected by cpu_idle_cb_lock.
* 4) cpu_idle_cb_array is protected by pause_cpus/start_cpus logic.
* 5) cpu_idle_cb_max/curr are protected by both cpu_idle_cb_lock and
* pause_cpus/start_cpus logic.
* We have optimized the algorithm for hot path on read side access.
* In the current algorithm, it's lock free on read side access.
* On write side, we use pause_cpus() to keep other CPUs in the pause thread,
* which will guarantee that no other threads will access
* cpu_idle_cb_max/curr/array data structure.
*/
#include <sys/types.h>
#include <sys/cmn_err.h>
#include <sys/cpuvar.h>
#include <sys/cpu.h>
#include <sys/kmem.h>
#include <sys/machcpuvar.h>
#include <sys/sdt.h>
#include <sys/sysmacros.h>
#include <sys/synch.h>
#include <sys/systm.h>
#include <sys/sunddi.h>
#if defined(__sparc)
#include <sys/machsystm.h>
#elif defined(__x86)
#include <sys/archsystm.h>
#endif
#include <sys/cpu_event.h>
/* Define normal state for CPU on different platforms. */
#if defined(__x86)
#define CPU_IDLE_STATE_NORMAL IDLE_STATE_C0
#elif defined(__sparc)
/*
* At the time of this implementation IDLE_STATE_NORMAL is defined
* in mach_startup.c, and not in a header file. So if we find it is
* undefined, then we set it to the value as defined in mach_startup.c
* Should it eventually be defined, we will pick it up.
*/
#ifndef IDLE_STATE_NORMAL
#define IDLE_STATE_NORMAL 0
#endif
#define CPU_IDLE_STATE_NORMAL IDLE_STATE_NORMAL
#endif
/*
* To improve cache efficiency and avoid cache false sharing, CPU idle
* properties are grouped into cache lines as below:
* | CPU0 | CPU1 |.........| CPUn |
* | cache line 0 | cache line 1 |.........| cache line n |
* | v0 | ... | vm | v0 | ... | vm |.........| v0 | ... | vm |
* To access value of property m for CPU n, using following value as index:
* index = seq_id_of_CPUn * CPU_IDLE_VALUE_GROUP_SIZE + m.
*/
#define CPU_IDLE_VALUE_GROUP_SIZE \
(CPU_CACHE_COHERENCE_SIZE / sizeof (cpu_idle_prop_value_t))
/* Get callback context handle for current CPU. */
#define CPU_IDLE_GET_CTX(cp) \
((cpu_idle_callback_context_t)(intptr_t)((cp)->cpu_seqid))
/* Get CPU sequential id from ctx. */
#define CPU_IDLE_CTX2CPUID(ctx) ((processorid_t)(intptr_t)(ctx))
/* Compute index from callback context handle. */
#define CPU_IDLE_CTX2IDX(ctx) \
(((int)(intptr_t)(ctx)) * CPU_IDLE_VALUE_GROUP_SIZE)
#define CPU_IDLE_HDL2VALP(hdl, idx) \
(&((cpu_idle_prop_impl_t *)(hdl))->value[(idx)])
/*
* When cpu_idle_cb_array is NULL or full, increase CPU_IDLE_ARRAY_CAPACITY_INC
* entries every time. Here we prefer linear growth instead of exponential.
*/
#define CPU_IDLE_ARRAY_CAPACITY_INC 0x10
typedef struct cpu_idle_prop_impl {
cpu_idle_prop_value_t *value;
struct cpu_idle_prop_impl *next;
char *name;
cpu_idle_prop_update_t update;
void *private;
cpu_idle_prop_type_t type;
uint32_t refcnt;
} cpu_idle_prop_impl_t;
typedef struct cpu_idle_prop_item {
cpu_idle_prop_type_t type;
char *name;
cpu_idle_prop_update_t update;
void *arg;
cpu_idle_prop_handle_t handle;
} cpu_idle_prop_item_t;
/* Structure to maintain registered callbacks in list. */
typedef struct cpu_idle_cb_impl {
struct cpu_idle_cb_impl *next;
cpu_idle_callback_t *callback;
void *argument;
int priority;
} cpu_idle_cb_impl_t;
/*
* Structure to maintain registered callbacks in priority order and also
* optimized for cache efficiency for reading access.
*/
typedef struct cpu_idle_cb_item {
cpu_idle_enter_cbfn_t enter;
cpu_idle_exit_cbfn_t exit;
void *arg;
cpu_idle_cb_impl_t *impl;
} cpu_idle_cb_item_t;
/* Per-CPU state aligned to CPU_CACHE_COHERENCE_SIZE to avoid false sharing. */
typedef union cpu_idle_cb_state {
struct {
/* Index of already invoked callbacks. */
int index;
/* Invoke registered callbacks if true. */
boolean_t enabled;
/* Property values are valid if true. */
boolean_t ready;
/* Pointers to per-CPU properties. */
cpu_idle_prop_value_t *idle_state;
cpu_idle_prop_value_t *enter_ts;
cpu_idle_prop_value_t *exit_ts;
cpu_idle_prop_value_t *last_idle;
cpu_idle_prop_value_t *last_busy;
cpu_idle_prop_value_t *total_idle;
cpu_idle_prop_value_t *total_busy;
cpu_idle_prop_value_t *intr_cnt;
} v;
#ifdef _LP64
char align[2 * CPU_CACHE_COHERENCE_SIZE];
#else
char align[CPU_CACHE_COHERENCE_SIZE];
#endif
} cpu_idle_cb_state_t;
static kmutex_t cpu_idle_prop_lock;
static cpu_idle_prop_impl_t *cpu_idle_prop_busy = NULL;
static cpu_idle_prop_impl_t *cpu_idle_prop_free = NULL;
static kmutex_t cpu_idle_cb_lock;
static cpu_idle_cb_impl_t *cpu_idle_cb_busy = NULL;
static cpu_idle_cb_item_t *cpu_idle_cb_array = NULL;
static int cpu_idle_cb_curr = 0;
static int cpu_idle_cb_max = 0;
static cpu_idle_cb_state_t *cpu_idle_cb_state;
#ifdef __x86
/*
* cpuset used to intercept CPUs before powering them off.
* The control CPU sets the bit corresponding to the target CPU and waits
* until the bit is cleared.
* The target CPU disables interrupts before clearing corresponding bit and
* then loops for ever.
*/
static cpuset_t cpu_idle_intercept_set;
#endif
static int cpu_idle_prop_update_intr_cnt(void *arg, uint64_t seqnum,
cpu_idle_prop_value_t *valp);
static cpu_idle_prop_item_t cpu_idle_prop_array[] = {
{
CPU_IDLE_PROP_TYPE_INTPTR, CPU_IDLE_PROP_IDLE_STATE,
NULL, NULL, NULL
},
{
CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_ENTER_TIMESTAMP,
NULL, NULL, NULL
},
{
CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_EXIT_TIMESTAMP,
NULL, NULL, NULL
},
{
CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_LAST_IDLE_TIME,
NULL, NULL, NULL
},
{
CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_LAST_BUSY_TIME,
NULL, NULL, NULL
},
{
CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_TOTAL_IDLE_TIME,
NULL, NULL, NULL
},
{
CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_TOTAL_BUSY_TIME,
NULL, NULL, NULL
},
{
CPU_IDLE_PROP_TYPE_UINT64, CPU_IDLE_PROP_INTERRUPT_COUNT,
cpu_idle_prop_update_intr_cnt, NULL, NULL
},
};
#define CPU_IDLE_PROP_IDX_IDLE_STATE 0
#define CPU_IDLE_PROP_IDX_ENTER_TS 1
#define CPU_IDLE_PROP_IDX_EXIT_TS 2
#define CPU_IDLE_PROP_IDX_LAST_IDLE 3
#define CPU_IDLE_PROP_IDX_LAST_BUSY 4
#define CPU_IDLE_PROP_IDX_TOTAL_IDLE 5
#define CPU_IDLE_PROP_IDX_TOTAL_BUSY 6
#define CPU_IDLE_PROP_IDX_INTR_CNT 7
/*ARGSUSED*/
static void
cpu_idle_dtrace_enter(void *arg, cpu_idle_callback_context_t ctx,
cpu_idle_check_wakeup_t check_func, void *check_arg)
{
int state;
state = cpu_idle_prop_get_intptr(
cpu_idle_prop_array[CPU_IDLE_PROP_IDX_IDLE_STATE].handle, ctx);
DTRACE_PROBE1(idle__state__transition, uint_t, state);
}
/*ARGSUSED*/
static void
cpu_idle_dtrace_exit(void *arg, cpu_idle_callback_context_t ctx, int flag)
{
DTRACE_PROBE1(idle__state__transition, uint_t, CPU_IDLE_STATE_NORMAL);
}
static cpu_idle_callback_handle_t cpu_idle_cb_handle_dtrace;
static cpu_idle_callback_t cpu_idle_callback_dtrace = {
CPU_IDLE_CALLBACK_VERS,
cpu_idle_dtrace_enter,
cpu_idle_dtrace_exit,
};
#if defined(__x86) && !defined(__xpv)
extern void tlb_going_idle(void);
extern void tlb_service(void);
static cpu_idle_callback_handle_t cpu_idle_cb_handle_tlb;
static cpu_idle_callback_t cpu_idle_callback_tlb = {
CPU_IDLE_CALLBACK_VERS,
(cpu_idle_enter_cbfn_t)tlb_going_idle,
(cpu_idle_exit_cbfn_t)tlb_service,
};
#endif
void
cpu_event_init(void)
{
int i, idx;
size_t sz;
intptr_t buf;
cpu_idle_cb_state_t *sp;
cpu_idle_prop_item_t *ip;
mutex_init(&cpu_idle_cb_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&cpu_idle_prop_lock, NULL, MUTEX_DRIVER, NULL);
/* Create internal properties. */
for (i = 0, ip = cpu_idle_prop_array;
i < sizeof (cpu_idle_prop_array) / sizeof (cpu_idle_prop_array[0]);
i++, ip++) {
(void) cpu_idle_prop_create_property(ip->name, ip->type,
ip->update, ip->arg, &ip->handle);
ASSERT(ip->handle != NULL);
}
/* Allocate buffer and align to CPU_CACHE_COHERENCE_SIZE. */
sz = sizeof (cpu_idle_cb_state_t) * max_ncpus;
sz += CPU_CACHE_COHERENCE_SIZE;
buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
cpu_idle_cb_state = (cpu_idle_cb_state_t *)P2ROUNDUP(buf,
CPU_CACHE_COHERENCE_SIZE);
/* Cache frequently used property value pointers. */
for (sp = cpu_idle_cb_state, i = 0; i < max_ncpus; i++, sp++) {
idx = CPU_IDLE_CTX2IDX(i);
#define ___INIT_P(f, i) \
sp->v.f = CPU_IDLE_HDL2VALP(cpu_idle_prop_array[(i)].handle, idx)
___INIT_P(idle_state, CPU_IDLE_PROP_IDX_IDLE_STATE);
___INIT_P(enter_ts, CPU_IDLE_PROP_IDX_ENTER_TS);
___INIT_P(exit_ts, CPU_IDLE_PROP_IDX_EXIT_TS);
___INIT_P(last_idle, CPU_IDLE_PROP_IDX_LAST_IDLE);
___INIT_P(last_busy, CPU_IDLE_PROP_IDX_LAST_BUSY);
___INIT_P(total_idle, CPU_IDLE_PROP_IDX_TOTAL_IDLE);
___INIT_P(total_busy, CPU_IDLE_PROP_IDX_TOTAL_BUSY);
___INIT_P(last_idle, CPU_IDLE_PROP_IDX_INTR_CNT);
#undef ___INIT_P
}
/* Register built-in callbacks. */
if (cpu_idle_register_callback(CPU_IDLE_CB_PRIO_DTRACE,
&cpu_idle_callback_dtrace, NULL, &cpu_idle_cb_handle_dtrace) != 0) {
cmn_err(CE_PANIC,
"cpu_idle: failed to register callback for dtrace.");
}
#if defined(__x86) && !defined(__xpv)
if (cpu_idle_register_callback(CPU_IDLE_CB_PRIO_TLB,
&cpu_idle_callback_tlb, NULL, &cpu_idle_cb_handle_tlb) != 0) {
cmn_err(CE_PANIC,
"cpu_idle: failed to register callback for tlb_flush.");
}
#endif
}
/*
* This function is called to initialize per CPU state when starting CPUs.
*/
void
cpu_event_init_cpu(cpu_t *cp)
{
ASSERT(cp->cpu_seqid < max_ncpus);
cpu_idle_cb_state[cp->cpu_seqid].v.index = 0;
cpu_idle_cb_state[cp->cpu_seqid].v.ready = B_FALSE;
cpu_idle_cb_state[cp->cpu_seqid].v.enabled = B_TRUE;
}
/*
* This function is called to clean up per CPU state when stopping CPUs.
*/
void
cpu_event_fini_cpu(cpu_t *cp)
{
ASSERT(cp->cpu_seqid < max_ncpus);
cpu_idle_cb_state[cp->cpu_seqid].v.enabled = B_FALSE;
cpu_idle_cb_state[cp->cpu_seqid].v.ready = B_FALSE;
}
static void
cpu_idle_insert_callback(cpu_idle_cb_impl_t *cip)
{
int unlock = 0, unpause = 0;
int i, cnt_new = 0, cnt_old = 0;
char *buf_new = NULL, *buf_old = NULL;
ASSERT(MUTEX_HELD(&cpu_idle_cb_lock));
/*
* Expand array if it's full.
* Memory must be allocated out of pause/start_cpus() scope because
* kmem_zalloc() can't be called with KM_SLEEP flag within that scope.
*/
if (cpu_idle_cb_curr == cpu_idle_cb_max) {
cnt_new = cpu_idle_cb_max + CPU_IDLE_ARRAY_CAPACITY_INC;
buf_new = (char *)kmem_zalloc(cnt_new *
sizeof (cpu_idle_cb_item_t), KM_SLEEP);
}
/* Try to acquire cpu_lock if not held yet. */
if (!MUTEX_HELD(&cpu_lock)) {
mutex_enter(&cpu_lock);
unlock = 1;
}
/*
* Pause all other CPUs (and let them run pause thread).
* It's guaranteed that no other threads will access cpu_idle_cb_array
* after pause_cpus().
*/
if (!cpus_paused()) {
pause_cpus(NULL, NULL);
unpause = 1;
}
/* Copy content to new buffer if needed. */
if (buf_new != NULL) {
buf_old = (char *)cpu_idle_cb_array;
cnt_old = cpu_idle_cb_max;
if (buf_old != NULL) {
ASSERT(cnt_old != 0);
bcopy(cpu_idle_cb_array, buf_new,
sizeof (cpu_idle_cb_item_t) * cnt_old);
}
cpu_idle_cb_array = (cpu_idle_cb_item_t *)buf_new;
cpu_idle_cb_max = cnt_new;
}
/* Insert into array according to priority. */
ASSERT(cpu_idle_cb_curr < cpu_idle_cb_max);
for (i = cpu_idle_cb_curr; i > 0; i--) {
if (cpu_idle_cb_array[i - 1].impl->priority >= cip->priority) {
break;
}
cpu_idle_cb_array[i] = cpu_idle_cb_array[i - 1];
}
cpu_idle_cb_array[i].arg = cip->argument;
cpu_idle_cb_array[i].enter = cip->callback->idle_enter;
cpu_idle_cb_array[i].exit = cip->callback->idle_exit;
cpu_idle_cb_array[i].impl = cip;
cpu_idle_cb_curr++;
/* Resume other CPUs from paused state if needed. */
if (unpause) {
start_cpus();
}
if (unlock) {
mutex_exit(&cpu_lock);
}
/* Free old resource if needed. */
if (buf_old != NULL) {
ASSERT(cnt_old != 0);
kmem_free(buf_old, cnt_old * sizeof (cpu_idle_cb_item_t));
}
}
static void
cpu_idle_remove_callback(cpu_idle_cb_impl_t *cip)
{
int i, found = 0;
int unlock = 0, unpause = 0;
cpu_idle_cb_state_t *sp;
ASSERT(MUTEX_HELD(&cpu_idle_cb_lock));
/* Try to acquire cpu_lock if not held yet. */
if (!MUTEX_HELD(&cpu_lock)) {
mutex_enter(&cpu_lock);
unlock = 1;
}
/*
* Pause all other CPUs.
* It's guaranteed that no other threads will access cpu_idle_cb_array
* after pause_cpus().
*/
if (!cpus_paused()) {
pause_cpus(NULL, NULL);
unpause = 1;
}
/* Remove cip from array. */
for (i = 0; i < cpu_idle_cb_curr; i++) {
if (found == 0) {
if (cpu_idle_cb_array[i].impl == cip) {
found = 1;
}
} else {
cpu_idle_cb_array[i - 1] = cpu_idle_cb_array[i];
}
}
ASSERT(found != 0);
cpu_idle_cb_curr--;
/*
* Reset property ready flag for all CPUs if no registered callback
* left because cpu_idle_enter/exit will stop updating property if
* there's no callback registered.
*/
if (cpu_idle_cb_curr == 0) {
for (sp = cpu_idle_cb_state, i = 0; i < max_ncpus; i++, sp++) {
sp->v.ready = B_FALSE;
}
}
/* Resume other CPUs from paused state if needed. */
if (unpause) {
start_cpus();
}
if (unlock) {
mutex_exit(&cpu_lock);
}
}
int
cpu_idle_register_callback(uint_t prio, cpu_idle_callback_t *cbp,
void *arg, cpu_idle_callback_handle_t *hdlp)
{
cpu_idle_cb_state_t *sp;
cpu_idle_cb_impl_t *cip = NULL;
/* First validate parameters. */
ASSERT(!CPU_ON_INTR(CPU));
ASSERT(CPU->cpu_seqid < max_ncpus);
sp = &cpu_idle_cb_state[CPU->cpu_seqid];
if (sp->v.index != 0) {
cmn_err(CE_NOTE,
"!cpu_event: register_callback called from callback.");
return (EBUSY);
} else if (cbp == NULL || hdlp == NULL) {
cmn_err(CE_NOTE,
"!cpu_event: NULL parameters in register_callback.");
return (EINVAL);
} else if (prio < CPU_IDLE_CB_PRIO_LOW_BASE ||
prio >= CPU_IDLE_CB_PRIO_RESV_BASE) {
cmn_err(CE_NOTE,
"!cpu_event: priority 0x%x out of range.", prio);
return (EINVAL);
} else if (cbp->version != CPU_IDLE_CALLBACK_VERS) {
cmn_err(CE_NOTE,
"!cpu_event: callback version %d is not supported.",
cbp->version);
return (EINVAL);
}
mutex_enter(&cpu_idle_cb_lock);
/* Check whether callback with priority exists if not dynamic. */
if (prio != CPU_IDLE_CB_PRIO_DYNAMIC) {
for (cip = cpu_idle_cb_busy; cip != NULL;
cip = cip->next) {
if (cip->priority == prio) {
mutex_exit(&cpu_idle_cb_lock);
cmn_err(CE_NOTE, "!cpu_event: callback with "
"priority 0x%x already exists.", prio);
return (EEXIST);
}
}
}
cip = kmem_zalloc(sizeof (*cip), KM_SLEEP);
cip->callback = cbp;
cip->argument = arg;
cip->priority = prio;
cip->next = cpu_idle_cb_busy;
cpu_idle_cb_busy = cip;
cpu_idle_insert_callback(cip);
mutex_exit(&cpu_idle_cb_lock);
*hdlp = (cpu_idle_callback_handle_t)cip;
return (0);
}
int
cpu_idle_unregister_callback(cpu_idle_callback_handle_t hdl)
{
int rc = ENODEV;
cpu_idle_cb_state_t *sp;
cpu_idle_cb_impl_t *ip, **ipp;
ASSERT(!CPU_ON_INTR(CPU));
ASSERT(CPU->cpu_seqid < max_ncpus);
sp = &cpu_idle_cb_state[CPU->cpu_seqid];
if (sp->v.index != 0) {
cmn_err(CE_NOTE,
"!cpu_event: unregister_callback called from callback.");
return (EBUSY);
} else if (hdl == NULL) {
cmn_err(CE_NOTE,
"!cpu_event: hdl is NULL in unregister_callback.");
return (EINVAL);
}
ip = (cpu_idle_cb_impl_t *)hdl;
mutex_enter(&cpu_idle_cb_lock);
for (ipp = &cpu_idle_cb_busy; *ipp != NULL; ipp = &(*ipp)->next) {
if (*ipp == ip) {
*ipp = ip->next;
cpu_idle_remove_callback(ip);
rc = 0;
break;
}
}
mutex_exit(&cpu_idle_cb_lock);
if (rc == 0) {
kmem_free(ip, sizeof (*ip));
} else {
cmn_err(CE_NOTE,
"!cpu_event: callback handle %p not found.", (void *)hdl);
}
return (rc);
}
static int
cpu_idle_enter_state(cpu_idle_cb_state_t *sp, intptr_t state)
{
sp->v.idle_state->cipv_intptr = state;
sp->v.enter_ts->cipv_hrtime = gethrtime_unscaled();
sp->v.last_busy->cipv_hrtime = sp->v.enter_ts->cipv_hrtime -
sp->v.exit_ts->cipv_hrtime;
sp->v.total_busy->cipv_hrtime += sp->v.last_busy->cipv_hrtime;
if (sp->v.ready == B_FALSE) {
sp->v.ready = B_TRUE;
return (0);
}
return (1);
}
static void
cpu_idle_exit_state(cpu_idle_cb_state_t *sp)
{
sp->v.idle_state->cipv_intptr = CPU_IDLE_STATE_NORMAL;
sp->v.exit_ts->cipv_hrtime = gethrtime_unscaled();
sp->v.last_idle->cipv_hrtime = sp->v.exit_ts->cipv_hrtime -
sp->v.enter_ts->cipv_hrtime;
sp->v.total_idle->cipv_hrtime += sp->v.last_idle->cipv_hrtime;
}
/*ARGSUSED*/
int
cpu_idle_enter(int state, int flag,
cpu_idle_check_wakeup_t check_func, void *check_arg)
{
int i;
cpu_idle_cb_item_t *cip;
cpu_idle_cb_state_t *sp;
cpu_idle_callback_context_t ctx;
#if defined(__x86)
ulong_t iflags;
#endif
ctx = CPU_IDLE_GET_CTX(CPU);
ASSERT(CPU->cpu_seqid < max_ncpus);
sp = &cpu_idle_cb_state[CPU->cpu_seqid];
ASSERT(sp->v.index == 0);
if (sp->v.enabled == B_FALSE) {
#if defined(__x86)
/* Intercept CPU at a safe point before powering off it. */
if (CPU_IN_SET(cpu_idle_intercept_set, CPU->cpu_id)) {
iflags = intr_clear();
CPUSET_ATOMIC_DEL(cpu_idle_intercept_set, CPU->cpu_id);
/*CONSTCOND*/
while (1) {
SMT_PAUSE();
}
}
#endif
return (0);
}
/*
* On x86, cpu_idle_enter can be called from idle thread with either
* interrupts enabled or disabled, so we need to make sure interrupts
* are disabled here.
* On SPARC, cpu_idle_enter will be called from idle thread with
* interrupt disabled, so no special handling necessary.
*/
#if defined(__x86)
iflags = intr_clear();
#endif
/* Skip calling callback if state is not ready for current CPU. */
if (cpu_idle_enter_state(sp, state) == 0) {
#if defined(__x86)
intr_restore(iflags);
#endif
return (0);
}
for (i = 0, cip = cpu_idle_cb_array; i < cpu_idle_cb_curr; i++, cip++) {
/*
* Increase index so corresponding idle_exit callback
* will be invoked should interrupt happen during
* idle_enter callback.
*/
sp->v.index++;
/* Call idle_enter callback function if it's not NULL. */
if (cip->enter != NULL) {
cip->enter(cip->arg, ctx, check_func, check_arg);
/*
* cpu_idle_enter runs with interrupts
* disabled, so the idle_enter callbacks will
* also be called with interrupts disabled.
* It is permissible for the callbacks to
* enable the interrupts, if they can also
* handle the condition if the interrupt
* occurs.
*
* However, if an interrupt occurs and we
* return here without dealing with it, we
* return to the cpu_idle_enter() caller
* with an EBUSY, and the caller will not
* enter the idle state.
*
* We detect the interrupt, by checking the
* index value of the state pointer. If it
* is not the index we incremented above,
* then it was cleared while processing
* the interrupt.
*
* Also note, that at this point of the code
* the normal index value will be one greater
* than the variable 'i' in the loop, as it
* hasn't yet been incremented.
*/
if (sp->v.index != i + 1) {
#if defined(__x86)
intr_restore(iflags);
#endif
return (EBUSY);
}
}
}
#if defined(__x86)
intr_restore(iflags);
#endif
return (0);
}
void
cpu_idle_exit(int flag)
{
int i;
cpu_idle_cb_item_t *cip;
cpu_idle_cb_state_t *sp;
cpu_idle_callback_context_t ctx;
#if defined(__x86)
ulong_t iflags;
#endif
ASSERT(CPU->cpu_seqid < max_ncpus);
sp = &cpu_idle_cb_state[CPU->cpu_seqid];
#if defined(__sparc)
/*
* On SPARC, cpu_idle_exit will only be called from idle thread
* with interrupt disabled.
*/
if (sp->v.index != 0) {
ctx = CPU_IDLE_GET_CTX(CPU);
cpu_idle_exit_state(sp);
for (i = sp->v.index - 1; i >= 0; i--) {
cip = &cpu_idle_cb_array[i];
if (cip->exit != NULL) {
cip->exit(cip->arg, ctx, flag);
}
}
sp->v.index = 0;
}
#elif defined(__x86)
/*
* On x86, cpu_idle_exit will be called from idle thread or interrupt
* handler. When called from interrupt handler, interrupts will be
* disabled. When called from idle thread, interrupts may be disabled
* or enabled.
*/
/* Called from interrupt, interrupts are already disabled. */
if (flag & CPU_IDLE_CB_FLAG_INTR) {
/*
* return if cpu_idle_exit already called or
* there is no registered callback.
*/
if (sp->v.index == 0) {
return;
}
ctx = CPU_IDLE_GET_CTX(CPU);
cpu_idle_exit_state(sp);
for (i = sp->v.index - 1; i >= 0; i--) {
cip = &cpu_idle_cb_array[i];
if (cip->exit != NULL) {
cip->exit(cip->arg, ctx, flag);
}
}
sp->v.index = 0;
/* Called from idle thread, need to disable interrupt. */
} else {
iflags = intr_clear();
if (sp->v.index != 0) {
ctx = CPU_IDLE_GET_CTX(CPU);
cpu_idle_exit_state(sp);
for (i = sp->v.index - 1; i >= 0; i--) {
cip = &cpu_idle_cb_array[i];
if (cip->exit != NULL) {
cip->exit(cip->arg, ctx, flag);
}
}
sp->v.index = 0;
}
intr_restore(iflags);
}
#endif
}
cpu_idle_callback_context_t
cpu_idle_get_context(void)
{
return (CPU_IDLE_GET_CTX(CPU));
}
/*
* Allocate property structure in group of CPU_IDLE_VALUE_GROUP_SIZE to improve
* cache efficiency. To simplify implementation, allocated memory for property
* structure won't be freed.
*/
static void
cpu_idle_prop_allocate_impl(void)
{
int i;
size_t sz;
intptr_t buf;
cpu_idle_prop_impl_t *prop;
cpu_idle_prop_value_t *valp;
ASSERT(!CPU_ON_INTR(CPU));
prop = kmem_zalloc(sizeof (*prop) * CPU_IDLE_VALUE_GROUP_SIZE,
KM_SLEEP);
sz = sizeof (*valp) * CPU_IDLE_VALUE_GROUP_SIZE * max_ncpus;
sz += CPU_CACHE_COHERENCE_SIZE;
buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
valp = (cpu_idle_prop_value_t *)P2ROUNDUP(buf,
CPU_CACHE_COHERENCE_SIZE);
for (i = 0; i < CPU_IDLE_VALUE_GROUP_SIZE; i++, prop++, valp++) {
prop->value = valp;
prop->next = cpu_idle_prop_free;
cpu_idle_prop_free = prop;
}
}
int
cpu_idle_prop_create_property(const char *name, cpu_idle_prop_type_t type,
cpu_idle_prop_update_t update, void *arg, cpu_idle_prop_handle_t *hdlp)
{
int rc = EEXIST;
cpu_idle_prop_impl_t *prop;
ASSERT(!CPU_ON_INTR(CPU));
if (name == NULL || hdlp == NULL) {
cmn_err(CE_WARN,
"!cpu_event: NULL parameters in create_property.");
return (EINVAL);
}
mutex_enter(&cpu_idle_prop_lock);
for (prop = cpu_idle_prop_busy; prop != NULL; prop = prop->next) {
if (strcmp(prop->name, name) == 0) {
cmn_err(CE_NOTE,
"!cpu_event: property %s already exists.", name);
break;
}
}
if (prop == NULL) {
if (cpu_idle_prop_free == NULL) {
cpu_idle_prop_allocate_impl();
}
ASSERT(cpu_idle_prop_free != NULL);
prop = cpu_idle_prop_free;
cpu_idle_prop_free = prop->next;
prop->next = cpu_idle_prop_busy;
cpu_idle_prop_busy = prop;
ASSERT(prop->value != NULL);
prop->name = strdup(name);
prop->type = type;
prop->update = update;
prop->private = arg;
prop->refcnt = 1;
*hdlp = prop;
rc = 0;
}
mutex_exit(&cpu_idle_prop_lock);
return (rc);
}
int
cpu_idle_prop_destroy_property(cpu_idle_prop_handle_t hdl)
{
int rc = ENODEV;
cpu_idle_prop_impl_t *prop, **propp;
cpu_idle_prop_value_t *valp;
ASSERT(!CPU_ON_INTR(CPU));
if (hdl == NULL) {
cmn_err(CE_WARN,
"!cpu_event: hdl is NULL in destroy_property.");
return (EINVAL);
}
prop = (cpu_idle_prop_impl_t *)hdl;
mutex_enter(&cpu_idle_prop_lock);
for (propp = &cpu_idle_prop_busy; *propp != NULL;
propp = &(*propp)->next) {
if (*propp == prop) {
ASSERT(prop->refcnt > 0);
if (atomic_cas_32(&prop->refcnt, 1, 0) == 1) {
*propp = prop->next;
strfree(prop->name);
valp = prop->value;
bzero(prop, sizeof (*prop));
prop->value = valp;
prop->next = cpu_idle_prop_free;
cpu_idle_prop_free = prop;
rc = 0;
} else {
rc = EBUSY;
}
break;
}
}
mutex_exit(&cpu_idle_prop_lock);
return (rc);
}
int
cpu_idle_prop_create_handle(const char *name, cpu_idle_prop_handle_t *hdlp)
{
int rc = ENODEV;
cpu_idle_prop_impl_t *prop;
ASSERT(!CPU_ON_INTR(CPU));
if (name == NULL || hdlp == NULL) {
cmn_err(CE_WARN,
"!cpu_event: NULL parameters in create_handle.");
return (EINVAL);
}
mutex_enter(&cpu_idle_prop_lock);
for (prop = cpu_idle_prop_busy; prop != NULL; prop = prop->next) {
if (strcmp(prop->name, name) == 0) {
/* Hold one refcount on object. */
ASSERT(prop->refcnt > 0);
atomic_inc_32(&prop->refcnt);
*hdlp = (cpu_idle_prop_handle_t)prop;
rc = 0;
break;
}
}
mutex_exit(&cpu_idle_prop_lock);
return (rc);
}
int
cpu_idle_prop_destroy_handle(cpu_idle_prop_handle_t hdl)
{
int rc = ENODEV;
cpu_idle_prop_impl_t *prop;
ASSERT(!CPU_ON_INTR(CPU));
if (hdl == NULL) {
cmn_err(CE_WARN,
"!cpu_event: hdl is NULL in destroy_handle.");
return (EINVAL);
}
mutex_enter(&cpu_idle_prop_lock);
for (prop = cpu_idle_prop_busy; prop != NULL; prop = prop->next) {
if (prop == hdl) {
/* Release refcnt held in create_handle. */
ASSERT(prop->refcnt > 1);
atomic_dec_32(&prop->refcnt);
rc = 0;
break;
}
}
mutex_exit(&cpu_idle_prop_lock);
return (rc);
}
cpu_idle_prop_type_t
cpu_idle_prop_get_type(cpu_idle_prop_handle_t hdl)
{
ASSERT(hdl != NULL);
return (((cpu_idle_prop_impl_t *)hdl)->type);
}
const char *
cpu_idle_prop_get_name(cpu_idle_prop_handle_t hdl)
{
ASSERT(hdl != NULL);
return (((cpu_idle_prop_impl_t *)hdl)->name);
}
int
cpu_idle_prop_get_value(cpu_idle_prop_handle_t hdl,
cpu_idle_callback_context_t ctx, cpu_idle_prop_value_t *valp)
{
int idx, rc = 0;
cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
if (hdl == NULL || valp == NULL) {
cmn_err(CE_NOTE, "!cpu_event: NULL parameters in prop_get.");
return (EINVAL);
}
idx = CPU_IDLE_CTX2IDX(ctx);
if (prop->update != NULL) {
cpu_idle_cb_state_t *sp;
ASSERT(CPU->cpu_seqid < max_ncpus);
sp = &cpu_idle_cb_state[CPU->cpu_seqid];
/* CPU's idle enter timestamp as sequence number. */
rc = prop->update(prop->private,
(uint64_t)sp->v.enter_ts->cipv_hrtime, &prop->value[idx]);
}
if (rc == 0) {
*valp = prop->value[idx];
}
return (rc);
}
uint32_t
cpu_idle_prop_get_uint32(cpu_idle_prop_handle_t hdl,
cpu_idle_callback_context_t ctx)
{
int idx;
cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
ASSERT(hdl != NULL);
ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
idx = CPU_IDLE_CTX2IDX(ctx);
return (prop->value[idx].cipv_uint32);
}
uint64_t
cpu_idle_prop_get_uint64(cpu_idle_prop_handle_t hdl,
cpu_idle_callback_context_t ctx)
{
int idx;
cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
ASSERT(hdl != NULL);
ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
idx = CPU_IDLE_CTX2IDX(ctx);
return (prop->value[idx].cipv_uint64);
}
intptr_t
cpu_idle_prop_get_intptr(cpu_idle_prop_handle_t hdl,
cpu_idle_callback_context_t ctx)
{
int idx;
cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
ASSERT(hdl != NULL);
ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
idx = CPU_IDLE_CTX2IDX(ctx);
return (prop->value[idx].cipv_intptr);
}
hrtime_t
cpu_idle_prop_get_hrtime(cpu_idle_prop_handle_t hdl,
cpu_idle_callback_context_t ctx)
{
int idx;
cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
ASSERT(hdl != NULL);
ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
idx = CPU_IDLE_CTX2IDX(ctx);
return (prop->value[idx].cipv_hrtime);
}
void
cpu_idle_prop_set_value(cpu_idle_prop_handle_t hdl,
cpu_idle_callback_context_t ctx, cpu_idle_prop_value_t val)
{
int idx;
cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
ASSERT(hdl != NULL);
ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
idx = CPU_IDLE_CTX2IDX(ctx);
prop->value[idx] = val;
}
void
cpu_idle_prop_set_all(cpu_idle_prop_handle_t hdl, cpu_idle_prop_value_t val)
{
int i, idx;
cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
ASSERT(hdl != NULL);
for (i = 0; i < max_ncpus; i++) {
idx = CPU_IDLE_CTX2IDX(i);
prop->value[idx] = val;
}
}
/*ARGSUSED*/
static int cpu_idle_prop_update_intr_cnt(void *arg, uint64_t seqnum,
cpu_idle_prop_value_t *valp)
{
int i;
uint64_t val;
for (val = 0, i = 0; i < PIL_MAX; i++) {
val += CPU->cpu_stats.sys.intr[i];
}
valp->cipv_uint64 = val;
return (0);
}
uint_t
cpu_idle_get_cpu_state(cpu_t *cp)
{
ASSERT(cp != NULL && cp->cpu_seqid < max_ncpus);
return ((uint_t)cpu_idle_prop_get_uint32(
cpu_idle_prop_array[CPU_IDLE_PROP_IDX_IDLE_STATE].handle,
CPU_IDLE_GET_CTX(cp)));
}
#if defined(__x86)
/*
* Intercept CPU at a safe point in idle() before powering it off.
*/
void
cpu_idle_intercept_cpu(cpu_t *cp)
{
ASSERT(cp->cpu_seqid < max_ncpus);
ASSERT(cpu_idle_cb_state[cp->cpu_seqid].v.enabled == B_FALSE);
/* Set flag to intercept CPU. */
CPUSET_ATOMIC_ADD(cpu_idle_intercept_set, cp->cpu_id);
/* Wake up CPU from possible sleep state. */
poke_cpu(cp->cpu_id);
while (CPU_IN_SET(cpu_idle_intercept_set, cp->cpu_id)) {
DELAY(1);
}
/*
* Now target CPU is spinning in a pause loop with interrupts disabled.
*/
}
#endif