/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2016 Joyent, Inc.
*/
/*
* Support for the signalfd facility, a Linux-borne facility for
* file descriptor-based synchronous signal consumption.
*
* As described on the signalfd(3C) man page, the general idea behind these
* file descriptors is that they can be used to synchronously consume signals
* via the read(2) syscall. While that capability already exists with the
* sigwaitinfo(3C) function, signalfd holds an advantage since it is file
* descriptor based: It is able use the event facilities (poll(2), /dev/poll,
* event ports) to notify interested parties when consumable signals arrive.
*
* The signalfd lifecycle begins When a process opens /dev/signalfd. A minor
* will be allocated for them along with an associated signalfd_state_t struct.
* It is there where the mask of desired signals resides.
*
* Reading from the signalfd is straightforward and mimics the kernel behavior
* for sigtimedwait(). Signals continue to live on either the proc's p_sig, or
* thread's t_sig, member. During a read operation, those which match the mask
* are consumed so they are no longer pending.
*
* The poll side is more complex. Every time a signal is delivered, all of the
* signalfds on the process need to be examined in order to pollwake threads
* waiting for signal arrival.
*
* When a thread polling on a signalfd requires a pollhead, several steps must
* be taken to safely ensure the proper result. A sigfd_proc_state_t is
* created for the calling process if it does not yet exist. It is there where
* a list of sigfd_poll_waiter_t structures reside which associate pollheads to
* signalfd_state_t entries. The sigfd_proc_state_t list is walked to find a
* sigfd_poll_waiter_t matching the signalfd_state_t which corresponds to the
* polled resource. If one is found, it is reused. Otherwise a new one is
* created, incrementing the refcount on the signalfd_state_t, and it is added
* to the sigfd_poll_waiter_t list.
*
* The complications imposed by fork(2) are why the pollhead is stored in the
* associated sigfd_poll_waiter_t instead of directly in the signalfd_state_t.
* More than one process can hold a reference to the signalfd at a time but
* arriving signals should wake only process-local pollers. Additionally,
* signalfd_close is called only when the last referencing fd is closed, hiding
* occurrences of preceeding threads which released their references. This
* necessitates reference counting on the signalfd_state_t so it is able to
* persist after close until all poll references have been cleansed. Doing so
* ensures that blocked pollers which hold references to the signalfd_state_t
* will be able to do clean-up after the descriptor itself has been closed.
*
* When a signal arrives in a process polling on signalfd, signalfd_pollwake_cb
* is called via the pointer in sigfd_proc_state_t. It will walk over the
* sigfd_poll_waiter_t entries present in the list, searching for any
* associated with a signalfd_state_t with a matching signal mask. The
* approach of keeping the poller list in p_sigfd was chosen because a process
* is likely to use few signalfds relative to its total file descriptors. It
* reduces the work required for each received signal.
*
* When matching sigfd_poll_waiter_t entries are encountered in the poller list
* during signalfd_pollwake_cb, they are dispatched into signalfd_wakeq to
* perform the pollwake. This is due to a lock ordering conflict between
* signalfd_poll and signalfd_pollwake_cb. The former acquires
* pollcache_t`pc_lock before proc_t`p_lock. The latter (via sigtoproc)
* reverses the order. Defering the pollwake into a taskq means it can be
* performed without proc_t`p_lock held, avoiding the deadlock.
*
* The sigfd_list is self-cleaning; as signalfd_pollwake_cb is called, the list
* will clear out on its own. Any remaining per-process state which remains
* will be cleaned up by the exit helper (signalfd_exit_helper).
*
* The structures associated with signalfd state are designed to operate
* correctly across fork, but there is one caveat that applies. Using
* fork-shared signalfd descriptors in conjuction with fork-shared caching poll
* descriptors (such as /dev/poll or event ports) will result in missed poll
* wake-ups. This is caused by the pollhead identity of signalfd descriptors
* being dependent on the process they are polled from. Because it has a
* thread-local cache, poll(2) is unaffected by this limitation.
*
* Lock ordering:
*
* 1. signalfd_lock
* 2. signalfd_state_t`sfd_lock
*
* 1. proc_t`p_lock (to walk p_sigfd)
* 2. signalfd_state_t`sfd_lock
* 2a. signalfd_lock (after sfd_lock is dropped, when sfd_count falls to 0)
*/
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/signalfd.h>
#include <sys/conf.h>
#include <sys/sysmacros.h>
#include <sys/filio.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <sys/schedctl.h>
#include <sys/id_space.h>
#include <sys/sdt.h>
#include <sys/disp.h>
#include <sys/taskq_impl.h>
typedef struct signalfd_state signalfd_state_t;
struct signalfd_state {
list_node_t sfd_list; /* node in global list */
kmutex_t sfd_lock; /* protects fields below */
uint_t sfd_count; /* ref count */
boolean_t sfd_valid; /* valid while open */
k_sigset_t sfd_set; /* signals for this fd */
};
typedef struct sigfd_poll_waiter {
list_node_t spw_list;
signalfd_state_t *spw_state;
pollhead_t spw_pollhd;
taskq_ent_t spw_taskent;
short spw_pollev;
} sigfd_poll_waiter_t;
/*
* Protects global state in signalfd_devi, signalfd_minor, signalfd_softstate,
* and signalfd_state (including sfd_list field of members)
*/
static kmutex_t signalfd_lock;
static dev_info_t *signalfd_devi; /* device info */
static id_space_t *signalfd_minor; /* minor number arena */
static void *signalfd_softstate; /* softstate pointer */
static list_t signalfd_state; /* global list of state */
static taskq_t *signalfd_wakeq; /* pollwake event taskq */
static void
signalfd_state_enter_locked(signalfd_state_t *state)
{
ASSERT(MUTEX_HELD(&state->sfd_lock));
ASSERT(state->sfd_count > 0);
VERIFY(state->sfd_valid == B_TRUE);
state->sfd_count++;
}
static void
signalfd_state_release(signalfd_state_t *state, boolean_t force_invalidate)
{
mutex_enter(&state->sfd_lock);
if (force_invalidate) {
state->sfd_valid = B_FALSE;
}
ASSERT(state->sfd_count > 0);
if (state->sfd_count == 1) {
VERIFY(state->sfd_valid == B_FALSE);
mutex_exit(&state->sfd_lock);
if (force_invalidate) {
/*
* The invalidation performed in signalfd_close is done
* while signalfd_lock is held.
*/
ASSERT(MUTEX_HELD(&signalfd_lock));
list_remove(&signalfd_state, state);
} else {
ASSERT(MUTEX_NOT_HELD(&signalfd_lock));
mutex_enter(&signalfd_lock);
list_remove(&signalfd_state, state);
mutex_exit(&signalfd_lock);
}
kmem_free(state, sizeof (*state));
return;
}
state->sfd_count--;
mutex_exit(&state->sfd_lock);
}
static sigfd_poll_waiter_t *
signalfd_wake_list_add(sigfd_proc_state_t *pstate, signalfd_state_t *state)
{
list_t *lst = &pstate->sigfd_list;
sigfd_poll_waiter_t *pw;
for (pw = list_head(lst); pw != NULL; pw = list_next(lst, pw)) {
if (pw->spw_state == state)
break;
}
if (pw == NULL) {
pw = kmem_zalloc(sizeof (*pw), KM_SLEEP);
mutex_enter(&state->sfd_lock);
signalfd_state_enter_locked(state);
pw->spw_state = state;
mutex_exit(&state->sfd_lock);
list_insert_head(lst, pw);
}
return (pw);
}
static sigfd_poll_waiter_t *
signalfd_wake_list_rm(sigfd_proc_state_t *pstate, signalfd_state_t *state)
{
list_t *lst = &pstate->sigfd_list;
sigfd_poll_waiter_t *pw;
for (pw = list_head(lst); pw != NULL; pw = list_next(lst, pw)) {
if (pw->spw_state == state) {
break;
}
}
if (pw != NULL) {
list_remove(lst, pw);
pw->spw_state = NULL;
signalfd_state_release(state, B_FALSE);
}
return (pw);
}
static void
signalfd_wake_list_cleanup(proc_t *p)
{
sigfd_proc_state_t *pstate = p->p_sigfd;
sigfd_poll_waiter_t *pw;
list_t *lst;
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT(pstate != NULL);
lst = &pstate->sigfd_list;
while ((pw = list_remove_head(lst)) != NULL) {
signalfd_state_t *state = pw->spw_state;
pw->spw_state = NULL;
signalfd_state_release(state, B_FALSE);
pollwakeup(&pw->spw_pollhd, POLLERR);
pollhead_clean(&pw->spw_pollhd);
kmem_free(pw, sizeof (*pw));
}
list_destroy(lst);
p->p_sigfd = NULL;
kmem_free(pstate, sizeof (*pstate));
}
static void
signalfd_exit_helper(void)
{
proc_t *p = curproc;
mutex_enter(&p->p_lock);
signalfd_wake_list_cleanup(p);
mutex_exit(&p->p_lock);
}
/*
* Perform pollwake for a sigfd_poll_waiter_t entry.
* Thanks to the strict and conflicting lock orders required for signalfd_poll
* (pc_lock before p_lock) and signalfd_pollwake_cb (p_lock before pc_lock),
* this is relegated to a taskq to avoid deadlock.
*/
static void
signalfd_wake_task(void *arg)
{
sigfd_poll_waiter_t *pw = arg;
signalfd_state_t *state = pw->spw_state;
pw->spw_state = NULL;
signalfd_state_release(state, B_FALSE);
pollwakeup(&pw->spw_pollhd, pw->spw_pollev);
pollhead_clean(&pw->spw_pollhd);
kmem_free(pw, sizeof (*pw));
}
/*
* Called every time a signal is delivered to the process so that we can
* see if any signal stream needs a pollwakeup. We maintain a list of
* signal state elements so that we don't have to look at every file descriptor
* on the process. If necessary, a further optimization would be to maintain a
* signal set mask that is a union of all of the sets in the list so that
* we don't even traverse the list if the signal is not in one of the elements.
* However, since the list is likely to be very short, this is not currently
* being done. A more complex data structure might also be used, but it is
* unclear what that would be since each signal set needs to be checked for a
* match.
*/
static void
signalfd_pollwake_cb(void *arg0, int sig)
{
proc_t *p = (proc_t *)arg0;
sigfd_proc_state_t *pstate = (sigfd_proc_state_t *)p->p_sigfd;
list_t *lst;
sigfd_poll_waiter_t *pw;
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT(pstate != NULL);
lst = &pstate->sigfd_list;
pw = list_head(lst);
while (pw != NULL) {
signalfd_state_t *state = pw->spw_state;
sigfd_poll_waiter_t *next;
mutex_enter(&state->sfd_lock);
if (!state->sfd_valid) {
pw->spw_pollev = POLLERR;
} else if (sigismember(&state->sfd_set, sig)) {
pw->spw_pollev = POLLRDNORM | POLLIN;
} else {
mutex_exit(&state->sfd_lock);
pw = list_next(lst, pw);
continue;
}
mutex_exit(&state->sfd_lock);
/*
* Pull the sigfd_poll_waiter_t out of the list and dispatch it
* to perform a pollwake. This cannot be done synchronously
* since signalfd_poll and signalfd_pollwake_cb have
* conflicting lock orders which can deadlock.
*/
next = list_next(lst, pw);
list_remove(lst, pw);
taskq_dispatch_ent(signalfd_wakeq, signalfd_wake_task, pw, 0,
&pw->spw_taskent);
pw = next;
}
}
_NOTE(ARGSUSED(1))
static int
signalfd_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
{
signalfd_state_t *state, **sstate;
major_t major = getemajor(*devp);
minor_t minor = getminor(*devp);
if (minor != SIGNALFDMNRN_SIGNALFD)
return (ENXIO);
mutex_enter(&signalfd_lock);
minor = (minor_t)id_allocff(signalfd_minor);
if (ddi_soft_state_zalloc(signalfd_softstate, minor) != DDI_SUCCESS) {
id_free(signalfd_minor, minor);
mutex_exit(&signalfd_lock);
return (ENODEV);
}
state = kmem_zalloc(sizeof (*state), KM_SLEEP);
state->sfd_valid = B_TRUE;
state->sfd_count = 1;
list_insert_head(&signalfd_state, (void *)state);
sstate = ddi_get_soft_state(signalfd_softstate, minor);
*sstate = state;
*devp = makedevice(major, minor);
mutex_exit(&signalfd_lock);
return (0);
}
/*
* Consume one signal from our set in a manner similar to sigtimedwait().
* The block parameter is used to control whether we wait for a signal or
* return immediately if no signal is pending. We use the thread's t_sigwait
* member in the same way that it is used by sigtimedwait.
*
* Return 0 if we successfully consumed a signal or an errno if not.
*/
static int
consume_signal(k_sigset_t set, uio_t *uio, boolean_t block)
{
k_sigset_t oldmask;
kthread_t *t = curthread;
klwp_t *lwp = ttolwp(t);
proc_t *p = ttoproc(t);
timespec_t now;
timespec_t *rqtp = NULL; /* null means blocking */
int timecheck = 0;
int ret = 0;
k_siginfo_t info, *infop;
signalfd_siginfo_t ssi, *ssp = &ssi;
if (block == B_FALSE) {
timecheck = timechanged;
gethrestime(&now);
rqtp = &now; /* non-blocking check for pending signals */
}
t->t_sigwait = set;
mutex_enter(&p->p_lock);
/*
* set the thread's signal mask to unmask those signals in the
* specified set.
*/
schedctl_finish_sigblock(t);
oldmask = t->t_hold;
sigdiffset(&t->t_hold, &t->t_sigwait);
/*
* Based on rqtp, wait indefinitely until we take a signal in our set
* or return immediately if there are no signals pending from our set.
*/
while ((ret = cv_waituntil_sig(&t->t_delay_cv, &p->p_lock, rqtp,
timecheck)) > 0)
continue;
/* Restore thread's signal mask to its previous value. */
t->t_hold = oldmask;
t->t_sig_check = 1; /* so post_syscall sees new t_hold mask */
if (ret == -1) {
/* no signals pending */
mutex_exit(&p->p_lock);
sigemptyset(&t->t_sigwait);
return (EAGAIN); /* no signals pending */
}
/* Don't bother with signal if it is not in request set. */
if (lwp->lwp_cursig == 0 ||
!sigismember(&t->t_sigwait, lwp->lwp_cursig)) {
mutex_exit(&p->p_lock);
/*
* lwp_cursig is zero if pokelwps() awakened cv_wait_sig().
* This happens if some other thread in this process called
* forkall() or exit().
*/
sigemptyset(&t->t_sigwait);
return (EINTR);
}
if (lwp->lwp_curinfo) {
infop = &lwp->lwp_curinfo->sq_info;
} else {
infop = &info;
bzero(infop, sizeof (info));
infop->si_signo = lwp->lwp_cursig;
infop->si_code = SI_NOINFO;
}
lwp->lwp_ru.nsignals++;
DTRACE_PROC2(signal__clear, int, ret, ksiginfo_t *, infop);
lwp->lwp_cursig = 0;
lwp->lwp_extsig = 0;
mutex_exit(&p->p_lock);
/* Convert k_siginfo into external, datamodel independent, struct. */
bzero(ssp, sizeof (*ssp));
ssp->ssi_signo = infop->si_signo;
ssp->ssi_errno = infop->si_errno;
ssp->ssi_code = infop->si_code;
ssp->ssi_pid = infop->si_pid;
ssp->ssi_uid = infop->si_uid;
ssp->ssi_fd = infop->si_fd;
ssp->ssi_band = infop->si_band;
ssp->ssi_trapno = infop->si_trapno;
ssp->ssi_status = infop->si_status;
ssp->ssi_utime = infop->si_utime;
ssp->ssi_stime = infop->si_stime;
ssp->ssi_addr = (uint64_t)(intptr_t)infop->si_addr;
ret = uiomove(ssp, sizeof (*ssp), UIO_READ, uio);
if (lwp->lwp_curinfo) {
siginfofree(lwp->lwp_curinfo);
lwp->lwp_curinfo = NULL;
}
sigemptyset(&t->t_sigwait);
return (ret);
}
/*
* This is similar to sigtimedwait. Based on the fd mode we may wait until a
* signal within our specified set is posted. We consume as many available
* signals within our set as we can.
*/
_NOTE(ARGSUSED(2))
static int
signalfd_read(dev_t dev, uio_t *uio, cred_t *cr)
{
signalfd_state_t *state, **sstate;
minor_t minor = getminor(dev);
boolean_t block = B_TRUE;
k_sigset_t set;
boolean_t got_one = B_FALSE;
int res;
if (uio->uio_resid < sizeof (signalfd_siginfo_t))
return (EINVAL);
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
if (uio->uio_fmode & (FNDELAY|FNONBLOCK))
block = B_FALSE;
mutex_enter(&state->sfd_lock);
set = state->sfd_set;
mutex_exit(&state->sfd_lock);
if (sigisempty(&set))
return (set_errno(EINVAL));
do {
res = consume_signal(set, uio, block);
if (res == 0) {
/*
* After consuming one signal, do not block while
* trying to consume more.
*/
got_one = B_TRUE;
block = B_FALSE;
/*
* Refresh the matching signal set in case it was
* updated during the wait.
*/
mutex_enter(&state->sfd_lock);
set = state->sfd_set;
mutex_exit(&state->sfd_lock);
if (sigisempty(&set))
break;
}
} while (res == 0 && uio->uio_resid >= sizeof (signalfd_siginfo_t));
if (got_one)
res = 0;
return (res);
}
/*
* If ksigset_t's were a single word, we would do:
* return (((p->p_sig | t->t_sig) & set) & fillset);
*/
static int
signalfd_sig_pending(proc_t *p, kthread_t *t, k_sigset_t set)
{
return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
set.__sigbits[0]) |
((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
set.__sigbits[1]) |
(((p->p_sig.__sigbits[2] | t->t_sig.__sigbits[2]) &
set.__sigbits[2]) & FILLSET2));
}
_NOTE(ARGSUSED(4))
static int
signalfd_poll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp)
{
signalfd_state_t *state, **sstate;
minor_t minor = getminor(dev);
kthread_t *t = curthread;
proc_t *p = ttoproc(t);
short revents = 0;
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
mutex_enter(&state->sfd_lock);
if (signalfd_sig_pending(p, t, state->sfd_set) != 0)
revents |= POLLRDNORM | POLLIN;
mutex_exit(&state->sfd_lock);
if (!(*reventsp = revents & events) && !anyyet) {
sigfd_proc_state_t *pstate;
sigfd_poll_waiter_t *pw;
/*
* Enable pollwakeup handling.
*/
mutex_enter(&p->p_lock);
if ((pstate = (sigfd_proc_state_t *)p->p_sigfd) == NULL) {
mutex_exit(&p->p_lock);
pstate = kmem_zalloc(sizeof (*pstate), KM_SLEEP);
list_create(&pstate->sigfd_list,
sizeof (sigfd_poll_waiter_t),
offsetof(sigfd_poll_waiter_t, spw_list));
pstate->sigfd_pollwake_cb = signalfd_pollwake_cb;
/* Check again, after blocking for the alloc. */
mutex_enter(&p->p_lock);
if (p->p_sigfd == NULL) {
p->p_sigfd = pstate;
} else {
/* someone beat us to it */
list_destroy(&pstate->sigfd_list);
kmem_free(pstate, sizeof (*pstate));
pstate = p->p_sigfd;
}
}
pw = signalfd_wake_list_add(pstate, state);
*phpp = &pw->spw_pollhd;
mutex_exit(&p->p_lock);
}
return (0);
}
_NOTE(ARGSUSED(4))
static int
signalfd_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
{
signalfd_state_t *state, **sstate;
minor_t minor = getminor(dev);
sigset_t mask;
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
switch (cmd) {
case SIGNALFDIOC_MASK:
if (ddi_copyin((caddr_t)arg, (caddr_t)&mask, sizeof (sigset_t),
md) != 0)
return (set_errno(EFAULT));
mutex_enter(&state->sfd_lock);
sigutok(&mask, &state->sfd_set);
mutex_exit(&state->sfd_lock);
return (0);
default:
break;
}
return (ENOTTY);
}
_NOTE(ARGSUSED(1))
static int
signalfd_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
{
signalfd_state_t *state, **sstate;
sigfd_poll_waiter_t *pw = NULL;
minor_t minor = getminor(dev);
proc_t *p = curproc;
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
/* Make sure state is removed from this proc's pollwake list. */
mutex_enter(&p->p_lock);
if (p->p_sigfd != NULL) {
sigfd_proc_state_t *pstate = p->p_sigfd;
pw = signalfd_wake_list_rm(pstate, state);
if (list_is_empty(&pstate->sigfd_list)) {
signalfd_wake_list_cleanup(p);
}
}
mutex_exit(&p->p_lock);
if (pw != NULL) {
pollwakeup(&pw->spw_pollhd, POLLERR);
pollhead_clean(&pw->spw_pollhd);
kmem_free(pw, sizeof (*pw));
}
mutex_enter(&signalfd_lock);
*sstate = NULL;
ddi_soft_state_free(signalfd_softstate, minor);
id_free(signalfd_minor, minor);
signalfd_state_release(state, B_TRUE);
mutex_exit(&signalfd_lock);
return (0);
}
static int
signalfd_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{
if (cmd != DDI_ATTACH || signalfd_devi != NULL)
return (DDI_FAILURE);
mutex_enter(&signalfd_lock);
signalfd_minor = id_space_create("signalfd_minor", 1, L_MAXMIN32 + 1);
if (signalfd_minor == NULL) {
cmn_err(CE_WARN, "signalfd couldn't create id space");
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
if (ddi_soft_state_init(&signalfd_softstate,
sizeof (signalfd_state_t *), 0) != 0) {
cmn_err(CE_WARN, "signalfd failed to create soft state");
id_space_destroy(signalfd_minor);
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
if (ddi_create_minor_node(devi, "signalfd", S_IFCHR,
SIGNALFDMNRN_SIGNALFD, DDI_PSEUDO, NULL) == DDI_FAILURE) {
cmn_err(CE_NOTE, "/dev/signalfd couldn't create minor node");
ddi_soft_state_fini(&signalfd_softstate);
id_space_destroy(signalfd_minor);
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
ddi_report_dev(devi);
signalfd_devi = devi;
sigfd_exit_helper = signalfd_exit_helper;
list_create(&signalfd_state, sizeof (signalfd_state_t),
offsetof(signalfd_state_t, sfd_list));
signalfd_wakeq = taskq_create("signalfd_wake", 1, minclsyspri,
0, INT_MAX, TASKQ_PREPOPULATE);
mutex_exit(&signalfd_lock);
return (DDI_SUCCESS);
}
_NOTE(ARGSUSED(0))
static int
signalfd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
switch (cmd) {
case DDI_DETACH:
break;
default:
return (DDI_FAILURE);
}
mutex_enter(&signalfd_lock);
if (!list_is_empty(&signalfd_state)) {
/*
* There are dangling poll waiters holding signalfd_state_t
* entries on the global list. Detach is not possible until
* they purge themselves.
*/
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
list_destroy(&signalfd_state);
/*
* With no remaining entries in the signalfd_state list, the wake taskq
* should be empty with no possibility for new entries.
*/
taskq_destroy(signalfd_wakeq);
id_space_destroy(signalfd_minor);
ddi_remove_minor_node(signalfd_devi, NULL);
signalfd_devi = NULL;
sigfd_exit_helper = NULL;
ddi_soft_state_fini(&signalfd_softstate);
mutex_exit(&signalfd_lock);
return (DDI_SUCCESS);
}
_NOTE(ARGSUSED(0))
static int
signalfd_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
int error;
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = (void *)signalfd_devi;
error = DDI_SUCCESS;
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
error = DDI_SUCCESS;
break;
default:
error = DDI_FAILURE;
}
return (error);
}
static struct cb_ops signalfd_cb_ops = {
signalfd_open, /* open */
signalfd_close, /* close */
nulldev, /* strategy */
nulldev, /* print */
nodev, /* dump */
signalfd_read, /* read */
nodev, /* write */
signalfd_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
signalfd_poll, /* poll */
ddi_prop_op, /* cb_prop_op */
0, /* streamtab */
D_NEW | D_MP /* Driver compatibility flag */
};
static struct dev_ops signalfd_ops = {
DEVO_REV, /* devo_rev */
0, /* refcnt */
signalfd_info, /* get_dev_info */
nulldev, /* identify */
nulldev, /* probe */
signalfd_attach, /* attach */
signalfd_detach, /* detach */
nodev, /* reset */
&signalfd_cb_ops, /* driver operations */
NULL, /* bus operations */
nodev, /* dev power */
ddi_quiesce_not_needed, /* quiesce */
};
static struct modldrv modldrv = {
&mod_driverops, /* module type (this is a pseudo driver) */
"signalfd support", /* name of module */
&signalfd_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
int
_init(void)
{
return (mod_install(&modlinkage));
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{
return (mod_remove(&modlinkage));
}