/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* SD card initialization support.
*/
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sdcard/sda.h>
#include <sys/sdcard/sda_impl.h>
/*
* Local Prototypes.
*/
static sda_err_t sda_init_mmc(sda_slot_t *);
static sda_err_t sda_init_sdio(sda_slot_t *);
static sda_err_t sda_init_sdmem(sda_slot_t *);
static sda_err_t sda_init_cmd(sda_slot_t *, sda_index_t, uint32_t,
sda_rtype_t, uint32_t *);
static sda_err_t sda_init_acmd(sda_slot_t *, sda_index_t, uint32_t,
sda_rtype_t, uint32_t *);
static sda_err_t sda_init_blocklen(sda_slot_t *);
static sda_err_t sda_init_width(sda_slot_t *);
static sda_err_t sda_init_rca(sda_slot_t *);
static sda_err_t sda_init_ifcond(sda_slot_t *);
static sda_err_t sda_init_highspeed(sda_slot_t *);
static sda_err_t sda_init_switch(sda_slot_t *, uint8_t, uint8_t, uint8_t,
uint8_t *);
static void sda_init_clock(sda_slot_t *, uint32_t);
/*
* Implementation.
*/
sda_err_t
sda_init_cmd(sda_slot_t *slot, sda_index_t cmd, uint32_t arg,
sda_rtype_t rtype, uint32_t *resp)
{
sda_cmd_t *cmdp;
sda_err_t errno;
cmdp = sda_cmd_alloc(slot, cmd, arg, rtype, NULL, KM_SLEEP);
cmdp->sc_flags |= SDA_CMDF_INIT;
errno = sda_cmd_exec(slot, cmdp, resp);
sda_cmd_free(cmdp);
return (errno);
}
sda_err_t
sda_init_acmd(sda_slot_t *slot, sda_index_t cmd, uint32_t arg,
sda_rtype_t rtype, uint32_t *resp)
{
sda_cmd_t *cmdp;
sda_err_t errno;
cmdp = sda_cmd_alloc_acmd(slot, cmd, arg, rtype, NULL, KM_SLEEP);
cmdp->sc_flags |= SDA_CMDF_INIT;
errno = sda_cmd_exec(slot, cmdp, resp);
sda_cmd_free(cmdp);
return (errno);
}
sda_err_t
sda_init_sdio(sda_slot_t *slot)
{
slot->s_num_io = 0;
/*
* TODO: SDIO: We need to initialize the SDIO OCR register using
* the special CMD_IO_SEND_OCR (CMD5) command.
*/
return (SDA_EOK);
}
sda_err_t
sda_init_sdmem(sda_slot_t *slot)
{
uint32_t ocr;
int count;
slot->s_flags &= ~SLOTF_SDMEM;
/*
* Try sending the ACMD41 to query the OCR (Op Cond Register).
*/
if (sda_init_acmd(slot, ACMD_SD_SEND_OCR, 0, R3, &ocr) != SDA_EOK) {
/*
* Card failed to respond to query, not an SD card?
* We send GO_IDLE to clear any error status on the
* card.
*/
(void) sda_init_cmd(slot, CMD_GO_IDLE, 0, R0, NULL);
return (SDA_EOK);
}
/*
* Now we have to send our OCR value, along with the HCS (High
* Capacity Support) bit. The HCS bit is required, to
* activate high capacity cards. We only set the HCS bit if
* the card responded to CMD8 (SEND_IFCOND), indicating that
* it supports the new protocol.
*
* Note that the HCS bit occupies the same location as the CCS bit
* in the response.
*/
if ((ocr & slot->s_cur_ocr) == 0) {
sda_slot_err(slot, "SD card not compatible with host");
return (SDA_ENOTSUP);
}
/* set the HCS bit if its a ver 2.00 card */
if (slot->s_flags & SLOTF_IFCOND) {
ocr |= OCR_CCS;
}
/* make sure card is powered up */
for (count = 1000000; count != 0; count -= 10000) {
uint32_t r3;
if (sda_init_acmd(slot, ACMD_SD_SEND_OCR, ocr, R3, &r3) != 0) {
sda_slot_err(slot, "SD card failed to power up");
return (SDA_ENOTSUP);
}
/* Now check the busy bit */
if (r3 & OCR_POWER_UP) {
slot->s_flags |= SLOTF_SDMEM;
if ((slot->s_flags & SLOTF_IFCOND) &&
(r3 & OCR_CCS)) {
slot->s_flags |= SLOTF_SDHC;
} else {
slot->s_flags &= ~SLOTF_SDHC;
}
return (0);
}
drv_usecwait(10000);
}
sda_slot_err(slot, "SD card timed out during power up");
return (SDA_ETIME);
}
sda_err_t
sda_init_mmc(sda_slot_t *slot)
{
uint32_t ocr;
int count;
slot->s_flags &= ~SLOTF_MMC;
/*
* If the card has already been identified as an SD card, then
* cannot also be an MMC card, so don't probe it as such.
*/
if (slot->s_flags & SLOTF_SD) {
return (SDA_EOK);
}
/*
* Try sending the CMD1 to query the OCR.
*/
if (sda_init_cmd(slot, CMD_SEND_OCR, 0, R3, &ocr) != 0) {
/*
* Card failed to respond to query, not an MMC card?
* We send GO_IDLE to clear any error status on the
* card.
*/
(void) sda_init_cmd(slot, CMD_GO_IDLE, 0, R0, NULL);
return (SDA_EOK);
}
if ((ocr & slot->s_cur_ocr) == 0) {
sda_slot_err(slot, "MMC card not compatible with host");
return (SDA_ENOTSUP);
}
/* make sure card is powered up */
for (count = 1000000; count != 0; count -= 10000) {
uint32_t r3;
if (sda_init_cmd(slot, CMD_SEND_OCR, ocr, R3, &r3) != 0) {
sda_slot_err(slot, "MMC card failed to power up");
return (SDA_ENOTSUP);
}
/* Now check the busy bit */
if (r3 & OCR_POWER_UP) {
slot->s_flags |= SLOTF_MMC;
return (SDA_EOK);
}
drv_usecwait(10000);
}
sda_slot_err(slot, "MMC card timed out during power up");
return (SDA_ETIME);
}
sda_err_t
sda_init_card(sda_slot_t *slot)
{
int rv;
uint32_t resp;
uint32_t val;
/*
* Power off slot/card initially.
*/
sda_slot_power_off(slot);
/*
* Apply initial power to the slot.
*/
if ((rv = sda_slot_power_on(slot)) != 0) {
return (rv);
}
/*
* First enable the clock, but only at 400 kHz. All cards are
* supposed to be able to operate between this speed and 100
* kHz, and all hosts must be able to pick a speed between 100
* kHz and 400 kHz.
*
* Once we know what the device can support, then we speed up.
*/
sda_init_clock(slot, 400000);
if ((rv = sda_init_ifcond(slot)) != SDA_EOK) {
goto done;
}
if (((rv = sda_init_sdio(slot)) != SDA_EOK) ||
((rv = sda_init_sdmem(slot)) != SDA_EOK) ||
((rv = sda_init_mmc(slot)) != SDA_EOK)) {
/* message will already have been logged */
goto done;
}
if ((slot->s_flags & (SLOTF_MEMORY | SLOTF_SDIO)) == 0) {
sda_slot_err(slot, "Unidentified card type");
rv = SDA_ENOTSUP;
goto done;
}
/*
* Memory cards need to obtain their CID before getting their RCA.
* This is a requirement for the state transitions... they go thru
* the ident state, unlike SDIO cards.
*/
if (slot->s_flags & SLOTF_MEMORY) {
rv = sda_init_cmd(slot, CMD_BCAST_CID, 0, R2, slot->s_rcid);
if (rv != SDA_EOK) {
sda_slot_err(slot, "Failed getting card CID (%d)", rv);
goto done;
}
}
if ((rv = sda_init_rca(slot)) != SDA_EOK) {
goto done;
}
slot->s_maxclk = 0xffffffffU; /* special sentinel */
/*
* Figure out card supported bus width and speed.
*
* TODO: SDIO: For IO cards, we have to check what speed the card
* supports by looking in the CCCR_CAPAB register. (SDIO cards
* can go low-speed only, full-speed, or high-speed.)
*/
if (slot->s_flags & SLOTF_MEMORY) {
/*
* We need to obtain the CSD.
*/
rv = sda_init_cmd(slot, CMD_SEND_CSD, slot->s_rca << 16, R2,
slot->s_rcsd);
if (rv != 0) {
sda_slot_err(slot, "Failed getting card CSD (%d)", rv);
goto done;
}
/*
* Calculate the maxclock.
*/
slot->s_maxclk = sda_mem_maxclk(slot);
}
if (((slot->s_flags & SLOTF_SDMEM) != 0) &&
((slot->s_caps & SLOT_CAP_4BITS) != 0)) {
slot->s_flags |= SLOTF_4BITS;
}
if (slot->s_flags & SLOTF_SDIO) {
sda_slot_debug(slot, "Wide SDIO bus not yet supported");
slot->s_flags &= ~SLOTF_4BITS;
}
/*
* Now select the card.
*/
if ((rv = sda_init_cmd(slot, CMD_SELECT_CARD, slot->s_rca << 16,
R1b, &resp)) != SDA_EOK) {
sda_slot_err(slot, "Failed selecting card (%d, %x)", rv, resp);
goto done;
}
if ((rv = sda_init_highspeed(slot)) != SDA_EOK) {
goto done;
}
sda_init_clock(slot, slot->s_maxclk);
/*
* Lets go to 4-bit bus mode, if possible.
*/
if ((rv = sda_init_width(slot)) != SDA_EOK) {
goto done;
}
if ((rv = sda_init_blocklen(slot)) != SDA_EOK) {
goto done;
}
/* note if a card is writable */
if ((sda_getprop(slot, SDA_PROP_WPROTECT, &val) == SDA_EOK) &&
(val == 0)) {
slot->s_flags |= SLOTF_WRITABLE;
}
rv = SDA_EOK;
done:
sda_slot_enter(slot);
slot->s_init = B_FALSE;
sda_slot_exit(slot);
sda_slot_wakeup(slot);
return (rv);
}
sda_err_t
sda_init_blocklen(sda_slot_t *slot)
{
int rv;
uint32_t resp;
if ((slot->s_flags & SLOTF_MEMORY) == 0) {
return (SDA_EOK);
}
/*
* All memory cards support block sizes of 512. Full stop.
*/
rv = sda_init_cmd(slot, CMD_SET_BLOCKLEN, 512, R1, &resp);
if (rv != SDA_EOK) {
sda_slot_err(slot, "Unable to set block length (%d, %x)",
rv, resp);
}
return (rv);
}
void
sda_init_clock(sda_slot_t *slot, uint32_t hz)
{
int rv;
uint32_t act;
/*
* Note that at no time is a failure programming the clock
* itself necessarily a fatal error. Although if the clock
* wasn't programmed, other things will probably not work during
* initialization.
*/
if ((rv = sda_setprop(slot, SDA_PROP_CLOCK, hz)) != SDA_EOK) {
sda_slot_err(slot, "Failed setting clock to %u Hz (%d)",
hz, rv);
/* XXX: FMA fail the slot */
return;
}
rv = sda_getprop(slot, SDA_PROP_CLOCK, &act);
sda_slot_debug(slot,
rv == SDA_EOK ? "Clock set to %u Hz (requested %u Hz)" :
"Clock frequency unknown (good luck).", act, hz);
/*
* For now, just wait 10msec for clocks to stabilize to the
* card. (Is this really necessary?)
*/
delay(drv_usectohz(10000));
}
sda_err_t
sda_init_width(sda_slot_t *slot)
{
int rv;
uint32_t resp;
/*
* Spec says we should command the card first.
*/
rv = sda_setprop(slot, SDA_PROP_BUSWIDTH, 1);
if (rv != SDA_EOK) {
sda_slot_err(slot, "Unable to set slot 1-bit mode (%d)", rv);
return (rv);
}
if ((slot->s_flags & SLOTF_4BITS) == 0) {
return (SDA_EOK);
}
/*
* TODO: SDIO: SDIO cards set the CCCR_BUS_WIDTH
* and CCCR_CD_DISABLE bits here.
*/
/*
* If we're going to use all 4 pins, we really need to disconnect
* the card pullup resistor. A consquence of this, is that hosts
* which use that resistor for detection must not claim to support
* 4-bit bus mode. This is a limitation of our implementation.
*/
rv = sda_init_acmd(slot, ACMD_SET_CLR_CARD_DETECT, 1, R1, &resp);
if (rv != SDA_EOK) {
sda_slot_err(slot,
"Unable disconnect DAT3 resistor on card (%d, %x)",
rv, resp);
/* non-fatal error, muddle on */
return (SDA_EOK);
}
rv = sda_init_acmd(slot, ACMD_SET_BUS_WIDTH, 2, R1, &resp);
if (rv != SDA_EOK) {
sda_slot_err(slot, "Unable to set card 4-bit mode (%d, %x)",
rv, resp);
/* non-fatal error, muddle on */
return (SDA_EOK);
}
rv = sda_setprop(slot, SDA_PROP_BUSWIDTH, 4);
if (rv != SDA_EOK) {
/*
* This is bad news. We've already asked for the card to
* to use 4-bit mode, but the host is not complying. It
* shouldn't ever happen, so we just error out.
*/
sda_slot_err(slot, "Unable to set slot 4-bit mode (%d)", rv);
}
return (rv);
}
sda_err_t
sda_init_ifcond(sda_slot_t *slot)
{
int rv;
int tries;
uint32_t vchk;
uint32_t resp;
/*
* Try SEND_IF_COND. Note that this assumes that the host is
* supplying 2.7 - 3.6 voltage range. The standard is not
* defined for any other ranges.
*/
vchk = R7_VHS_27_36V | R7_PATTERN;
/* we try this a few times, just to be sure */
for (tries = 0; tries < 5; tries++) {
rv = sda_init_cmd(slot, CMD_GO_IDLE, 0, R0, NULL);
if (rv != SDA_EOK) {
sda_slot_err(slot, "Failed to IDLE card");
return (rv);
}
rv = sda_init_cmd(slot, CMD_SEND_IF_COND, vchk, R7, &resp);
if (rv == SDA_EOK) {
break;
}
delay(drv_usectohz(10000));
}
if (rv != SDA_EOK) {
(void) sda_init_cmd(slot, CMD_GO_IDLE, 0, R0, NULL);
slot->s_flags &= ~SLOTF_IFCOND;
} else if (resp != vchk) {
sda_slot_err(slot, "Card voltages incompatible! (%x)", resp);
return (SDA_ENOTSUP);
} else {
/* SDHC compliant */
slot->s_flags |= SLOTF_IFCOND;
}
return (SDA_EOK);
}
sda_err_t
sda_init_rca(sda_slot_t *slot)
{
int rv;
int tries;
uint32_t resp;
/*
* Program the RCA. Note that MMC has a different mechanism
* for this.
*/
for (tries = 0; tries < 10; tries++) {
if (slot->s_flags & SLOTF_MMC) {
/*
* For MMC, we push the RCA to the MMC. We
* arbitrarily start at 0x100, and add from
* there.
*/
rv = sda_init_cmd(slot, CMD_SEND_RCA,
(0x100 + tries) << 16, R1, NULL);
if (rv == SDA_EOK)
slot->s_rca = 0x100 + tries;
} else {
/*
* For SDcard, we are basically asking the
* card to propose a value. It *may* propose
* a value of zero, in which case we will have
* to ask again.
*/
rv = sda_init_cmd(slot, CMD_SEND_RCA, 0, R6, &resp);
if (rv == SDA_EOK)
slot->s_rca = resp >> 16;
}
if ((rv == SDA_EOK) && (slot->s_rca != 0)) {
sda_slot_debug(slot, "Relative address (RCA) = %d",
slot->s_rca);
return (SDA_EOK);
}
}
sda_slot_err(slot, "Unable to negotiate a suitable RCA (%d)", rv);
return ((rv != SDA_EOK) ? rv : SDA_EINVAL);
}
sda_err_t
sda_init_switch(sda_slot_t *slot, uint8_t mode, uint8_t grp, uint8_t val,
uint8_t *data)
{
sda_cmd_t *cmdp;
sda_err_t errno;
uint32_t arg;
/*
* The spec says we should leave unselected groups set to 0xf,
* to prevent inadvertent changes.
*/
arg = (mode << 31) | 0xffffff;
arg &= ~(0xf << (grp << 2));
arg |= (val << (grp << 2));
cmdp = sda_cmd_alloc(slot, CMD_SWITCH_FUNC, arg, R1, NULL, KM_SLEEP);
cmdp->sc_flags |= SDA_CMDF_INIT | SDA_CMDF_DAT | SDA_CMDF_READ;
cmdp->sc_blksz = 64;
cmdp->sc_nblks = 1;
cmdp->sc_kvaddr = (void *)data;
errno = sda_cmd_exec(slot, cmdp, NULL);
sda_cmd_free(cmdp);
return (errno);
}
sda_err_t
sda_init_highspeed(sda_slot_t *slot)
{
uint32_t ccc;
uint8_t data[64];
sda_err_t rv;
if ((slot->s_caps & SLOT_CAP_HISPEED) == 0) {
return (SDA_EOK);
}
if ((slot->s_flags & SLOTF_SDMEM) == 0) {
return (SDA_EOK);
}
ccc = sda_mem_getbits(slot->s_rcsd, 95, 12);
if ((ccc & (1 << 10)) == 0) {
return (SDA_EOK);
}
rv = sda_init_switch(slot, 0, 0, 1, data);
/* these are big-endian bits, bit 401 */
if ((rv != SDA_EOK) || ((data[13] & (1 << 1)) == 0)) {
return (SDA_EOK);
}
rv = sda_init_switch(slot, 1, 0, 1, data);
if (rv != SDA_EOK) {
return (SDA_EOK);
}
/* now program the card */
rv = sda_setprop(slot, SDA_PROP_HISPEED, 1);
if (rv != SDA_EOK) {
sda_slot_err(slot, "Failed setting slot to high speed mode");
} else {
/* the card should now support 50 MHz */
slot->s_maxclk = 50000000;
}
return (rv);
}